WO2016017383A1 - Esd素子を有する半導体装置 - Google Patents

Esd素子を有する半導体装置 Download PDF

Info

Publication number
WO2016017383A1
WO2016017383A1 PCT/JP2015/069643 JP2015069643W WO2016017383A1 WO 2016017383 A1 WO2016017383 A1 WO 2016017383A1 JP 2015069643 W JP2015069643 W JP 2015069643W WO 2016017383 A1 WO2016017383 A1 WO 2016017383A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
semiconductor substrate
esd element
well
region
Prior art date
Application number
PCT/JP2015/069643
Other languages
English (en)
French (fr)
Inventor
智光 理崎
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to EP15828226.9A priority Critical patent/EP3176823B1/en
Priority to CN201580040741.5A priority patent/CN106575653B/zh
Priority to KR1020177005387A priority patent/KR20170038020A/ko
Priority to US15/328,724 priority patent/US10438944B2/en
Publication of WO2016017383A1 publication Critical patent/WO2016017383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • H01L27/0274Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path involving a parasitic bipolar transistor triggered by the electrical biasing of the gate electrode of the field effect transistor, e.g. gate coupled transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • H01L27/0277Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path involving a parasitic bipolar transistor triggered by the local electrical biasing of the layer acting as base of said parasitic bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Definitions

