WO2020138252A1 - ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 - Google Patents

ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 Download PDF

Info

Publication number
WO2020138252A1
WO2020138252A1 PCT/JP2019/051043 JP2019051043W WO2020138252A1 WO 2020138252 A1 WO2020138252 A1 WO 2020138252A1 JP 2019051043 W JP2019051043 W JP 2019051043W WO 2020138252 A1 WO2020138252 A1 WO 2020138252A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
based resin
vinyl
diverting agent
saponification
Prior art date
Application number
PCT/JP2019/051043
Other languages
English (en)
French (fr)
Inventor
泰広 平野
隆裕 坂
亮輔 谷口
千津子 風呂
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2020563396A priority Critical patent/JPWO2020138252A1/ja
Priority to CN201980085460.XA priority patent/CN113227168A/zh
Priority to EP19905493.3A priority patent/EP3904402A4/en
Publication of WO2020138252A1 publication Critical patent/WO2020138252A1/ja
Priority to US17/352,693 priority patent/US20210309910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F116/04Acyclic compounds
    • C08F116/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material

Definitions

  • the present invention relates to a diverting agent and a method of closing a crack in a well using the same, and more specifically, a diverting agent used during construction of an excavation method using a hydraulic fracturing method, and the diverting agent.
  • the present invention relates to a method for closing a crack in a well by using.
  • the hydraulic fracturing method in which high-pressure water is injected into the underground shale (shale) layer to cause cracks, is widely adopted for the collection of oil and other underground resources.
  • a vertical hole with a depth of several thousand meters vertical well
  • a horizontal hole with a diameter of 10 to several tens of centimeters horizontal well.
  • fluid and pressurizing this fluid By filling the vertical and horizontal wells with fluid and pressurizing this fluid, cracks (fracture) are generated from the wells, and natural gas or petroleum (shale gas or oil) in the shale layer is generated from the cracks. Etc. will come out, so collect it.
  • the resource inflow cross section of the well is increased, and the underground resources can be efficiently collected.
  • a preliminary blast called perforation is performed in a horizontal well prior to the generation of cracks by fluid pressure.
  • the well is drilled in the production layer.
  • the fluid flows into these perforations, and a load is applied to these perforations, which causes cracks in these perforations, and a size suitable for resource extraction. It will grow into a crack.
  • the diverting agent Since the diverting agent is used to temporarily close the crack as described above, it can maintain its shape for a certain period of time and disappears due to hydrolysis when collecting natural gas, oil, etc. What is done is used. For example, various techniques using a hydrolyzable resin such as polyglycolic acid or polylactic acid as a diverting agent have been proposed.
  • Patent Document 1 proposes a temporary filling agent for well drilling, which contains polyglycolic acid having high biodegradability among biodegradable aliphatic polyester resins. Further, in Patent Document 2, a powder composed of particles of polylactic acid, which is a biodegradable resin, and 50% by mass or more of particles that do not pass through a sieve having an opening of 500 ⁇ m and a repose angle of 51 degrees or more. Is proposed. Then, in Patent Document 3, hydrolyzable particles having a dispersed structure in which fine particles of highly biodegradable polyoxalate for adjusting the hydrolyzability of the polylactic acid are distributed in the polylactic acid.
  • a hydrolyzable particle having an average particle diameter (D 50 ) in the range of 300 to 1000 ⁇ m and a roundness with a minor axis/major axis ratio of 0.8 or more is proposed.
  • Patent Document 4 proposes polyoxalate particles having an average particle diameter (D 50 ) in the range of 300 to 1000 ⁇ m and a roundness of a minor axis/major axis ratio of 0.8 or more. ing.
  • the diverting agent contains a polyvinyl alcohol resin, which is a water-soluble resin, because it dissolves in water and is quickly removed.
  • polyvinyl alcohol resin which is a water-soluble resin, because it dissolves in water and is quickly removed.
  • solubility of polyvinyl alcohol-based resin in water depends largely on the saponification degree, and a difference in the saponification degree of about 0.1 mol% may occur between production lots, but a slight difference is required. The problem is that it is divided into those that satisfy the physical properties and those that do not.
  • the present invention has been made to solve the above problems, and in the excavation method using the hydraulic fracturing method, it is an object to provide a diverting agent with a small fluctuation range of the solubility at the initial stage of dissolution with respect to the saponification degree. To do.
  • polyvinyl alcohol-based resins have excellent solubility in water, and among polyvinyl alcohol-based resins, polyvinyl alcohol-based resins having a specific average degree of polymerization change in solubility at the initial stage of dissolution with respect to saponification degree. The inventors found that the width was small and completed the present invention.
  • the present invention is characterized by the following (1) to (4).
  • (4) A method for temporarily closing a crack generated in a well, in which the diverting agent according to any one of (1) to (3) is placed on a fluid flow in the well. A method of closing a crack in a well that is caused to flow into the crack to be blocked.
  • the diverting agent of the present invention contains a water-soluble polyvinyl alcohol-based resin, it is rapidly dissolved and removed in a low temperature range and has good biodegradability, and a polyvinyl alcohol-based resin having an average polymerization degree of 1000 or more is Since the fluctuation range of the solubility at the initial stage of dissolution with respect to the saponification degree is small, the fixed time (about 30 minutes to 5 hours) was excellent for the well crack regardless of the saponification degree of the polyvinyl alcohol resin used. The occlusive property can be exhibited. Therefore, the diverting agent of the present invention can be suitably used for the hydraulic fracturing method performed in the excavation work of natural gas, oil, and the like. Further, the polyvinyl alcohol-based resin used is less likely to be out of specifications due to the difference in saponification degree.
  • FIG. 1 is a graph showing the variation of the residual rate with respect to the saponification degree of Example 1 and Comparative Example 2.
  • FIG. 2 is a graph showing the variation of the residual rate with respect to the saponification degree of Example 2 and Comparative Example 1.
  • polyvinyl alcohol may be simply referred to as “PVA”.
  • (meth)allyl means allyl or methallyl
  • (meth)acryl means acryl or methacryl
  • (meth)acrylate means acrylate or methacrylate.
  • “mass” has the same meaning as “weight”.
  • the diverting agent of the present invention contains a polyvinyl alcohol (PVA) resin having an average degree of polymerization of 1000 or more.
  • PVA polyvinyl alcohol
  • the PVA-based resin used in the present invention is a resin having a vinyl alcohol structural unit as a main component, which is obtained by saponifying a polyvinyl ester-based resin obtained by polymerizing a vinyl ester-based monomer, and a vinyl alcohol having a saponification degree. It has a structural unit and an unsaponified portion of vinyl acetate structural unit.
  • the PVA-based resin in addition to the unmodified PVA-based resin, a modified PVA-based resin or an unmodified PVA-based resin obtained by copolymerizing various monomers during the production of a polyvinyl ester-based resin and saponifying the monomers.
  • Various post-modified PVA-based resins having various functional groups introduced by post-modification can be used. Such modification can be performed within a range in which the water solubility of the PVA-based resin is not lost. Further, in some cases, the modified PVA-based resin may be further post-modified.
  • the average degree of polymerization of the PVA-based resin used in the present invention is 1000 or more.
  • the average degree of polymerization of the PVA-based resin is 1000 or more, the fluctuation range of the solubility of the PVA-based resin in the initial stage of dissolution in water with respect to the saponification degree (the fluctuation range ratio of the residual ratio of the PVA-based resin to the difference in the saponification degree) Since it is as small as 5 or less, the solubility in the initial stage of dissolution is stable regardless of the degree of saponification, and excellent blockability against well cracks can be exhibited.
  • the average degree of polymerization is preferably 1000 to 4000, more preferably 1000 to 3500, and further preferably 1100 to 3000, from the viewpoint of production suitability.
  • the saponification degree of the PVA-based resin (measured in accordance with JIS K 6726:1994) is preferably 60 to 100 mol %. If the saponification degree is too low, the water solubility tends to decrease.
  • the degree of saponification is preferably 90 mol% or more, and more preferably 95 mol% or more, from the viewpoint of the ability to close gaps such as cracks.
  • the upper limit is preferably 99.8 mol% or less, more preferably 99.5 mol% or less.
  • the melting point of the PVA-based resin is preferably 140 to 250° C., more preferably 150 to 245° C., further preferably 160 to 240° C., particularly preferably 170 to 230° C.
  • the melting point is a value measured by a differential scanning calorimeter (DSC) at a temperature raising/lowering rate of 10° C./min.
  • the viscosity of a 4 mass% aqueous solution of the PVA-based resin is preferably 7 to 85 mPa ⁇ s, more preferably 8 to 80 mPa ⁇ s, further preferably 10 to 75 mPa ⁇ s, and particularly preferably 12 to 70 mPa ⁇ s. .. If the viscosity is too low, the effect of the present application tends to be difficult to obtain, and if it is too high, the production tends to be difficult.
  • the 4% by mass aqueous solution viscosity of the PVA-based resin is the viscosity at 20° C. measured according to JIS K6726:1994 by preparing a 4% by mass aqueous solution of the PVA-based resin.
