WO2016013675A1 - ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法 - Google Patents

ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法 Download PDF

Info

Publication number
WO2016013675A1
WO2016013675A1 PCT/JP2015/071168 JP2015071168W WO2016013675A1 WO 2016013675 A1 WO2016013675 A1 WO 2016013675A1 JP 2015071168 W JP2015071168 W JP 2015071168W WO 2016013675 A1 WO2016013675 A1 WO 2016013675A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
fine particles
pva
pharmaceutical
tablet
Prior art date
Application number
PCT/JP2015/071168
Other languages
English (en)
French (fr)
Inventor
千津子 風呂
泰治 神田
幸嗣 原
ヴァヴィア・プラディープ・ラティラル
モンパラ・ジャスミン・ディラージラール
ジャーダヴ・パンカジュ・ハヌマントラオ
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55163197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016013675(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to JP2015537049A priority Critical patent/JP6657949B2/ja
Priority to EP15825381.5A priority patent/EP3173101B1/en
Priority to US15/328,580 priority patent/US10028915B2/en
Publication of WO2016013675A1 publication Critical patent/WO2016013675A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to polyvinyl alcohol fine particles, a pharmaceutical binder using the same, pharmaceutical tablets, sustained-release pharmaceutical tablets, and methods for producing polyvinyl alcohol fine particles. More specifically, polyvinyl alcohol (hereinafter abbreviated as PVA), which can obtain a pharmaceutical tablet that is excellent in sustained release, high in hardness, excellent in brittleness, and smooth in surface, particularly when used as a pharmaceutical binder. It relates to fine particles. Furthermore, the present invention relates to a pharmaceutical binder and a pharmaceutical tablet comprising such polyvinyl alcohol fine particles.
  • PVA polyvinyl alcohol
  • PVA which is a water-soluble resin
  • PVA is used for various applications by taking advantage of its characteristics.
  • PVA is in the form of a powder or granule after production, but it is widely practiced to apply it to various processes or applications after dissolving PVA in water. Therefore, from the recognition that PVA is used after being dissolved in water, the properties of solid PVA after production have not been studied much.
  • Non-Patent Document 1 When a PVA film is immersed in a non-solvent low molecular liquid, it is analyzed that more intermolecular hydrogen bonds are formed in the vicinity of the surface of the PVA (see Non-Patent Document 1).
  • a pharmaceutical tablet which is one of pharmaceutical preparations, is generally produced by tableting, and in this tableting method, a mixed powder is prepared by mixing various additive components with an active pharmaceutical ingredient (medicinal ingredient).
  • the granule obtained by granulation or the mixed powder is directly filled into a mortar, and pressure is applied with a scissors to form it into a desired size and shape.
  • the shaped tablet may be coated with a cellulose compound, saccharide, or the like, as necessary.
  • pharmaceutical tablets include excipients (added to an appropriate amount for handling and not having physiological activity), binders (raw powder particles as raw materials) It is added to bind and controls the mechanical strength of the tablet.) Disintegrant (added to disintegrate the tablet by sucking moisture in the body and swell to facilitate the release of the active ingredient). ), Lubricant (added to improve the fluidity of the powder and facilitate compression molding).
  • the binder has a great influence on the strength of the tablet, and there is a problem that if an appropriate binder is not selected, it cannot be molded or it is crushed after molding.
  • the binding agent also affects the dissolution rate of the active ingredient, and since tablets do not disintegrate when they enter the body, it is difficult for the medicinal ingredient to be absorbed. It is important and the balance is required.
  • sustained-release preparations with long-term dissolution control have been actively developed in recent years because side effects can be prevented by improving compliance and reducing blood concentration fluctuations associated with a decrease in the number of doses. ing.
  • Patent Document 1 there is an optimal binder for an orally disintegrating tablet (OD tablet) using a polyvinyl alcohol copolymer having a specific average particle diameter, and an optimal binder for direct tableting. It is disclosed.
  • Patent Document 2 discloses that a polyvinyl alcohol copolymer is used in a sustained-release preparation, thereby enabling long-time elution control.
  • the binder described in Patent Document 1 is suitable for tableting and can impart good quick disintegration to the tablet, and is satisfactory from the viewpoint of releasing the active ingredient in a short time. Time elution control was not possible.
  • the matrix preparation matrix described in Patent Document 2 was excellent in sustained release of the active ingredient, but the hardness and brittleness of the obtained tablet are still not satisfactory, There is a demand for a binder having an excellent effect in both formability and sustained release.
  • the present invention is capable of obtaining a pharmaceutical tablet having excellent sustained release, high hardness, excellent brittleness, and a smooth surface, particularly when used as a pharmaceutical binder.
  • An object of the present invention is to provide PVA fine particles, as well as a pharmaceutical binder and a pharmaceutical tablet.
  • the present invention has the following configurations (1) to (11).
  • Polyvinyl alcohol fine particles in which the Gauche structure of polyvinyl alcohol molecules in the range of 0.8 nm from the particle surface of the polyvinyl alcohol fine particles toward the inside of the particle is 25 mol% or more.
  • the ratio (S1 / S2) of the average saponification degree (S1) of the polyvinyl alcohol fine particles to the surface average saponification degree (S2) in the range of 0.8 nm from the particle surface toward the inside of the particle is 1.10 or more.
  • the polyvinyl alcohol fine particles according to (1) or (2) which are obtained by pulverizing a dry powder of unmodified polyvinyl alcohol consisting only of a vinyl alcohol structural unit and a vinyl ester structural unit.
  • polyvinyl alcohol fine particles according to any one of (1) to (6), wherein the polyvinyl alcohol fine particles contain 0.001 to 2% by mass of an alkali metal salt with respect to the polyvinyl alcohol fine particles.
  • a pharmaceutical binder comprising the polyvinyl alcohol fine particles according to any one of (1) to (7).
  • a pharmaceutical tablet comprising a medicinal component and the pharmaceutical binder according to (8).
  • a sustained-release pharmaceutical tablet containing a medicinal component and the pharmaceutical binder according to (8).
  • (11) A method for producing fine polyvinyl alcohol particles, wherein the unmodified polyvinyl alcohol obtained from the vinyl alcohol structural unit and the vinyl ester structural unit is washed and dried, and then the dried powder of the obtained unmodified polyvinyl alcohol is pulverized.
  • the pharmaceutical binder comprising the PVA fine particles of the present invention has a large surface Gauche structure, so it is presumed that the surface crystallinity is lowered and the adhesive strength is increased. Therefore, the pharmaceutical tablet using the pharmaceutical binder of the present invention is excellent in sustained release properties, has a higher hardness, is excellent in brittleness, and has a smooth surface state during tablet formation.
  • the mechanism by which the effect of the present invention can be obtained due to the large number of Gauche structures on the surface has not been clarified in detail, since the Gauche structure is a disordered crystal structure, the crystal structure on the surface of the PVA fine particles is disturbed, and the adhesiveness Is estimated to be improved. Further, it is presumed that by improving the adhesiveness, a pharmaceutical tablet having excellent sustained release properties, higher hardness, excellent brittleness, and a smooth surface state at the time of tablet molding was obtained.
  • FIG. 1 is a diagram showing a pulse sequence used in the NMR measurement of the present invention.
  • 2 is a solid-state NMR chart of Example 1 and Example 2.
  • FIG. 3 is a solid-state NMR chart of Comparative Example 1 and Comparative Example 2.
  • FIG. 4 is a graph showing the elution rates of medicinal components in Example 1 and Comparative Example 1.
  • FIG. 5 is a graph showing the elution rates of medicinal components in Example 2 and Comparative Example 2.
  • the PVA fine particles of the present invention have a polyvinyl alcohol having a vinyl alcohol structural unit and a vinyl ester structural unit which is an unsaponified portion (hereinafter, may be abbreviated as PVA), and particles from the particle surface of the PVA fine particles.
  • PVA polyvinyl alcohol having a vinyl alcohol structural unit and a vinyl ester structural unit which is an unsaponified portion
  • the Gauche structure of PVA molecules in the range of 0.8 nm toward the inside is 25 mol% or more.
  • the ratio (S1 / S2) of the average saponification degree (S1) of the PVA fine particles to the surface average saponification degree (S2) in the range of 0.8 nm from the particle surface toward the inside of the particle is 1.10 or more. Preferably there is.
  • the Gauche structure refers to a twisted structure of carbon-carbon bonds in the main chain of PVA.
  • a structure without twist is called a transformer structure, which is a planar structure.
  • the carbon-carbon bond in the main chain of PVA consists of two types of structures, a Gauche structure and a trans structure, and most of them have a trans structure.
  • the Gauche structure is obtained by rotating the transformer structure by 60 ° and is twisted. Therefore, when the Gauche structure increases, the crystallinity of the PVA molecules and the amount of hydrogen bonds tend to decrease.
  • the Gauche structure of PVA molecules in the range of 0.8 nm from the particle surface to the inside of the particle is 25 mol% or more, preferably 27 mol% or more, particularly preferably 30 to 50 mol%. is there. If this value is too small, the effect of the present invention tends to be difficult to obtain.
  • the PVA fine particles of the present invention have a ratio (S1 / S2) of the average saponification degree (S1) of the whole particle and the surface average saponification degree (S2) in the range of 0.8 nm from the particle surface toward the inside of the particle. , Preferably 1.10 or more, more preferably 1.10 to 1.50. If this value is too small, the effect of the present invention tends to be difficult to obtain.
  • Examples of the method for obtaining the PVA fine particles having such a value include a method of applying heat to the surface of the PVA fine particles, colliding and crushing the PVA particles, and washing with a solvent in which PVA is not dissolved. Also good. Among them, a method in which particles are collided with each other after being washed with a solvent in which PVA is not dissolved and dried is preferable.
  • the measurement method of the Gauche structure and the surface average saponification degree (S2) will be described in detail below. These are measured based on the method of Japanese Patent Application Laid-Open No. 2008-203159, T. Kanda and F. Horii., CProc. Soc. Solid State NMR Mater., No. 47, 43 (2010). .
  • High resolution solid state NMR is used for structural analysis.
  • the measurement uses the pulse sequence shown in FIG. Each parameter using this is shown in Table 1 below.
  • n-decane having the same mass as that of polyvinyl alcohol fine particles is added.
  • ⁇ t is a portion due to 1H nuclear spin-spin relaxation of the polyvinyl alcohol fine particles and the medium n-decane.
  • ⁇ t is 60 ⁇ s or more, the magnetization of the polyvinyl alcohol fine particles disappears, while the magnetization of n-decane remains, which is a condition that enables spin diffusion.
  • the time of ⁇ d is lengthened, the resonance line of the spectrum increases, so that it is confirmed that spin diffusion occurs.
  • the magnetization penetrates from the n-decane through the surface of the polyvinyl alcohol fine particles.
  • the spin diffusion time can be expressed as a function of distance by the following equation (1).
  • the spectrum obtained at a very short spin diffusion time shows a structure in which the distance (L) (nm) from the surface of the PVA fine particle toward the inside is small, that is, the structure near the surface.
  • L (a ⁇ D ⁇ ⁇ d) 0.5 (1)
  • a is a constant and is 4/3.
  • D is a diffusion constant, and 0.5 nm / ms is assumed, and ⁇ d indicates a spin diffusion time (ms).
  • the above constants a and D are the values of K. Masuda, M, Adachi, H. Yamamoto, H. Kaji, and F. Horii, Solid State NMR, 23, 198 (2003), and JR Havens and DL VanderHart, Macromolecules.
  • Gauche structure (mol%) 100 ⁇ (B / 2 + C) / (A + B + C) (2) (In formula (2), A represents a peak area of 46 ppm, B represents a peak area of 41 ppm, and C represents a peak area of 36 ppm.)
  • the saponification degree of the surface is calculated by the following formula (3).
  • Degree of saponification (mol%) 100 ⁇ (1 ⁇ D / (A + B + C)) (3)
  • A represents a peak area of 46 ppm
  • B represents a peak area of 41 ppm
  • C represents a peak area of 36 ppm
  • D represents a peak area of 21 ppm.
  • PVA used as a raw material for PVA fine particles is obtained, for example, by saponifying a polyvinyl ester polymer obtained by polymerizing a vinyl ester monomer.
  • vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, versatic.