  • the present invention relates to a semiconductor device having an ESD element made of a transistor.
  • the ESD element is essential for reliability. This is an electrostatic discharge element that discharges static electricity so that the IC is not destroyed by static electricity.
  • the ESD element itself is not thermally destroyed by static electricity, and that the internal circuit can be protected by quickly extracting charges before static electricity enters the internal circuit.
  • the ESD element characteristics are required to suppress local heat generation and to have high driving ability.
  • NMOS transistors as shown in FIGS. 8A to 8C can be mentioned.
  • (A) is a plan view
  • (B) is a cross-sectional view taken along line A-A ′
  • (C) is an equivalent circuit.
  • the gate electrodes 1 to 6 and the N + source 11 of the NMOS transistor are connected to the Vss terminal having the lower power supply potential via the wiring 17, and the N + drain 12 is connected to the pad via the wiring 18.
  • the NMOS transistor is in the P-well 14.
  • the P well 14 has a P well potential fixing P + region 13 for fixing the potential, and is connected to a wiring 17 having a Vss potential through a contact 16.
  • N + or P + indicates that the impurity concentration is higher than the region represented by N or P by the symbol of + together with the conductivity type of the semiconductor, and that the metal wiring and the ohmic contact can be formed substantially. Represents. It is assumed that the N + drain has the same meaning even when written as a high concentration N-type drain.
  • the transistors farthest from the P well potential fixing P + region 13 are the transistors of the gate electrodes 3 and 4, and the closest transistors are the transistors of the gate electrodes 1 and 6.
  • the distance is the gate electrode 2 and 5 transistor.
  • a LOCOS oxide film 10 is provided between the transistors on both sides and the well potential fixing P + region 13, and a gate insulating film 15 is disposed under each gate electrode.
  • the transistors of the gate electrodes 1 and 6 are Rpw1
  • the transistors of the gate electrodes 2 and 5 are Rpw2
  • the transistors of the gate electrodes 3 and 4 are Rpw3
  • the P-well parasitic resistance is directly below each transistor.
  • P0 well 14 to Vss Since the parasitic resistance corresponds to the distance from each transistor to the P + region 13 for fixing the P well potential, the following relationship is established.
  • Rpw1 ⁇ Rpw2 ⁇ Rpw3 Therefore, it is the transistor of the gate electrodes 3 and 4 having the parasitic resistance of Rpw3 that is most likely to cause the parasitic bipolar operation, and its current-voltage characteristic is the IV characteristic 52 of FIG. Concentration occurs.
  • the transistors of the gate electrodes 2 and 5 and the transistors of the gate electrodes 1 and 6 exhibit IV characteristics 51 and 50, respectively.
  • FIG. 9A to 9C are conceptual diagrams of the present invention, in which FIG. 9A is a plan view, FIG. 9B is a cross-sectional view taken along line B-B ′, and FIG. 9C is an equivalent circuit.
  • FIG. 9A it is assumed that the pad electrode 18 is not in a floating state but is connected to the pad via an upper layer electrode.
  • FIGS. 9A to 9C show that the gate electrodes 1 to 6 are connected to the first P + region 23 for fixing the P well.
  • the electrode 20 connecting the second P + region 24 for fixing the P well and the gate electrode without connecting directly to the Vss electrode 17 that is formed, A parasitic resistance Rpw9 of the P well 14 is added between the gate electrodes 1 to 6 and Vss.
  • Rpw4 to 9 are parasitic resistances of the P well, and the following relationship is established.
  • the transistors of the gate electrode 1 and the gate electrode 6 when comparing the transistors of the gate electrode 1 and the gate electrode 6, the transistors of the gate electrode 1 and the gate Since the P-well potential of the channel portion of the transistor of the electrode 6 is more likely to rise in the gate electrode 1, the Vth of the transistor of the gate electrode 1 is lower than that of the gate electrode 6 due to the back gate effect, and the channel current at the same gate potential is The transistor of electrode 1 is larger. Further, the parasitic bipolar current is limited to the transistor of the gate electrode 1. In other words, the following relationship is obtained.
  • FIG. 9D schematically shows this current-voltage characteristic.
  • a curve 53 represents a current flowing through the transistor of the gate electrode 1
  • a curve 54 represents a current flowing through the transistor of the gate electrode 6.
  • Rpw9 since Rpw9 is large in the structure of FIG. 9, it easily enters the parasitic bipolar operation more than necessary, and the hold voltage Vhold in FIG. 9 (D) may be extremely lowered to be lower than the power supply voltage of the IC.
  • the pad electrode 18 is a power supply voltage pad and the relationship of power supply voltage> Vhold is established, if any noise exceeding the trigger voltage Vtrig is injected from the power supply voltage pad when the power supply voltage is supplied, the power supply voltage pad and the Vss pad Latch-up will occur between the two.
  • the P-well fixing first is shaped so as to surround the transistor so that the circuit inside the IC does not latch up due to noise injected from the PAD.
  • a P + region 23 is laid out.
  • the current-concentrated transistor in this case is the transistor of the gate electrode 1 as in FIG. 9, but among them, both ends and the center of the gate electrode 1 with respect to the gate width direction (the direction perpendicular to the direction connecting the N + source and N + drain). Then, since the distance to the P + guard ring 14 is farther in the center, the current concentrates in the channel near the center of the gate electrode 1 in the transistor of the gate electrode 1, and the ESD resistance is further reduced. Therefore, current concentration occurs in the single-finger type ESD element having only one transistor instead of the multi-finger type in which a plurality of transistors are arranged as shown in FIGS. 8 to 10, and the performance of the ESD element cannot be extracted. .
  • FIG. 9, which is the invention of Patent Document 1, has an effect of improving the ESD tolerance as compared with the conventional method of FIG. 8, but current tends to concentrate on the transistor of the gate electrode 1 and is used for the power supply voltage pad. If so, there is a high probability of inducing latch-up. Further, when the structure for increasing the latch-up strength is used, the current is more likely to be concentrated, and the capability of the ESD element cannot be fully extracted.
  • FIGS. (A) is a plan view
  • (B) is a cross-sectional view of C-C ′
  • (C) is an equivalent circuit. This is a technique in which a P-well fixing second P + region 24 is provided adjacent to the N + source 11 of the transistor and connected to the Vss electrode 17, up to the P-well fixing second P + region 24 for all transistors and all channels.
  • FIG. 11D shows the current-voltage characteristics of FIGS. 11A to 11C. In order to facilitate comparison, the characteristics are overlaid on the characteristics shown in FIG. As shown in FIGS.
  • a semiconductor device having an ESD element is A semiconductor substrate; A P-well having a higher impurity concentration than the semiconductor substrate provided on the surface of the semiconductor substrate; An N-type source and an N-type drain provided on the surface of the semiconductor substrate in the P-well and having an impurity concentration higher than that of the semiconductor substrate; A P-type region provided on the surface of the semiconductor substrate in contact with the N-type source and having a higher impurity concentration than the semiconductor substrate; A gate insulating film provided on the surface of the semiconductor substrate between the N-type source and the N-type drain; A gate electrode provided on the gate insulating film; Have The N-type drain is connected to a pad electrode; The N-type source is connected to the lower power supply potential; A semiconductor device having an ESD element, wherein the N-type source and the P-type region are not connected by an electrode.
  • the semiconductor device having the ESD element includes a plurality of the P-type regions, and the plurality of P-type regions are electrically made of a substance having a resistivity equal to or smaller than the plurality of the P-type regions.
  • a semiconductor device having a connected ESD element is used.
  • the semiconductor device having the ESD element is a semiconductor device having an ESD element in which the gate electrode is electrically connected to the N-type source. In another aspect, the semiconductor device having the ESD element is a semiconductor device having an ESD element in which the gate electrode is electrically connected to the P-type region.
  • the ESD element When the ESD element is operated, a uniform current flows in the channels of the plurality of transistors constituting the ESD element, and the ESD element can be sufficiently extracted while suppressing heat generation. As a result, the ESD element The area can be reduced. Furthermore, the withstand voltage can be easily adjusted depending on the structure.
  • Example 1 It is a figure of Example 1 of this invention, (A) is a top view, (B) is sectional drawing of line segment DD ', (C) is an equivalent circuit. It is a figure of Example 2 of this invention, (A) is a top view, (B) is sectional drawing of line segment EE ', (C) is an equivalent circuit. It is a figure of Example 3 of this invention, (A) is a top view, (B) is sectional drawing of line segment FF ', (C) is sectional drawing of line segment GG'.
  • Example 4 (A) is a top view, (B) is sectional drawing of line segment HH ', (C) is sectional drawing of line segment II'. It is a figure of Example 5 of this invention, (A) is a top view, (B) is sectional drawing of line segment JJ ', (C) is sectional drawing of line segment KK'. It is a figure of Example 6 of this invention, (A) is a top view, (B) is sectional drawing of line segment LL '. It is a figure of Example 7 of this invention, (A) is a top view, (B) is sectional drawing of line segment MM ', (C) is an equivalent circuit. FIG.
  • FIG. 2 is a diagram of a conventional ESD element, where (A) is a plan view, (B) is a cross-sectional view of a line segment A-A ′, (C) is an equivalent circuit, and (D) is a current-voltage characteristic.
  • FIG. 3 is a diagram of a conventional ESD element disclosed in Patent Document 1, wherein (A) is a plan view, (B) is a cross-sectional view of a line segment BB ′, (C) is an equivalent circuit, and (D) is a current-voltage characteristic. . It is a top view when arrange
  • FIGS. 2A and 2B are diagrams of a conventional ESD element for making currents flowing through all transistors and all channels uniform
  • (A) is a plan view
  • (B) is a cross-sectional view taken along line CC ′
  • (C) Is an equivalent circuit
  • (D) is a current-voltage characteristic.
  • (A) is a top view
  • (B) is sectional drawing of line segment NN '
  • (C) is sectional drawing of line segment OO'.
  • FIG. 9 of this invention (A) is a top view, (B) is sectional drawing of line segment PP ', (C) is sectional drawing of line segment QQ'.
  • FIG. 1A and 1B are diagrams showing Example 1 of an ESD element of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view of a line segment DD ′.
  • FIG. 1A it is assumed that the pad electrode (or the drain electrode connected to the pad electrode) 18 is not in a floating state but is connected to the pad via the upper layer electrode.
  • the NMOS transistor is in a P well 14 provided in the semiconductor substrate 9.
  • a P well fixing first P + region 23 for fixing a potential is provided on the surface of the P well 14 around the NMOS transistor, and is connected to a wiring 17 having a Vss potential through a contact 16.
  • the gate electrodes 1 to 6 of the NMOS transistor and the N + source 11 are connected to a Vss terminal having a lower power supply potential via a wiring 17, and the N + drain 12 is connected to a pad electrode via a wiring 18.
  • Each N + source 11 is provided with a P-well fixing second P + region 24 adjacently.
  • a LOCOS oxide film 10 is disposed between the P well fixing second P + region 24 and the P well fixing first P + region 23 located on the outermost side.
  • a gate insulating film 15 is disposed under each gate electrode.
  • the indication of N + or P + indicates that the impurity concentration is higher than the region represented by N or P by the symbol of + together with the conductivity type of the semiconductor, and that the metal wiring and the ohmic contact can be formed substantially. Represents. It is assumed that the N + drain has the same meaning even when written as a high concentration N-type drain.
  • FIG. 1 is similar in that the conventional ESD element shown in FIG. 10 and all P well fixing second P + regions 24 are connected by P well fixing second P + electrodes 21, but the P well fixing first P + region 24 is connected.