  • the residual ratio of the PVA-based resin after standing for 60 minutes at 23° C. is in the range of 90% to 99.9% by degree of saponification. It becomes a linear function, and it is preferable that the slope of the linear function, that is, the fluctuation width ratio of the residual ratio of the PVA-based resin to the difference in the saponification degree is more than 0 and 5 or less.
  • the residual rate with respect to the saponification degree is represented by a linear function, and when the slope of the linear function is 5 or less when the saponification degree is 90 mol% or more, the fluctuation range of the solubility of the PVA-based resin in the initial stage of dissolution in water with respect to the saponification degree is small. Since it becomes smaller, it can be seen that stable initial solubility can be obtained regardless of the degree of saponification.
  • Such a PVA-based resin can exhibit excellent blockability against cracks in wells.
  • the slope is more preferably greater than 0 and 4 or less, and even more preferably greater than 0 and 3 or less.
  • the PVA-based resin may be a modified PVA-based resin having a functional group introduced therein.
  • a PVA-based resin having a primary hydroxyl group in a side chain and an ethylene-modified PVA-based resin are preferable, and a PVA-based resin having a primary hydroxyl group in a side chain is particularly preferable in terms of excellent melt moldability.
  • the number of primary hydroxyl groups in the PVA-based resin having a primary hydroxyl group in the side chain is preferably 1 to 5, more preferably 1 to 2, and particularly preferably 1. Further, it is preferable to have a secondary hydroxyl group in addition to the primary hydroxyl group.
  • PVA-based resin having a primary hydroxyl group in the side chain examples include, for example, modified PVA-based resin having a 1,2-diol structural unit in the side chain, modified PVA-based resin having a hydroxyalkyl group structural unit in the side chain, and the like.
  • modified PVA-based resin containing a 1,2-diol structural unit in a side chain which is represented by the following general formula (1) (hereinafter, referred to as “modified PVA-based resin containing a side chain 1,2-diol structural unit”).
  • the portions other than the 1,2-diol structural unit are a vinyl alcohol structural unit and a vinyl ester structural unit of an unsaponifiable portion, as in a normal PVA-based resin.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X represents a single bond or a bonded chain.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. It is desirable that all of R 1 to R 4 be hydrogen atoms, but R 1 to R 4 may be alkyl groups having 1 to 4 carbon atoms as long as the amounts are such that the resin characteristics are not significantly impaired.
  • the alkyl group is not particularly limited, but for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group and the like are preferable, and the alkyl group may be an optional group. It may have a substituent such as a halogeno group, a hydroxyl group, an ester group, a carboxylic acid group or a sulfonic acid group.
  • X is a single bond or a binding chain, and from the viewpoint of thermal stability and stability under high temperature and acidic conditions, a single bond is preferable, but of the present invention, It may be a binding chain as long as it does not inhibit the effect.
  • the bonding chain is not particularly limited, and examples thereof include hydrocarbon groups such as alkylene groups, alkenylene groups, alkynylene groups, phenylene groups, and naphthylene groups (these hydrocarbon groups include fluorine atoms, chlorine atoms, bromine atoms, and the like).
  • Each R is independently a hydrogen atom or an optional substituent, and a hydrogen atom or an alkyl group (in particular, an alkyl group having 1 to 4 carbon atoms) is preferable.
  • m is a natural number, preferably 1 to 10, particularly preferably 1 to 5.
  • the bonding chain is preferably an alkylene group having 6 or less carbon atoms, particularly a methylene group, or —CH 2 OCH 2 — in view of viscosity stability and heat resistance during production.
  • a particularly preferred structure of the 1,2-diol structural unit represented by the above general formula (1) is that R 1 to R 4 are all hydrogen atoms and X is a single bond.
  • the modification ratio in the modified PVA-based resin that is, the structural unit derived from various monomers in the copolymer, or the content of the functional group introduced by the post-reaction, although it cannot be said unequivocally because the characteristics vary greatly depending on the type of functional group, it is preferably 0.1 to 20 mol %.
  • the modification rate is preferably 0.1 to 20 mol %, more preferably 0.5 to 10 mol. %, more preferably 1 to 8 mol %, particularly preferably 1 to 3 mol %. If the modification rate is too high, it is impossible to temporarily close the well cracks, and if it is too low, the solubility after a certain period of time tends to deteriorate.
  • the content (modification rate) of 1,2-diol structural units in the PVA-based resin is 1 H-NMR spectrum (solvent: DMSO-d 6 , internal standard: (Tetramethylsilane). Specifically, it can be calculated from the peak areas derived from the hydroxyl group proton, methine proton, and methylene proton in the 1,2-diol structural unit, the methylene proton of the main chain, the proton of the hydroxyl group linked to the main chain, and the like.
  • the modification rate is preferably 0.1 to 15 mol%, more preferably 0.5 to 10 mol%, further preferably 1 to 10 mol%, It is particularly preferably 5 to 9 mol %. If the modification rate is too high, the water solubility tends to decrease, and if it is too low, melt molding tends to be difficult.
  • Examples of the method for producing the PVA-based resin used in the present invention include a method in which a vinyl ester-based monomer is polymerized, and the resulting polyvinyl ester polymer is saponified to produce.
  • vinyl ester monomers include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, cyclohexanecarboxylic acid.
  • Examples of the monomer used for copolymerization with the vinyl ester-based monomer during the production of the vinyl ester-based resin include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene and ⁇ -octadecene; acrylic acid, methacrylic acid.
  • olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene and ⁇ -octadecene
  • acrylic acid methacrylic acid.
  • Unsaturated acids such as acids, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, mono- or dialkyl esters thereof; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; ethylene Olefin sulfonic acids such as sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof; alkyl vinyl ethers; N-acrylamidomethyl trimethyl ammonium chloride; allyl trimethyl ammonium chloride; dimethyl allyl vinyl ketone; N-vinyl pyrrolidone; vinyl chloride; Vinylidene chloride; polyoxyalkylene (meth)allyl ethers such as polyoxyethylene (meth)allyl ether and polyoxypropylene (meth)allyl ether; polyoxy such as polyoxyethylene (meth)acrylate and polyoxypropylene (
  • the polymerization of the vinyl ester-based monomer or the polymerization of the vinyl ester-based monomer and the copolymerized monomer can be performed by any known polymerization method, for example, solution polymerization, suspension polymerization, emulsion polymerization and the like. Above all, it is preferable to carry out the solution polymerization under reflux so that the heat of reaction can be efficiently removed.
  • Examples of the solvent used in such polymerization include aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone, and preferably carbon.
  • aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol
  • ketones such as acetone and methyl ethyl ketone, and preferably carbon.
  • a lower alcohol having a number of 1 to 3 is used.
  • a conventionally known saponification method can be adopted. That is, it can be carried out using an alkali catalyst or an acid catalyst while the polymer is dissolved in alcohol or water/alcohol solvent.
  • the alkali catalyst for example, alkali metal hydroxides or alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate can be used.
  • the transesterification reaction using an alkali catalyst under an anhydrous alcohol solvent is preferably used in terms of reaction rate and reduction of impurities such as fatty acid salts.
  • the reaction temperature of the saponification reaction is preferably 20 to 60°C. If the reaction temperature is too low, the reaction rate tends to be low and the reaction efficiency tends to be low, and if it is too high, it may be higher than the boiling point of the reaction solvent, and the safety in production tends to be lowered.
  • saponifying under a high pressure using a tower type continuous saponification tower having a high pressure resistance it is possible to saponify at a higher temperature, for example, 80 to 150° C., and a small amount of the saponification catalyst is used. It is possible to obtain a high degree of saponification in a short time.
  • the modified PVA-based resin containing a side chain 1,2-diol structural unit can be produced by a known production method.
  • it can be produced by the method described in Japanese Patent Application Laid-Open No. 2002-284818, Japanese Patent Application Laid-Open No. 2004-285143, and Japanese Patent Application Laid-Open No. 2006-95825.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • X represents a single bond or a bonding chain
  • R 7 and R 8 are each independently And represents a hydrogen atom or R 9 —CO— (in the formula, R 9 is an alkyl group having 1 to 4 carbon atoms).
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X represents a single bond or a bonded chain.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • X represents a single bond or a bonding chain
  • R 10 and R 11 are each independently And represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 1 to R 4 and X in the formulas (2) to (4) are the same as those in the above formula (1), and R 7 to R 11 have 1 to 10 carbon atoms.
  • R 7 to R 11 have 1 to 10 carbon atoms.
  • Specific examples and preferable examples of the alkyl group of 4 are the same as in the case of the formula (1).
  • the method (i) is preferable because it is excellent in copolymerization reactivity and industrial handling, and in particular, the compound represented by the general formula (2) is R 1 ⁇ R 4 are hydrogen atoms, X is a single bond, R 7, R 8 are R 9 -CO-, R 9 is an alkyl group having 1 to 4 carbon atoms 3,4-diacyloxy-1-butene Of these, 3,4-diacetoxy-1-butene in which R 9 is a methyl group is particularly preferably used.