  • a saponified product of a copolymer of the vinyl ester monomer and a monomer having a copolymerizability with the vinyl ester monomer can be used to such an extent that the effects of the present invention are not impaired.
  • the monomer include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, 3-buten-1-ol, 4-penten-1-ol, and 5-hexene-1- Hydroxyl group-containing ⁇ -olefins such as ol, 3,4-dihydroxy-1-butene and derivatives thereof, such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, undecylenic acid, etc.
  • the content of such a comonomer is usually 10 mol% or less, preferably 5 mol% or less, particularly preferably 1 mol% or less, based on the total amount of the polymer.
  • Unmodified PVA consisting only of vinyl ester structural units in the saponified portion is preferred.
  • polymerization of the vinyl ester monomer and the copolymerization monomer there is no particular limitation on the polymerization of the vinyl ester monomer and the copolymerization monomer, and a known method such as bulk polymerization, solution polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization can be employed. Solution polymerization is performed.
  • solvent used in such polymerization examples include aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone. Methanol is preferably used.
  • the polymerization reaction is carried out using a known radical polymerization catalyst such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauroyl peroxide, or various known low-temperature active catalysts.
  • the reaction temperature is selected from the range of about 35 ° C. to the boiling point.
  • the resulting polyvinyl ester polymer is then saponified in a continuous or batch manner.
  • the saponification either alkali saponification or acid saponification can be adopted, but industrially, the polymer is dissolved in alcohol and the reaction is carried out in the presence of an alkali catalyst.
  • the alcohol include methanol, ethanol, butanol and the like.
  • the concentration of the polymer in the alcohol is selected from the range of 20 to 60% by mass. If necessary, about 0.3 to 10% by mass of water may be added.
  • various esters such as methyl acetate and various solvents such as benzene, hexane and DMSO (dimethyl sulfoxide) are added. May be.
  • the saponification catalyst include alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and the like.
  • the amount of is preferably 1 to 100 mmol equivalents relative to the monomer.
  • the obtained polyvinyl ester polymer is washed with a washing solution.
  • the cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol, and methanol is preferable from the viewpoint of cleaning efficiency and drying efficiency.
  • the cleaning method may be a continuous type (rotating cylindrical type, counter-current contact type, centrifugal sprinkling cleaning, etc.), but a batch type is usually adopted.
  • Examples of the stirring method (apparatus) at the time of washing include a screw blade, a ribbon blender, and a kneader.
  • the bath ratio mass of cleaning liquid / mass of polyvinyl ester polymer particles is usually 1 to 30, and 2 to 20 is particularly preferred. If the bath ratio is too large, a large cleaning device is required, which tends to increase the cost. If the bath ratio is too small, the cleaning effect tends to decrease and the number of cleaning times tends to increase.
  • the temperature at the time of washing is usually 10 to 80 ° C., particularly preferably 20 to 70 ° C. If the temperature is too high, the volatilization amount of the cleaning liquid increases, and there is a tendency to require reflux equipment. If the temperature is too low, the cleaning efficiency tends to decrease.
  • the washing time is usually 5 minutes to 12 hours, particularly preferably 30 minutes to 4 hours. If the cleaning time is too long, the production efficiency tends to decrease, and if the cleaning time is too short, the cleaning tends to be insufficient. Further, the number of times of washing is usually 1 to 10 times, particularly preferably 1 to 5 times. If the number of washings is too large, the productivity tends to deteriorate and the cost tends to increase.
  • the washed polyvinyl ester polymer particles are dried with hot air or the like in a continuous or batch manner to obtain PVA powder.
  • the drying temperature is usually from 50 to 150 ° C., particularly preferably from 60 to 130 ° C., particularly preferably from 70 to 110 ° C. If the drying temperature is too high, the polyvinyl ester polymer particles tend to be thermally deteriorated. If the drying temperature is too low, the drying tends to take a long time.
  • the drying time is usually 1 to 48 hours, and preferably 2 to 36 hours. If the drying time is too long, the polyvinyl ester polymer particles tend to be thermally deteriorated. If the drying time is too short, drying tends to be insufficient or high temperature drying tends to be required.
  • the content of the solvent contained in the unmodified PVA powder after drying is usually 0 to 10% by mass, particularly 0.1 to 5% by mass, especially 0.1 to 1% by mass. preferable.
  • the unmodified PVA powder contains an alkali metal salt of acetic acid derived from an alkali catalyst used during saponification.
  • the content of the alkali metal salt is usually 0.001 to 2% by mass, preferably 0.005 to 1% by mass, more preferably 0.01 to 0.1% by mass, based on the unmodified PVA powder. is there.
  • Examples of the method for adjusting the content of the alkali metal salt include a method of adjusting the amount of the alkali catalyst used in the saponification and washing the PVA with an alcohol such as ethanol or methanol.
  • As a method for quantifying the alkali metal salt used in the present invention there is a method in which PVA powder is dissolved in water, methyl orange is used as an indicator, and neutralization titration is performed with hydrochloric acid.
  • the average degree of polymerization of the PVA used in the present invention is preferably 200 to 4000, more preferably 400 to 3500, and further preferably 500 to 3000. If the average degree of polymerization is too small, sufficient binding strength and sustained release may not be obtained when it is made into tablets. If the average degree of polymerization is too large, it is miscible with active ingredients and excipients. May deteriorate and formability may deteriorate.
  • the average degree of polymerization the average degree of polymerization obtained by a method based on JIS K6726 is used as the average degree of polymerization.
  • the viscosity of the 4 mass% aqueous solution of PVA at 20 ° C. is preferably 1.5 to 100 mPa ⁇ s, more preferably 4 to 80 mPa ⁇ s, and further preferably 5 to 70 mPa ⁇ s. If the viscosity of the 4% by weight aqueous solution is too large, gelation may occur due to the solvent at the time of manufacture, resulting in poor mixability, and moldability may be deteriorated. If the viscosity of the 4% by weight aqueous solution is too small, sufficient binding force and sustained release are obtained. Sexuality may not be obtained.
  • the viscosity of the 4% by mass aqueous solution at 20 ° C. is a viscosity measured by a method according to JIS K6726.
  • the saponification degree of the PVA used in the present invention is preferably 70 to 100 mol%, more preferably 80 to 95 mol%, still more preferably 85 to 90%. If the degree of saponification is too low, the sustained release property cannot be maintained, and if the degree of saponification is too high, the binding force may be insufficient, and it may collapse immediately. In the present invention, the saponification degree is measured by a method based on JIS K6726.
  • the main chain bonding mode is mainly 1,3-diol bond, and the content of 1,2-diol bond is about 1.5 to 1.7 mol%. It is also possible to use those having a content of 1.7 to 3.5 mol% by increasing the polymerization temperature when polymerizing the ester monomer.
  • the 50% particle size of the unmodified PVA powder after drying and before pulverization is preferably 50 to 2000 ⁇ m, more preferably 60 to 1500 ⁇ m, and still more preferably 70 to 1000 ⁇ m. If the 50% particle size of the unmodified PVA powder is too small, handling such as washing and pulverization may be difficult, and if too large, the efficiency of washing and pulverizing may be reduced.
  • the 50% particle diameter is a diameter at which an integrated value (cumulative distribution) is 50% when a volume distribution for each particle diameter is measured by laser diffraction.
  • a method of pulverizing the PVA dry powder obtained as described above to obtain PVA fine particles which are the pharmaceutical binder of the present invention is particularly preferred.
  • the surface of the PVA dry powder is considered to have changed due to external influences of washing and drying in the production process of the unmodified PVA dry powder. Therefore, the unmodified PVA dry powder is pulverized to expose the inside, and the PVA fine particles whose surface has been changed by the pulverization process are added to the tablets prepared by adding the PVA fine particles as a pharmaceutical binder. As the hardness increases, moldability and sustained release properties are improved.
  • the PVA powder is pulverized so as to have a target particle diameter to obtain the PVA fine particles of the present invention.
  • the 50% particle size of the PVA fine particles is preferably 1 to 200 ⁇ m, more preferably 10 to 180 ⁇ m, still more preferably. Is 15 to 150 ⁇ m. If the 50% particle diameter of the PVA fine particles after pulverization is too small, the fluidity of the mixed powder tends to be poor, and it tends to be difficult to produce a uniform preparation. There is a tendency for sustained release to decrease.
  • the average degree of polymerization of PVA fine particles is the same as the average degree of polymerization of PVA before pulverization, and the average degree of polymerization of PVA fine particles is preferably 200 to 4000, more preferably 400 to 3500, and still more preferably. 500 to 3000. If the average degree of polymerization is too small, sufficient binding strength and sustained release may not be obtained when it is made into tablets. If the average degree of polymerization is too large, it is miscible with active ingredients and excipients. May deteriorate and formability may deteriorate.
  • pulverization method of PVA dry powder For example, a roller mill, a bead mill, a ball mill, a jet mill, a hammer mill, a pin mill, a grind grinding
  • the method by collision pulverization is preferable because it is difficult to be subjected to the impact.
  • the pulverization temperature, pulverization time, and the like at the time of pulverization may be set as appropriate according to the pulverization means employed, as long as the pulverization can be performed to achieve a desired particle size.
  • collision pulverization is a method of pulverizing PVA dry powder by voluntary collision using a high-speed swirling airflow.
  • the pulverization temperature is preferably 10 to 100 ° C., more preferably 20 to 80 ° C.
  • the PVA fine particles of the present invention obtained as described above can be suitably used as a pharmaceutical binder which is an additive for pharmaceutical tablets.
  • Examples of the medicinal ingredients used in the present invention include antipyretic analgesic / antiinflammatory drugs, nourishing tonic health drugs, psychotropic drugs, antidepressants, anxiolytics, hypnotic sedatives, antispasmodic drugs, central nervous system drugs, brain metabolism improving agents , Cerebral circulation improving agent, antiepileptic agent, sympathomimetic agent, gastrointestinal agent, antacid agent, antiulcer agent, antitussive expectorant, antiemetic agent, respiratory accelerator, bronchodilator, allergic agent, antihistamine, dental oral Drugs, cardiotonic drugs, arrhythmia drugs, diuretics, antihypertensive drugs, vasoconstrictor drugs, coronary vasodilator drugs, peripheral vasodilator drugs, anticoagulants, hyperlipidemia drugs, antibacterial drugs, antibiotics, chemotherapy Agents, antidiabetic agents, osteoporosis agents, antirheumatic drugs, skeletal muscle relaxants, antispasmod
  • Antipyretic analgesics and anti-inflammatory agents include, for example, acetaminophen, aspirin, ibuprofen, ethenamide, diphenhydramine hydrochloride, dl-chlorpheniramine maleate, diclofenac sodium, dihydrocodeine phosphate, salicylamide, aminopyrine, noscapine, methylephedrine hydrochloride, phenylpropanol hydrochloride Examples include amines, serrapeptase, lysozyme chloride, tolfenamic acid, mefenamic acid, flufenamic acid, ketoprofen, indomethacin, bucolome, pentazocine, caffeine and anhydrous caffeine.
  • vitamin A for example, vitamin A, vitamin B1 (such as dibenzoylthiamine and fursultiamine hydrochloride), vitamin B2 (such as riboflavin butyrate), vitamin B6 (such as pyridoxine hydrochloride), vitamin B12 (hydroxocobalamin acetate and cyanocobalamin) Vitamins (such as sodium ascorbate and L-sodium ascorbate), vitamins such as vitamin D and vitamin E (such as d- ⁇ -tocopherol acetate), minerals such as calcium, magnesium and iron, proteins, amino acids, oligosaccharides And herbal medicines.
  • vitamin B1 such as dibenzoylthiamine and fursultiamine hydrochloride
  • vitamin B2 such as riboflavin butyrate
  • vitamin B6 such as pyridoxine hydrochloride
  • vitamin B12 hydroxocobalamin acetate and cyanocobalamin
  • Vitamins such as sodium ascorbate and L-sodium ascorbat
  • Examples of psychotropic drugs include chlorpromazine and reserpine.
  • Examples of antidepressants include amphetamine, imipramine, and maprotiline hydrochloride.
  • Examples of the anxiolytic drugs include diazepam, alprazolam, chlordiazepoxide and the like.