  • the feature of this embodiment is that the two P + electrodes 21 are not connected to the Vss electrode 17 having the lower power supply potential by a low resistance metal electrode.
  • FIG. 1C the parasitic resistances of all the transistors and the P well 14 immediately below the channel become the same Rpw11, and a uniform current flows in all the transistors and channels. Since this effect is the same as that of the prior art shown in FIG. 10, the problems shown in FIGS. 8 and 9 can be avoided.
  • the second P + electrode 21 for fixing the P well must be connected by a material having a resistivity lower than that of the second P + region 24 for fixing the P well, such as a metal. This is because if the P-well fixing second P + regions 24 are connected to each other with a high resistance, the potentials of the respective P-well fixing second P + regions 24 may be different and current concentration may occur. It is.
  • Rpw11 is determined by the distance from the first P + region 23 for fixing the P well to the transistors of the gate electrodes 1 and 6, the relationship of Rpw10 ⁇ Rpw11 is established, and the prior art of FIG. This makes it difficult to cause destruction due to heat generation.
  • FIG. 2A and 2B are diagrams showing Example 2 of the present invention, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view of a line segment EE ′.
  • FIG. 2A it is assumed that the pad electrode (or the drain electrode connected to the pad electrode) 18 is not in a floating state but connected to the pad via the upper layer electrode.
  • FIG. 2 shows that the gate electrodes 1 to 6 are not connected to the Vss electrode 17 in the first embodiment of FIG. 1 but are connected to the P well fixing second P + region 24 by the electrode 20 connecting the P well fixing P + and the gate electrode. This is an example.
  • FIGS. 3A and 3B are diagrams showing Embodiment 3 of the present invention, in which FIG. 3A is a plan view, FIG. 3B is a sectional view of a line segment FF ′, and FIG. 3C is a sectional view of a line segment GG ′. It is.
  • the function of fixing the potential of the region immediately below the channel of the second P + region 24 for fixing the P well adjacent to the N + source 11 in FIGS. 1 and 2 is in contact with the region immediately below the N + source 11 and the N + drain 12.
  • the embedded P + region 22 which is a high-concentration P-type region embedded in. As shown in FIGS.
  • the second P + region 24 for fixing the P well adjacent to the N + source 11 in the first embodiment is embedded in the semiconductor substrate by the embedded P + region 22, the area can be reduced as compared with the first embodiment.
  • Vhold and Vtrig can be easily adjusted by adjusting the impurity concentration and depth of the buried P + region 22 immediately below the N + drain 12, so that the Vtrig of the ESD element does not fall below the breakdown voltage of the IC. Fine adjustment is facilitated.
  • wirings and contacts on the N + drain 12 are omitted.
  • FIG. 4A and 4B are diagrams showing Embodiment 4 of the present invention, in which FIG. 4A is a plan view, FIG. 4B is a cross-sectional view of a line segment HH ′, and FIG. 4C is a cross-sectional view of a line segment II ′.
  • FIG. 4A it is assumed that the pad electrode (or the drain electrode connected to the pad electrode) 18 is not in a floating state but connected to the pad via the upper layer electrode.
  • FIG. 4 shows that the gate electrodes 1 to 6 are not connected to the Vss electrode 17 in the third embodiment of FIG. 3 but connected to the P well fixing second P + region 24 by the electrode 20 connecting the P well fixing second P + and the gate electrode. This is an example.
  • the electrode 20 connecting the second P + for fixing the P well and the gate electrode must be connected by a material having a resistivity equal to or lower than that of the second P + region 24 for fixing the P well, such as a metal. This is because if the P well fixing second P + 24s are connected to each other with a high resistance, the potentials of the respective P well fixing second P + regions 24 may be different, and current concentration may occur. .
  • the same effect can be obtained when the buried P + region 22 directly under the N + source 11 and the N + drain 12 in the third and fourth embodiments is directly under the N + source 11 or the N + drain 12.
  • the voltages of Vhold and Vtrig cannot be adjusted using the impurity concentration and depth of the buried P + region 22.
  • FIGS. 5A and 5B are diagrams showing Embodiment 5 of the present invention, in which FIG. 5A is a plan view, FIG. 5B is a sectional view of a line segment JJ ′, and FIG. 5C is a sectional view of a line segment KK ′.
  • FIG. 5A which is a plan view, has almost the same structure as that of FIG. 8 of the prior art, but there is an embedded P + region 22 as can be seen from the cross-sectional views of FIGS. 5B and 5C.
  • the buried P + region 22 immediately below the N + source 11 and the N + drain 12 in the third embodiment in FIG. 3 and the fourth embodiment in FIG.
  • the buried P + region in contact with the N + source 11 and the N + drain 12 directly under the transistor. 22 is a feature of the fifth embodiment.
  • This structure can obtain the same effect as FIG. 3, but since the buried P + region 22 is not independent, it is necessary to connect the buried P + regions 22 in different regions as shown in the third and fourth embodiments. Therefore, the area can be further reduced as compared with FIG. In this embodiment, since the buried P + region 22 is not provided with an extraction port or the like, the buried P + region 22 is not connected to the Vss electrode 17 having the lower power supply potential by a low resistance metal electrode.
  • FIG. 6 is a view showing Example 6 of the present invention, where (A) is a plan view and (B) is a cross-sectional view of a line segment LL ′.
  • the pad electrode (or the drain electrode connected to the pad electrode) 18 is not in a floating state but connected to the pad via the upper layer electrode.
  • FIG. 6 shows a structure in which the second P + region 24 for fixing the P well lying on the upper side of FIG. 6A and the buried P + region 22 immediately below the P + region 22 are added in the fifth embodiment of FIG.
  • the gate electrodes 1 to 6 were injected from the pad electrode by connecting the P well fixing second P + and the P electrode fixing second P + region 24 with the electrode 20 connecting the gate electrode without connecting the gate electrodes 1 to 6 to the Vss electrode 17. Since the potential is applied to the gate electrodes 1 to 6 when the static electricity is released and not only the parasitic bipolar current but also the channel current flows, the same effect as the fifth embodiment can be obtained, but the second P + region 24 for fixing the P well is added. As a result, the area is larger than that of the fifth embodiment.
  • the electrode 20 connecting the second P + region 24 for fixing the P well and the gate electrode must be connected by a substance having a resistivity equal to or lower than that of the second P + region 24 for fixing the P well, such as a metal. This is because if the P-well fixing second P + regions 24 are connected to each other with a high resistance, the potentials of the respective P-well fixing second P + regions 24 may be different and current concentration may occur. It is.
  • FIG. 7A and 7B are diagrams showing Example 7 of the ESD element of the present invention, in which FIG. 7A is a plan view and FIG. 7B is a cross-sectional view of a line segment MM ′.
  • the pad electrode (or the drain electrode connected to the pad electrode) 18 is not in a floating state but connected to the pad via the upper layer electrode.
  • the MOS transistor of the first embodiment is a bipolar transistor, and the same effect as that of the first embodiment can be obtained.
  • the N + source 11 and the N + drain 12 in FIG. 1 are converted from a MOS transistor to a bipolar transistor, and thus become an N + collector 25 and an N + emitter 26 in FIG.
  • the P well fixing second P + region 24 in FIG. 1 corresponds to the base in FIG. 7, but the term “base” is not used here in order to unify the terms.
  • the P-well fixing second P + electrode 21 is not connected to the Vss electrode 17 having the lower power supply potential by a low-resistance metal electrode.
  • the conversion from the MOS transistor to the bipolar transistor can also be applied to the third and fifth embodiments.
  • the second, fourth, and sixth embodiments are the same as the first, third, and fifth embodiments, except that the connection destination of each gate electrode is changed, so that the MOS transistor is a bipolar transistor that does not have a gate electrode.
  • the same structure is applied when applied to Example 1, Example 3, and Example 5 and when applied to Example 2, Example 4, and Example 6.
  • FIG. 12 shows an ESD protection element obtained by converting the MOS transistor in the third embodiment described above into a bipolar transistor.
  • A is a plan view
  • B is a cross-sectional view of line segment NN ′
  • C is a cross-sectional view of line segment O—O ′.
  • an N + collector 25 and an N + emitter 26 are provided.
  • buried P + regions 22 are provided independently so as to be in contact with each other.
  • the buried P + regions 22 are electrically connected to each other by the P well fixing second P + region 24 and the buried P + region 22 existing immediately below.
  • the second P + region 24 for fixing the P well is not connected to the Vss electrode 17 having the lower power supply potential by a low resistance metal electrode.
  • the ESD protection element performs a protection operation by a bipolar operation.
  • FIG. 13 shows an ESD protection element obtained by converting the MOS transistor in the fifth embodiment into a bipolar transistor, as in the eighth embodiment.
  • (A) is a plan view
  • (B) is a cross-sectional view of line segment PP ′
  • (C) is a cross-sectional view of line segment Q-Q ′.
  • an N + collector 25 and an N + emitter 26 are provided.
  • Under the N + collector 25 and the N + emitter 26 an integrated buried P + region 22 is continuously provided so as to be in contact with each other. Yes.
  • FIG. 13 shows an ESD protection element obtained by converting the MOS transistor in the fifth embodiment into a bipolar transistor, as in the eighth embodiment.
  • (B) is a cross-sectional view of line segment PP ′
  • (C) is a cross-sectional view of line segment Q-Q ′.
  • an N + collector 25 and an N + emitter 26 are provided under the N + collector 25 and the N + emitter 26, an integrated buried P +
  • the buried P + region 22 since the buried P + region 22 is not provided with an extraction port or the like, the buried P + region 22 has a low resistance to the Vss electrode 17 having the lower power supply potential. It is not connected by the metal electrode.
  • the ESD protection element performs a protection operation by a bipolar operation.
  • the common basis in the present invention is that various substrate potentials existing in each transistor and each channel of the ESD element are electrically connected by a low-resistance material and further separated from the Vss potential. It is to improve the ESD tolerance by suppressing heat generation by uniforming and low voltage operation.
  • This concept can be applied not only to the above-mentioned MOS type ESD element with a gate electrode but also to a bipolar type ESD element without a gate electrode.
  • the multi-finger type ESD element has been described so far, it can also be developed in a single finger type ESD element, and the same effect can be obtained.
  • the present invention is implemented on a semiconductor substrate.
  • the N + source 11, the N + drain, the P + region for fixing the P well, the buried P + region, and the P well fixing are the impurity concentration of the first P + region for P and the second P + region for fixing the P well.
  • the impurity concentration of the first P + region for P and the second P + region for fixing the P well is higher than that of the P well 14, and the impurity concentration of the P well 14 is higher than that of the semiconductor substrate.
  • Gate electrode 9 Semiconductor substrate 10 LOCOS oxide film 11 N + source 12 N + drain 13 P well region P + region 14 P well 15 Gate oxide film 16 Contact 17 Vss electrode 18 Pad electrode 20 P well second P + region 8 connecting the gate electrode and the second P + electrode 22 for fixing the P well Embedded P + region 23 First P + region for fixing the P well 24 Second P + region for fixing the P well 25 N + collector 26 N + emitter 50 Gate electrode 1 in FIG. IV characteristics 51 of the transistors 6 and 6 IV characteristics 52 of the gate electrodes 2 and 5 of FIG. 8 IV characteristics 53 of the transistors of the gate electrodes 3 and 4 of FIG. 8 IV characteristics 54 of the transistor of the gate electrode 1 of FIG. IV characteristics 55 of the transistor of the gate electrode 6 of FIG. IV characteristics of transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 ESD素子が動作した際に、発熱を抑えつつESD素子を構成する全てのトランジスタの全てのチャネルに対して一様な電流が流れるように、マルチフィンガータイプのESD素子のそれぞれのトランジスタ、それぞれのチャネルに存在するさまざまな基板電位を低抵抗物質で電気的につなげ、さらにVss電位とは異なる電位に設定することによって、電流の均一化を図り、低電圧動作によって発熱を抑制しESD耐量を向上させる。