  • the PVA resin used in the present invention is used in the form of particles.
  • the shape of the particles is not particularly limited, and examples thereof include sphere, powder, ellipsoid, column (pellet), plate, cube, rectangular parallelepiped, prism and polygon.
  • the particle size of the PVA-based resin particles may be appropriately adjusted in consideration of the size of the crack in the well, the shape of the particles, etc., but is preferably in the range of 0.1 to 5 mm.
  • the particle diameter is preferably 0.5 to 5.0 mm in the diameter of the cross section orthogonal to the axial direction, and more preferably 1. It is preferably 0 to 4.5 mm, more preferably 1.5 to 4.0 mm, and the thickness (axial length) thereof is preferably 0.5 to 5.0 mm, and more preferably 1.0 to 4. It is 5 mm, more preferably 1.5 to 4.0 mm.
  • the PVA-based resin particles are spherical particles, it is preferable to make them powdery, and the average particle diameter thereof is 10 to 2000 ⁇ m, preferably 100 to 1000 ⁇ m.
  • the average particle diameter can be measured by the method of dry sieving test method (see JIS8815).
  • the particle size is a particle size at which the total volume on the screen is 50%. If the size (diameter, length, average particle size) is too large, the water solubility tends to decrease, and if it is too small, the sealing effect tends to decrease.
  • the PVA resin used in the present invention may be one kind or a mixture of two or more kinds.
  • two or more PVA-based resins for example, a combination of two or more unmodified PVA-based resins having different saponification degrees, average degrees of polymerization, melting points, etc.; unmodified PVA-based resins and modified PVA-based resins Combination: a combination of two or more modified PVA-based resins having different saponification degrees, average degrees of polymerization, melting points, types of functional groups and modification rates, etc.; PVA-based resins produced by melt molding and obtained without melt molding Examples include a combination of PVA-based resins and a combination of PVA-based resins having different shapes and particle sizes.
  • the diverting agent of the present invention contains the PVA-based resin described above in the form of resin particles.
  • the content of the PVA-based resin is preferably 50% by mass or more, that is, 50 to 100% by mass, more preferably 80 to 100% by mass, further preferably 90 to 100% by mass, based on the entire diverting agent. Is. If the content is too small, the effect of the present invention tends to be difficult to obtain.
  • an additive material such as sand, iron, ceramics, other biodegradable resin, etc. may be blended in addition to the PVA-based resin within a range that does not impair the effects of the present invention.
  • the compounding amount of such an additive (agent) is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less, based on the whole diverting agent.
  • the diverting agent can be produced by uniformly mixing the PVA-based resin of the present invention with other additive materials (agents).
  • the diverting agent of the present invention in the drilling of oil or natural gas, when using the hydraulic fracturing method, enters into the cracks and fissures generated in the well and temporarily closes the cracks and fissures. Thereby, a new crack or crack can be formed.
  • the diverting agent of the present invention may be placed on the flow of fluid in the well and allowed to flow into the crack to be closed.
  • the diverting agent of the present invention is water-soluble and biodegradable, it is rapidly dissolved and removed in water after use and biodegraded thereafter, so that the environmental load is small and it is very useful. ..
  • Example 1 ⁇ Production of PVA-based resin particles> 1.
  • PVA-1 modified PVA-based resin particles
  • the reaction was continued for 6.5 hours from the start of the polymerization, and when the polymerization rate of vinyl acetate reached 49%, a predetermined amount of hydroquinone monomethyl ether was added to terminate the polymerization, followed by distillation while blowing in methanol vapor. Unreacted vinyl acetate monomer was removed outside the system to obtain a methanol solution of the copolymer.
  • the above solution was diluted with methanol to adjust the solid content concentration to 36%, the methanol solution was charged into a kneader, and while maintaining the solution temperature at 35° C., a 2% methanol solution of sodium hydroxide (converted to sodium) was added.
  • Saponification was carried out by adding vinyl acetate structural units and 3,4-diacetoxy-1-butene structural units in the copolymer at a ratio of 1.5 mmol with respect to 1 mol in total. As the saponification progressed and the saponified product precipitated and became particles, a 2% methanol solution of sodium hydroxide (in terms of sodium) was further added to the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit. 9.0 mmol was added to the total amount of 1 mol for saponification.
  • Modified PVA-based resin particles (modified PVA-based resin particles containing side chain 1,2-diol structural unit) (PVA-1) were obtained.
  • the obtained PVA-1 was in powder form, and was sieved by the dry sieving test method, and the average particle size of which the calculated cumulative value was 50% was 450 ⁇ m.
  • the degree of saponification of PVA-1 was 98.5 mol% when analyzed by the amount of alkali consumption required for hydrolysis of residual vinyl acetate in the resin and structural units of 3,4-diacetoxy-1-butene. there were.
  • the average degree of polymerization was 2,800 when analyzed according to JIS K6726:1994.
  • the content (modification rate) of the 1,2-diol structural unit represented by the above formula (1) in PVA-1 is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance). Calculated from the integral value measured with tetramethylsilane, 50° C., it was 1 mol %.
  • modified PVA-based resin particles PVA-2
  • PVA-1 sodium hydroxide
  • 20 g of PVA-1 obtained above 20 g was weighed, and the mixture was heated at 50° C. for 3 hours.
  • Re-saponification treatment was performed by stirring and neutralizing.
  • the modified PVA-based resin particles (PVA-2) containing side chain 1,2-diol structural units thus obtained had a saponification degree of 100 mol %, an average degree of polymerization of 2800, and a content of 1,2-diol structural units ( The modification ratio) was 1 mol% and the average particle size was 450 ⁇ m.
  • the bag-shaped mesh containing the PVA-based resin was taken out from the glass container and dried at 140°C for 3 hours, and the mass of the bag-shaped mesh containing the PVA-based resin was measured. did.
  • the mass of the PVA-based resin remaining in the bag-shaped mesh was calculated from the mass before the immersion, and the residual ratio of the PVA-based resin after 60 minutes was calculated by the following formula.
  • the results are shown in Table 1.
  • Example 2 Manufacture of unmodified PVA-based resin particles (PVA-3) 100 parts of vinyl acetate and 33 parts of methanol were charged into a reaction can equipped with a reflux condenser, a dropping device and a stirrer, and the temperature was raised under a nitrogen stream while stirring. After reaching the boiling point, 1.3 parts of acetyl peroxide was added to initiate polymerization. When the degree of polymerization of vinyl acetate reached 78%, a predetermined amount of hydroquinone monomethyl ether was added to terminate the polymerization, and then the unreacted vinyl acetate monomer was removed from the system by distilling while blowing methanol vapor. Removal was performed to obtain a methanol solution of vinyl acetate polymer.
  • PVA-3 unmodified PVA-based resin particles
  • the above solution was diluted with methanol to adjust the solid content concentration to 47%, the methanol solution was charged into a kneader, and while maintaining the solution temperature at 35° C., a 2% methanol solution of sodium hydroxide (converted to sodium) was added.
  • Saponification was carried out by adding 7 mol per 1 mol of vinyl acetate structural unit. As the saponification proceeds, the saponified product precipitates, and when it becomes particles, it is filtered off, washed well with methanol and dried in a hot air drier to obtain unmodified PVA-based resin particles (PVA-3). It was The obtained PVA-3 was powdery with an average particle diameter of 600 ⁇ m.
  • the degree of saponification of PVA-3 was 99.0 mol% when analyzed by the amount of alkali consumption required for hydrolysis of the structural unit of residual vinyl acetate in the resin.
  • the viscosity average degree of polymerization was 2000 when analyzed according to JIS K6726.
  • (Comparative example 2) Production of modified PVA-based resin particles (PVA-7) In "1. Production of modified PVA-based resin particles (PVA-1)" of Example 1, 32.5 parts of methanol was reacted for 11 hours, and the polymerization rate was 91. %, the solid content concentration during saponification was adjusted to 50%, and the sodium hydroxide 2% methanol solution (converted to sodium) was changed to 4.5 mmol and additionally 7.5 mmol. Otherwise in the same manner, modified PVA-based resin particles (PVA-7) containing side chain 1,2-diol structural units were obtained.
  • the obtained PVA-7 had a saponification degree of 99.3 mol%, an average degree of polymerization of 450, a 1,2-diol structural unit content (modification rate) of 1 mol%, and an average particle size of 750 ⁇ m. It was
  • modified PVA-based resin particles PVA-8 Using the modified PVA-based resin particles (PVA-7) containing side chain 1,2-diol structural units obtained above, the "2. modified PVA of Example 1" was used. The same re-saponification treatment as in “Production of resin particles (PVA-2)” was performed. PVA-8 had a saponification degree of 100 mol %, an average degree of polymerization of 450, a 1,2-diol structural unit content (modification rate) of 1 mol %, and an average particle size of 750 ⁇ m.
  • FIG. 1 the variation of the residual rate with respect to the saponification degree for Example 1 and Comparative Example 2 is shown in FIG. 1
  • FIG. 2 the variation of the residual rate with respect to the saponification degree for Example 2 and Comparative Example 1 is shown in FIG. 2, respectively.