  • Examples of hypnotic sedatives include estazolam, diazepam, nitrazepam, perlapine and phenobarbital sodium.
  • Antispasmodic agents include, for example, scopolamine hydrobromide, diphenhydramine hydrochloride and papaverine hydrochloride.
  • Examples of central nervous system drugs include citicoline.
  • Examples of the brain metabolism improving agent include meclofenixate hydrochloride.
  • Examples of the cerebral circulation improving agent include vinpocetine.
  • Examples of the antiepileptic agent include phenytoin and carbamazepine.
  • Examples of the sympathomimetic agent include isoproterenol hydrochloride.
  • Gastrointestinal drugs include, for example, gastrointestinals such as diastase, sugar-containing pepsin, funnel extract, cellulase AP3, lipase AP and cinnamon oil, and intestinals such as berberine chloride, resistant lactic acid bacteria and bifidobacteria.
  • gastrointestinals such as diastase, sugar-containing pepsin, funnel extract, cellulase AP3, lipase AP and cinnamon oil
  • intestinals such as berberine chloride, resistant lactic acid bacteria and bifidobacteria.
  • the antacid include magnesium carbonate, sodium hydrogen carbonate, magnesium aluminate metasilicate, synthetic hydrotalcite, precipitated calcium carbonate, and magnesium oxide.
  • the anti-ulcer agent include lansoprazole, omeprazole, rabeprazole, cimetidine, famotidine, and ranitidine hydrochloride.
  • Examples of the antitussive expectorant include cloperastine hydrochloride, dextromelt fan hydrobromide, theophylline, potassium guaiacol sulfonate, guaifenesin, and codeine phosphate.
  • Examples of antiemetics include diphenidol hydrochloride and metoclopramide.
  • Examples of the respiratory accelerator include levallorphan tartrate.
  • Examples of bronchodilators include theophylline and salbutamol sulfate.
  • Examples of allergic drugs include amlexanox and seratrodast.
  • Examples of the antihistamine include diphenhydramine hydrochloride, promethazine, isothipentyl hydrochloride and dl-chlorpheniramine maleate.
  • dental and oral drugs examples include oxytetracycline, triamcinolone acetonide, chlorhexidine hydrochloride, lidocaine and the like.
  • examples of the cardiotonic agent include digoxin and caffeine.
  • examples of the arrhythmic agent include procainamide hydrochloride, propranolol hydrochloride and pindolol.
  • examples of the diuretic include furosemide, isosorbide and hydrochlorothiazide.
  • antihypertensive agents examples include captopril, delapril hydrochloride, hydralazine hydrochloride, labetalol hydrochloride, manidipine hydrochloride, candesartan cilexetil, methyldopa and perindopril erbumine.
  • vasoconstrictor examples include phenylephrine hydrochloride.
  • coronary vasodilators include carbochromene hydrochloride, molsidomine, and perapamil hydrochloride.
  • peripheral vasodilators examples include cinnarizine.
  • the blood coagulation inhibitor examples include dicumarol.
  • the hyperlipidemia agent examples include cerivastatin sodium, simvastatin, pravastatin sodium and atorvastatin calcium hydrate.
  • abetic agent examples include dehydrocholic acid and trepeptone.
  • Antibiotics include, for example, cephems such as cephalexin, amoxicillin, cefaclor, pipecilinam hydrochloride, cefotiam hexetyl hydrochloride, cefadroxyl, cefixime, cefditoren pivoxil, cefteram pivoxil and cefpodoximiproxetil, ampicillin, dicycline acid, And synthetic antibacterial agents such as enoxacin, monobactams such as carmonam sodium, penems and carbapenems. Examples of the chemotherapeutic agent include sulfamethizole.
  • Examples of the antidiabetic agent include sodium grimidine, glipizide, phenformin hydrochloride, buformin hydrochloride, metformin, metformin hydrochloride, tolbutamide, voglibose, pioglitazone hydrochloride, glibenclamide, and troglidazone.
  • Examples of the osteoporosis agent include ipriflavone.
  • Examples of skeletal muscle relaxants include metocarbamol.
  • antispasmodic agents examples include meclizine hydrochloride and dimenhydrinate.
  • Anti-rheumatic drugs include methotrexate and bucillamine.
  • hormone agents include liothyronine sodium, dexamethasone sodium phosphate, prednisolone, oxendron, and leuprorelin acetate.
  • alkaloid narcotic examples include opium, morphine hydrochloride, tocone, oxycodone hydrochloride, opium alkaloid hydrochloride, and cocaine hydrochloride.
  • sulfa drugs include sulfisomidine and sulfamethizole.
  • therapeutic agents for gout include allopurinol and colchicine.
  • the antineoplastic agent examples include 5-fluorouracil, uracil and mitomycin.
  • the content of the above active ingredients is appropriately adjusted according to bioavailability.
  • the active ingredient may be diluted with a diluent or the like generally used in the medical or food fields. Moreover, you may use what was processed for the purpose of masking the bitterness of an active ingredient.
  • additives can be added to the pharmaceutical tablet of the present invention as long as the effects of the present invention are not impaired.
  • the additive include an excipient, a disintegrant, a pH adjuster, a fluidizing agent, a surfactant, a coloring agent, a sweetening agent, and a coating agent.
  • excipient for example, one or more components selected from sugar alcohols, saccharides, calcium phosphates, crystalline celluloses, starches, sodium phosphates, gelatin and the like are used.
  • Preferred excipients include sugar alcohols and saccharides.
  • sugar alcohols include mannitol, erythritol, xylitol, sorbitol and maltitol.
  • saccharide include glucose, fructose, lactose, sucrose, trehalose, maltose, and oligosaccharide.
  • disintegrant examples include carmellose calcium, sodium carboxymethyl starch, croscarmellose sodium, crospovidone, cellulose or a derivative thereof and starch or a derivative thereof.
  • pH adjuster examples include citric acid and its salt, phosphoric acid and its salt, carbonic acid and its salt, tartaric acid and its salt, fumaric acid and its salt, acetic acid and its salt, amino acid and its salt, succinic acid and its Examples thereof include salts and lactic acid and salts thereof.
  • Examples of the fluidizing agent include light anhydrous silicic acid, hydrous silicon dioxide, titanium oxide, stearic acid, corn gel, and heavy anhydrous silicic acid.
  • surfactant examples include phospholipid, glycerin fatty acid ester, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkyl ether, sucrose fatty acid ester, lauryl sulfate
  • examples thereof include sodium, polysorbates, sodium hydrogen phosphates and potassium hydrogen phosphates.
  • colorant examples include iron sesquioxide, yellow sesquioxide, edible yellow No. 5, edible yellow No. 4, aluminum chelate, titanium oxide, and talc.
  • sweetener examples include saccharin, aspartame, acesulfame potassium, thaumatin, and sucralose.
  • the coating agent examples include hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinyl alcohol, ethyl polyvinylpyrrolidone acrylate, methyl methacrylate copolymer dispersion, hydroxypropyl methylcellulose acetate succinate, and methacrylic acid copolymer.
  • the pharmaceutical tablet of the present invention is produced by blending the above-described various components and directly or granulating and then tableting.
  • any of the production methods by compression molding of solid preparations using a rotary tableting machine, a single-shot tableting machine or the like usually performed in the pharmaceutical field can be used.
  • a direct powder compression method in which various components are uniformly mixed and then tableted a wet granulation method or a dry granule compression method in which various components are wet granulated or dry granulated, and the resulting granules are tableted.
  • the wet granulation method is not particularly limited as long as the above components are granulated, and a known method can be appropriately selected according to the purpose. For example, wet crushing, extrusion, fluidized bed, stirring, etc. Is mentioned. Among these, wet granulation methods such as stirring granulation method and fluidized bed granulation method are preferable, and the stirring granulation method is more preferable.
  • the apparatus used for the granulation is not particularly limited and can be appropriately selected depending on the purpose.
  • a stirring granulator for example, “Rapid Mixer Granulator” manufactured by Gem Pharma Machines, “ Vertical granulator “), fluidized bed granulator (for example,” rolling fluidized coating apparatus-MP-01 “manufactured by POWREC Co., Ltd.).
  • each component is weighed, sieved / pulverized, and then mixed in the granulator while in a dry state. It is preferable to add water, a solvent, or a mixture of water and a solvent for granulation, and the solvent may be appropriately selected depending on the properties of the active ingredients.
  • the solvent include alcohols such as ethanol, butanol and isopropyl alcohol, and preferably isopropyl alcohol is used.
  • the granulated product is formed into a tablet.
  • a tableting machine (“HT-APSS type”, “HT-AP-MS type”, “HT-X-SS type”, “HT-X type” manufactured by Hata Iron Works Co., Ltd.) -MS type ",” VIRGO, AQUAARIUS “,” LIBRA “manufactured by Kikusui Seisakusho Co., Ltd.) and the like.
  • the shape of the pharmaceutical tablet can be any shape such as an ellipsoid, a cylinder, a donut, or a sphere.
  • a polyvinyl alcohol polymer was prepared as described below, and a tablet was prepared using unmodified polyvinyl alcohol obtained by saponifying the obtained polyvinyl alcohol (PVA) polymer.
  • PVA polyvinyl alcohol
  • saponification degree and 4 mass% aqueous solution viscosity of a PVA polymer were done by the following method.
  • Example 1 [Preparation of polyvinyl alcohol] A reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer was charged with 1000 parts of vinyl acetate, 140 parts of methanol, and 0.05 mol% of azobisisobutyronitrile (vs. vinyl acetate) and stirred under a nitrogen stream. While raising the temperature, polymerization was carried out at the boiling point for 5 hours. When the polymerization rate of vinyl acetate reaches 65%, m-dinitrobenzene is added to complete the polymerization, and then unreacted vinyl acetate monomer is removed from the system by blowing methanol vapor. A methanol solution of the polymer (41% resin content) was obtained.
  • the methanol solution was further diluted with methanol, adjusted to a concentration of 33%, and charged into a kneader.
  • saponification was performed by adding a 3.5% methanol solution of sodium hydroxide at a ratio of 2.0 mmol to 1 mol of vinyl acetate structural unit in the polymer. As saponification progressed, saponified material precipitated and became particulate, and was separated by solid-liquid separation.
  • the saponification degree of the obtained PVA dry powder was 87.7 mol% when analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate, and the viscosity of the 4 mass% aqueous solution was 41.5 mPa ⁇ s. s, and the average degree of polymerization was 2400.
  • the PVA dry powder obtained above was put into methanol having a bath ratio of 10 times and stirred for 3 hours, followed by solid-liquid separation, and the resulting PVA powder (50% particle size 500 ⁇ m, sodium acetate content 0.05 Part) was vacuum dried at 90 ° C. until the volatile content was 1% or less.
  • the sodium acetate content was determined by dissolving PVA powder in water and neutralizing with hydrochloric acid using methyl orange as an indicator.
  • the PVA dry powder thus obtained was impact pulverized to a target size using a BI mill (manufactured by Micro Pautech) to obtain PVA fine particles (pulverized product).
  • the particle size of the obtained PVA fine particles was measured with a laser diffraction particle size distribution measuring device (LMS-3000 manufactured by Malvern) at a dispersion pressure of 2-4 bar and a measurement time of 1 second to obtain a 50% particle size (D50). As a result, it was 96 ⁇ m.
  • Gauche structure (mol%) 100 ⁇ (B / 2 + C) / (A + B + C) (2)
  • A represents a peak area of 46 ppm
  • B represents a peak area of 41 ppm
  • C represents a peak area of 36 ppm.
  • Degree of saponification (mol%) 100 ⁇ (1 ⁇ D / (A + B + C)) (3)
  • A represents a peak area of 46 ppm
  • B represents a peak area of 41 ppm
  • C represents a peak area of 36 ppm
  • D represents a peak area of 21 ppm.
  • This granulated product 500 parts of the PVA fine particles obtained in Example 1 and 10 parts of magnesium stearate were mixed, and an elliptical tablet (length: 1.9 cm, width: 0.9 cm, height: high) using a rotary tablet press. 0.5 cm).
  • the obtained tablets were evaluated in the same manner as in Example 1. The results are shown in Table 3. The results of the sustained release test are shown in FIG.
  • Comparative Example 2 Using the PVA fine particles prepared in Comparative Example 1, tablets were prepared and evaluated in the same manner as in Example 2. The results are shown in Table 3. The results of the sustained release test are shown in FIG.
  • Example 1 is a tablet excellent in hardness and brittleness as compared with Comparative Example 1 despite having the same particle size. was gotten. Furthermore, the surface of the obtained tablet was smooth. Moreover, about sustained release, Example 1 and the comparative example 1 also had the equivalent performance. Comparing Example 2 and Comparative Example 2 to which PVA fine powder was added at the time of compression molding after granulation, compared to Comparative Example 2 despite having an equivalent particle size, Example 2 has a hardness, A tablet excellent in brittleness was obtained. Furthermore, the surface of the obtained tablet was smooth. Moreover, about the sustained release, Example 2 had the performance superior to the comparative example 2.