Description

ESD素子を有する半導体装置
 本発明は、トランジスタよりなるESD素子を有する半導体装置に関する。
 ICの機能に関係ないが信頼性上無くてはならないのがESD素子である。これは静電気放電素子のことで、静電気によってICが破壊されないように静電気を放電させる素子のことである。
 そのため、静電気によってESD素子自体が熱破壊されず、内部回路に静電気が入る前に素早く電荷を引き抜き、内部回路を守れることが必須条件となる。これらの条件を満足するために、局所的な発熱を抑制し、かつ、駆動能力の高いことがESD素子特性に求められる。
 代表的なESD保護回路として図8(A)~(C)に示すようなNMOSトランジスタが上げられる。ここで(A)は平面図、(B)は線分A-A’の断面図、(C)は等価回路である。このNMOSトランジスタのゲート電極1~6とN+ソース11は低い方の電源電位を有するVss端子に配線17を介して接続され、N+ドレイン12はパッドに配線18を介して接続されている。NMOSトランジスタはPウェル14内にある。Pウェル14には電位を固定するためのPウェル電位固定用P+領域13があり、コンタクト16を介してVss電位を有する配線17に接続されている。なお、ここで、N+あるいはP+の表示は半導体の導電型と共に+の記号によりその不純物濃度がNあるいはPで表される領域に比べて高く、金属配線とオーミックコンタクトが概ね形成できる濃度であることを表している。N+ドレインを高濃度のN型ドレインと書いても同じ意味であるとする。
 パッドに注入された静電気がN+ドレイン12でブレイクダウンを起こし、それによって発生した正孔がPウェル14の電位を上昇させることによってNMOSトランジスタの寄生バイポーラ動作を誘発させ、N+ドレイン12からN+ソース11に静電気を逃がすため、ダイオード型ESD素子に比べてESD耐量が高いことで知られている。
 一方でこの構造特有の問題がある。特許文献1に記載があるようにPウェル14は抵抗が高いため、Pウェル14の電位を固定するためのPウェル電位固定用P+領域13から離れているトランジスタ付近のPウェルに正孔が溜まり、寄生バイポーラ動作が起こり易い。そのため、Pウェル電位固定用P+領域13から離れているトランジスタに電流が集中しESD耐量が思うように得られない問題が生じる。
 図8(B)から分かるように、Pウェル電位固定用P+領域13から最も離れているのはゲート電極3と4のトランジスタ、最も近いのはゲート電極1と6のトランジスタであり、その中間の距離はゲート電極2と5のトランジスタである。なお、両側のトランジスタとウェル電位固定用P+領域13との間には分離のためのLOCOS酸化膜10があり、それぞれのゲート電極の下にはゲート絶縁膜15が配置されている。そして、図8(C)に示すようにゲート電極1、6のトランジスタはRpw1、ゲート電極2、5のトランジスタはRpw2、ゲート電極3、4のトランジスタはRpw3のPウェル寄生抵抗がそれぞれのトランジスタ直下のP0ウェル14からVssの間に存在する。この寄生抵抗は、それぞれのトランジスタからPウェル電位固定用P+領域13までの距離に対応しているので以下の関係が成り立つ。
 Rpw1<Rpw2<Rpw3
 したがって、最も寄生バイポーラ動作を起こし易いのはRpw3の寄生抵抗を持つゲート電極3、4のトランジスタであり、その電流電圧特性は図8(D)のIV特性52にしめされるものとなり、電流の集中が生じる。ゲート電極2、5のトランジスタ、ゲート電極1、6のトランジスタはそれぞれIV特性51および50を示す。
 この解決策として特許文献1に示される発明が成されている。図9(A)~(C)はこの発明の概念図であり、(A)は平面図、(B)は線分B-B’の断面図、(C)は等価回路である。また(A)においてパッド電極18はフローティングにしているわけではなく上層電極を介してパッドに繋がることを想定している。
 図8(A)~(C)と図9(A)~(C)を比較すると、図9(A)~(C)はゲート電極1~6をPウェル固定用第一P+領域23が接続されているVss電極17に直接接続せず、Pウェル固定用第二P+領域24とゲート電極をつなぐ電極20でゲート電極1~6とPウェル固定用第二P+領域24と接続することによって、ゲート電極1~6とVssの間にPウェル14の寄生抵抗Rpw9を付加している。ここでRpw4~9はPウェルの寄生抵抗で、以下の関係が成り立つ。
 Rpw4<Rpw5<Rpw6<Rpw7<Rpw8<Rpw9
 これによってESD電流がPADに流れ込んだときに最も電位が上昇するPウェル固定用第二P+領域24付近のPウェル14の電位がゲート電極1~6に伝わり、全てのトランジスタのN+ドレイン12とN+ソース11間にチャネル電流が流れ、電流集中を防ぐ効果が得られる。
特開平9-181195号公報
 しかしながら、特許文献1の発明においても完全な電流均一性が得られるわけではない。即ち、全てのトランジスタ間において同一の電流は流れず、電流集中を完全には解決できない。なぜならば、電流集中の主原因となるトランジスタ直下のPウェル14の電位上昇の差を解消していないからである。確かに、ゲート電極1~6の電位が上昇することで全てのトランジスタにチャネル電流が流れるようにはなるが、たとえばゲート電極1とゲート電極6のトランジスタについて比較すると、ゲート電極1のトランジスタとゲート電極6のトランジスタのチャネル部のPウェル電位はゲート電極1の方が上昇しやすいためバックゲート効果によりゲート電極1のトランジスタのVthがゲート電極6のそれより下がり、同じゲート電位におけるチャネル電流はゲート電極1のトランジスタの方が大きい。また、寄生バイポーラ電流に関してはゲート電極1のトランジスタのみとなる。つまり以下の関係が得られる。
   ゲート電極1のトランジスタ電流=大きいチャネル電流+寄生バイポーラ電流
   ゲート電極6のトランジスタ電流=小さいチャネル電流のみ
 この電流電圧特性を模式図で示したのが図9(D)である。曲線53はゲート電極1のトランジスタに流れる電流であり、曲線54はゲート電極6のトランジスタに流れる電流を示している。ゲート電極1のトランジスタに寄生バイポーラ動作が発生した時点でゲート電極6のトランジスタにチャネル電流が流れ始めるが、ゲート電極1のトランジスタ電流に比べると小さい。
 また、図9の構造においてRpw9は大きいため、寄生バイポーラ動作に必要以上に入り易く、図9(D)のホールド電圧Vholdが極端に下がり、ICの電源電圧以下になってしまうことがある。パッド電極18が電源電圧パッドで、かつ、電源電圧>Vholdの関係が成り立の場合、電源電圧供給時にトリガ電圧Vtrigを越える何らかのノイズが電源電圧パッドから注入されると、電源電圧パッドとVssパッド間でラッチアップが発生してしまう。
 図10に示すトランジスタでは、更に、ESD素子をICに搭載する場合、PADから注入されるノイズによってIC内部の回路がラッチアップ動作しないように、トランジスタを囲うような形状でPウェル固定用第一P+領域23をレイアウトしている。
 この場合の電流集中するトランジスタは図9と同様にゲート電極1のトランジスタであるが、その中でもゲート幅方向(N+ソースとN+ドレインを結ぶ方向と垂直の方向)に対するゲート電極1の両端と中央とではP+ガードリング14までの距離が中央のほうが遠いため、ゲート電極1のトランジスタの中でもゲート電極1の中央付近のチャネルに電流が集中してしまい、更にESD耐量が低下する。したがって、図8~図10に示すような複数のトランジスタが並ぶマルチフィンガータイプではなく、トランジスタが一つだけのシングルフィンガータイプのESD素子においても電流集中が生じESD素子の性能を引き出すことが出来ない。
 このことから特許文献1の発明である図9は、図8の従来法に比べるとESD耐量を向上させる効果があるものの、ゲート電極1のトランジスタに電流が集中しやすく、電源電圧パッドに使用する場合、ラッチアップを誘発させる可能性が高い。更にラッチアップ強度を高める構造にすると更に電流が集中し易くなり、ESD素子の能力を完全に引き出せない。
 理想的には全てのトランジスタ、全てのチャネルにおいて一様な電流を流し、Vholdを下げすぎないためには、根本原因となる全てのトランジスタ、チャネル直下のPウェル14の電位の上昇を同じにし、かつ、急激な電位上昇を避けなければならない。これを実現するために周知の技術として図11(A)~(C)に示す方法がある。(A)は平面図、(B)はC-C’の断面図、(C)は等価回路である。これは、トランジスタのN+ソース11に隣接してPウェル固定用第二P+領域24を設けVss電極17に接続する手法で、全てのトランジスタ、全てのチャネルに対するPウェル固定用第二P+領域24までの距離が同一となるため、全てのチャネル直下のPウェルとVss間に付加される寄生Pウェル抵抗が全て同一となり(等価回路(C)のRpw10)、全てのトランジスタ、全てのチャネルに一様の電流が流れる。また、Rpw10は小さく寄生バイポーラ動作に入りにくくなるため、ラッチアップ誘発の可能性が低くなる。しかし、それが仇となり、熱破壊しやすいという欠点がある。その理由を以下に示す。図11(D)に図11(A)~(C)の電流電圧特性を示す。比較し易いように図8(D)の特性に重ねて示した。図11(A)~(C)のようにチャネル直下のPウェル電位が上昇しづらく寄生バイポーラ動作に入りにくい場合、図11(D)のゲート電極1~6のトランジスタのIV特性55のようにトリガ電圧Vtrig、ホールド電圧Vholdが共に上昇し、かつ、VtrigとVholdの間隔が狭くなる。そのためラッチアップ誘発の危険性は回避できるが、静電気を逃がす際の熱量(電流×電圧)が大きいためESD素子が熱破壊し易く、図8の構造よりESD耐量が下がり、得たい特性が得られなくなる。
 上記課題を解決するために以下の構成を取る。
ある態様ではESD素子を有する半導体装置であって、
前記ESD素子は、
 半導体基板と、
 前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
 前記Pウェル内の前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
 前記N型ソースに接触して前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いP型領域と、
 前記N型ソースと前記N型ドレインの間となる前記半導体基板表面に設けられたゲート絶縁膜と、
 前記ゲート絶縁膜上に設けられたゲート電極と、
を有し、
 前記N型ドレインはパッド電極に接続され、
 前記N型ソースは低い方の電源電位に接続され、
 前記N型ソースと前記P型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置とする。
 また別の態様では、上記ESD素子を有する半導体装置は、前記P型領域を複数有し、複数の前記P型領域同士が複数の前記P型領域と同等もしくは小さい抵抗率の物質で電気的に接続されているESD素子を有する半導体装置とする。
 また別の態様では、上記ESD素子を有する半導体装置は、前記ゲート電極が前記N型ソースと電気的に接続されているESD素子を有する半導体装置とする。
 また別の態様では、上記ESD素子を有する半導体装置は、前記ゲート電極が前記P型領域と電気的に接続されているESD素子を有する半導体装置とする。
 ESD素子が動作した際に、ESD素子を構成する複数のトランジスタのチャネルにおいて一様な電流が流れるようになり、発熱を抑えつつESD素子の能力を十分に引き出せるようになるため、結果としてESD素子面積を縮小することが可能となる。
さらに、構造によっては耐圧調整も容易となる。
本発明の実施例1の図であり、(A)は平面図、(B)は線分D-D'の断面図、(C)は等価回路である。 本発明の実施例2の図であり、(A)は平面図、(B)は線分E-E'の断面図、(C)は等価回路である。 本発明の実施例3の図であり、(A)は平面図、(B)は線分F-F'の断面図、(C)は線分G-G'の断面図である。 本発明の実施例4の図であり、(A)は平面図、(B)は線分H-H'の断面図、(C)は線分I-I'の断面図である。 本発明の実施例5の図であり、(A)は平面図、(B)は線分J-J'の断面図、(C)は線分K-K'の断面図である。 本発明の実施例6の図であり、(A)は平面図、(B)は線分L-L'の断面図である。 本発明の実施例7の図であり、(A)は平面図、(B)は線分M-M'の断面図、(C)は等価回路である。 従来のESD素子の図であり、(A)は平面図、(B)は線分A-A’の断面図、(C)は等価回路、(D)は電流電圧特性である。 特許文献1の従来のESD素子の図であり、(A)は平面図、(B)は線分B-B’の断面図、(C)は等価回路、(D)は電流電圧特性である。 特許文献1の従来のESD素子のPウェル固定用第一P+を、トラジスタを囲うように配置したときの平面図である。 全てのトランジスタ、全てのチャネルに流れる電流を一様にするための従来のESD素子の図であり、(A)は平面図、(B)は線分C-C’の断面図、(C)は等価回路、(D)は電流電圧特性である。 本発明の実施例8の図であり、(A)は平面図、(B)は線分N-N'の断面図、(C)は線分O-O'の断面図である。 本発明の実施例9の図であり、(A)は平面図、(B)は線分P-P'の断面図、(C)は線分Q-Q'の断面図である。
 以下、本発明の実施形態について、図面を参照して説明する。
 図1は、本発明のESD素子の実施例1を示す図であり、(A)は平面図、(B)は線分D-D'の断面図である。図1(A)においてパッド電極(あるいはパッド電極に接続されるドレイン電極)18はフローティングにしているわけではなく上層電極を介してパッドに繋がることを想定している。
 NMOSトランジスタは半導体基板9に設けられたPウェル14内にある。NMOSトランジスタの周囲のPウェル14表面には電位を固定するためのPウェル固定用第一P+領域23があり、コンタクト16を介してVss電位を有する配線17に接続されている。このNMOSトランジスタのゲート電極1~6とN+ソース11は低い方の電源電位を有するVss端子に配線17を介して接続され、N+ドレイン12はパッド電極に配線18を介して接続されている。それぞれのN+ソース11にはPウェル固定用第二P+領域24が隣に接触して設けられている。最も外側に位置するPウェル固定用第二P+領域24とPウェル固定用第一P+領域23との間にはLOCOS酸化膜10が配置されている。それぞれのゲート電極の下にはゲート絶縁膜15が配置されている。なお、ここで、N+あるいはP+の表示は半導体の導電型と共に+の記号によりその不純物濃度がNあるいはPで表される領域に比べて高く、金属配線とオーミックコンタクトが概ね形成できる濃度であることを表している。N+ドレインを高濃度のN型ドレインと書いても同じ意味であるとする。
 図1は図10に示した従来のESD素子と全てのPウェル固定用第二P+領域24がPウェル固定用第二P+電極21で繋がっている点は似ているが、Pウェル固定用第二P+電極21が低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていないことが本実施例の特徴である。この構造にすることで図1(C)に示すように全てのトランジスタ、チャネル直下のPウェル14の寄生抵抗が同一のRpw11となり全てのトランジスタ、チャネルで一様の電流が流れる。この効果は図10の従来技術と同じであるため図8、図9の問題を回避することが出来る。ここでPウェル固定用第二P+電極21はPウェル固定用第二P+領域24の抵抗率以下の物質、たとえば金属等で繋がなければならない。なぜならば、仮にPウェル固定用第二P+領域24同士を高い抵抗で繋いでしまうと、それぞれのPウェル固定用第二P+領域24の電位に差ができ、電流集中が生じる可能性があるからである。
 また、図1(B)からも分かるようにRpw11はゲート電極1と6のトランジスタからPウェル固定用第一P+領域23の距離で決まるため、Rpw10<Rpw11の関係が成り立ち、図10の従来技術の問題点である発熱による破壊が発生しづらくなる。
 図2は、本発明の実施例2を示す図であり、(A)は平面図、(B)は線分E-E'の断面図である。図2(A)においてパッド電極(あるいはパッド電極に接続されるドレイン電極)18はフローティングにしてあるわけではなく上層電極を介してパッドに繋がることを想定している。図2は図1の実施例1においてゲート電極1~6をVss電極17に接続せずにPウェル固定用第二P+とゲート電極をつなぐ電極20によってPウェル固定用第二P+領域24と接続した例である。こうすることで、パッド電極から注入された静電気を逃がす際にゲート電極1~6に電位が印加され、寄生バイポーラ電流だけではなくチャネル電流も流れるため、実施例1で得られる効果だけでなく、実施例1よりもESD耐量が向上する。
 図3は、本発明の実施例3を示す図であり、(A)は平面図、(B)は線分F-F'の断面図、(C)は線分G-G’の断面図である。この構造は、図1および図2のN+ソース11と隣接したPウェル固定用第二P+領域24のチャネル直下の領域の電位を固定する機能を、N+ソース11及びN+ドレイン12の直下に接するように埋め込まれた高濃度のP型領域である埋め込みP+領域22で実現したものである。図3(B)および(C)に示すように、それぞれのN+ソース11及びN+ドレイン12の直下の埋め込みP+領域22は独立しているため図3(A)の上側に横たわっているPウェル固定用第二P+領域24とその直下に存在する埋め込みP+領域22によって電気的に接続している。Pウェル固定用第二P+領域24は低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていない。これにより、等価回路は図1(C)と同じになり実施例1と同じ効果が得られる。また、実施例1のN+ソース11に隣接するPウェル固定用第二P+領域24が埋め込みP+領域22によって半導体基板の中に埋め込まれているため実施例1に比べて面積を縮小できる。また、N+ドレイン12の直下の埋め込みP+領域22の不純物濃度や深さを調整することにより、簡単にVholdとVtrigを調整することが出来るため、ESD素子のVtrigがICの耐圧以下にならないように微調整することが容易となる。なお、図3(C)においてはN+ドレイン12上の配線およびコンタクトは省略してある。
 図4は、本発明の実施例4を示す図であり、(A)は平面図、(B)は線分H-H'の断面図、(C)は線分I-I’の断面図である。図4(A)においてパッド電極(あるいはパッド電極に接続されるドレイン電極)18はフローティングにしているわけではなく上層電極を介してパッドに繋がることを想定している。図4は図3の実施例3においてゲート電極1~6をVss電極17に接続せずにPウェル固定用第二P+とゲート電極をつなぐ電極20によってPウェル固定用第二P+領域24と接続した例である。こうすることで、パッド電極から注入された静電気を逃がす際にゲート電極1~6に電位が印加され、寄生バイポーラ電流だけではなくチャネル電流も流れるため、実施例3で得られる効果だけでなく、実施例3よりもESD耐量が向上する。
 ここで、Pウェル固定用第二P+とゲート電極をつなぐ電極20はPウェル固定用第二P+領域24の抵抗率以下の物質、たとえば金属等で繋がなければならない。なぜならば、仮にPウェル固定用第二P+24同士を高い抵抗で繋いでしまうと、それぞれのPウェル固定用第二P+領域24の電位に差ができ、電流集中が生じる可能性があるからである。
 また、実施例3と4のN+ソース11及びN+ドレイン12の直下の埋め込みP+領域22をN+ソース11もしくはN+ドレイン12の直下のどちらか一方でも同じ効果が得られる。ただし、N+ソース11の直下にのみ埋め込みP+領域22を配置した場合、埋め込みP+領域22の不純物濃度や深さを用いてVholdとVtrigの電圧を調整することは出来なくなる。
 図5は、本発明の実施例5を示す図であり、(A)は平面図、(B)は線分J-J'の断面図、(C)は線分K-K’の断面図である。平面図である図5(A)においては従来技術の図8とほぼ同じ構造であるが、図5(B)と(C)の断面図をみると分かるとおり埋め込みP+領域22が存在する。図3の実施例3と図4の実施例4におけるN+ソース11とN+ドレイン12の直下の埋め込みP+領域22とは異なり、トランジスタ直下の全面にN+ソース11とN+ドレイン12と接触する埋め込みP+領域22が存在するのが実施例5の特徴である。この構造は図3と同じ効果を得ることが出来るが、埋め込みP+領域22が独立していないために実施例3および実施例4に示すように別領域で埋め込みP+領域22同士を接続させる必要が無いため、図3よりもさらに面積を縮小できる効果がある。本実施例においては埋め込みP+領域22には引出し口等は設けていないので、埋め込みP+領域22は低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていない。
 図6は本発明の実施例6を示す図であり、(A)は平面図、(B)は線分L-L'の断面図である。図6(A)においてパッド電極(あるいはパッド電極に接続されるドレイン電極)18はフローティングにしているわけではなく上層電極を介してパッドに繋がることを想定している。図6は図5の実施例5において図6(A)の上側に横たわっているPウェル固定用第二P+領域24とその直下に存在する埋め込みP+領域22を追加した構造になっている。ゲート電極1~6をVss電極17に接続せずにPウェル固定用第二P+とゲート電極をつなぐ電極20でPウェル固定用第二P+領域24と接続することによって、パッド電極から注入された静電気を逃がす際にゲート電極1~6に電位が印加され、寄生バイポーラ電流だけではなくチャネル電流も流れるため、実施例5と同じ効果が得られるが、Pウェル固定用第二P+領域24を追加したことにより実施例5よりは面積は大きくなる。
 ここで、Pウェル固定用第二P+領域24とゲート電極をつなぐ電極20はPウェル固定用第二P+領域24の抵抗率以下の物質、たとえば金属等で繋がなければならない。なぜならば、仮にPウェル固定用第二P+領域24同士を高い抵抗で繋いでしまうと、それぞれのPウェル固定用第二P+領域24の電位に差ができ、電流集中が生じる可能性があるからである。
 図7は、本発明のESD素子の実施例7を示す図であり、(A)は平面図、(B)は線分M-M'の断面図である。図7(A)においてパッド電極(あるいはパッド電極に接続されるドレイン電極)18はフローティングにしているわけではなく上層電極を介してパッドに繋がることを想定している。この実施例7は実施例1のMOSトランジスタをバイポーラトランジスタにしたものであり、実施例1と同様の効果が得られる。ここで、図1におけるN+ソース11とN+ドレイン12はMOSトランジスタからバイポーラトランジスタに変換したことで、図7においてはN+コレクタ25、N+エミッタ26となっている。また、図1におけるPウェル固定用第二P+領域24が図7においてはベースに相当するが、用語の統一化を図るために「ベース」という言葉はここでは用いないことにする。実施例1同様に、Pウェル固定用第二P+電極21は低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていない。
 なお、このMOSトランジスタからバイポーラトランジスタへの変換は実施例3と実施例5においても適用可能である。ただし、実施例2、実施例4、実施例6は実施例1、実施例3、実施例5において、それぞれのゲート電極の接続先を変更しただけなので、MOSトランジスタをゲート電極が存在しないバイポーラトランジスタに変換すると実施例1、実施例3、実施例5に適用する場合と、実施例2、実施例4、実施例6に適用する場合とでは、それぞれ同一構造になる。
 図12は上に述べた実施例3におけるMOSトランジスタをバイポーラトランジスタに変換したESD保護素子である。(A)は平面図、(B)は線分N-N'の断面図、(C)は線分O-O’の断面図である。実施例7と同様にN+コレクタ25、N+エミッタ26とが設けられており、N+コレクタ25とN+エミッタ26の下には埋め込みP+領域22がそれぞれ接触するように独立して設けられている。図12(C)から分かるように、埋め込みP+領域22同士はPウェル固定用第二P+領域24とその直下に存在する埋め込みP+領域22によって電気的に接続している。Pウェル固定用第二P+領域24は低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていない。本ESD保護素子はバイポーラ動作により保護動作を行う。
 図13は実施例8と同様に、実施例5におけるMOSトランジスタをバイポーラトランジスタに変換したESD保護素子である。(A)は平面図、(B)は線分P-P'の断面図、(C)は線分Q-Q’の断面図である。実施例8と同様にN+コレクタ25、N+エミッタ26とが設けられており、N+コレクタ25とN+エミッタ26の下には一体である埋め込みP+領域22がそれぞれ接触するように連続して設けられている。図13(C)からも分かるように、本実施例においては埋め込みP+領域22には引出し口等は設けていないので、埋め込みP+領域22は、低い方の電源電位を有するVss電極17に低抵抗の金属の電極により繋がっていない。本ESD保護素子はバイポーラ動作により保護動作を行う。
 このように本発明における共通する根幹は、ESD素子のそれぞれのトランジスタ、それぞれのチャネルに存在するさまざまな基板電位を低抵抗物質で電気的につなげ、さらにVss電位とは別にすることによって、電流の均一化と低電圧動作による発熱抑制をさせESD耐量を向上させることである。この考え方は、上記のゲート電極つきのMOS型ESD素子だけではなく、ゲート電極無しのバイポーラ型ESD素子においても適用することが出来る。
 また、これまでマルチフィンガータイプのESD素子について記述してきたが、シングルフィンガータイプのESD素子においても展開可能であり、同じ効果が得られる。
 また、当然であるが、本発明は半導体基板上で実施されることを想定しており、実施形態の全体を通してN+ソース11、N+ドレイン、Pウェル固定用P+領域、埋め込みP+領域、Pウェル固定用第一P+領域、Pウェル固定用第二P+領域の不純物濃度はPウェル14のそれより濃く、Pウェル14の不純物濃度は半導体基板のそれより濃い。
 1~6 ゲート電極
 9 半導体基板
10 LOCOS酸化膜
11 N+ソース
12 N+ドレイン
13 Pウェル電位固定用P+領域
14 Pウェル
15 ゲート酸化膜
16 コンタクト
17 Vss電極
18 パッド電極
20 Pウェル固定用第二P+領域とゲート電極をつなぐ電極
21 Pウェル固定用第二P+電極
22 埋め込みP+領域
23 Pウェル固定用第一P+領域
24 Pウェル固定用第二P+領域
25 N+コレクタ
26 N+エミッタ
50 図8のゲート電極1と6のトランジスタのIV特性
51 図8のゲート電極2と5のトランジスタのIV特性
52 図8のゲート電極3と4のトランジスタのIV特性
53 図9のゲート電極1のトランジスタのIV特性
54 図9のゲート電極6のトランジスタのIV特性
55 図10のゲート電極1~6のトランジスタのIV特性

Claims (18)

  1. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースに接触して前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いP型領域と、
     前記N型ソースと前記N型ドレインの間となる前記半導体基板表面に設けられたゲート絶縁膜と、
     前記ゲート絶縁膜上に設けられたゲート電極と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され、
     前記N型ソースと前記P型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
  2.  前記P型領域を複数有し、複数の前記P型領域同士が複数の前記P型領域と同等もしくは小さい抵抗率の物質で電気的に接続されている請求項1記載のESD素子を有する半導体装置。
  3.  前記ゲート電極が前記N型ソースと電気的に接続されている請求項1または2に記載のESD素子を有する半導体装置。
  4.  前記ゲート電極が前記P型領域と電気的に接続されている請求項1または2に記載のESD素子を有する半導体装置。
  5. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースおよび前記N型ドレインのそれぞれの直下に前記N型ソースおよび前記N型ドレインのそれぞれに接触して設けられた前記半導体基板よりも不純物濃度が高い埋め込みP型領域と、
     前記N型ソースと前記N型ドレインとの間の前記半導体基板表面に設けられたゲート絶縁膜と、
     前記ゲート絶縁膜上に設けられたゲート電極と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され
     前記N型ソースと前記埋め込みP型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
  6.  前記埋め込みP型領域が前記N型ドレインの直下にのみ設けられた請求項5記載のESD素子を有する半導体装置。
  7.  前記埋め込みP型領域が前記N型ソースの直下にのみ設けられた請求項5記載のESD素子を有する半導体装置。
  8.  前記埋め込みP型領域を複数有し、前記埋め込みP型領域同士が前記半導体基板の抵抗値よりも小さい抵抗率の物質で電気的に接続されている請求項5乃至7のいずれか1項に記載のESD素子を有する半導体装置。
  9. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースと前記N型ドレインとの間の前記半導体基板表面に設けられたゲート絶縁膜と、
     前記N型ソースおよび前記N型ドレインの直下に前記N型ソースおよび前記N型ドレインと接触するように連続して設けられた一体からなる前記半導体基板よりも不純物濃度が高い埋め込みP型領域と、
     前記ゲート絶縁膜上に設けられたゲート電極と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され
     前記N型ソースと前記埋め込みP型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
  10.  前記ゲート電極が前記N型ソースと電気的に接続されている請求項5乃至9のいずれか1項に記載のESD素子を有する半導体装置。
  11.  前記ゲート電極が前記埋め込みP型領域と電気的に接続されている請求項5乃至9のいずれか1項に記載のESD素子を有する半導体装置。
  12. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースに接触して前記半導体基板表面に設けられた、前記半導体基板よりも不純物濃度が高いP型領域と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され、
     前記N型ソースと前記P型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
  13.  前記P型領域が複数あり、複数の前記P型領域同士が複数の前記P型領域と同等もしくは小さい抵抗率の物質で電気的に接続されている請求項12記載のESD素子を有する半導体装置。
  14. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースおよび前記N型ドレインのそれぞれの直下に前記N型ソースおよび前記N型ドレインのそれぞれに接触して設けられた前記半導体基板よりも不純物濃度が高い埋め込みP型領域と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され、
     前記N型ソースと前記埋め込みP型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
  15.  前記埋め込みP型領域が前記N型ドレインの直下にのみ設けられた請求項14記載のESD素子を有する半導体装置。
  16.  前記埋め込みP型領域が前記N型ソースの直下にのみ設けられた請求項14記載のESD素子を有する半導体装置。
  17.  前記埋め込みP型領域が複数あり、複数の前記埋め込みP型領域同士が前記半導体基板の抵抗値よりも小さい抵抗率の物質で電気的に接続されている請求項14乃至16のいずれか1項に記載のESD素子を有する半導体装置。
  18. ESD素子を有する半導体装置であって、
    前記ESD素子は、
     半導体基板と、
     前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いPウェルと、
     前記Pウェル内の前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高いN型ソースおよびN型ドレインと、
     前記N型ソースおよび前記N型ドレインの直下に前記N型ソースおよび前記N型ドレインと接触するように連続して設けられた一体からなる前記半導体基板よりも不純物濃度が高い埋め込みP型領域と、
    を有し、
     前記N型ドレインはパッド電極に接続され、
     前記N型ソースは低い方の電源電位に接続され、
     前記N型ソースと前記埋め込みP型領域とが電極によって接続されていないことを特徴とするESD素子を有する半導体装置。
PCT/JP2015/069643 2014-07-31 2015-07-08 Esd素子を有する半導体装置 WO2016017383A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15828226.9A EP3176823B1 (en) 2014-07-31 2015-07-08 Semiconductor device having esd element
CN201580040741.5A CN106575653B (zh) 2014-07-31 2015-07-08 具有esd元件的半导体装置
KR1020177005387A KR20170038020A (ko) 2014-07-31 2015-07-08 Esd 소자를 가지는 반도체 장치
US15/328,724 US10438944B2 (en) 2014-07-31 2015-07-08 Semiconductor device having ESD element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-156501 2014-07-31
JP2014156501 2014-07-31
JP2015114024A JP6600491B2 (ja) 2014-07-31 2015-06-04 Esd素子を有する半導体装置
JP2015-114024 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016017383A1 true WO2016017383A1 (ja) 2016-02-04

Family

ID=55217288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069643 WO2016017383A1 (ja) 2014-07-31 2015-07-08 Esd素子を有する半導体装置

Country Status (7)

Country Link
US (1) US10438944B2 (ja)
EP (1) EP3176823B1 (ja)
JP (1) JP6600491B2 (ja)
KR (1) KR20170038020A (ja)
CN (1) CN106575653B (ja)
TW (1) TWI678785B (ja)
WO (1) WO2016017383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773410A (zh) * 2016-12-30 2017-05-31 武汉华星光电技术有限公司 显示面板及其静电释放电路
CN109417033A (zh) * 2016-06-28 2019-03-01 株式会社索思未来 半导体装置以及半导体集成电路

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763334B2 (en) 2018-07-11 2020-09-01 Cree, Inc. Drain and/or gate interconnect and finger structure
US10600746B2 (en) * 2018-07-19 2020-03-24 Cree, Inc. Radio frequency transistor amplifiers and other multi-cell transistors having gaps and/or isolation structures between groups of unit cell transistors
US10770415B2 (en) 2018-12-04 2020-09-08 Cree, Inc. Packaged transistor devices with input-output isolation and methods of forming packaged transistor devices with input-output isolation
JP7380310B2 (ja) * 2019-02-28 2023-11-15 住友電工デバイス・イノベーション株式会社 電界効果トランジスタ及び半導体装置
US11417746B2 (en) 2019-04-24 2022-08-16 Wolfspeed, Inc. High power transistor with interior-fed fingers
CN113672018B (zh) * 2021-08-13 2024-04-16 北京同芯科技有限公司 能消除衬底电压影响的多晶电阻匹配方法及电路
WO2023190001A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878630A (ja) * 1994-08-19 1996-03-22 Sgs Thomson Microelettronica Spa 入出力端子での静電気放電に対してmos集積回路を保護する装置
JP2001284540A (ja) * 2000-04-03 2001-10-12 Nec Corp 半導体装置およびその製造方法
JP2004015003A (ja) * 2002-06-11 2004-01-15 Fujitsu Ltd 半導体装置およびその製造方法,esd保護装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100203054B1 (ko) 1995-12-02 1999-06-15 윤종용 개선된 정전기 방전 능력을 갖는 집적 회로
US6424013B1 (en) * 1999-07-09 2002-07-23 Texas Instruments Incorporated Body-triggered ESD protection circuit
US6306695B1 (en) * 1999-09-27 2001-10-23 Taiwan Semiconductor Manufacturing Company Modified source side inserted anti-type diffusion ESD protection device
US6815775B2 (en) * 2001-02-02 2004-11-09 Industrial Technology Research Institute ESD protection design with turn-on restraining method and structures
US6621133B1 (en) * 2002-05-09 2003-09-16 United Microelectronics Corp. Electrostatic discharge protection device
US7394630B2 (en) * 2002-10-11 2008-07-01 Ming-Dou Ker Electrostatic discharge protection device for mixed voltage interface
KR100532463B1 (ko) * 2003-08-27 2005-12-01 삼성전자주식회사 정전기 보호 소자와 파워 클램프로 구성된 입출력 정전기방전 보호 셀을 구비하는 집적 회로 장치
US7187527B2 (en) * 2004-09-02 2007-03-06 Macronix International Co., Ltd. Electrostatic discharge conduction device and mixed power integrated circuits using same
JP5108250B2 (ja) * 2006-04-24 2012-12-26 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
US7705404B2 (en) * 2006-12-20 2010-04-27 Amazing Microelectronic Corporation Electrostatic discharge protection device and layout thereof
JP2008193019A (ja) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd 半導体集積回路装置
TWI361485B (en) * 2008-04-30 2012-04-01 Macronix Int Co Ltd Transistor layout for electrostatic discharge protective circuit
US8362564B2 (en) * 2010-08-20 2013-01-29 Intersil Americas Inc. Isolated epitaxial modulation device
JP2013008715A (ja) * 2011-06-22 2013-01-10 Semiconductor Components Industries Llc 半導体装置
US9673187B2 (en) * 2015-04-07 2017-06-06 Analog Devices, Inc. High speed interface protection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878630A (ja) * 1994-08-19 1996-03-22 Sgs Thomson Microelettronica Spa 入出力端子での静電気放電に対してmos集積回路を保護する装置
JP2001284540A (ja) * 2000-04-03 2001-10-12 Nec Corp 半導体装置およびその製造方法
JP2004015003A (ja) * 2002-06-11 2004-01-15 Fujitsu Ltd 半導体装置およびその製造方法,esd保護装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417033A (zh) * 2016-06-28 2019-03-01 株式会社索思未来 半导体装置以及半导体集成电路
CN109417033B (zh) * 2016-06-28 2022-03-18 株式会社索思未来 半导体装置以及半导体集成电路
CN106773410A (zh) * 2016-12-30 2017-05-31 武汉华星光电技术有限公司 显示面板及其静电释放电路
CN106773410B (zh) * 2016-12-30 2020-01-17 武汉华星光电技术有限公司 显示面板及其静电释放电路

Also Published As

Publication number Publication date
CN106575653B (zh) 2020-03-27
EP3176823B1 (en) 2021-02-24
US10438944B2 (en) 2019-10-08
US20170221878A1 (en) 2017-08-03
TW201618273A (zh) 2016-05-16
JP6600491B2 (ja) 2019-10-30
EP3176823A4 (en) 2018-03-28
KR20170038020A (ko) 2017-04-05
CN106575653A (zh) 2017-04-19
EP3176823A1 (en) 2017-06-07
TWI678785B (zh) 2019-12-01
JP2016036014A (ja) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6600491B2 (ja) Esd素子を有する半導体装置
JP4703196B2 (ja) 半導体装置
JP4209433B2 (ja) 静電破壊保護装置
JP2005045016A (ja) 半導体集積回路
JP5359072B2 (ja) 半導体装置
JP2009038130A (ja) 横型mosトランジスタ及びこれを用いた半導体装置
JP6013876B2 (ja) 半導体装置
US9153570B2 (en) ESD tolerant I/O pad circuit including a surrounding well
JP6033054B2 (ja) 半導体装置
JP6838504B2 (ja) 半導体装置および半導体回路装置
JP5214704B2 (ja) 半導体装置
JP2007129089A (ja) 半導体装置
JP5529414B2 (ja) 静電破壊保護回路
JP4504664B2 (ja) 静電気放電保護素子及び静電気放電保護回路
JP2011100933A (ja) 半導体装置
JP2008270367A (ja) 半導体装置
JP2009141071A (ja) 静電気保護用半導体素子
JP2009038101A (ja) 半導体装置
JP2022161434A (ja) 半導体装置
JP5437598B2 (ja) Esd保護素子および該esd保護素子を設けた半導体装置
JP2008034586A (ja) 半導体装置
JP2011171662A (ja) 保護トランジスタおよび半導体集積回路
JP2009170579A (ja) 半導体装置
KR20110077561A (ko) 정전기 방전 보호 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15328724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015828226

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015828226

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005387

Country of ref document: KR

Kind code of ref document: A