Abstract

本発明は、水圧破砕法を用いる掘削工法において、坑井の亀裂に対して十分な閉塞性を発揮することができ、さらに、所定期間経過後の溶解性に優れるダイバーティングエージェントを提供することを目的とする。本発明のダイバーティングエージェントは、平均重合度が1000以上であるポリビニルアルコール系樹脂を含有する。

Description

ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
 本発明は、ダイバーティングエージェント(Diverting Agent)及びこれを用いた坑井の亀裂の閉塞方法に関し、更に詳しくは、水圧破砕法を用いる掘削工法の施工時に用いられるダイバーティングエージェント、及び該ダイバーティングエージェントを用いて坑井の亀裂を閉塞する方法に関する。
 石油やその他の地下資源の採取のために、地下の頁岩(シェール)層に高圧の水を注入して亀裂を生じさせる水圧破砕法が広く採用されている。水圧破砕法では、まず、ドリルで垂直に地下数千メートルの縦孔(垂直坑井)を掘削し、頁岩層に達したところで水平に直径十から数十センチメートルの横孔(水平坑井)を掘削する。垂直坑井と水平坑井内を流体で満たし、この流体を加圧することにより、坑井から亀裂(フラクチャ、fracture)を生成させ、かかる亀裂から頁岩層にある天然ガスや石油(シェールガス・オイル)等が流出してくるので、それを回収する。このような手法によれば、亀裂の生成により、坑井の資源流入断面が増大し、効率よく地下資源の採取を行うことができる。
 上記の水圧破砕法においては、流体加圧による亀裂の生成に先立って、水平坑井中でパーフォレーション(Perforation)と呼ばれる予備爆破が行われる。このような予備爆破により、坑井から生産層に穿孔を開ける。この後、この坑井内にフラクチュアリング流体を圧入することにより、これら穿孔に流体が流入し、これら穿孔に負荷が加えられることにより、これら穿孔に亀裂が生じ、資源の採取に好適な大きさの亀裂に成長していくこととなる。
 水圧破砕法では、既に生成している亀裂をより大きく成長させたり、さらに多くの亀裂を生成させるために、既に生成している亀裂の一部をダイバーティングエージェントと呼ばれる添加剤を用いて一時的に塞ぐことがなされる。亀裂の一部をダイバーティングエージェントで一時的に閉塞し、この状態で坑井内に充填されたフラクチュアリング流体を加圧することにより、他の亀裂内に流体が浸入していき、これにより、他の亀裂を大きく成長させるあるいは新たな亀裂を発生させることができる。
 ダイバーティングエージェントは、上記したように亀裂を一時的に閉塞するために用いられるものであるので、一定期間はその形状を維持でき、天然ガスや石油等を採取する際には加水分解して消失するものが使用される。例えば、ポリグリコール酸やポリ乳酸等の加水分解性樹脂をダイバーティングエージェントとして使用する技術が種々提案されている。
 特許文献1では、生分解性脂肪族ポリエステル系樹脂の中でも生分解性の高いポリグリコール酸を含有する坑井掘削用一時目止め剤が提案されている。
 また、特許文献2では、生分解性樹脂であるポリ乳酸の粒子からなり、目開き500μmの篩にかけた際にパスしない粒子が50質量%以上、且つ、51度以上の安息角を有する粉体が提案されている。
 そして、特許文献3では、ポリ乳酸中に該ポリ乳酸の加水分解性を調整するための生分解性の高いポリオキサレートの微細粒子が分布している分散構造を有している加水分解性粒子であって、平均粒径(D50)が300~1000μmの範囲にあり、短径/長径比が0.8以上の真円度を有する加水分解性粒子が提案されている。
 そしてまた、特許文献4では、平均粒径(D50)が300~1000μmの範囲にあり、短径/長径比が0.8以上の真円度を有しているポリオキサレート粒子が提案されている。
国際公開第2015/072317号 日本国特開2016-56272号公報 日本国特開2016-147971号公報 日本国特開2016-147972号公報
 水圧破砕法で亀裂を大きく成長させたり新たな亀裂を発生させるには、既に生成している亀裂を隙間なく塞ぐことが必要である。従来のダイバーティングエージェントはポリグリコール酸やポリ乳酸等の非水溶性樹脂を用いており、除去されるまでにかなりの時間を要することが問題であった。そこで、水に溶けて速やかに除去されることから、ダイバーティングエージェントに水溶性樹脂であるポリビニルアルコール系樹脂を含有させることが検討されている。
 しかしながら、ポリビニルアルコール系樹脂の水中溶解性は、ケン化度に大きく依存し、製造ロット間で、0.1モル%程度のケン化度の差が生じる場合があるが、その僅かな差が要求物性を満たすものと満たさないものに分かれることが問題であった。
 そこで、本発明は上記課題を解決するためになされたものであり、水圧破砕法を用いる掘削工法において、ケン化度に対する溶解初期の溶解度の変動幅が小さいダイバーティングエージェントを提供することを課題とする。
 本発明者らは、鋭意検討を重ねた結果、ポリビニルアルコール系樹脂が水中溶解性に優れ、ポリビニルアルコール系樹脂の中でも特定平均重合度のポリビニルアルコール系樹脂がケン化度に対する溶解初期の溶解度の変動幅が小さいことを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の(1)~(4)を特徴とする。
(1)平均重合度が1000以上であるポリビニルアルコール系樹脂を含有するダイバーティングエージェント。
(2)前記ポリビニルアルコール系樹脂のケン化度が、90モル%以上である、前記(1)に記載のダイバーティングエージェント。
(3)前記ポリビニルアルコール系樹脂を50質量%以上含有する、前記(1)又は(2)に記載のダイバーティングエージェント。
(4)坑井に生成された亀裂を一時的に閉塞する方法であって、前記(1)~(3)のいずれか1つに記載のダイバーティングエージェントを、坑井内の流体の流れに乗せて閉塞したい亀裂に流入させる坑井の亀裂の閉塞方法。
 本発明のダイバーティングエージェントは、水溶性のポリビニルアルコール系樹脂を含有するので低温域で速やかに溶解除去され、また生分解性が良好であり、また、平均重合度1000以上のポリビニルアルコール系樹脂はそのケン化度に対する溶解初期の溶解度の変動幅が小さいので、使用するポリビニルアルコール系樹脂のケン化度に関わらず、坑井の亀裂に対して一定時間(30分~5時間程度)は優れた閉塞性を発揮することができる。
 したがって、本発明のダイバーティングエージェントは、天然ガスや石油等の掘削作業で行われる水圧破砕法に好適に用いることができる。また、用いるポリビニルアルコール系樹脂はケン化度の違いによるスペックアウトが出難くなる。
図1は、実施例1と比較例2のケン化度に対する残存率の変動を示すグラフである。 図2は、実施例2と比較例1のケン化度に対する残存率の変動を示すグラフである。
 以下、本発明について詳述するが、これらは望ましい実施形態の一例を示すものであり、本発明はこれらの内容に特定されるものではない。
 なお、用語「ポリビニルアルコール」は、単に「PVA」ということがある。
 また、本明細書において、(メタ)アリルとはアリル又はメタリル、(メタ)アクリルとはアクリル又はメタクリル、(メタ)アクリレートとはアクリレート又はメタクリレートをそれぞれ意味する。
 また、本明細書において、「質量」は「重量」と同義である。
 本発明のダイバーティングエージェントは、平均重合度が1000以上であるポリビニルアルコール(PVA)系樹脂を含有する。
〔PVA系樹脂〕
 本発明で用いられるPVA系樹脂は、ビニルエステル系モノマーを重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とする樹脂であり、ケン化度相当のビニルアルコール構造単位と未ケン化部分の酢酸ビニル構造単位を有するものである。
 本発明では、PVA系樹脂として、未変性PVA系樹脂の他に、ポリビニルエステル系樹脂の製造時に各種モノマーを共重合させ、これをケン化して得られる変性PVA系樹脂や、未変性PVA系樹脂に後変性によって各種官能基を導入した各種の後変性PVA系樹脂等を用いることができる。かかる変性は、PVA系樹脂の水溶性が失われない範囲で行うことができる。また、場合によっては、変性PVA系樹脂を更に後変性させてもよい。
 本発明で用いられるPVA系樹脂の平均重合度(JIS K 6726:1994に準拠して測定)は、1000以上である。PVA系樹脂の平均重合度が1000以上であると、PVA系樹脂のケン化度に対する水への溶解初期の溶解度の変動幅(ケン化度の差に対するPVA系樹脂の残存率の変動幅比)が5以下と小さくなるので、ケン化度に関わらず溶解初期の溶解性が安定し、坑井の亀裂に対して優れた閉塞性を発揮できる。また、平均重合度は、製造適正の観点から、1000~4000であることが好ましく、1000~3500であることがより好ましく、1100~3000がさらに好ましい。
 PVA系樹脂のケン化度(JIS K 6726:1994に準拠して測定)は、60~100モル%であることが好ましい。かかるケン化度が低すぎると水溶性が低下する傾向がある。ケン化度は、亀裂等の隙間に対する閉塞性の観点から、90モル%以上であることが好ましく、95モル%以上がより好ましい。また、上限は99.8モル%以下が好ましく、より好ましくは99.5モル%以下である。
 PVA系樹脂の融点は、140~250℃であることが好ましく、より好ましくは150~245℃、更に好ましくは160~240℃、特に好ましくは170~230℃である。
 なお、融点は、示差走査熱量計(DSC)で昇降温速度10℃/minで測定した値である。
 PVA系樹脂の4質量%水溶液粘度は、7~85mPa・sであることが好ましく、より好ましくは8~80mPa・s、更に好ましくは10~75mPa・s、特に好ましくは12~70mPa・sである。かかる粘度が低すぎると本願の効果が得られ難くなる傾向があり、高すぎると製造し難くなる傾向がある。
 なお、PVA系樹脂の4質量%水溶液粘度は、PVA系樹脂の4質量%水溶液を調製し、JIS K6726:1994に準拠して測定した20℃における粘度である。
 なお、本発明で用いられるPVA系樹脂は、1質量%水溶液としたとき、23℃、60分放置後におけるPVA系樹脂の残存率がケン化度90モル%から99.9モル%の範囲で線形関数となり、該線形関数の傾き、すなわちケン化度の差に対するPVA系樹脂の残存率の変動幅比が0より大きく5以下であることが好ましい。ケン化度に対する残存率を線形関数で表わし、ケン化度90モル%以上における線形関数の傾きが5以下であると、PVA系樹脂のケン化度に対する水への溶解初期の溶解度の変動幅が小さくなるので、ケン化度に関わらず安定した初期溶解性が得られることがわかる。このようなPVA系樹脂は、坑井の亀裂に対して優れた閉塞性を発揮することができる。前記傾きは0より大きく4以下であることがより好ましく、0より大きく3以下であることが更に好ましい。
 本発明において、PVA系樹脂は、官能基が導入された変性PVA系樹脂を用いてもよい。例えば、側鎖に一級水酸基を有するPVA系樹脂や、エチレン変性PVA系樹脂が好ましく、特に、溶融成形性に優れる点で、側鎖に一級水酸基を有するPVA系樹脂が好ましい。側鎖に一級水酸基を有するPVA系樹脂における一級水酸基の数は、1~5個であることが好ましく、より好ましくは1~2個であり、特に好ましくは1個である。また、一級水酸基以外にも二級水酸基を有することが好ましい。
 このような側鎖に一級水酸基を有するPVA系樹脂としては、例えば、側鎖に1,2-ジオール構造単位を有する変性PVA系樹脂、側鎖にヒドロキシアルキル基構造単位を有する変性PVA系樹脂等が挙げられる。中でも、特に下記一般式(1)で表される、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂(以下、「側鎖1,2-ジオール構造単位含有変性PVA系樹脂」と称することがある。)を用いることが好ましい。