Abstract

 本発明は、徐放性に優れ、更に硬度が高く、脆性に優れる医薬錠剤を得るための医薬用結合剤に適したポリビニルアルコール微粒子を提供する。本発明のポリビニルアルコール微粒子は、ポリビニルアルコール微粒子の粒子表面から粒子内部に向かって0.8nmの範囲のポリビニルアルコール分子のゴーシュ構造が25モル%以上である。

Description

ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法
 本発明はポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法に関する。更に詳しくは、特に医薬用結合剤として用いた場合に、徐放性に優れ、硬度が高く、脆性に優れ、さらには表面の滑らかな医薬錠剤を得ることができるポリビニルアルコール(以下、PVAと略記することがある。)微粒子に関する。更には、かかるポリビニルアルコール微粒子からなる医薬用結合剤、医薬錠剤に関する。
 水溶性の樹脂であるPVAは、その特性を活かし様々な用途に用いられている。PVAは、生産後は粉や顆粒の固体状であるが、通常PVAを水に溶かしてから、各種工程又は用途に適用することが広く実施されている。
 従って、PVAは水に溶かしてから使用するものであるとの認識から、製造後の固体状のPVAの特性については、あまり検討されていなかった。
 しかしながら、近年、フィルム状のPVAの表面状態を測定する方法が提案されている。非溶媒の低分子液体にPVAフィルムを浸漬した場合、PVAの表面近傍に分子間水素結合をより多く形成していることを解析している(非特許文献1参照)。
 PVAを水溶液とせずに、固体状のまま用途に適用する場合のあるものとして、医薬錠剤の添加剤としての使用が挙げられる。医薬品製剤の一つである医薬錠剤は、一般的に打錠成形により製造され、かかる打錠成形の方法では、医薬としての有効成分(薬効成分)に各種添加剤成分を混合した混合粉末を造粒して得られた顆粒、または混合粉末を直接、臼に充填し、杵で圧力をかけ、所望の大きさおよび形状に成形する。また、成形された錠剤は必要に応じて、セルロース系化合物や糖類等でコーティングされる場合もある。
 医薬錠剤には、有効成分以外に添加剤成分として、賦形剤(取り扱うのに適当な量になるように加えるもので生理活性を持たないもの。)、結合剤(原料の粉体粒子同士を結びつけるために加えるもので、錠剤の機械的強度をコントロールするもの。)、崩壊剤(体内の水分を吸って膨張するなどして錠剤を崩壊させ有効成分の放出を容易にするために加えるもの。)、滑沢剤(粉体の流動性をよくし圧縮成形を容易にするために加えるもの。)などが含まれる。
 上記添加剤成分の中でも結合剤は、錠剤の強度に対して大きな影響力があり、適切な結合剤を選択しなければ、成形が出来なかったり、成形後に砕けたりするという問題がある。一方で、結合剤は有効成分の溶出速度にも影響するものであり、錠剤は体内に入った時に崩壊しなければ薬効成分が吸収されにくいため、保存時の強度とともに、服用時の溶出コントロールも重要であり、その両立が求められる。特に、長時間の溶出コントロールをした徐放性製剤は、服用回数の減少に伴う服薬コンプライアンスの向上や血中濃度の変動幅を小さくすることにより副作用を防止できるため、近年開発が盛んに行われている。
 例えば、特許文献1では、特定の平均粒子径のポリビニルアルコール共重合体を用いた、口腔内崩壊錠(OD錠)に最適な結合剤であり、更に直接打錠するのに最適な結合剤が開示されている。
 特許文献2では、ポリビニルアルコール共重合体が徐放性製剤に用いられており、これにより、長時間の溶出コントロールが可能になることが開示されている。
日本国特開2013-087074号公報 日本国特開2013-241341号公報
T. Kanda and F. Horii., Proc. Soc. Solid State NMR Mater., No. 47, 43 (2010)
 しかしながら、特許文献1に記載の結合剤は打錠に適するとともに錠剤に良好な即崩壊性を付与することができ、短時間で有効成分を放出させる観点からは満足のできるものであるが、長時間の溶出コントロールはできないものであった。また、特許文献2に記載のマトリックス製剤用基材は、有効成分の徐放性には優れるものであったが、得られた錠剤の硬度や脆性についてはまだまだ満足のいくものではなく、錠剤の成形性と徐放性のいずれにおいても優れた効果を有する結合剤が求められている。
 そこで、本発明はこのような背景下において、特に医薬用結合剤として用いた場合に、徐放性に優れ、硬度が高く、脆性に優れ、さらには表面の滑らかな医薬錠剤を得ることができるPVA微粒子、更には医薬用結合剤、医薬錠剤を提供することを目的とするものである。
 しかるに本発明者らは、上記事情に鑑み鋭意検討した結果、ポリビニルアルコール微粒子の表面のゴーシュ構造が従来よりも多いポリビニルアルコール微粒子を用いることによって上述の課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(11)の構成をとる。
(1)ポリビニルアルコール微粒子の粒子表面から粒子内部に向かって0.8nmの範囲のポリビニルアルコール分子のゴーシュ構造が25モル%以上であるポリビニルアルコール微粒子。
(2)ポリビニルアルコール微粒子の平均ケン化度(S1)と粒子表面から粒子内部に向かって0.8nmの範囲の表面平均ケン化度(S2)の比(S1/S2)が1.10以上である前記(1)記載のポリビニルアルコール微粒子。
(3)ビニルアルコール構造単位及びビニルエステル構造単位のみからなる未変性ポリビニルアルコールの乾燥粉体を粉砕することにより得られる前記(1)又は(2)記載のポリビニルアルコール微粒子。
(4)前記未変性ポリビニルアルコールの乾燥粉体の50%粒子径が50~2000μmである前記(3)記載のポリビニルアルコール微粒子。
(5)前記ポリビニルアルコール微粒子の50%粒子径が1~200μmである前記(1)~(4)のいずれか1つに記載のポリビニルアルコール微粒子。
(6)前記ポリビニルアルコール微粒子の平均重合度が200~4000である前記(1)~(5)のいずれか1つに記載のポリビニルアルコール微粒子。
(7)前記ポリビニルアルコール微粒子がアルカリ金属塩をポリビニルアルコール微粒子に対して0.001~2質量%含有する前記(1)~(6)のいずれか1つに記載のポリビニルアルコール微粒子。
(8)前記(1)~(7)のいずれか1つに記載のポリビニルアルコール微粒子を含有する医薬用結合剤。
(9)薬効成分と前記(8)に記載の医薬用結合剤とを含有する医薬錠剤。
(10)薬効成分と前記(8)に記載の医薬用結合剤とを含有する徐放性医薬錠剤。
(11)ビニルアルコール構造単位及びビニルエステル構造単位から得られる未変性ポリビニルアルコールを洗浄し、乾燥した後、得られた未変性ポリビニルアルコールの乾燥粉体を粉砕するポリビニルアルコール微粒子の製造方法。
 本発明のPVA微粒子からなる医薬用結合剤は、表面のゴーシュ構造が多いことから、表面の結晶化度が低下し、接着力が高くなったと推測される。よって本発明の医薬用結合剤を用いた医薬錠剤は、徐放性に優れ、更に硬度が高く、脆性に優れ、錠剤成形時の表面状態が滑らかである。
 表面のゴーシュ構造が多いことにより、本発明の効果が得られるメカニズムは詳細には判明していないが、ゴーシュ構造は乱れた結晶構造であることから、PVA微粒子表面の結晶構造が乱れ、接着性が向上したものであると推測される。また、接着性が向上することにより、徐放性に優れ、更に硬度が高く、脆性に優れ、錠剤成形時の表面状態が滑らかである医薬錠剤が得られたものであると推測される。
図1は、本発明のNMR測定で用いるパルスシーケンスを示す図である。 図2は、実施例1と実施例2の固体NMRチャートである。 図3は、比較例1と比較例2の固体NMRチャートである。 図4は、実施例1と比較例1の薬効成分溶出率を示す図である。 図5は、実施例2と比較例2の薬効成分溶出率を示す図である。
 以下、本発明について詳細に説明する。尚、本明細書において、質量で表される全ての百分率や部は、重量で表される百分率や部と同様である。
<<PVA微粒子>>
 本発明のPVA微粒子は、ビニルアルコール構造単位及び未ケン化部分であるビニルエステル構造単位を有するポリビニルアルコール(以下、PVAと略記することがある)を有するものであり、PVA微粒子の粒子表面から粒子内部に向かって0.8nmの範囲のPVA分子のゴーシュ構造が25モル%以上であることを特徴とするものである。
 更に、PVA微粒子の平均ケン化度(S1)と粒子表面から粒子内部に向かって0.8nmの範囲の表面平均ケン化度(S2)の比(S1/S2)が1.10以上のものであることが好ましい。
 ゴーシュ構造とは、PVAの主鎖の炭素-炭素結合のねじれ構造を示すものである。ねじれのない構造は、トランス構造といい、平面的な構造となっているものである。通常PVAの主鎖の炭素-炭素結合は、ゴーシュ構造とトランス構造の2種の構造からなり、大部分はトランス構造となる。
 ゴーシュ構造は、トランス構造を60°回転させたもので、ねじれているため、ゴーシュ構造が増加するとPVA分子の結晶化度や水素結合量が低下する傾向がある。
 本発明のPVA微粒子の、粒子表面から粒子内部に向かって0.8nmの範囲のPVA分子のゴーシュ構造は25モル%以上であり、好ましくは27モル%以上、特に好ましくは30~50モル%である。
 かかる値が小さすぎると本発明の効果が得られにくくなる傾向がある。
 粒子表面から粒子内部に向かって0.8nmの範囲のPVA分子のゴーシュ構造が25モル%以上のPVA微粒子を得る方法としては、PVA微粒子表面に熱を掛ける、PVA粒子同士を衝突し粉砕する、PVAが非溶解の溶媒で洗浄するなどの方法が挙げられ、これらの方法を組み合わせてもよい。
 中でも、PVAが非溶解の溶媒で洗浄し、乾燥した後に、粒子同士を衝突し粉砕する方法が好ましい。
 また、本発明のPVA微粒子は、粒子全体の平均ケン化度(S1)と粒子表面から粒子内部に向かって0.8nmの範囲の表面平均ケン化度(S2)の比(S1/S2)が、好ましくは1.10以上であり、より好ましくは、1.10~1.50である。かかる値が小さすぎると本発明の効果が得られにくくなる傾向がある。
 かかる値のPVA微粒子を得る方法としては、PVA微粒子表面に熱を掛ける、PVA粒子同士を衝突し粉砕する、PVAが非溶解の溶媒で洗浄するなどの方法が挙げられ、これらの方法を組み合わせてもよい。
 中でも、PVAが非溶解の溶媒で洗浄し、乾燥した後に、粒子同士を衝突し粉砕する方法が好ましい。
 ゴーシュ構造と表面平均ケン化度(S2)の測定方法について、以下に詳細に説明する。これらは日本国特開2008-203159号公報、T. Kanda and F. Horii., Proc. Soc. Solid State NMR Mater., No. 47, 43 (2010).の手法に基づいて測定するものである。
 構造解析には高分解能固体NMRを用いる。また測定は図1に示すパルスシーケンスを用いる。これを用いた各パラメータを下記の表1に示す。試料管である4mmφジルコニアローターにはポリビニルアルコールの微粒子と同質量のn-decaneを加える。
Figure JPOXMLDOC01-appb-T000001
 表1中、τtはポリビニルアルコール微粒子および媒体であるn-decaneの1H核スピン-スピン緩和による部分である。τtが60μs以上においてポリビニルアルコール微粒子の磁化は消失する一方、n-decaneの磁化は残存し、スピン拡散が可能な条件となる。
 また、τdの時間を長くするとスペクトルの共鳴線が増大することから、スピン拡散が起こっていることも確認される。
 そのスピン拡散は、n-decaneから磁化がポリビニルアルコール微粒子表面を通じて内部へ浸透する。スピン拡散時間は下記の式(1)によって距離の関数であらわすことができる。非常に短いスピン拡散時間において得られたスペクトルは、PVA微粒子表面から内部に向かった距離(L)(nm)が小さい、すなわち表面近傍の構造を示す。
  L=(a×D×τd)0.5 ・・・(1)
(式(1)中、aは定数であり4/3である。Dは拡散定数であり、0.5nm/msと仮定し、τdはスピン拡散時間(ms)を示す。)