 なお、1,2-ジオール構造単位以外の部分は、通常のPVA系樹脂と同様、ビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位である。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R~Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表す。)
 上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表す。R~Rは、すべて水素原子であることが望ましいが、樹脂特性を大幅に損なわない程度の量であれば炭素数1~4のアルキル基であってもよい。当該アルキル基としては特に限定しないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が好ましく、当該アルキル基は必要に応じてハロゲノ基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 上記一般式(1)中、Xは単結合又は結合鎖であり、熱安定性の点や高温下や酸性条件下での安定性の点で、単結合であることが好ましいが、本発明の効果を阻害しない範囲であれば結合鎖であってもよい。
 かかる結合鎖としては、特に限定されず、例えば、アルキレン基、アルケニレン基、アルキニレン基、フェニレン基、ナフチレン基等の炭化水素基(これらの炭化水素基は、フッ素原子、塩素原子、臭素原子等のハロゲン原子等で置換されていてもよい。)の他、-O-、-(CHO)-、-(OCH-、-(CHO)CH-、-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等が挙げられる。Rは各々独立して水素原子又は任意の置換基であり、水素原子又はアルキル基(特に炭素数1~4のアルキル基)が好ましい。また、mは自然数であり、好ましくは1~10、特に好ましくは1~5である。結合鎖は、これらのなかでも、製造時の粘度安定性や耐熱性等の点で、炭素数6以下のアルキレン基、特にメチレン基、あるいは-CHOCH-が好ましい。
 上記一般式(1)で表される1,2-ジオール構造単位における特に好ましい構造は、R~Rがすべて水素原子であり、Xが単結合である。
 PVA系樹脂が変性PVA系樹脂である場合、かかる変性PVA系樹脂中の変性率、すなわち共重合体中の各種モノマーに由来する構造単位、あるいは後反応によって導入された官能基の含有量は、官能基の種類によって特性が大きく異なるため一概には言えないが、0.1~20モル%であることが好ましい。
 例えば、PVA系樹脂が側鎖1,2-ジオール構造単位含有変性PVA系樹脂である場合の変性率は、0.1~20モル%であることが好ましく、より好ましくは0.5~10モル%、更に好ましくは1~8モル%、特に好ましくは1~3モル%である。かかる変性率が高すぎると、坑井の亀裂を一時的に閉塞できなくなり、低すぎると一定期間後の溶解性が悪化する傾向がある。
 なお、PVA系樹脂中の1,2-ジオール構造単位の含有率(変性率)は、ケン化度100モル%のPVA系樹脂のH-NMRスペクトル(溶媒:DMSO-d、内部標準:テトラメチルシラン)から求めることができる。具体的には1,2-ジオール構造単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出することができる。
 PVA系樹脂がエチレン変性PVA系樹脂である場合の変性率は、0.1~15モル%であることが好ましく、より好ましくは0.5~10モル%、更に好ましくは1~10モル%、特に好ましくは5~9モル%である。かかる変性率が高すぎると水溶性が低下する傾向があり、低すぎると溶融成形が困難となる傾向がある。
 本発明で用いられるPVA系樹脂の製造方法としては、例えば、ビニルエステル系モノマーを重合し、得られたポリビニルエステル重合体をケン化して製造する方法が挙げられる。
 ビニルエステル系モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル、トリフロロ酢酸ビニル等が挙げられ、価格や入手の容易さの観点で、酢酸ビニルが好ましく用いられる。
 ビニルエステル系樹脂の製造時にビニルエステル系モノマーとの共重合に用いられるモノマーとしては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩、そのモノ又はジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;N-アクリルアミドメチルトリメチルアンモニウムクロライド;アリルトリメチルアンモニウムクロライド;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン[1-(メタ)アクリルアミド-1,1-ジメチルプロピル]エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類あるいはそのアシル化物等の誘導体を挙げることができる。
 また、3,4-ジヒドロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4,5-ジヒドロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、グリセリンモノアリルエーテル、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル、ビニルエチレンカーボネート、2,2-ジメチル-4-ビニル-1,3-ジオキソラン等のジオールを有する化合物などが挙げられる。
 ビニルエステル系モノマーの重合又はビニルエステル系モノマーと共重合モノマーとの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。
 かかる重合で用いられる溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロパノール、ブタノール等の炭素数1~4の脂肪族アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、好ましくは炭素数1~3の低級アルコールが用いられる。
 得られた重合体のケン化についても、従来より行われている公知のケン化方法を採用することができる。すなわち、重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。
 前記アルカリ触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。
 中でも、無水アルコール系溶媒下、アルカリ触媒を用いたエステル交換反応が反応速度の点や脂肪酸塩等の不純物を低減できるなどの点で好適に用いられる。
 ケン化反応の反応温度は、20~60℃であることが好ましい。反応温度が低すぎると、反応速度が小さくなり反応効率が低下する傾向があり、高すぎると反応溶媒の沸点以上となる場合があり、製造面における安全性が低下する傾向がある。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80~150℃でケン化することが可能であり、少量のケン化触媒も短時間、高ケン化度のものを得ることが可能である。
 また、側鎖1,2-ジオール構造単位含有変性PVA系樹脂は、公知の製造方法により製造することができる。例えば、日本国特開2002-284818号公報、日本国特開2004-285143号公報、日本国特開2006-95825号公報に記載されている方法により製造することができる。すなわち、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法、(ii)ビニルエステル系モノマーと下記一般式(3)で示されるビニルエチレンカーボネートとの共重合体をケン化及び脱炭酸する方法、(iii)ビニルエステル系モノマーと下記一般式(4)で示される2,2-ジアルキル-4-ビニル-1,3-ジオキソランとの共重合体をケン化及び脱ケタール化する方法などにより、製造することができる。
Figure JPOXMLDOC01-appb-C000002
(式(2)中、R~Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表し、R及びRは、それぞれ独立して水素原子又はR-CO-(式中、Rは炭素数1~4のアルキル基である。)を表す。)
Figure JPOXMLDOC01-appb-C000003
(式(3)中、R~Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表す。)
Figure JPOXMLDOC01-appb-C000004
(式(4)中、R~Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表し、R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。)
 式(2)~式(4)中のR~R及びXの具体例、好ましい例示は、上記式(1)の場合と同様であり、また、R~R11の炭素数1~4のアルキル基の具体例、好ましい例示も式(1)の場合と同様である。
 上記方法(i)~(iii)のうち、共重合反応性及び工業的な取扱いにおいて優れるという点で、(i)の方法が好ましく、特に、上記一般式(2)で示される化合物は、R~Rが水素原子、Xが単結合、R、RがR-CO-であり、Rが炭素数1~4のアルキル基である3,4-ジアシロキシ-1-ブテンが好ましく、その中でも特にRがメチル基である3,4-ジアセトキシ-1-ブテンが好ましく用いられる。
 本発明で使用されるPVA系樹脂は粒子状で用いられる。粒子の形状は、特に限定されず、例えば、球状、粉末状、楕円球状、円柱状(ペレット)、板状、立方体状、直方体状、角柱状、多角面体状等が挙げられる。
 PVA系樹脂粒子の粒子径は、坑井内の亀裂の大きさ、粒子の形状等を考慮して適宜調整すればよいが、0.1~5mmの範囲とすることが好ましい。
 具体的に、PVA系樹脂粒子が円柱状(ペレット)粒子の場合、その粒子径は、軸方向と直交する断面の直径が0.5~5.0mmであることが好ましく、より好ましくは1.0~4.5mm、更に好ましくは1.5~4.0mmであり、厚み(軸方向の長さ)が0.5~5.0mmであることが好ましく、より好ましくは1.0~4.5mm、更に好ましくは1.5~4.0mmである。
 PVA系樹脂粒子が球状粒子の場合、粉末状とすることが好ましく、その平均粒子径は、10~2000μmであり、好ましくは100~1000μmである。
 かかる平均粒子径は、乾式ふるい分け試験方法(JIS8815参考)の方法により測定することができる。また、本明細書において、粒子径とは、篩上体積の合計が50%となる粒子径のことである。
 かかる大きさ(直径、長さ、平均粒子径)が大きすぎると水溶解性が低下する傾向があり、小さすぎると目止効果が低下する傾向がある。
 本発明で用いられるPVA系樹脂は、一種類であっても、二種類以上の混合物であってもよい。PVA系樹脂を二種類以上用いる場合としては、例えば、ケン化度、平均重合度、融点などが異なる二種以上の未変性PVA系樹脂の組み合わせ;未変性PVA系樹脂と変性PVA系樹脂との組み合わせ;ケン化度、平均重合度、融点、官能基の種類や変性率などが異なる二種以上の変性PVA系樹脂の組み合わせ;溶融成形により製造したPVA系樹脂と溶融成形せずに得られたPVA系樹脂の組み合わせ、形状や粒子径などが異なるPVA系樹脂の組み合わせ等が挙げられる。
〔ダイバーティングエージェント〕
 本発明のダイバーティングエージェントは、上記したPVA系樹脂を樹脂粒子の形態で含有する。