 尚、上記の定数a、Dは、K. Masuda, M, Adachi, H. Yamamoto, H. Kaji, and F. Horii, Solid State NMR, 23, 198 (2003).とJ. R. Havens and D. L. VanderHart, Macromolecules, 23, 1663 (1985).に記載されたものである。
 式(1)に定数を代入し、τdはスピン拡散時間(ms)の最小値である1を代入してLの値を算出し、有効数値を小数点以下一桁とした場合において、PVA微粒子表面から内部に向かった距離(L)が0.8nmとなる。かかる値は、測定できる最小値であるとともに、PVA分子一分子に相当する距離である。
 得られたスペクトルをガウス関数にて46ppm(ポリビニルアルコール主鎖CHのトランス構造-トランス構造)、41ppm(ポリビニルアルコール主鎖CHのトランス構造-ゴーシュ構造)、36ppm(ポリビニルアルコール主鎖CHのゴーシュ構造-ゴーシュ構造)、21ppm(ポリビニルアルコール残存アセチル基のCH)の各ピークを分離して各ピークの面積を算出する。
 更に、粒子表面から粒子内部に向かって0.8nmの範囲のPVA分子のゴーシュ構造の含有量は下記の式(2)により下記の式で算出する。
  ゴーシュ構造(モル%)=100×(B/2+C)/(A+B+C)・・・(2)
(式(2)中、Aは46ppmのピーク面積、Bは41ppmのピーク面積、Cは36ppmのピーク面積を示す。)
 また、表面のケン化度は、下記の式(3)により算出する。
  ケン化度(モル%)=100×(1-D/(A+B+C))・・・(3)
(式(3)中、Aは46ppmのピーク面積、Bは41ppmのピーク面積、Cは36ppmのピーク面積、Dは21ppmのピーク面積を示す。)
 PVA微粒子の製造方法をさらに詳しく説明する。
 PVA微粒子の原料となるPVAは、例えば、ビニルエステル系モノマーを重合して得られたポリビニルエステル系重合体をケン化することにより得られる。
 かかるビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられ、実用的に酢酸ビニルが好適である。
 また、本発明の効果を阻害しない程度に、上記ビニルエステル系モノマーとこのビニルエステル系モノマーと共重合性を有するモノマーとの共重合体のケン化物等を用いることもでき、このような共重合モノマーとしては、例えば、エチレンやプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン等のヒドロキシ基含有α-オレフィン類およびそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキソラン、グリセリンモノアリルエーテル、等のビニル化合物、酢酸イソプロペニル、1-メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、1,4-ジヒドロキシ-2-ブテン、ビニレンカーボネート等が挙げられる。かかる共重合モノマーの含有量は、重合体全量を基準として、通常10モル%以下、好ましくは5モル%以下、特に好ましくは1モル%以下であり、本発明においては、ビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位のみからなる未変性PVAが好ましい。
 上記ビニルエステル系モノマー及び共重合モノマーを重合するにあたっては特に制限はなく、塊状重合、溶液重合、懸濁重合、分散重合、または乳化重合等の公知の方法を採用することができるが、通常は溶液重合が行われる。
 かかる重合で用いられる溶媒としては、通常、メタノール、エタノール、イソプロピルアルコール、n-プロパノール、ブタノール等の炭素数1~4の脂肪族アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、工業的にはメタノールが好適に使用される。
 また、重合反応は、アゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウロイルなどの公知のラジカル重合触媒や公知の各種低温活性触媒を用いて行われる。また、反応温度は35℃~沸点程度の範囲から選択される。
 得られたポリビニルエステル系重合体は、次いで連続式またはバッチ式にてケン化される。かかるケン化にあたっては、アルカリケン化または酸ケン化のいずれも採用できるが、工業的には重合体をアルコールに溶解してアルカリ触媒の存在下に行われる。アルコールとしてはメタノール、エタノール、ブタノール等が挙げられる。アルコール中の重合体の濃度は20~60質量%の範囲から選ばれる。また、必要に応じて、0.3~10質量%程度の水を加えてもよく、さらには、酢酸メチル等の各種エステル類やベンゼン、ヘキサン、DMSO(ジメチルスルホキシド)等の各種溶剤類を添加してもよい。
 ケン化触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒を具体的に挙げることができ、かかる触媒の使用量はモノマーに対して1~100ミリモル当量にすることが好ましい。
 ケン化後、得られたポリビニルエステル系重合体を、洗浄液で洗浄する。洗浄液としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類が挙げられ、洗浄効率と乾燥効率の観点からメタノールが好ましい。
 洗浄方法としては、連続式(回転円筒型、向流接触型、遠心分離ふりかけ洗浄など)でもよいが、通常はバッチ式が採用される。洗浄時の攪拌方式(装置)としては、スクリュー翼、リボンブレンダー、ニーダーが挙げられる。浴比(洗浄液の質量/ポリビニルエステル系重合体粒子の質量)は、通常、1~30であり、特に2~20が好ましい。浴比が大きすぎると、大きな洗浄装置が必要となり、コスト増につながる傾向があり、浴比が小さすぎると、洗浄効果が低下し、洗浄回数を増加させる傾向がある。
 洗浄時の温度は、通常、10~80℃であり、特に20~70℃が好ましい。温度が高すぎると、洗浄液の揮発量が多くなり、還流設備を必要とする傾向がある。温度が低すぎると、洗浄効率が低下する傾向がある。洗浄時間は、通常、5分~12時間であり、特に30分~4時間が好ましい。洗浄時間が長すぎると、生産効率が低下する傾向があり、洗浄時間が短すぎると、洗浄が不十分となる傾向がある。また、洗浄回数は、通常、1~10回であり、特に1~5回が好ましい。洗浄回数が多すぎると、生産性が悪くなり、コストがかかる傾向がある。
 洗浄されたポリビニルエステル系重合体粒子を連続式またはバッチ式にて熱風などで乾燥し、PVA粉体を得る。乾燥温度は、通常、50~150℃であり、特に60~130℃、殊に70~110℃が好ましい。乾燥温度が高すぎると、ポリビニルエステル系重合体粒子が熱劣化する傾向があり、乾燥温度が低すぎると、乾燥に長時間を要する傾向がある。乾燥時間は、通常、1~48時間であり、特に2~36時間が好ましい。乾燥時間が長すぎると、ポリビニルエステル系重合体粒子が熱劣化する傾向があり、乾燥時間が短すぎると、乾燥が不十分となったり、高温乾燥を要したりする傾向がある。
 乾燥後の未変性PVA粉体中に含まれる溶媒の含有量は、通常、0~10質量%であり、特に0.1~5質量%、殊に0.1~1質量%とするのが好ましい。
 なお、未変性PVA粉体には、ケン化時に用いるアルカリ触媒に由来する酢酸のアルカリ金属塩が含まれている。アルカリ金属塩の含有量は、未変性PVA粉体に対して通常0.001~2質量%、好ましくは0.005~1質量%であり、更に好ましくは0.01~0.1質量%である。
 アルカリ金属塩の含有量の調整方法としては、例えば、ケン化で用いる時のアルカリ触媒の量を調節したり、エタノールやメタノールなどのアルコールでPVAを洗浄する方法が挙げられる。
 本発明で用いるアルカリ金属塩の定量法としては、PVA粉体を水に溶かして、メチルオレンジを指示薬とし、塩酸にて中和滴定を行い求める方法が挙げられる。
 本発明で用いられるPVAの平均重合度は、好ましくは200~4000であり、より好ましくは400~3500であり、更に好ましくは500~3000である。平均重合度が小さすぎると、錠剤にした際に十分な結合力や徐放性が得られなくなる場合があり、また、平均重合度が大きすぎると、有効成分や賦形剤などとの混合性が悪化し、成形性が悪化する場合がある。なお、本発明において、上記平均重合度は、JIS K6726に準拠する方法で求めた平均重合度を用いるものとする。
 また、PVAの20℃における4質量%水溶液粘度は、好ましくは1.5~100mPa・sであり、より好ましくは4~80mPa・sであり、更に好ましくは5~70mPa・sである。4質量%水溶液粘度が大きすぎると、製造時の溶媒によりゲル化して混合性が悪化し、成形性が悪化する場合があり、4質量%水溶液粘度が小さすぎると、十分な結合力や徐放性が得られなくなる場合がある。なお、本発明において、上記20℃における4質量%水溶液粘度は、JIS K6726に準拠する方法で測定された粘度である。
 本発明に用いられるPVAのケン化度は、好ましくは70~100モル%であり、より好ましくは80~95モル%であり、更に好ましくは85~90%である。ケン化度が低すぎると、徐放性が保たれず、ケン化度が高すぎると結合力が足りず、すぐに崩壊する場合がある。なお、本発明において、上記ケン化度は、JIS K6726に準拠する方法で測定される。
 また、通常のPVAの場合、主鎖の結合様式は1,3-ジオール結合が主であり、1,2-ジオール結合の含有量は1.5~1.7モル%程度であるが、ビニルエステル系モノマーを重合する際の重合温度を高温にすることによって、その含有量を1.7~3.5モル%としたものを使用することも可能である。
 本発明において、乾燥後で粉砕前の未変性PVA粉体の50%粒子径は、50~2000μmであることが好ましく、より好ましくは60~1500μmであり、さらに好ましくは70~1000μmである。未変性PVA粉体の50%粒子径が小さすぎると、洗浄や粉砕等の扱いが困難になる場合があり、大きすぎると、洗浄や粉砕の効率が低下する場合がある。かかる50%粒子径とは、レーザー回折で粒径別の体積分布を測定し、積算値(累積分布)が50%になる径である。
 本発明において、上記により得られたPVA乾燥粉体を粉砕し、本発明の医薬用結合剤であるPVA微粒子が得る方法が特に好ましい。
 PVA乾燥粉体の表面は、未変性PVA乾燥粉体の作製工程において洗浄や乾燥の外的影響により変化していると考えられる。
 そこで未変性PVA乾燥粉体を粉砕してその内部を露出させ、また粉砕工程により表面が変化したPVA微粒子とすることにより、このPVA微粒子を医薬用結合剤として添加して作製された錠剤はその硬度が高まるとともに、成形性および徐放性が向上する。
 粉砕工程において、PVA粉体は目的の粒子径となるように粉砕されて本発明のPVA微粒子とされる。錠剤とした際の成形性、表面平滑性および徐放性等の観点から、PVA微粒子は、その50%粒子径が1~200μmであることが好ましく、より好ましくは10~180μmであり、さらに好ましくは15~150μmである。粉砕後のPVA微粒子の50%粒子径が小さすぎると、混合粉末の流動性が良くなく、均一な製剤を作成することが困難になる傾向があり、大きすぎると、表面積が減り、結合力と徐放性が低下する傾向がある。
 なお、PVA微粒子の平均重合度は粉砕前のPVAの平均重合度と同じであり、PVA微粒子の平均重合度は、好ましくは200~4000であり、より好ましくは400~3500であり、更に好ましくは500~3000である。平均重合度が小さすぎると、錠剤にした際に十分な結合力や徐放性が得られなくなる場合があり、また、平均重合度が大きすぎると、有効成分や賦形剤などとの混合性が悪化し、成形性が悪化する場合がある。
 PVA乾燥粉体の粉砕方法としては特に限定されないが、例えば、ローラーミル、ビーズミル、ボールミル、ジェットミル、ハンマーミル、ピンミル、グラインド粉砕、衝突粉砕等が挙げられ、中でも得られるPVA微粒子が熱の影響を受けにくいという理由から衝突粉砕による方法が好ましい。粉砕時の粉砕温度、粉砕時間等は、所望の粒子径となるように粉砕できればよく、採用する粉砕手段に応じて適宜設定することができる。
 例えば、衝突粉砕は、高速旋回気流によって、PVA乾燥粉末を自主衝突により粉砕する方法であるが、空気摩擦が少なく温度上昇が小さく、磨耗が少ないため、PVA微粒子の熱劣化が少なくなるので本発明において好適に用いることができる。衝突粉砕による粉砕方法においては、粉砕温度は、好ましくは10~100℃、より好ましくは20~80℃である。
 以上のようにして得られた本発明のPVA微粒子は、医薬錠剤の添加剤である医薬用結合剤として好適に使用することができる。
<薬効成分>
 本発明で用いられる薬効成分としては、例えば、解熱鎮痛消炎薬、滋養強壮保健薬、向精神薬、抗うつ薬、抗不安薬、催眠鎮静薬、鎮痙薬、中枢神経作用薬、脳代謝改善剤、脳循環改善剤、抗てんかん剤、交感神経興奮剤、胃腸薬、制酸剤、抗潰瘍剤、鎮咳去痰剤、制吐剤、呼吸促進剤、気管支拡張剤、アレルギー用薬、抗ヒスタミン剤、歯科口腔用薬、強心剤、不整脈用剤、利尿薬、血圧降下剤、血管収縮薬、冠血管拡張薬、末梢血管拡張薬、血液凝固阻止剤、高脂血症用剤、利胆剤、抗生物質、化学療法剤、糖尿病用剤、骨粗しょう症用剤、抗リウマチ薬、骨格筋弛緩薬、鎮けい剤、ホルモン剤、アルカロイド系麻薬、サルファ剤、痛風治療薬、抗悪性腫瘍剤などが挙げられる。
 解熱鎮痛消炎薬としては、例えばアセトアミノフェン、アスピリン、イブプロフェン、エテンザミド、塩酸ジフェンヒドラミン、dl-マレイン酸クロルフェニラミン、ジクロフェナクナトリウム、リン酸ジヒドロコデイン、サリチルアミド、アミノピリン、ノスカピン、塩酸メチルエフェドリン、塩酸フェニルプロパノールアミン、セラペプターゼ、塩化リゾチーム、トルフェナム酸、メフェナム酸、フルフェナム酸、ケトプロフェン、インドメタシン、ブコローム、ペンタゾシン、カフェインおよび無水カフェインなどが挙げられる。
 滋養強壮保健薬には、例えばビタミンA、ビタミンB1(ジベンゾイルチアミンおよびフルスルチアミン塩酸塩など)、ビタミンB2(酪酸リボフラビンなど)、ビタミンB6(塩酸ピリドキシンなど)、ビタミンB12(酢酸ヒドロキソコバラミンおよびシアノコバラミンなど)、ビタミンC(アスコルビン酸およびL-アスコルビン酸ナトリウムなど)、ビタミンDおよびビタミンE(酢酸d-α-トコフェロールなど)などのビタミン、カルシウム、マグネシウムおよび鉄などのミネラル、タンパク、アミノ酸、オリゴ糖および生薬などが含まれる。
 向精神薬としては、例えばクロルプロマジンおよびレセルピンなどが挙げられる。
 抗うつ薬としては、例えばアンフェタミン、イミプラミンおよび塩酸マプロチリンなどが例示される。
 抗不安薬としては、例えばジアゼパム、アルプラゾラムおよびクロルジアゼポキシドなどが挙げられる。
 催眠鎮静薬としては、例えばエスタゾラム、ジアゼパム、ニトラゼパム、ペルラピンおよびフェノバルビタールナトリウムなどが例示される。
 鎮痙薬には、例えば臭化水素酸スコポラミン、塩酸ジフェンヒドラミンおよび塩酸パパベリンなどが含まれる。
 中枢神経作用薬としては、例えばシチコリンなどが例示される。
 脳代謝改善剤としては、例えば塩酸メクロフェニキセートなどが挙げられる。
 脳循環改善剤としては、例えばビンポセチンなどが挙げられる。
 抗てんかん剤としては、例えばフェニトインおよびカルバマゼピンなどが挙げられる。
 交感神経興奮剤としては、例えば塩酸イソプロテレノールなどが挙げられる。
 胃腸薬には、例えばジアスターゼ、含糖ペプシン、ロートエキス、セルラーゼAP3、リパーゼAPおよびケイヒ油などの健胃消化剤および塩化ベルベリン、耐性乳酸菌およびビフィズス菌などの整腸剤などが含まれる。
 制酸剤としては、例えば炭酸マグネシウム、炭酸水素ナトリウム、メタケイ酸アルミン酸マグネシウム、合成ヒドロタルサイト、沈降炭酸カルシウムおよび酸化マグネシウムなどが挙げられる。
 抗潰瘍剤としては、例えばランソプラゾール、オメプラゾール、ラベプラゾール、シメチジン、ファモチジンおよび塩酸ラニチジンなどが挙げられる。
 鎮咳去痰剤としては、例えば塩酸クロペラスチン、臭化水素酸デキストロメルトファン、テオフィリン、グァヤコールスルホン酸カリウム、グアイフェネシンおよびリン酸コデインなどが挙げられる。
 制吐剤としては、例えば塩酸ジフェニドールおよびメトクロプラミドなどが挙げられる。
 呼吸促進剤としては、例えば酒石酸レバロルファンなどが挙げられる。
 気管支拡張剤としては、例えばテオフィリンおよび硫酸サルブタモールなどが挙げられる。
 アレルギー用薬としては、アンレキサノクスおよびセラトロダストなどが挙げられる。
 抗ヒスタミン剤としては、例えば塩酸ジフェンヒドラミン、プロメタジン、塩酸イソチペンジルおよびdl-マレイン酸クロルフェニラミンなどが挙げられる。
 歯科口腔用薬としては、例えばオキシテトラサイクリン、トリアムシノロンアセトニド、塩酸クロルヘキシジンおよびリドカインなどが例示される。
 強心剤としては、例えばジゴキシンおよびカフェインなどが挙げられる。
 不整脈用剤としては、例えば塩酸プロカインアミド、塩酸プロプラノロールおよびピンドロールなどが含まれる。
 利尿薬としては、例えばフロセミド、イソソルピドおよびヒドロクロロチアジドなどが挙げられる。
 血圧降下剤としては、例えばカプトプリル、塩酸デラプリル、塩酸ヒドララジン、塩酸ラベタロール、塩酸マニジピン、カンデサルタンシレキセチル、メチルドパおよびペリンドプリルエルブミンなどが挙げられる。
 血管収縮薬としては、例えば塩酸フェニレフリンなどが挙げられる。
 冠血管拡張薬としては、例えば塩酸カルボクロメン、モルシドミンおよび塩酸ペラパミルなどが挙げられる。
 末梢血管拡張薬としては、例えばシンナリジンなどが挙げられる。
 血液凝固阻止剤としては、例えばジクマロールが挙げられる。
 高脂血症用剤としては、例えばセリバスタチンナトリウム、シンバスタチン、プラバスタチンナトリウムおよびアトルバスタチンカルシウム水和物などが挙げられる。
 利胆剤としては、例えばデヒドロコール酸およびトレピプトンなどが挙げられる。
 抗生物質には、例えばセファレキシン、アモキシシリン、セファクロル、塩酸ピプメシリナム、塩酸セフォチアムヘキセチル、セファドロキシル、セフィキシム、セフジトレンピボキシル、セフテラムピボキシルおよびセフポドキシミプロキセチルなどのセフェム系、アンピシリン、シクラシン、ナリジクス酸およびエノキサシンなどの合成抗菌剤カルモナムナトリウムなどのモノバクタム系、ペネム系およびカルバペネム系抗生物質などが挙げられる。
 化学療法剤としては、例えばスルファメチゾールなどが挙げられる。
 糖尿病用剤としては、例えばグリミジンナトリウム、グリピザイド、塩酸フェンフォルミン、塩酸ブフォルミン、メトフォルミン、塩酸メトフォルミン、トルブタミド、ボグリボース、塩酸ピオグリタゾン、グリベンクラミドおよびトログリダゾンなどが挙げられる。
 骨粗しょう症用剤としては、例えばイプリフラボンなどが挙げられる。
 骨格筋弛緩薬としては、メトカルバモールなどが挙げられる。
 鎮けい剤としては、塩酸メクリジンおよびジメンヒドリナートなどが挙げられる。
 抗リウマチ薬としては、メソトレキセートおよびブシラミンなどが挙げられる。
 ホルモン剤としては、例えばリオチロニンナトリウム、リン酸デキメタゾンナトリウム、プレドニゾロン、オキセンドロンおよび酢酸リュープロレリンなどが挙げられる。
 アルカロイド系麻薬として、アヘン、塩酸モルヒネ、トコン、塩酸オキシコドン、塩酸アヘンアルカロイドおよび塩酸コカインなどが挙げられる。
 サルファ剤としては、例えばスルフィソミジンおよびスルファメチゾールなどが挙げられる。
 痛風治療薬としては、例えばアロプリノールおよびコルヒチンなどが挙げられる。
 抗悪性腫瘍剤としては、例えば5-フルオロウラシル、ウラシルおよびマイトマイシンなどが挙げられる。
 上記の活性成分は、バイオアベイラビリティーに応じて含有量を適宜調整する。活性成分は、一般に医療、食品分野などで用いられる希釈剤などによって希釈されたものであってもよい。また活性成分の苦味のマスキングを目的として処理したものを用いてもよい。
<その他の添加剤>
 本発明の医薬錠剤には、本発明の効果を損なわない範囲において、各種添加剤を添加することができる。添加剤としては、例えば、賦形剤、崩壊剤、pH調整剤、流動化剤、界面活性剤、着色剤、甘味剤およびコーティング剤等が挙げられる。
 賦形剤としては、例えば、糖アルコール類、糖類、リン酸カルシウム類、結晶セルロース類、デンプン類、リン酸ナトリウム類およびゼラチンなどから選ばれた1種または2種以上の成分が用いられる。好ましい賦形剤としては糖アルコール類や糖類が挙げられる。
 糖アルコール類としては、例えばマンニトール、エリスリトール、キシリトール、ソルビトールおよびマルチトールなどが挙げられる。糖類としては、例えばブドウ糖、果糖、乳糖、白糖、トレハロース、麦芽糖およびオリゴ糖などが挙げられる。
 崩壊剤としては、例えば、カルメロースカルシウム、カルボキシメチルスターチナトリウム、クロスカルメロースナトリウム、クロスポビドン、セルロースまたはその誘導体およびデンプンまたはその誘導体等が挙げられる。
 pH調整剤としては、例えば、クエン酸およびその塩、リン酸およびその塩、炭酸およびその塩、酒石酸およびその塩、フマル酸およびその塩、酢酸およびその塩、アミノ酸およびその塩、コハク酸およびその塩および乳酸およびその塩などが挙げられる。
 流動化剤としては、例えば、軽質無水ケイ酸、含水二酸化ケイ素、酸化チタン、ステアリン酸、トウモロコシゲルおよび重質無水ケイ酸などが挙げられる。
 界面活性剤としては、例えば、リン脂質、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンアルキルエーテル、ショ糖脂肪酸エステル、ラウリル硫酸ナトリウム、ポリソルベート類、リン酸水素ナトリウム類およびリン酸水素カリウム類などが挙げられる。
 着色剤としては、例えば、三二酸化鉄、黄色三二酸化鉄、食用黄色5号、食用黄色4号、アルミニウムキレート、酸化チタンおよびタルクなどが挙げられる。
 甘味剤としては、例えばサッカリン、アスパルテーム、アセスルファムカリウム、ソーマチンおよびスクラロースなどが挙げられる。
 コーティング剤としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ポリビニルアルコール、ポリビニルピロリドンアクリル酸エチル、メタクリル酸メチルコポリマー分散液、ヒドロキシプロピルメチルセルロースアセテートサクシネート、メタクリル酸コポリマー等が挙げられる。
<医薬錠剤>
 本発明の医薬錠剤は、上記した各種成分を配合し、直接または造粒した後打錠成形して製造される。
 かかる成形には、医薬品分野で通常行われるロータリー打錠機、単発式打錠機等を用いた固形製剤の圧縮成形による製造法の何れをも用いることができる。例えば、各種成分を均一に混合した後に打錠する直接粉末圧縮法、各種成分を湿式造粒あるいは乾式造粒し、得られた顆粒を打錠する湿式顆粒圧縮法や乾式顆粒圧縮法により製造することができる。
 中でも、流動性の改善および混合均一性の観点から、湿式顆粒圧縮法により製造することが好ましい。
 湿式造粒の方法としては、上記の成分が造粒される限り、特に制限はなく、目的に応じて公知の方法を適宜選択することができ、例えば、湿式破砕、押し出し、流動層、攪拌などが挙げられる。これらの中でも、攪拌造粒法、流動層造粒法等の湿式造粒法であることが好ましく、前記攪拌造粒法がより好ましい。
 前記造粒に用いる装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌造粒装置(例えば、Gem Pharma Machineries社製「Rapid Mixer Granulator」、株式会社パウレック製「バーチカルグラニュレーター」)、流動層造粒装置(例えば、株式会社パウレック製「転動流動コーティング装置-MP-01」)などが挙げられる。
 造粒工程において、各成分を秤量し、それを篩過/粉砕し、次いで、乾燥状態のまま造粒装置内で混合する。かかる混合粉末には、造粒のために水や溶剤、水と溶剤の混合物を添加することが好ましく、溶媒は有効成分の性質によって適宜選択すればよい。溶剤としては、エタノール、ブタノール、イソプロピルアルコール等のアルコールが挙げられ、好ましくはイソプロピルアルコールが用いられる。