 PVA系樹脂の含有量は、ダイバーティングエージェント全体に対して、50質量%以上、すなわち50~100質量%であることが好ましく、より好ましくは80~100質量%、更に好ましくは90~100質量%である。かかる含有量が少なすぎると、本発明の効果が得られ難くなる傾向がある。
 本発明のダイバーティングエージェントには、本発明の効果を阻害しない範囲で、PVA系樹脂以外に、例えば、砂、鉄、セラミック、その他の生分解性樹脂などの添加材(剤)を配合することができる。
 かかる添加材(剤)の配合量は、ダイバーティングエージェント全体に対して、50質量%以下であることが好ましく、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
 ダイバーティングエージェントは、本発明のPVA系樹脂と他の添加材(剤)を均一に混合することにより作製することができる。
 本発明のダイバーティングエージェントは、石油や天然ガスなどの掘削において、水圧破砕法を用いる場合に、坑井に生成された亀裂や割れ目の中に入り、その亀裂や割れ目を一時的に閉塞することにより、新たな亀裂や割れ目を形成することができる。亀裂や割れ目の閉塞方法としては、本発明のダイバーティングエージェントを坑井内の流体の流れに乗せて閉塞したい亀裂に流入させればよい。
 また、本発明のダイバーティングエージェントは水溶性で、かつ生分解性であるため、使用後は速やかに水に溶解し除去され、その後生分解されるため、環境負荷が小さく、非常に有用である。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例及び比較例において「部」及び「%」は、特に断りのない限り質量を基準とする。
(実施例1)
<PVA系樹脂粒子の製造>
1.変性PVA系樹脂粒子(PVA-1)の製造
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル100部、メタノール6.3部、及び3,4-ジアセトキシ-1-ブテンを2部仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.004部投入し重合を開始した。重合開始から6.5時間反応を続け、酢酸ビニルの重合率が49%になった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いてメタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 次いで、上記溶液をメタノールで希釈し、固形分濃度を36%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム2%メタノール溶液(ナトリウム換算)を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して1.5ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム2%メタノール溶液(ナトリウム換算)を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して9.0ミリモル追加しケン化を行った。その後、中和用の酢酸を水酸化ナトリウムの0.8当量を添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖1,2-ジオール構造単位を含有する変性PVA系樹脂粒子(側鎖1,2-ジオール構造単位含有変性PVA系樹脂粒子)(PVA-1)を得た。
 得られたPVA-1は粉末状であり、乾式ふるい試験法でふるい分けし、積算値が50%になる径を算出した平均粒子径は、450μmであった。
 また、PVA-1のケン化度は、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、98.5モル%であった。また、平均重合度は、JIS K6726:1994に準じて分析を行ったところ、2800であった。
 また、PVA-1中の前記式(1)で表される1,2-ジオール構造単位の含有量(変性率)は、H-NMR(300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、1モル%であった。
2.変性PVA系樹脂粒子(PVA-2)の製造
 メタノール160g中に水酸化ナトリウム0.6gを入れて溶けたことを確認し、上記で得られたPVA-1を20g量り入れ、50℃で3時間撹拌し、中和することにより、再ケン化処理を行った。
 得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂粒子(PVA-2)は、ケン化度が100モル%、平均重合度が2800、1,2-ジオール構造単位の含有量(変性率)が1モル%、平均粒子径が450μmであった。
<PVA系樹脂の残存率の測定>
 PVA-1、PVA-2について、23℃の水溶液に60分間浸漬させたときの残存率を測定した。
<<測定方法>>
 100gの水が入った140mLの蓋付きガラス容器を恒温機に入れ、水温を23℃とした。ナイロン製の120メッシュ(目開き125μm、10cm×7cm)の長辺を二つ折りにし、両端をヒートシールし袋状メッシュ(5cm×7cm)を得た。
 得られた袋状メッシュに1gのPVA系樹脂粒子を入れ、開口部をヒートシールし、PVA系樹脂入りの袋状メッシュを得て、質量を測定した。上記ガラス容器中にPVA系樹脂入りの袋状メッシュを浸漬させた。23℃の恒温機内で60分静置後、PVA系樹脂入りの袋状メッシュを上記ガラス容器から取り出し、140℃で3時間乾燥させた後、かかるPVA系樹脂入りの袋状メッシュの質量を測定した。浸漬前の質量から袋状メッシュ中に残存したPVA系樹脂の質量を算出し、下記式によってPVA系樹脂の60分後残存率を算出した。結果を表1に示す。
 なお、下記式中、PVA系樹脂の固形分率(質量%)は、PVA系樹脂を105℃で3時間乾燥させ、乾燥前後のPVA系樹脂の質量を測定することにより算出できる。
  残存率(%)={乾燥後のPVA系樹脂残渣の重量(g)/(PVA系樹脂の初期重量(g)×PVA系樹脂の固形分率(質量%)/100)}×100
<ケン化度の差に対するPVA系樹脂の残存率の変動幅比の測定>
 上記<PVA系樹脂の残存率の測定>により測定されたPVA-1及びPVA-2のそれぞれの残存率をもとに、下記式によってケン化度の差に対するPVA系樹脂の60分後の残存率の変動幅比を算出した。結果を表1に示す。
  変動幅比=(PVA-2の残存率(%)-PVA-1の残存率(%))/(PVA-2のケン化度(モル%)-PVA-1のケン化度(モル%))
(実施例2)
1.未変性PVA系樹脂粒子(PVA-3)の製造
 還流冷却器、滴下装置、撹拌機を備えた反応缶に、酢酸ビニル100部、メタノール33部を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを1.3部投入し、重合を開始した。酢酸ビニルの重合率が78%となった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し酢酸ビニル重合体のメタノール溶液を得た。
 次いで、上記溶液をメタノールで希釈し、固形分濃度を47%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム2%メタノール溶液(ナトリウム換算)を酢酸ビニル構造単位1モルに対して7ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、未変性PVA系樹脂粒子(PVA-3)を得た。得られたPVA-3は、平均粒子径が600μmの粉末状であった。
 また、PVA-3のケン化度は、樹脂中の残存酢酸ビニルの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99.0モル%であった。また、粘度平均重合度は、JIS K6726に準じて分析を行ったところ、2000であった。
2.未変性PVA系樹脂粒子(PVA-4)の製造
 上記で得られた未変性PVA系樹脂粒子(PVA-3)を用いて、実施例1の「2.変性PVA系樹脂粒子(PVA-2)の製造」と同様の再ケン化処理を行った。
 得られた未変性PVA系樹脂粒子(PVA-4)は、ケン化度が100モル%、平均重合度が2000、平均粒子径が600μmであった。
 PVA-3とPVA-4について、実施例1と同様にしてPVA系樹脂の残存率を算出し、その結果よりケン化度の差に対するPVA系樹脂の残存率の変動幅比を算出した。結果を表1に示す。
(比較例1)
1.未変性PVA系樹脂粒子(PVA-5)の製造
 実施例2のPVA-3の製造方法において、メタノールを34.5部、9.5時間反応し、重合率が89%となった時点で重合を終了し、ケン化時の固形分濃度を50%、水酸化ナトリウム2%メタノール溶液(ナトリウム換算)を4.8ミリモル、追加で7.5ミリモルを変更した以外は同様にして、未変性PVA樹脂粒子(PVA-5)を得た。
 PVA-5は、ケン化度が98.9モル%、平均重合度が500、平均粒子径が610μmであった。
2.未変性PVA系樹脂粒子(PVA-6)の製造
 上記で得られた未変性PVA樹脂粒子(PVA-5)を用いて、実施例1の「2.変性PVA系樹脂粒子(PVA-2)の製造」と同様の再ケン化処理を行った。
 得られた未変性PVA樹脂粒子(PVA-6)は、ケン化度が100モル%、平均重合度が500、平均粒子径が610μmであった。
 PVA-5とPVA-6について、実施例1と同様にしてPVA系樹脂の残存率を算出し、その結果よりケン化度の差に対するPVA系樹脂の残存率の変動幅比を算出した。結果を表1に示す。
(比較例2)
1.変性PVA系樹脂粒子(PVA-7)の製造
 実施例1の「1.変性PVA系樹脂粒子(PVA-1)の製造」において、メタノールを32.5部、11時間反応し、重合率が91%となった時点で終了し、ケン化時の固形分濃度を50%に調整して、水酸化ナトリウム2%メタノール溶液(ナトリウム換算)を4.5ミリモル、追加で7.5ミリモルに変更した以外は同様にして、側鎖1,2-ジオール構造単位含有変性PVA系樹脂粒子(PVA-7)を得た。
 得られたPVA-7は、ケン化度が99.3モル%、平均重合度が450、1,2-ジオール構造単位の含有量(変性率)が1モル%、平均粒子径が750μmであった。
2.変性PVA系樹脂粒子(PVA-8)の製造
 上記で得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂粒子(PVA-7)を用いて、実施例1の「2.変性PVA系樹脂粒子(PVA-2)の製造」と同様の再ケン化処理を行った。
 PVA-8は、ケン化度が100モル%、平均重合度が450、1,2-ジオール構造単位の含有量(変性率)は1モル%、平均粒子径が750μmであった。
 PVA-7とPVA-8について、実施例1と同様にしてPVA系樹脂の残存率を算出し、その結果よりケン化度の差に対するPVA系樹脂の残存率の変動幅比を算出した。結果を表1に示す。
 また、実施例1と比較例2についてケン化度に対する残存率の変動を図1に、実施例2と比較例1についてケン化度に対する残存率の変動を図2に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000005
 表1及び図1、2の結果より、実施例1、2は、ケン化度の差に対するPVA系樹脂の残存率の変動幅比が5以下であり、比較例1、2よりも低く、溶解初期の溶解性が安定していた。よって、実施例1、2はダイバーティングエージェントに用いた場合に、ケン化度に対する溶解初期の溶解度の変動幅が小さいため、坑井の亀裂に対して優れた閉塞性を発揮できることがわかった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2018年12月27日出願の日本特許出願(特願2018-245096)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (4)