 次に、造粒物を打錠成形する。打錠成形に用いる装置としては、例えば、打錠機(株式会社畑鉄工所製「HT-APSS型」、「HT-AP-MS型」、「HT-X-SS型」、「HT-X-MS型」、株式会社菊水製作所製「VIRGO、AQUARIUS」、「LIBRA」)などが挙げられる。
 なお、医薬錠剤の形状は、楕円体、円柱形、ドーナツ形、球形等の任意の形状を採用することができる。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 尚、実施例中「部」とあるのは、質量基準を意味する。
 下記のようにしてポリビニルアルコール重合体を調製し、得られたポリビニルアルコール(PVA)重合体をケン化して得た未変性ポリビニルアルコールを用いて錠剤を作製した。なお、PVA重合体のケン化度及び4質量%水溶液粘度、並びに、錠剤の硬度測定、脆性評価及び徐放性試験は、下記の方法により行った。
[ケン化度]
 JIS K6726に準拠する方法により測定した。
[4質量%水溶液粘度]
 JIS K6726に準拠する方法により測定した。
[硬度評価]
 Monsanto hardness testerを用い、測定した。
[脆性評価]
 Tablet Friability apparatus(Electrolab社(India)製)を用いて、ドラムを25rpmで4分間かけて回転し、錠剤を取り出して質量を測定し、下記の式にて脆弱性を算出した。なお、式中、「質量損失」は最初の錠剤質量からテスト後の錠剤質量を引いて求めたものである。
 %Friability=(質量損失/最初の錠剤の質量)×100
[徐放性]
 医薬錠剤への適正はDissolusion Apparatus TypeI(Electrolab社(India)製、「TDT-08L」)を用いて、37±0.5℃のリン酸バッファー(pH6.8)900mL中で、50rpmで攪拌することにより行った。一定時間おきに溶解液を5mL取り出し、UV spectrophotometer(Jasco社製「V-530」)で233nmにおけるメトフォルミンハイドロクロライド溶出量を測定した。
[錠剤の形状]
 錠剤成形時の形状を目視にて観察し、以下の評価基準にて評価した。
  平滑:錠剤表面の粉が欠けることがなくツルツルとした状態
  粗い:錠剤表面の粉が欠けボロボロとした状態
(実施例1)
[ポリビニルアルコールの作成]
 還流冷却機、滴下漏斗、攪拌機を備えた反応缶に、酢酸ビニル1000部、メタノール140部、およびアゾビスイソブチロニトリル0.05モル%(対仕込み酢酸ビニル)を仕込み、窒素気流下で攪拌しながら温度を上昇させ、沸点下で5時間重合を行った。酢酸ビニルの重合率が65%となった時点で、m-ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し、PVA重合体のメタノール溶液(樹脂分41%)を得た。
 続いて、上記メタノール溶液をさらにメタノールで希釈して、濃度33%に調整してニーダーに仕込んだ。溶液温度を40℃に保ちながら、水酸化ナトリウムの3.5%メタノール溶液を重合体中の酢酸ビニル構造単位1モルに対して2.0ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で固液分離により濾別した。
 得られたPVA乾燥粉末のケン化度は、残存酢酸ビニルの加水分解に要するアルカリ消費量で分析を行ったところ、87.7モル%であり、4質量%水溶液の粘度は、41.5mPa・sであり、平均重合度は2400であった。
 上記で得られたPVA乾燥粉末を浴比10倍のメタノール中に投入して3時間攪拌した後、固液分離し、得られたPVA粉末(50%粒子径500μm、酢酸ナトリウム含有量0.05部)を90℃で揮発分が1%以下になるまで真空乾燥した。
 酢酸ナトリウム含有量は、PVA粉体を水に溶かして、メチルオレンジを指示薬とし、塩酸にて中和滴定することにより求めた。
 これによって得られたPVA乾燥粉末をBIミル(ミクロパウテック製)を用いて、目標の大きさになるまで衝突粉砕し、PVA微粒子(粉砕品)を得た。
 得られたPVA微粒子の粒子径をレーザー回折式粒度分布測定装置(マルバーン社製LMS-3000)を用いて分散圧2-4bar、測定時間1秒で測定し、50%粒子径(D50)を求めたところ96μmであった。
[NMR測定]
 得られたPVA乾燥粉末に同質量のn-decaneを加え、直径4mmのジルコニアローターに充填した。下記表2の条件下、室温・ローター回転数5000Hzにて測定を行った。得られたスペクトルにおいて46ppm、41ppm、36ppm、21ppmをガウス関数にて波形分離して、それぞれの面積を算出し、下記式(2)、(3)により、ゴーシュ構造とケン化度を算出した。
 得られたピークの波形を図2に示す。
  ゴーシュ構造(モル%)=100×(B/2+C)/(A+B+C)・・・(2)
(式(2)中、Aは46ppmのピーク面積、Bは41ppmのピーク面積、Cは36ppmのピーク面積を示す。)
  ケン化度(モル%)=100×(1-D/(A+B+C))・・・(3)
(式(3)中、Aは46ppmのピーク面積、Bは41ppmのピーク面積、Cは36ppmのピーク面積、Dは21ppmのピーク面積を示す。)
Figure JPOXMLDOC01-appb-T000002
[錠剤の作製]
 得られたPVA微粒子を100部、メトフォルミンハイドロクロライドを100部および結晶セルロース(旭化成ケミカルズ社製「PH102」)を70部混合し、造粒装置(Gem Pharma Machineries社製「Rapid Mixer Granulator」)を用いて、ポリビニルピロリドン(BASF社製「PVP K 30」)30部を溶媒としてIPA(イソプロピルアルコール)/水=50/50(質量比)に溶かして、適量加えて造粒し、Tray dryer(Bombay Machines社製)を用いて、残留水分が2~4w/w%になるまで乾燥し造粒物を得た。
 さらにこの造粒物と結晶セルロースPH102を30部、アエロジル3部、ステアリン酸マグネシウム1部を混合して、ロータリータブレットプレスを用いて楕円体の錠剤(縦1.9cm、横0.9cm、高さ0.5cm)を作製した。
 得られた錠剤の硬さ、脆性、錠剤成形時の形状および溶出時間を測定し、結果を表3に示す。また、徐放性を評価し、結果を図4に示す。
(比較例1)
 ポリビニルアルコール粉末(ケン化度87.7モル%、4質量%水溶液の粘度が41.5mPa.s)を粉砕し、さらに浴比10倍のメタノール中に投入して3時間攪拌した後、固液分離し、得られたPVA微粒子を90℃で揮発分が1%以下になるまで真空乾燥してPVA微粒子を得た。
 50%粒子径(D50)をレーザー回折式粒度分布測定装置で測定すると100μmであった。
 更に実施例1と同様にNMR測定をして、ゴーシュ構造とケン化度を算出た。得られた波形を図3に示す。
 得られたPVAを用いて実施例1と同様に錠剤を作製し、評価した。結果を表3に示す。また、徐放性試験の結果を図4に示す。
(実施例2)
 メトフォルミンハイドロクロライド500部を、造粒装置(Gem Pharma Machineries社製「Rapid Mixer Granulator」)を用いて、ポリビニルピロリドン(BASF社製「PVP K 30」)100部を溶媒としてIPA/水=50/50(質量比)に溶かして、適量加えて造粒した。
 この造粒物と実施例1で得られたPVA微粒子500部と、ステアリン酸マグネシウム10部を混合して、ロータリータブレットプレスを用いて楕円体の錠剤(縦1.9cm、横0.9cm、高さ0.5cm)を作製した。
 得られた錠剤の評価を実施例1と同様に行った。結果を表3に示す。また、徐放性試験の結果を図5に示す。
(比較例2)
 比較例1で作成したPVA微粒子を用いて、実施例2と同様に錠剤を作製し、評価した。結果を表3に示す。また、徐放性試験の結果を図5に示す。
Figure JPOXMLDOC01-appb-T000003
 造粒の際にPVA微粒子を添加した実施例1及び比較例1を比較すると、同等の粒径であるのにも係わらず比較例1に比べ、実施例1は、硬度、脆性に優れた錠剤が得られた。
 さらに、得られた錠剤の表面も滑らかであった。また、徐放性については、実施例1及び比較例1も同等の性能を有するものであった。
 造粒後の圧縮成形の際にPVA微粉末を添加した実施例2及び比較例2を比較すると、同等の粒径であるのにも係わらず比較例2に比べ、実施例2は、硬度、脆性に優れた錠剤が得られた。さらに、得られた錠剤の表面も滑らかであった。また、徐放性については、実施例2が比較例2よりも優れた性能を有するものであった。
 以上の結果より、本発明のPVA微粒子である医療用結合剤を用いることにより、成形性、硬度、徐放性および脆性の全てにおいて優れた錠剤を得ることができることがわかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年7月25日出願の日本特許出願(特願2014-152290)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  ポリビニルアルコール微粒子の粒子表面から粒子内部に向かって0.8nmの範囲のポリビニルアルコール分子のゴーシュ構造が25モル%以上であるポリビニルアルコール微粒子。
  2.  ポリビニルアルコール微粒子の平均ケン化度(S1)と粒子表面から粒子内部に向かって0.8nmの範囲の表面平均ケン化度(S2)の比(S1/S2)が1.10以上である請求項1記載のポリビニルアルコール微粒子。
  3.  ビニルアルコール構造単位及びビニルエステル構造単位のみからなる未変性ポリビニルアルコールの乾燥粉体を粉砕することにより得られる請求項1又は2記載のポリビニルアルコール微粒子。
  4.  前記未変性ポリビニルアルコールの乾燥粉体の50%粒子径が50~2000μmである請求項3記載のポリビニルアルコール微粒子。
  5.  前記ポリビニルアルコール微粒子の50%粒子径が1~200μmである請求項1~4のいずれか1項に記載のポリビニルアルコール微粒子。
  6.  前記ポリビニルアルコール微粒子の平均重合度が200~4000である請求項1~5のいずれか1項に記載のポリビニルアルコール微粒子。
  7.  前記ポリビニルアルコール微粒子がアルカリ金属塩をポリビニルアルコール微粒子に対して0.001~2質量%含有する請求項1~6のいずれか1項に記載のポリビニルアルコール微粒子。
  8.  請求項1~7のいずれか1項に記載のポリビニルアルコール微粒子を含有する医薬用結合剤。
  9.  薬効成分と請求項8に記載の医薬用結合剤とを含有する医薬錠剤。
  10.  薬効成分と請求項8に記載の医薬用結合剤とを含有する徐放性医薬錠剤。
  11.  ビニルアルコール構造単位及びビニルエステル構造単位から得られる未変性ポリビニルアルコールを洗浄し、乾燥した後、得られた未変性ポリビニルアルコールの乾燥粉体を粉砕するポリビニルアルコール微粒子の製造方法。
PCT/JP2015/071168 2014-07-25 2015-07-24 ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法 WO2016013675A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015537049A JP6657949B2 (ja) 2014-07-25 2015-07-24 ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法
EP15825381.5A EP3173101B1 (en) 2014-07-25 2015-07-24 Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles
US15/328,580 US10028915B2 (en) 2014-07-25 2015-07-24 Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152290 2014-07-25
JP2014-152290 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013675A1 true WO2016013675A1 (ja) 2016-01-28