  1.  平均重合度が1000以上であるポリビニルアルコール系樹脂を含有するダイバーティングエージェント。
  2.  前記ポリビニルアルコール系樹脂のケン化度が、90モル%以上である、請求項1に記載のダイバーティングエージェント。
  3.  前記ポリビニルアルコール系樹脂を50質量%以上含有する、請求項1又は2に記載のダイバーティングエージェント。
  4.  坑井に生成された亀裂を一時的に閉塞する方法であって、
     請求項1~3のいずれか1項に記載のダイバーティングエージェントを、坑井内の流体の流れに乗せて閉塞したい亀裂に流入させる坑井の亀裂の閉塞方法。
PCT/JP2019/051043 2018-12-27 2019-12-25 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法 WO2020138252A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020563396A JPWO2020138252A1 (ja) 2018-12-27 2019-12-25 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
CN201980085460.XA CN113227168A (zh) 2018-12-27 2019-12-25 转向剂和使用了其的坑井的龟裂的堵塞方法
EP19905493.3A EP3904402A4 (en) 2018-12-27 2019-12-25 DEVIATION AGENT, AND WELL CRACK PLUGGING METHOD IMPLEMENTING THE SAME
US17/352,693 US20210309910A1 (en) 2018-12-27 2021-06-21 Diverting agent and method of filling fracture in well using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245096 2018-12-27
JP2018245096 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/352,693 Continuation US20210309910A1 (en) 2018-12-27 2021-06-21 Diverting agent and method of filling fracture in well using same

Publications (1)

Publication Number Publication Date
WO2020138252A1 true WO2020138252A1 (ja) 2020-07-02

Family

ID=71129506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051043 WO2020138252A1 (ja) 2018-12-27 2019-12-25 ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法

Country Status (5)

Country Link
US (1) US20210309910A1 (ja)
EP (1) EP3904402A4 (ja)
JP (1) JPWO2020138252A1 (ja)
CN (1) CN113227168A (ja)
WO (1) WO2020138252A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997861B (zh) * 2017-08-10 2024-01-12 三菱化学株式会社 转向剂及使用其的坑井的龟裂的堵塞方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
CN102344788A (zh) * 2010-11-18 2012-02-08 中国石油天然气股份有限公司 一种可控破胶的水平井分段压裂用暂堵剂及其制备方法
CN107286923A (zh) * 2016-04-12 2017-10-24 中国石油化工集团公司 一种油气田压裂液、油气田固井剂以及油气田压裂暂堵剂
CN107286916A (zh) * 2016-04-12 2017-10-24 中国石油化工集团公司 一种含有pva、pva纤维的油气田压裂液、油气田固井剂和油气田压裂暂堵剂
WO2018231236A1 (en) * 2017-06-15 2018-12-20 Halliburton Energy Services, Inc. Plasticized polyvinyl alcohol diverter materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398826B2 (en) * 2003-11-14 2008-07-15 Schlumberger Technology Corporation Well treatment with dissolvable polymer
EP2075303A1 (en) * 2007-12-18 2009-07-01 PRAD Research and Development N.V. Spacer fluid additive
WO2014074326A1 (en) * 2012-11-06 2014-05-15 Schlumberger Canada Limited Fiber agglomeration system and method
JP5615343B2 (ja) * 2012-12-19 2014-10-29 日本合成化学工業株式会社 樹脂組成物およびその成形品
JP6216675B2 (ja) * 2014-03-31 2017-10-18 株式会社クラレ スラリー用添加剤、掘削泥水及びセメントスラリー
US10028915B2 (en) * 2014-07-25 2018-07-24 The Nippon Synthetic Chemical Industry Co., Ltd. Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles
CN110997861B (zh) * 2017-08-10 2024-01-12 三菱化学株式会社 转向剂及使用其的坑井的龟裂的堵塞方法
CN111527182B (zh) * 2017-12-28 2022-12-13 三菱化学株式会社 转向剂和使用其的坑井的龟裂的堵塞方法
US11118105B2 (en) * 2018-08-28 2021-09-14 Kuraray Co., Ltd. Polyvinyl alcohol based diverting agents

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
CN102344788A (zh) * 2010-11-18 2012-02-08 中国石油天然气股份有限公司 一种可控破胶的水平井分段压裂用暂堵剂及其制备方法
CN107286923A (zh) * 2016-04-12 2017-10-24 中国石油化工集团公司 一种油气田压裂液、油气田固井剂以及油气田压裂暂堵剂
CN107286916A (zh) * 2016-04-12 2017-10-24 中国石油化工集团公司 一种含有pva、pva纤维的油气田压裂液、油气田固井剂和油气田压裂暂堵剂
WO2018231236A1 (en) * 2017-06-15 2018-12-20 Halliburton Energy Services, Inc. Plasticized polyvinyl alcohol diverter materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904402A4

Also Published As

Publication number Publication date
US20210309910A1 (en) 2021-10-07
CN113227168A (zh) 2021-08-06
EP3904402A4 (en) 2022-02-23
JPWO2020138252A1 (ja) 2021-11-18
EP3904402A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP7342362B2 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
US11597870B2 (en) Diverting agent and method of filling fracture in well using the same
US11898090B2 (en) Diverting agent and method of filling fracture in well using the same
US11674073B2 (en) Diverting agent and method of filling fracture in well using same
WO2020138252A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2020138251A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
JPWO2020138253A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
US11891569B2 (en) Diverting agent and method of filling fracture in well using the same
WO2020166597A1 (ja) ダイバーティングエージェント及びこれを用いた坑井の亀裂の閉塞方法
WO2022085796A1 (ja) ダイバーティングエージェント、これを用いた坑井の亀裂の一時閉塞方法、及びさらなる亀裂の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905493

Country of ref document: EP

Effective date: 20210727