Family

ID=55163197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071168 WO2016013675A1 (ja) 2014-07-25 2015-07-24 ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法

Country Status (4)

Country Link
US (1) US10028915B2 (ja)
EP (1) EP3173101B1 (ja)
JP (1) JP6657949B2 (ja)
WO (1) WO2016013675A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521472A (ja) * 2014-07-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 微結晶性セルロースを含む直接圧縮可能な組成物
JP2017521473A (ja) * 2014-07-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 粉末状の直接圧縮可能型グレードのポリビニルアルコール
JP2017178857A (ja) * 2016-03-30 2017-10-05 日本合成化学工業株式会社 口腔内粘膜付着錠及びその製造方法
JP2017197723A (ja) * 2016-04-26 2017-11-02 日本合成化学工業株式会社 固体分散体用基剤、それを用いた固体分散体の製造方法及び固体分散体
WO2018083286A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Anti-alcohol-induced dose dumping tablet based on polyvinyl alcohol
WO2018083285A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Controlled release tablet based on polyvinyl alcohol and its manufacturing
WO2018083113A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Instant release capsule based on hot melt extruded polyvinyl alcohol
JP2020066647A (ja) * 2018-10-22 2020-04-30 三菱ケミカル株式会社 ポリビニルアルコール系樹脂粉末
JP2020152658A (ja) * 2019-03-19 2020-09-24 三菱ケミカル株式会社 医薬錠剤
WO2021205886A1 (ja) * 2020-04-10 2021-10-14 日本酢ビ・ポバール株式会社 結合剤
US11413295B2 (en) * 2016-03-31 2022-08-16 Intercept Pharmaceuticals, Inc. Oral preparation of obeticholic acid
WO2023027056A1 (ja) 2021-08-25 2023-03-02 三菱ケミカル株式会社 医薬錠剤用組成物並びにこれを用いた医薬錠剤及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222244B2 (ja) * 2017-08-08 2023-02-15 三菱ケミカル株式会社 医薬錠剤、およびその製造方法
EP3881839A4 (en) * 2018-11-13 2022-08-24 Japan Vam & Poval Co., Ltd. BINDER
WO2020138252A1 (ja) * 2018-12-27 2020-07-02 三菱ケミカル株式会社 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
JP7414668B2 (ja) * 2020-08-28 2024-01-16 信越化学工業株式会社 ポリビニルアルコール含有造粒物及び固形製剤

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193992A (en) * 1975-02-15 1976-08-18 Bifunjogansuigeruno seizohoho
JPH02502720A (ja) * 1987-03-25 1990-08-30 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 活性物質を錠剤にするためのビニルアルコールホモ重合体および共重合体の使用
JPH02225506A (ja) * 1989-02-27 1990-09-07 Nippon Synthetic Chem Ind Co Ltd:The 微粒状のポリビニルアルコール系樹脂
JPH0333130A (ja) * 1989-06-30 1991-02-13 Denki Kagaku Kogyo Kk ポリビニルアルコールおよびその連続溶解法
JPH11236417A (ja) * 1998-02-23 1999-08-31 Kuraray Co Ltd 微粒状ポリビニルアルコール系樹脂
JP2001311828A (ja) * 2000-05-02 2001-11-09 Kuraray Co Ltd 偏光フィルム用ポリビニルアルコールフィルムとその製造法および偏光フィルム
JP2008222839A (ja) * 2007-03-12 2008-09-25 Kuraray Co Ltd ビニルアルコール系重合体の洗浄方法
JP2013028712A (ja) * 2011-07-28 2013-02-07 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系重合体粒子の製造方法
JP2013241341A (ja) * 2012-05-17 2013-12-05 Nisshin Kasei Kk マトリックス製剤用基剤、及び該基剤を用いた徐放性製剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990335A (en) 1987-03-25 1991-02-05 E. I. Du Pont De Nemours And Company Use of vinyl alcohol homopolymer and copolymers for tableting active materials
US5070126A (en) * 1988-08-02 1991-12-03 Aicello Chemical Co., Ltd. Films easily soluble in cold water
TWI247771B (en) 2000-05-01 2006-01-21 Kuraray Co Process for producing polyvinyl alcohol-based polymer film and polarizing film
JP2005298347A (ja) 2004-04-06 2005-10-27 Yoshiaki Kawashima 吸入製剤及びその製造方法
BRPI0918539A2 (pt) * 2008-09-12 2015-12-08 Daiichi Sankyo Healthcare Co preparação farmacêutica sólida para administração oral
JP6245786B2 (ja) 2011-10-17 2017-12-13 大同化成工業株式会社 医薬用結合剤及び該結合剤を用いた製剤
EP2674149B1 (en) * 2012-06-15 2017-10-04 Shin-Etsu Chemical Co., Ltd. Method of preparing composite granule comprising low-substituted hydroxypropyl cellulose and rapid release preparation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193992A (en) * 1975-02-15 1976-08-18 Bifunjogansuigeruno seizohoho
JPH02502720A (ja) * 1987-03-25 1990-08-30 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 活性物質を錠剤にするためのビニルアルコールホモ重合体および共重合体の使用
JPH02225506A (ja) * 1989-02-27 1990-09-07 Nippon Synthetic Chem Ind Co Ltd:The 微粒状のポリビニルアルコール系樹脂
JPH0333130A (ja) * 1989-06-30 1991-02-13 Denki Kagaku Kogyo Kk ポリビニルアルコールおよびその連続溶解法
JPH11236417A (ja) * 1998-02-23 1999-08-31 Kuraray Co Ltd 微粒状ポリビニルアルコール系樹脂
JP2001311828A (ja) * 2000-05-02 2001-11-09 Kuraray Co Ltd 偏光フィルム用ポリビニルアルコールフィルムとその製造法および偏光フィルム
JP2008222839A (ja) * 2007-03-12 2008-09-25 Kuraray Co Ltd ビニルアルコール系重合体の洗浄方法
JP2013028712A (ja) * 2011-07-28 2013-02-07 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系重合体粒子の製造方法
JP2013241341A (ja) * 2012-05-17 2013-12-05 Nisshin Kasei Kk マトリックス製剤用基剤、及び該基剤を用いた徐放性製剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173101A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828258B2 (en) 2014-07-30 2020-11-10 Merck Patent Gmbh Directly compressible composition comprising microcrystalline cellulose
JP2017521473A (ja) * 2014-07-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 粉末状の直接圧縮可能型グレードのポリビニルアルコール
JP2017521472A (ja) * 2014-07-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 微結晶性セルロースを含む直接圧縮可能な組成物
US11040012B2 (en) 2014-07-30 2021-06-22 Merck Patent Gmbh Pulverulent, directly compressible polyvinyl alcohol grades
JP2017178857A (ja) * 2016-03-30 2017-10-05 日本合成化学工業株式会社 口腔内粘膜付着錠及びその製造方法
US11413295B2 (en) * 2016-03-31 2022-08-16 Intercept Pharmaceuticals, Inc. Oral preparation of obeticholic acid
JP2017197723A (ja) * 2016-04-26 2017-11-02 日本合成化学工業株式会社 固体分散体用基剤、それを用いた固体分散体の製造方法及び固体分散体
WO2018083286A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Anti-alcohol-induced dose dumping tablet based on polyvinyl alcohol
CN110198704A (zh) * 2016-11-07 2019-09-03 默克专利股份有限公司 基于聚乙烯醇的控释片剂及其制备
CN109890373A (zh) * 2016-11-07 2019-06-14 默克专利股份有限公司 基于热熔挤出的聚乙烯醇的即释胶囊
WO2018083113A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Instant release capsule based on hot melt extruded polyvinyl alcohol
WO2018083285A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Controlled release tablet based on polyvinyl alcohol and its manufacturing
JP2020066647A (ja) * 2018-10-22 2020-04-30 三菱ケミカル株式会社 ポリビニルアルコール系樹脂粉末
JP2020152658A (ja) * 2019-03-19 2020-09-24 三菱ケミカル株式会社 医薬錠剤
JP7238509B2 (ja) 2019-03-19 2023-03-14 三菱ケミカル株式会社 医薬錠剤
WO2021205886A1 (ja) * 2020-04-10 2021-10-14 日本酢ビ・ポバール株式会社 結合剤
WO2023027056A1 (ja) 2021-08-25 2023-03-02 三菱ケミカル株式会社 医薬錠剤用組成物並びにこれを用いた医薬錠剤及びその製造方法

Also Published As

Publication number Publication date
JP6657949B2 (ja) 2020-03-04
EP3173101B1 (en) 2020-10-21
US20170209377A1 (en) 2017-07-27
EP3173101A1 (en) 2017-05-31
EP3173101A4 (en) 2018-02-28
JPWO2016013675A1 (ja) 2017-04-27
US10028915B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
JP6657949B2 (ja) ポリビニルアルコール微粒子、それを用いた医薬用結合剤、医薬錠剤、徐放性医薬錠剤及びポリビニルアルコール微粒子の製造方法
US20100280047A1 (en) Salts of active ingredients with polymeric counter-ions
JP2016079142A (ja) ポリビニルアルコール含有顆粒の製造方法
EP2263662A1 (en) Film-like composition
KR102253849B1 (ko) 복합 조립물 및 속방성 정제, 및 이들의 제조 방법
US11395800B2 (en) Pharmaceutical tablet and production method thereof
JP6972623B2 (ja) 固体分散体用基剤、それを用いた固体分散体の製造方法及び固体分散体
JP7238509B2 (ja) 医薬錠剤
JP2017178857A (ja) 口腔内粘膜付着錠及びその製造方法
JP2019131533A (ja) 口腔内粘膜付着粉末及びその製造方法
JP2024009644A (ja) 口腔内付着剤及びその製造方法
EP3881838A1 (en) Bonding agent
EP4134102A1 (en) Sustained release base
EP4134103A1 (en) Binder
WO2023171730A1 (ja) 医薬用組成物、医薬錠剤およびその製造方法
WO2022202138A1 (ja) 徐放性固形製剤用組成物及びこれを用いた徐放性錠剤及びその製造方法
EP3238711B1 (en) Base for solid dispersion, production method for solid dispersion using same, and solid dispersion
WO2023027056A1 (ja) 医薬錠剤用組成物並びにこれを用いた医薬錠剤及びその製造方法
JP5801266B2 (ja) 疎水性薬物を含む錠剤製造方法
JP2024067975A (ja) 結合剤噴射法造形用粉体材料、結合剤噴射法造形用粉体材料を含む錠剤、および製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015537049

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825381

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015825381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15328580

Country of ref document: US

Ref document number: 2015825381

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE