WO2016013323A1 - 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 - Google Patents
帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 Download PDFInfo
- Publication number
- WO2016013323A1 WO2016013323A1 PCT/JP2015/066933 JP2015066933W WO2016013323A1 WO 2016013323 A1 WO2016013323 A1 WO 2016013323A1 JP 2015066933 W JP2015066933 W JP 2015066933W WO 2016013323 A1 WO2016013323 A1 WO 2016013323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- antistatic
- antistatic agent
- compound
- dicarboxylic acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/16—Anti-static materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/017—Additives being an antistatic agent
Definitions
- the present invention relates to an improvement of an antistatic agent, an antistatic agent composition, an antistatic resin composition (hereinafter also simply referred to as “resin composition”) and a molded article.
- Thermoplastic resin is not only lightweight and easy to process, but also has excellent properties such as the ability to design the substrate according to the application, so it is an important material indispensable in modern times. is there.
- thermoplastic resins have the property of being excellent in electrical insulation, they are frequently used for components of electrical products. However, since the thermoplastic resin is too insulating, there is a problem that it is easily charged by friction or the like.
- thermoplastic resin attracts surrounding dust and dust, which causes a problem that the appearance of the resin molded product is impaired.
- a precision device such as a computer may not be able to operate normally due to charging.
- electric shock there are problems caused by electric shock. When an electric shock occurs from the resin to the human body, it not only makes the person uncomfortable, but may also cause an explosion accident where there is flammable gas or dust.
- the most common antistatic treatment method is a method of adding an antistatic agent to the synthetic resin.
- antistatic agents include a coating type that is applied to the surface of the resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability.
- a large amount of organic matter is applied to the surface, there is a problem that the material touching the surface is contaminated.
- Patent Documents 1 and 2 polyether ester amides have been proposed for imparting antistatic properties to polyolefin resins.
- Patent Document 3 a block polymer having a structure in which a polyolefin block and a hydrophilic polymer block are repeatedly and alternately bonded has been proposed.
- an object of the present invention is to provide an antistatic effect that can impart an excellent antistatic effect with a small addition amount, has sufficient durability and wiping resistance, and does not impair the original physical properties of the resin, and
- the object is to provide an antistatic agent composition.
- Another object of the present invention is to provide an antistatic resin composition having sufficient durability and wiping resistance, excellent antistatic properties, and the original physical properties of the resin.
- Still another object of the present invention is to provide a molded article made of a thermoplastic resin, which is less likely to cause a drop in commercial value due to surface contamination due to static electricity or adhesion of dust, and has the original physical properties of the resin.
- the antistatic agent of the present invention comprises a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, a compound having one or more groups represented by the following general formula (1) and hydroxyl groups at both ends (B ) And an epoxy compound (D) having two or more epoxy groups are composed of a polymer compound (E) having a structure formed by bonding via an ester bond.
- the polymer compound (E) comprises a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, the compound (B), and the epoxy compound ( D) preferably has a structure formed by bonding via an ester bond.
- the polymer compound (E) has a block composed of the polyester (A) and a block composed of the compound (B) alternately and alternately via an ester bond. It is preferable that the block polymer (C) having a carboxyl group at both ends formed by bonding and the epoxy compound (D) have a structure formed by bonding through an ester bond.
- the polyester (A) preferably has a structure having carboxyl groups at both ends.
- the number average molecular weight of the block composed of the polyester (A) is 800 to 8,000 in terms of polystyrene, and the number of blocks composed of the compound (B).
- the average molecular weight is preferably 400 to 6,000 in terms of polystyrene, and the number average molecular weight of the block polymer (C) is preferably 5,000 to 25,000 in terms of polystyrene.
- the compound (B) is preferably polyethylene glycol.
- the antistatic agent composition of the present invention further comprises one or more selected from the group consisting of alkali metal salts and Group 2 element salts to the antistatic agent of the present invention. It is characterized by this.
- the antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention or the antistatic agent composition of the present invention is blended with a thermoplastic resin. is there.
- the thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof.
- the mass ratio of the thermoplastic resin to the antistatic agent or the antistatic agent composition may be in the range of 99/1 to 40/60. preferable.
- the molded article of the present invention is characterized by comprising the antistatic resin composition of the present invention.
- an antistatic agent and an antistatic agent that can provide an excellent antistatic effect with a small addition amount, have sufficient durability and wiping resistance, and do not impair the original physical properties of the resin.
- An agent composition can be provided.
- an antistatic resin composition having sufficient durability and wiping resistance, excellent antistatic properties, and original physical properties of the resin can be provided.
- the polymer compound (E) according to the present invention comprises a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, a compound (B) having one or more groups represented by the following general formula (1) and having hydroxyl groups at both ends.
- the epoxy compound (D) which has 2 or more of epoxy groups has the structure formed by couple
- the polymer compound (E) includes a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and a compound (B) having one or more groups represented by the general formula (1) and having hydroxyl groups at both ends.
- the epoxy compound (D) having two or more epoxy groups can be obtained by an esterification reaction.
- diol used in the present invention examples include aliphatic diols and aromatic group-containing diols.
- the diol may be a mixture of two or more.
- examples of the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol.
- 1,4-cyclohexanedimethanol and hydrogenated bisphenol A are preferable from the viewpoint of compatibility with thermoplastic resins and antistatic properties, and 1,4-cyclohexanedimethanol is more preferable.
- the aliphatic diol preferably has hydrophobicity, among the aliphatic diols, polyethylene glycol having hydrophilicity is not preferable. However, this is not the case when used with other diols.
- aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, an ethylene oxide adduct of bisphenol A, Examples thereof include propylene oxide adducts of bisphenol A, polyhydroxyethyl adducts of mononuclear dihydric phenol compounds such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
- diols having an aromatic group ethylene oxide adduct of bisphenol A, 1,4-bis ( ⁇ -hydroxyethoxy) benzene is preferable.
- the aliphatic dicarboxylic acid used in the present invention may be a derivative of an aliphatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.).
- the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
- the aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 20 carbon atoms, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, Examples include sebacic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, and fumaric acid.
- oxalic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid
- Examples include sebacic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, and fumaric acid.
- a dicarboxylic acid having 4 to 16 carbon atoms is preferable and a dicarboxylic acid having 6 to 12 carbon atoms is more preferable from the viewpoint of melting point and heat resistance.
- the aromatic dicarboxylic acid used in the present invention may be a derivative of an aromatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.). Moreover, 2 or more types of mixtures may be sufficient as aromatic dicarboxylic acid and its derivative (s).
- the aromatic dicarboxylic acid is preferably an aromatic dicarboxylic acid having 8 to 20 carbon atoms.
- a hydrophilic compound is preferable, and a polysiloxane having a group represented by the general formula (1) is preferable.
- Ether is more preferable, and polyethylene glycol represented by the following general formula (2) is particularly preferable.
- m represents a number of 5 to 250. m is preferably 20 to 150 from the viewpoint of heat resistance and compatibility.
- the compound (B) in addition to polyethylene glycol obtained by addition reaction of ethylene oxide, ethylene oxide and other alkylene oxides (for example, propylene oxide, 1,2-, 1,4-, 2,3- or And a polyether obtained by addition reaction with one or more of 1,3-butylene oxide and the like.
- the polyether may be random or block.
- compound (B) examples include compounds having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, ethylene oxide and other alkylene oxides (for example, propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide, etc.). These may be either random addition or block addition.
- Examples of the active hydrogen atom-containing compound include glycol, dihydric phenol, primary monoamine, secondary diamine and dicarboxylic acid.
- glycol aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, aromatic glycols having 8 to 26 carbon atoms, and the like can be used.
- Examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane Examples thereof include diol, 1,20-eicosanediol, diethylene glycol, triethylene glycol, and thiodiethylene glycol.
- Examples of the alicyclic glycol include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, and 1-methyl-3,4-cyclohexanediol. 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1′-dihydroxy-1,1′-dicyclohexanol and the like.
- aromatic glycol examples include dihydroxymethylbenzene, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, and 2-benzyl. 1,3-propanediol, triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like.
- phenol having 6 to 30 carbon atoms can be used.
- alkyls (having 1 to 10 carbon atoms) or halogen-substituted products thereof can be used.
- Examples of primary monoamines include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Examples thereof include amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine and n-icosylamine.
- Secondary diamines include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and the number of carbon atoms.
- An aromatic secondary diamine having 8 to 14 and a secondary alkanol diamine having 3 to 22 carbon atoms can be used.
- Examples of the aliphatic secondary diamine include N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-dibutylethylenediamine, N, N′-dimethylpropylenediamine, and N, N′-diethylpropylene.
- N, N'-dibutylpropylenediamine N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine N, N'-diethylhexamethylenediamine, N, N'-dibutylhexamethylenediamine, N, N'-dimethyldecamethylenediamine, N, N'-diethyldecamethylenediamine and N, N'-dibutyldecamethylenediamine Etc.
- heterocyclic secondary diamine examples include piperazine and 1-aminopiperidine.
- Examples of the alicyclic secondary diamine include N, N′-dimethyl-1,2-cyclobutanediamine, N, N′-diethyl-1,2-cyclobutanediamine, N, N′-dibutyl-1,2- Cyclobutanediamine, N, N'-dimethyl-1,4-cyclohexanediamine, N, N'-diethyl-1,4-cyclohexanediamine, N, N'-dibutyl-1,4-cyclohexanediamine, N, N'- Examples thereof include dimethyl-1,3-cyclohexanediamine, N, N′-diethyl-1,3-cyclohexanediamine, and N, N′-dibutyl-1,3-cyclohexanediamine.
- aromatic secondary diamines include N, N′-dimethyl-phenylenediamine, N, N′-dimethyl-xylylenediamine, N, N′-dimethyl-diphenylmethanediamine, and N, N′-dimethyl-diphenyletherdiamine.
- Examples of the secondary alkanoldiamine include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, and N-methyldipropanolamine.
- dicarboxylic acids having 2 to 20 carbon atoms can be used.
- dicarboxylic acids having 2 to 20 carbon atoms can be used.
- aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids are used.
- Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, methyl succinic acid, dimethyl malonic acid, ⁇ -methyl glutaric acid, ethyl succinic acid, isopropyl malonic acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanediic acid, tetradecanediic acid, hexadecanediic acid, octadecanediic acid and icosandiic acid.
- aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2 2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and potassium 3-sulfoisophthalate.
- Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid.
- Examples include acids, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid and dicyclohexyl-4,4′-dicarboxylic acid.
- active hydrogen atom-containing compounds can be used singly or in a mixture of two or more.
- epoxy compound (D) having two or more epoxy groups used in the present invention will be described.
- the epoxy compound (D) used in the present invention is not particularly limited as long as it has two or more epoxy groups, and examples thereof include mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol.
- Polyglycidyl ether compounds dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3 -Bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra
- a polyglycidyl ether compound of a polynuclear polyhydric phenol compound such as hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, orthocresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcin novolak
- epoxy compounds are made high molecular weight by using those internally crosslinked by terminal isocyanate prepolymers or polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphate esters, etc.). It may be what you did. Two or more of such epoxy compounds (D) may be used.
- the polymer compound (E) includes a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and the above compound (B) from the viewpoint of compatibility with a thermoplastic resin and antistatic properties.
- the epoxy compound (D) preferably have a structure formed by bonding via an ester bond.
- the polymer compound (E) includes a block composed of a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, from the viewpoint of compatibility with a thermoplastic resin and antistatic properties.
- the polyester (A) according to the present invention is only required to be composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid.
- the removed residue has a structure bonded via an ester bond, and the residue obtained by removing the hydroxyl group of the diol and the residue obtained by removing the carboxyl group of the aromatic dicarboxylic acid are linked via an ester bond. Structure.
- the polyester (A) preferably has a structure having carboxyl groups at both ends. Further, the degree of polymerization of the polyester (A) is preferably in the range of 2-50.
- the polyester (A) having carboxyl groups at both ends can be obtained, for example, by subjecting the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid to a polycondensation reaction with the diol.
- the aliphatic dicarboxylic acid may be a derivative of an aliphatic dicarboxylic acid (for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.).
- an aliphatic dicarboxylic acid for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.
- the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
- the aromatic dicarboxylic acid may be a derivative of an aromatic dicarboxylic acid (for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.). It is sufficient that the both ends are treated to form carboxyl groups, and the reaction for proceeding to the next block polymer (C) having a structure having carboxyl groups at both ends may be proceeded as it is. Moreover, 2 or more types of mixtures may be sufficient as aromatic dicarboxylic acid and its derivative (s).
- an aromatic dicarboxylic acid for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.
- the ratio of the residue excluding the carboxyl group of the aliphatic dicarboxylic acid to the residue excluding the carboxyl group of the aromatic dicarboxylic acid is 90:10 to 99.9: 0. 1 is preferable, and 93: 7 to 99.9: 0.1 is more preferable.
- the polyester (A) having carboxyl groups at both ends can be obtained, for example, by subjecting the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof to a polycondensation reaction with the diol.
- the reaction ratio of the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof to the diol is such that the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof are adjusted so that both ends are carboxyl groups. It is preferable to use an excess, and it is more preferable to use a molar excess with respect to the diol.
- the molar ratio of the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof during the polycondensation reaction is preferably 90:10 to 99.9: 0.1, and 93: 7 to 99.9. : 0.1 is more preferable.
- a polyester composed only of a diol and an aliphatic dicarboxylic acid or a polyester composed only of a diol and an aromatic dicarboxylic acid may be produced. They may be mixed in A), or they may be directly reacted with the component (B) to obtain the block polymer (C).
- a catalyst that promotes the esterification reaction may be used.
- the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
- aliphatic dicarboxylic acids and aromatic dicarboxylic acids can be obtained by reacting them with a diol when a derivative such as a carboxylic acid ester, a carboxylic acid metal salt, or a carboxylic acid halide is used instead of the dicarboxylic acid.
- the terminal may be treated to form a dicarboxylic acid, or the reaction may proceed to the next reaction for obtaining a block polymer (C) having a structure having a carboxyl group at both ends.
- a suitable polyester (A) comprising a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and having a carboxyl group at both ends forms an ester bond by reacting with the component (B), and the block polymer (C) Any structure may be used, and the carboxyl groups at both ends may be protected, modified, or in the form of a precursor. Moreover, in order to suppress the oxidation of a product at the time of reaction, you may add antioxidants, such as a phenolic antioxidant, to a reaction system.
- the compound (B) having hydroxyl groups at both ends only needs to form an ester bond by reacting with the component (A) to form the structure of the block polymer (C), and the hydroxyl groups at both ends are protected. It may be modified, modified, or in the form of a precursor.
- the block polymer (C) having a structure having a carboxyl group at both ends has a block composed of the polyester (A) and a block composed of the compound (B).
- the block has a structure in which the block is repeatedly and alternately bonded through an ester bond formed by a carboxyl group and a hydroxyl group.
- An example of such a block polymer (C) is, for example, one having a structure represented by the following general formula (3).
- (A) represents a block composed of the polyester (A) having carboxyl groups at both ends
- (B) is from the compound (B) having hydroxyl groups at both ends.
- t is the number of repeating units, and preferably represents a number of 1 to 10.
- t is more preferably a number of 1 to 7, and most preferably a number of 1 to 5.
- a part of the block composed of the polyester (A) in the block polymer (C) is composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, or composed only of a diol and an aromatic dicarboxylic acid. It may be replaced with a block made of polyester.
- the block polymer (C) having a structure having carboxyl groups at both ends is a polycondensation reaction between the polyester (A) having carboxyl groups at both ends and the compound (B) having hydroxyl groups at both ends.
- a block polymer (C) having the following can be preferably obtained.
- the compound (B) may be added to the reaction system and reacted as it is without isolating the polyester (A).
- a catalyst that promotes the esterification reaction may be used.
- the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
- antioxidants such as a phenolic antioxidant
- the polyester (A) may be mixed with a polyester composed only of a diol and an aliphatic dicarboxylic acid, or a polyester composed only of a diol and an aromatic dicarboxylic acid. To obtain a block polymer (C).
- the block polymer (C) includes a block composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, a block composed of a polyester (A), and a block composed of a compound (B), A block composed of polyester composed only of aromatic dicarboxylic acid may be included in the structure.
- the block polymer (C) having a structure having a carboxyl group at both ends and the epoxy compound (D) having two or more epoxy groups are preferably a block polymer. It has a structure formed by bonding via an ester bond formed by the terminal carboxyl group of (C) and the epoxy group of epoxy compound (D).
- the polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (A) and the epoxy group of the epoxy compound (D).
- the carboxyl group of the block polymer (C) and the epoxy group of the epoxy compound (D) may be reacted.
- the number of epoxy groups in the epoxy compound (D) is preferably 0.5 to 5 equivalents, more preferably 0.5 to 1.5 equivalents, of the number of carboxyl groups in the block polymer (C) to be reacted.
- the said reaction may be performed in various solvents and may be performed in a molten state.
- the epoxy compound (D) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalents, preferably 0.2 to 1.5 equivalents of the number of carboxyl groups of the block polymer (C) to be reacted. More preferred.
- the epoxy compound (D) may be added to the reaction system without isolation of the block polymer (C) and reacted as it is.
- the carboxyl group of the unreacted polyester (A) used excessively when synthesizing the block polymer (C) reacts with some epoxy groups of the epoxy compound (D) to form an ester bond. May be.
- a preferred polymer compound (E) of the present invention comprises a block polymer (C) having a structure having carboxyl groups at both ends and an epoxy compound (D) having two or more epoxy groups, each having a carboxyl group and an epoxy group. It is not always necessary to synthesize from the block polymer (C) and the epoxy compound (D) as long as it has a structure equivalent to that having a structure bonded through an ester bond formed by
- the number average molecular weight of the block composed of the polyester (A) in the polymer compound (E) is preferably 800 to 8,000, more preferably 1,000 to 6,000 in terms of polystyrene. More preferably, it is 2,000 to 4,000.
- the number average molecular weight of the block composed of the compound (B) having hydroxyl groups at both ends in the polymer compound (E) is preferably 400 to 6,000, more preferably 1,000 in terms of polystyrene. 5,000 to 5,000, more preferably 2,000 to 4,000.
- the number average molecular weight of the block composed of the block polymer (C) having a structure having carboxyl groups at both ends in the polymer compound (E) is preferably 5,000 to 25,000 in terms of polystyrene. More preferably, it is 7,000 to 17,000, and further preferably 9,000 to 13,000.
- the polymer compound (E) of the present invention is obtained by obtaining the polyester (A) from a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and then isolating the polyester (A) without isolating the polyester (A). Or you may make it react with an epoxy compound (D).
- the antistatic agent of the present invention is also preferably an antistatic agent composition comprising one or more selected from the group consisting of alkali metal salts and Group 2 element salts.
- alkali metal salts and Group 2 element salts include organic acid or inorganic acid salts.
- alkali metals include lithium, sodium, potassium, cesium, rubidium, and the like.
- the acid include beryllium, magnesium, calcium, strontium, barium and the like, and examples of the organic acid include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid.
- Aliphatic carboxylic acids having 1 to 12 carbon atoms such as oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid and adipic acid; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid and salicylic acid Acid; charcoal such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethanesulfonic acid, etc.
- Examples of the inorganic acid include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid, and the like. .
- alkali metal salts are preferable, lithium, sodium and potassium salts are more preferable, and lithium salts are most preferable.
- acetic acid salts, perchloric acid salts, p-toluenesulfonic acid salts, and dodecylbenzenesulfonic acid salts are preferred.
- alkali metal salt and the group 2 element salt include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium phosphate, and sodium phosphate.
- the alkali metal salt and / or the Group 2 element salt may be added to the polymer compound (E) used in the antistatic agent of the present invention, or may be added to the thermoplastic resin together with the polymer compound (E). May be used.
- the blending amount of the alkali metal salt and / or the Group 2 element salt is preferably 0.01 to 20 parts by mass, and 0.1 to 15 parts by mass with respect to 100 parts by mass of the polymer compound (E). More preferred is 1 to 10 parts by mass.
- the antistatic agent of the present invention may be used as an antistatic agent composition by blending a surfactant.
- a surfactant nonionic, anionic, cationic or amphoteric surfactants can be used.
- Nonionic surfactants include polyethylene glycol type nonionic surfactants such as higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts; polyethylene oxide, fatty acid esters of glycerin Polyanhydric alcohol type nonionic surfactants such as fatty acid ester of pentaerythritol, fatty acid ester of sorbit or sorbitan, alkyl ether of polyhydric alcohol, aliphatic amide of alkanolamine, etc.
- Is for example, carboxylates such as alkali metal salts of higher fatty acids; sulfate esters such as higher alcohol sulfates, higher alkyl ether sulfates, alkylbenzes Sulfonates such as sulfonates, alkyl sulfonates, and paraffin sulfonates; and phosphate ester salts such as higher alcohol phosphates.
- cationic surfactants include alkyltrimethylammonium salts. And quaternary ammonium salts.
- amphoteric surfactants include amino acid-type amphoteric surfactants such as higher alkylaminopropionates, and betaine-type amphoteric surfactants such as higher alkyldimethylbetaines and higher alkyldihydroxyethylbetaines, which can be used alone or Two or more types can be used in combination.
- anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonate, alkyl sulfonate, and paraffin sulfonate are particularly preferable.
- the surfactant may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
- the compounding amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E). preferable.
- the antistatic agent of the present invention may be used as an antistatic agent composition by blending a polymer antistatic agent.
- a polymer type antistatic agent for example, a polymer type antistatic agent such as a known polyether ester amide can be used.
- a polyether ester amide for example, JP-A-7-10989 And polyether ester amides comprising a polyoxyalkylene adduct of bisphenol A described in 1.
- a block polymer having a repeating structure having 2 to 50 bonding units between a polyolefin block and a hydrophilic polymer block can be used, and examples thereof include a block polymer described in US Pat. No. 6,552,131.
- the polymer type antistatic agent may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
- the blending amount of the polymer type antistatic agent is preferably 50 parts by mass or less, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the polymer compound (E).
- the antistatic agent of the present invention may be used as an antistatic agent composition by blending an ionic liquid.
- the ionic liquid are those having a melting point of room temperature or lower, at least one of cations or anions constituting the ionic liquid is an organic ion, and an initial conductivity of 1 to 200 ms / cm, preferably 10 to 200 ms.
- a room temperature molten salt that is / cm for example, a room temperature molten salt described in International Publication No. 95/15572.
- Examples of cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations.
- Imidazolinium cation Examples include those having 5 to 15 carbon atoms, such as 1,2,3,4-tetramethylimidazolinium and 1,3-dimethylimidazolinium;
- Imidazolium cation Examples include those having 5 to 15 carbon atoms, such as 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
- Tetrahydropyrimidinium cation Examples include those having 6 to 15 carbon atoms, such as 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra.
- Methyl-1,4,5,6-tetrahydropyrimidinium (4) Dihydropyrimidinium cation C6-20, for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi Ni, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
- 1,3-dimethyl-1,4-dihydropyrimidinium 1,3-dimethyl-1,6-dihydropyrimidi Ni
- 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
- Examples of the pyridinium cation include those having 6 to 20 carbon atoms, such as 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
- Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, such as 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
- Guanidinium cation having an imidazolinium skeleton One having 8 to 15 carbon atoms includes, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium, 2-diethylamino-1,3 , 4-trimethylimidazolinium;
- the above cations may be used alone or in combination of two or more. Of these, from the viewpoint of antistatic properties, an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
- examples of the organic acid or inorganic acid constituting the anion include the following.
- examples of the organic acid include carboxylic acid, sulfuric acid ester, sulfonic acid and phosphoric acid ester;
- examples of the inorganic acid include super strong acid (for example, borofluoric acid, tetrafluoroboric acid, perchloric acid, phosphorus hexafluoride). Acid, hexafluoroantimonic acid and hexafluoroarsenic acid), phosphoric acid and boric acid.
- the organic acid and inorganic acid may be used singly or in combination of two or more.
- a super strong acid conjugate in which the Hammett acidity function ( ⁇ H 0 ) of the anion constituting the ionic liquid is 12 to 100 is preferable.
- Bases acids that form anions other than conjugate bases of super strong acids, and mixtures thereof.
- halogen eg, fluorine, chlorine and bromine
- alkyl having 1 to 12 carbon atoms
- benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
- examples of super strong acids include those derived from proton acids, combinations of proton acids and Lewis acids, and mixtures thereof.
- borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imidic acid and bis (pentafluoroethylsulfonyl) imidic acid are preferable from the viewpoint of ease of synthesis.
- Examples of the protonic acid used in combination with the Lewis acid include hydrogen halide (for example, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, and trifluoromethane.
- Examples include sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, and mixtures thereof.
- hydrogen fluoride is preferred from the viewpoint of the initial conductivity of the ionic liquid.
- Lewis acid examples include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof.
- boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
- the combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid composed of these combinations include tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorotantalic acid, hexafluoroantimonic acid, hexafluoride. Tantalum sulfonate, tetrafluoroboronic acid, hexafluorophosphoric acid, chloroboron trifluoride, arsenic hexafluoride and mixtures thereof.
- a conjugate base of a super strong acid (a super strong acid comprising a proton acid and a super strong acid comprising a combination of a proton acid and a Lewis acid), and more preferred.
- a conjugate base of a super strong acid composed of a proton acid and a super strong acid composed of a proton acid and boron trifluoride and / or phosphorus pentafluoride is particularly preferred.
- the ionic liquid having an amidinium cation is preferable from the viewpoint of antistatic properties, the ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and particularly preferable.
- 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is more preferable, and particularly preferable.
- the compounding amount of the ionic liquid is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E). preferable.
- the antistatic agent of the present invention may be blended with a compatibilizing agent to form an antistatic agent composition.
- blending a compatibilizing agent include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group, and a polyoxyalkylene group, for example, Examples include a polymer described in JP-A-3-258850, a modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, or a block polymer having a polyolefin part and an aromatic vinyl polymer part. It is done.
- the compatibilizing agent may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
- the compounding amount of the compatibilizing agent is preferably 0.1 to 15 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E).
- the antistatic agent and antistatic agent composition of the present invention are particularly preferably used as an antistatic resin composition by blending with a thermoplastic resin.
- thermoplastic resins include polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, crosslinked polyethylene, ultrahigh molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, etc.
- ⁇ -olefin polymers or polyolefin resins such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer and their copolymers; polyvinyl chloride, polyvinylidene chloride, chlorine Polyethylene, chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate ternary Copolymer, vinyl chloride-acrylic Halogen-containing resins such as acid ester copolymers, vinyl chloride-maleic acid ester copolymers, vinyl chloride-cyclohexyl maleimide copolymers; petroleum resins, coumarone resins, polystyrene, polyvinyl acetate,
- Thermoplastic resins are isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluorine rubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, nylon. It may be an elastomer such as a base elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. In the present invention, these thermoplastic resins may be used alone or in combination of two or more. Further, the thermoplastic resin may be alloyed.
- thermoplastic resins include molecular weight, degree of polymerization, density, softening point, proportion of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and blending ratio of monomer as raw material, type of polymerization catalyst (For example, Ziegler catalyst, metallocene catalyst, etc.) can be used.
- type of polymerization catalyst for example, Ziegler catalyst, metallocene catalyst, etc.
- at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof is preferable from the viewpoint of antistatic properties.
- the mass ratio of the thermoplastic resin and the antistatic agent or antistatic agent composition in the antistatic resin composition of the present invention is preferably in the range of 99/1 to 40/60.
- the blending method of the polymer compound (E) into the thermoplastic resin is not particularly limited, and any commonly used method can be used. For example, by roll kneading, bumper kneading, an extruder, a kneader, etc. What is necessary is just to mix and knead
- a high molecular compound (E) may be added to a thermoplastic resin as it is, you may add after impregnating a support
- a carrier those known as fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
- titanium oxide powder those obtained by chemically modifying the surface of these carriers, solid ones among the flame retardants and antioxidants listed below, and the like can be mentioned.
- these carriers those obtained by chemically modifying the surface of the carrier are preferred, and those obtained by chemically modifying the surface of the silica powder are more preferred.
- These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
- the polymer compound (E) As a method of blending the polymer compound (E) into the thermoplastic resin, the polymer compound (E) is synthesized and blended while kneading the block polymer (C) and the epoxy compound (D) simultaneously with the thermoplastic resin. Alternatively, it may be blended by a method of mixing a polymer compound (E) and a thermoplastic resin at the time of molding such as injection molding to obtain a molded product, and in addition, a master batch with a thermoplastic resin in advance. This master batch may be blended.
- the antistatic resin composition of the present invention may contain various additives such as phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet absorbers, hindered amine light stabilizers, etc., as necessary. Further, it can be added, whereby the resin composition of the present invention can be stabilized.
- phenolic antioxidant examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4). -Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis (6-tert-butyl) -M-cresol), 2,2′-ethylidenebis (4,6-ditert-butylphenol), 2,2′-ethylidenebis (4-secondarybutyl-6-tert-butyl) Eno
- Examples of the phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl].
- Phosphite tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di Tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite Phosphite, bis (2,4-dicumylphenyl) pe Taerythritol diphosphite, tetra (tridecyl) isopropylidene diphenol diphosphit
- thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid). Examples include esters.
- the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
- Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
- 2-Hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert.
- Octylphenyl) benzotriazole 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2 2- (methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2′-hydroxy-3′-tert-butyl-5′-carboxyphenyl) benzotriazole and the like 2- ( 2'-hydroxyphenyl) benzotriazoles; phenyl salicylate, resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, 2,4-ditertiary amylphenyl Benzoates such as 3,5-ditert-butyl-4-hydroxybenzoate and hexadecyl-3,5-ditert-butyl-4-hydroxybenzoate; 2-ethyl-2′-ethoxyoxanilide, 2-ethoxy Substitute
- hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-tetramethyl-4-piperidyl) Sebacate, bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4 -Butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2, , 6,6-tetramethyl-4-piperidyl) -di (tridecyl
- a known neutralizing agent as necessary in order to neutralize the residual catalyst in the polyolefin resin.
- the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearamide), ethylene bis (12-hydroxystearamide), and stearic acid amide. Compounds, and these neutralizing agents may be used in combination.
- the antistatic resin composition of the present invention further includes an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, an aluminum p-tert-butylbenzoate, an aromatic phosphate metal salt, if necessary.
- Nucleating agents such as dibenzylidene sorbitol, metal soap, hydrotalcite, triazine ring-containing compound, metal hydroxide, phosphate ester flame retardant, condensed phosphate ester flame retardant, phosphate flame retardant, inorganic phosphorus Flame retardants, (poly) phosphate flame retardants, halogen flame retardants, silicon flame retardants, antimony oxides such as antimony trioxide, other inorganic flame retardant aids, other organic flame retardant aids, Fillers, pigments, lubricants, foaming agents and the like may be added.
- triazine ring-containing compound examples include melamine, ammelin, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylenediguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimelamine and the like can be mentioned.
- metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
- phosphate ester flame retardant examples include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, Trixylenyl phosphate, octyl diphenyl phosphate, xylenyl diphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butyl Phenyl) phosphate, isopropylphenyldiphenylphosphate, bis- ( Isopropy
- condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), and the like.
- Examples of the (poly) phosphate flame retardant include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate. .
- Examples of other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
- inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
- TIPAQUE R-680 Titanium oxide: manufactured by Ishihara Sangyo Co., Ltd.
- Kyowa Mag 150 magnesium oxide: manufactured by Kyowa Chemical Industry Co., Ltd.
- DHT-4A hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.
- Alkamizer 4 zinc modified hydro
- talcite manufactured by Kyowa Chemical Industry Co., Ltd.
- examples of other organic flame retardant aids include pentaerythritol.
- the antistatic resin composition of the present invention includes additives that are usually used in synthetic resins, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, plasticizers, if necessary Lubricants, flame retardants, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, release agents, pigments, processing aids, antioxidants, light stabilizers, etc., do not impair the effects of the present invention. It can mix
- the additive blended in the antistatic resin composition of the present invention may be added directly to the thermoplastic resin, or blended into the antistatic agent or antistatic composition of the present invention and then added to the thermoplastic resin. It may be added.
- An antistatic resin molded product can be obtained by molding the antistatic resin composition of the present invention.
- the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotational molding, and the like. Resin plate, sheet, film, bottle, fiber, irregular shape product Various shaped products such as these can be manufactured.
- the molded product obtained from the antistatic resin composition of the present invention is excellent in antistatic performance and sustainability. It also has resistance to wiping.
- the antistatic resin composition of the present invention and a molded body using the same are electric, electronic, communication, agriculture, forestry and fisheries, mining, construction, food, textile, clothing, medical, coal, petroleum, rubber, leather, automobile, precision It can be used in a wide range of industrial fields such as equipment, wood, building materials, civil engineering, furniture, printing, and musical instruments.
- the antistatic resin composition of the present invention and the molded product thereof are printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic money registers).
- the antistatic resin composition of the present invention and the molded product thereof are a seat (filling, outer material, etc.), belt, ceiling, compatible top, armrest, door trim, rear package tray, carpet, mat, sun visor, foil cover. , Mattress cover, air bag, insulation material, suspension hand, suspension band, electric wire coating material, electrical insulation material, paint, coating material, upholstery material, flooring, corner wall, carpet, wallpaper, wall covering material, exterior material , Interior materials, roofing materials, deck materials, wall materials, pillar materials, floorboards, fence materials, frames and repetitive shapes, window and door shapes, slabs, siding, terraces, balconies, soundproofing plates, heat insulating plates, windows Automobiles such as materials, vehicles, ships, aircraft, buildings, housing and construction materials and civil engineering materials, clothing, curtains, sheets, nonwoven fabrics, plywood, synthetic fiber boards, carpets, doormats, sheets, buckets Hose, can be container, glasses, bags, cases, goggles, skis, rackets, tents, household goods of musical instruments, etc., can be
- An antistatic agent was produced according to the following production example.
- the number average molecular weight was measured by the following molecular weight measurement method.
- Mn The number average molecular weight (hereinafter referred to as “Mn”) was measured by a gel permeation chromatography (GPC) method.
- GPC gel permeation chromatography
- the measurement conditions for Mn are as follows. Apparatus: GPC apparatus manufactured by JASCO Corporation, Solvent: tetrahydrofuran, Reference material: Polystyrene, Detector: differential refractometer (RI detector), Column stationary phase: Shodex KF-804L manufactured by Showa Denko KK Column temperature: 40 ° C Sample concentration: 1 mg / 1 mL, Flow rate: 0.8 mL / min. , Injection volume: 100 ⁇ L
- Polyester (A) -1 had an acid value of 28 and a number average molecular weight Mn of 5,400 in terms of polystyrene.
- polyester (A) -2 300 g of polyethylene glycol having a number average molecular weight of 4,000 as the compound (B) -1 having a hydroxyl group at both ends, antioxidant (ADK STAB AO-60) 0 0.5 g and 0.8 g of zirconium octylate were charged and polymerized under reduced pressure at 210 ° C. for 7 hours to obtain a block polymer (C) -2 having a structure having carboxyl groups at both ends.
- the block polymer (C) -2 having a structure having a carboxyl group at both ends had an acid value of 9 and a number average molecular weight Mn of 12,000 in terms of polystyrene.
- the block polymer (C) -5 having a structure having carboxyl groups at both ends had an acid value of 9 and a number average molecular weight Mn of 11,800 in terms of polystyrene.
- Examples 1 to 18, Comparative Examples 1 to 10 Using the antistatic resin compositions of Examples and Comparative Examples blended based on the blending amounts shown in Tables 1 to 4 below, test pieces were obtained according to the test piece preparation conditions shown below. Using the obtained test piece, the surface resistivity (SR value) measurement and the water wiping resistance evaluation test were performed according to the following. Similarly, the resin composition of the comparative example was prepared with the formulation shown in Table 5 below, and evaluated.
- ⁇ Impact copolymer polypropylene resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 200 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikegai Co., Ltd. Granulation gave pellets.
- the obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 200 ° C. and a mold temperature of 40 ° C., and a test piece for measuring surface resistance (100 mm ⁇ 100 mm ⁇ 3 mm) and physical property measurement test pieces (80 mm ⁇ 10 mm ⁇ 4 mm).
- ⁇ Homopolypropylene resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 230 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikekai Co., Ltd. Granulation gave pellets.
- the obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 40 ° C., and a test piece for measuring surface resistance (100 mm ⁇ 100 mm ⁇ 3 mm) and physical property measurement test pieces (80 mm ⁇ 10 mm ⁇ 4 mm).
- ⁇ ABS resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 230 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikekai Co., Ltd. Granulation gave pellets.
- the obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 50 ° C., and a test piece for measuring surface resistance (100 mm ⁇ 100 mm ⁇ 3 mm) and physical property measurement test pieces (80 mm ⁇ 10 mm ⁇ 4 mm).
- SR value ⁇ Method for measuring surface resistivity (SR value)>
- the obtained test piece was stored under conditions of a temperature of 25 ° C. and a humidity of 60% RH. After storage for 1 day and 30 days of molding, the R8340 resistance meter manufactured by Advantest was used in the same atmosphere. The surface specific resistance value ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute. The measurement was performed for 5 points, and the average value was obtained.
- ⁇ Water wiping resistance evaluation test> The surface of the obtained test piece was wiped 50 times with a waste water cloth and then stored for 2 hours under conditions of a temperature of 25 ° C. and a humidity of 60%, and then an R8340 resistance meter manufactured by Advantest was used in the same atmosphere. The surface resistivity ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute. The measurement was performed at five points, and the average value was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Epoxy Resins (AREA)
Abstract
Description
すなわち、本発明の帯電防止剤は、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する高分子化合物(E)からなることを特徴とするものである。
本発明に係る高分子化合物(E)は、ジオール、脂肪族ジカルボン酸、芳香族ジカルボン酸、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)およびエポキシ基を2個以上有するエポキシ化合物(D)が、エステル結合を介して結合してなる構造を有する。
本発明で用いられるジオールとしては、脂肪族ジオール、芳香族基含有ジオールが挙げられる。また、ジオールは、2種以上の混合物でもよい。脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、水添ビスフェノールAが、熱可塑性樹脂との相溶性および帯電防止性の点から好ましく、1,4-シクロヘキサンジメタノールがより好ましい。
本発明で用いられる脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
本発明で用いられる芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
上記一般式(2)中、mは5~250の数を表す。mは、耐熱性や相溶性の点から、好ましくは20~150である。
上記一般式(3)中、(A)は、上記両末端にカルボキシル基を有するポリエステル(A)から構成されたブロックを表し、(B)は、上記両末端に水酸基を有する化合物(B)から構成されたブロックを表し、tは繰り返し単位の繰り返しの数であり、好ましくは1~10の数を表す。tは、より好ましくは1~7の数であり、最も好ましくは1~5の数である。
(1)イミダゾリニウムカチオン
炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(2)イミダゾリウムカチオン
炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(3)テトラヒドロピリミジニウムカチオン
炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウムカチオン
炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
数平均分子量(以下、「Mn」と称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置 :日本分光(株)製GPC装置,
溶媒 :テトラヒドロフラン,
基準物質 :ポリスチレン,
検出器 :示差屈折計(RI検出器),
カラム固定相 :昭和電工(株)製Shodex KF-804L,
カラム温度 :40℃,
サンプル濃度 :1mg/1mL,
流量 :0.8mL/min.,
注入量 :100μL
セパラブルフラスコに、1,4-シクロヘキサンジメタノールを544g、アジピン酸を558g(3.82モル)、イソフタル酸を33g(0.20モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.5g仕込み、160℃から210℃まで徐々に昇温しながら常圧で4時間した。その後、テトライソプロポキシチタネートを0.5g仕込み、210℃、減圧下で3時間重合して、ポリエステル(A)-1を得た。ポリエステル(A)-1の酸価は28、数平均分子量Mnはポリスチレン換算で5,400であった。
セパラブルフラスコに、1,4-シクロヘキサンジメタノールを544g、アジピン酸を582g(3.98モル)、無水フタル酸を0.7g(0.01モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.5g仕込み、160℃から210℃まで徐々に昇温しながら常圧で4時間、その後210℃、減圧下で3時間重合して、ポリエステル(A)-2を得た。ポリエステル(A)-2の酸価は28、数平均分子量Mnはポリスチレン換算で5,400であった。
セパラブルフラスコに製造例2に記載の方法で得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2を300g、エポキシ化合物(D)-3として、ジシクロペンタジエンメタノールジグリシジルエーテルを6g仕込み、240℃で2時間、減圧下で重合して、本発明の帯電防止剤(E)-3を得た。
セパラブルフラスコに製造例2に記載の方法で得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2を300g、エポキシ化合物(D)-4として、ビスフェノールAジグリシジルエーテルを6g仕込み、240℃で2時間、減圧下で重合して、本発明の帯電防止剤(E)-4を得た。
セパラブルフラスコに、ビスフェノールAのエチレンオキサイド付加物を591g、セバシン酸を235g(1.16モル)、イソフタル酸を8g(0.05モル)、酸化防止剤(アデカスタブAO-60)を0.5g仕込み、160℃から220℃まで徐々に昇温しながら常圧で4時間重合した。その後、テトライソプロポキシチタネートを0.5g仕込み、220℃、減圧下で5時間重合してポリエステル(A)-3を得た。ポリエステル(A)-3の酸価は56、数平均分子量Mnはポリスチレン換算で2,300であった。
セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを569g、1,4-シクロヘキサンジカルボン酸を535g(3.11モル)、2,6-ナフタレンジカルボン酸を3g(0.01モル)、酸化防止剤(アデカスタブAO-60)を0.5g仕込み、180℃から220℃まで徐々に昇温しながら常圧で5時間重合した。その後テトライソプロポキシチタネートを0.5g仕込み、220℃、減圧下で4時間重合して、ポリエステル(A)-4を得た。ポリエステル(A)-4の酸価は28、数平均分子量Mnはポリスチレン換算で5,200であった。
セパラブルフラスコに、製造例6記載の方法で得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-4を300g、エポキシ化合物(D)-5としてo-クレゾールノボラック型エポキシ樹脂3gを仕込み、240℃で6時間、減圧下で重合して、本発明の帯電防止剤(E)-7を得た。
セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを370g、アジピン酸を289g(1.98モル)、2,6-ナフタレンジカルボン酸を9g(0.04モル)、両末端に水酸基を有する化合物(B)-1として数平均分子量4,000のポリエチレングリコールを300g、酸化防止剤(アデカスタブAO-60)を0.8g仕込み、180℃から220℃まで徐々に昇温しながら常圧で5時間した。その後テトライソプロポキシチタネートを0.8g仕込み、220℃、減圧下で6時間重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5の酸価は9、数平均分子量Mnはポリスチレン換算で11,800であった。
製造例1記載の方法で、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1を合成した。これを比較帯電防止剤(1)として比較例に用いた。
セパラブルフラスコに、製造例2記載の方法で得られたポリエステル(A)-2を200g、数平均分子量4,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.2g、酢酸ジルコニウムを0.2g仕込み、210℃で8時間、減圧下で重合して、片末端が水酸基である比較ポリエーテルエステル-1を得た。この比較ポリエーテルエステル-1の酸価は4.5、数平均分子量Mnはポリスチレン換算で12,200であった。これを比較帯電防止剤(2)として比較例に用いた。
セパラブルフラスコに、製造例2記載の方法で得られたポリエステル(A)-2を200g、数平均分子量4,000のポリエチレングリコールを400g、酸化防止剤(アデカスタブAO-60)を0.4g、酢酸ジルコニウムを0.4g仕込み、220℃、減圧下で7時間重合して、両末端が水酸基である比較ポリエーテルエステル-2を得た。この比較ポリエーテルエステル-2の水酸基価は9、数平均分子量Mnはポリスチレン換算で12,900であった。これを比較帯電防止剤(3)として比較例に用いた。
セパラブルフラスコに、比較製造例3記載の方法で得られた両末端が水酸基である比較ポリエーテルエステル-2の300gにエポキシ化大豆油5.5gを仕込み、240℃で3時間、減圧下で重合して比較帯電防止剤(4)を得た。これを比較例に用いた。
セパラブルフラスコに、製造例2記載の方法で得られたポリエステル(A)-2を300g、2-ヘキサデシルオキシランを16g仕込み、200℃で6時間、減圧下で重合して比較帯電防止剤(5)を得た。この水酸基価は11、数平均分子量Mnはポリスチレン換算で10,000であった。これを比較例に用いた。
下記の表1~4に記載した配合量に基づいてブレンドした各実施例および比較例の帯電防止性樹脂組成物を用いて、下記に示す試験片作製条件に従い、試験片を得た。得られた試験片を用いて、下記に従い、表面固有抵抗値(SR値)の測定および耐水拭き性評価試験を行った。同様にして、下記の表5に示す配合で、比較例の樹脂組成物を調製し、それぞれ評価を行った。
下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、200℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度200℃、金型温度40℃の加工条件で成形し、表面抵抗値測定用試験片(100mm×100mm×3mm)、および、物性測定用試験片(80mm×10mm×4mm)を得た。
下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度40℃の加工条件で成形し、表面抵抗値測定用試験片(100mm×100mm×3mm)、および、物性測定用試験片(80mm×10mm×4mm)を得た。
下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度50℃の加工条件で成形し、表面抵抗値測定用試験片(100mm×100mm×3mm)、および、物性測定用試験片(80mm×10mm×4mm)を得た。
得られた試験片を、成形加工後直ちに、温度25℃、湿度60%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、アドバンテスト社製のR8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点について行い、その平均値を求めた。
得られた試験片の表面を流水中ウエスで50回拭いた後、温度25℃、湿度60%の条件下で2時間保存し、その後、同雰囲気下にて、アドバンテスト社製、R8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点測定し、その平均値を求めた。
ISO178に準拠して測定した。
ISO179-1(ノッチ付)に準拠して測定した。
*2:ドデシルベンゼンスルホン酸ナトリウム
*3:p-トルエンスルホン酸リチウム
*4:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
*5:インパクトコポリマーポリプロピレン、日本ポリプロ株式会社製、商品名 BC03B
*6:ホモポリプロピレン、日本ポリプロ株式会社製、商品名 MA3
*7:ABS樹脂、テクノポリマー株式会社製、商品名 テクノABS110
Claims (15)
- 前記高分子化合物(E)が、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(A)と、前記化合物(B)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する請求項1記載の帯電防止剤。
- 前記高分子化合物(E)が、前記ポリエステル(A)から構成されたブロックおよび前記化合物(B)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する請求項2記載の帯電防止剤。
- 前記ポリエステル(A)が、両末端にカルボキシル基を有する構造を有する請求項3記載の帯電防止剤。
- 前記ポリエステル(A)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記化合物(B)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(C)の数平均分子量が、ポリスチレン換算で5,000~25,000である請求項4記載の帯電防止剤。
- 前記化合物(B)がポリエチレングリコールである請求項1記載の帯電防止剤。
- 請求項1記載の帯電防止剤に対し、さらに、アルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上が配合されてなることを特徴とする帯電防止剤組成物。
- 熱可塑性樹脂に対し、請求項1記載の帯電防止剤が配合されてなることを特徴とする帯電防止性樹脂組成物。
- 熱可塑性樹脂に対し、請求項7記載の帯電防止剤組成物が配合されてなることを特徴とする帯電防止性樹脂組成物。
- 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上である請求項8記載の帯電防止性樹脂組成物。
- 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上である請求項9記載の帯電防止性樹脂組成物。
- 前記熱可塑性樹脂と、前記帯電防止剤との質量比が、99/1~40/60の範囲である請求項8記載の帯電防止性樹脂組成物。
- 前記熱可塑性樹脂と、前記帯電防止剤組成物との質量比が、99/1~40/60の範囲である請求項9記載の帯電防止性樹脂組成物。
- 請求項8記載の帯電防止性樹脂組成物からなることを特徴とする成形体。
- 請求項9記載の帯電防止性樹脂組成物からなることを特徴とする成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177005076A KR102424656B1 (ko) | 2014-07-22 | 2015-06-11 | 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체 |
CN201580039639.3A CN106536670B (zh) | 2014-07-22 | 2015-06-11 | 抗静电剂、抗静电剂组合物、抗静电性树脂组合物及成型体 |
EP15825161.1A EP3173454B1 (en) | 2014-07-22 | 2015-06-11 | Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body |
US15/327,666 US10138402B2 (en) | 2014-07-22 | 2015-06-11 | Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body |
BR112017000918-8A BR112017000918B1 (pt) | 2014-07-22 | 2015-06-11 | Agente antiestático, composição de agente antiestático, composição de resinaantiestática, e corpo moldado |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014149019A JP6377437B2 (ja) | 2014-07-22 | 2014-07-22 | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 |
JP2014-149019 | 2014-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013323A1 true WO2016013323A1 (ja) | 2016-01-28 |
Family
ID=55162859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066933 WO2016013323A1 (ja) | 2014-07-22 | 2015-06-11 | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10138402B2 (ja) |
EP (1) | EP3173454B1 (ja) |
JP (1) | JP6377437B2 (ja) |
KR (1) | KR102424656B1 (ja) |
CN (1) | CN106536670B (ja) |
BR (1) | BR112017000918B1 (ja) |
TW (1) | TWI645023B (ja) |
WO (1) | WO2016013323A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3249018A4 (en) * | 2015-01-19 | 2018-09-05 | Adeka Corporation | Antistatic resin composition, and container and packaging material which use same |
EP3279264A4 (en) * | 2015-03-31 | 2019-02-13 | Adeka Corporation | RESIN ADDITIVE COMPOSITION AND ANTISTATIC THERMOPLASTIC RESIN COMPOSITION |
CN111363319A (zh) * | 2020-03-22 | 2020-07-03 | 李丹丹 | 一种抗菌抗静电聚酯薄膜 |
WO2020202642A1 (ja) * | 2019-03-29 | 2020-10-08 | 株式会社Adeka | 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6566643B2 (ja) * | 2015-01-19 | 2019-08-28 | 株式会社Adeka | 容器および包装材 |
JP6566647B2 (ja) * | 2015-01-26 | 2019-08-28 | 株式会社Adeka | 帯電防止性樹脂組成物ならびにこれを用いた容器および包装材 |
JP2016191165A (ja) * | 2015-03-31 | 2016-11-10 | 株式会社Adeka | ポリオレフィン系帯電防止性繊維およびそれを用いた布帛 |
EP3279269B1 (en) * | 2015-03-30 | 2020-07-22 | Adeka Corporation | Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent |
JP2016188312A (ja) * | 2015-03-30 | 2016-11-04 | 株式会社Adeka | 有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた容器および管 |
JP6652830B2 (ja) * | 2015-12-21 | 2020-02-26 | 株式会社Adeka | 帯電防止性樹脂組成物 |
JP2017128696A (ja) * | 2016-01-22 | 2017-07-27 | 株式会社Adeka | 帯電防止性熱可塑性樹脂組成物およびそれを用いた成形体 |
JP6654911B2 (ja) * | 2016-01-22 | 2020-02-26 | 株式会社Adeka | 帯電防止性熱可塑性樹脂組成物およびそれを用いた成形体 |
JP6717649B2 (ja) * | 2016-04-21 | 2020-07-01 | 株式会社Adeka | 熱可塑性樹脂組成物およびそれを用いた成形体 |
JP2019116523A (ja) * | 2017-12-26 | 2019-07-18 | 株式会社Adeka | 高分子化合物、これを含有する組成物、これらを含有する樹脂組成物およびその成形体 |
JP7329934B2 (ja) * | 2018-03-06 | 2023-08-21 | 株式会社Adeka | 組成物、これを含有する樹脂組成物、およびその成形体 |
JP7101522B2 (ja) * | 2018-04-17 | 2022-07-15 | 株式会社Adeka | 制電性熱可塑性樹脂組成物およびその成形体 |
JP6728506B1 (ja) | 2018-12-27 | 2020-07-22 | 株式会社Adeka | ポリオレフィン系樹脂用核剤、これを含有するポリオレフィン系樹脂用核剤組成物、ポリオレフィン系樹脂用マスターバッチ、ポリオレフィン系樹脂組成物、その成形品、そのフィルム、多孔質フィルムの製造方法および包装体 |
JP7414737B2 (ja) | 2019-01-11 | 2024-01-16 | 株式会社Adeka | 添加剤組成物、これを含有する熱可塑性樹脂組成物、および、その成形品 |
BR112021013408A2 (pt) | 2019-01-21 | 2021-09-14 | Adeka Corporation | Composição de agente de nucleação, composição de resina à base de olefina, artigo moldado desta e método para a produção de composição de resina à base de olefina |
CN113874431A (zh) | 2019-05-24 | 2021-12-31 | 株式会社Adeka | 树脂组合物及其成形品 |
WO2021125184A1 (ja) | 2019-12-18 | 2021-06-24 | 株式会社Adeka | 樹脂組成物、その成形品、および、その樹脂組成物の製造方法 |
EP4130128A4 (en) | 2020-03-27 | 2024-04-24 | Adeka Corporation | NUCLEATION AGENT, RESIN COMPOSITION, METHOD FOR PRODUCING RESIN COMPOSITION, AND MOLDED ARTICLE |
JPWO2021200842A1 (ja) | 2020-03-30 | 2021-10-07 | ||
EP4183827A4 (en) | 2020-07-15 | 2024-08-14 | Adeka Corp | ADDITIVE COMPOSITION, RESIN COMPOSITION CONTAINING SAME AND ASSOCIATED MOLDED ARTICLE |
JPWO2022025187A1 (ja) | 2020-07-31 | 2022-02-03 | ||
WO2022039244A1 (ja) | 2020-08-21 | 2022-02-24 | 株式会社Adeka | 化合物、合成樹脂用添加剤、合成樹脂用添加剤組成物、樹脂組成物およびその成形品 |
KR20230111609A (ko) | 2020-11-25 | 2023-07-25 | 가부시키가이샤 아데카 | 폴리올레핀계 수지용 결정화 억제제, 폴리올레핀계 수지 조성물, 성형품, 폴리올레핀계 수지 조성물의 제조 방법 및 폴리올레핀계 수지의 결정화 억제 방법 |
CN112812313B (zh) * | 2021-02-07 | 2022-07-12 | 上海涵点科技有限公司 | 一种抗静电剂及其制备方法和应用 |
US20240308109A1 (en) | 2021-06-16 | 2024-09-19 | Adeka Corporation | Nucleating agent composition, resin composition, molded article thereof, and method for manufacturing resin composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11269391A (ja) * | 1998-03-23 | 1999-10-05 | Teijin Ltd | 永久帯電防止性に優れる熱可塑性樹脂組成物およびそれから成形されたエレクトロニクス分野の搬送用冶具 |
JP2001500168A (ja) * | 1996-02-28 | 2001-01-09 | アルコ ケミカル テクノロジー,エル.ピー | 高性能のポリエーテルエステル樹脂および熱硬化性樹脂の製造方法 |
JP2001089750A (ja) * | 1999-09-22 | 2001-04-03 | Dainippon Ink & Chem Inc | 帯電防止剤および透明性帯電防止性樹脂組成物 |
JP2006045386A (ja) * | 2004-08-05 | 2006-02-16 | Daiso Co Ltd | 制電性ポリエステル樹脂組成物 |
JP2006299494A (ja) * | 2005-04-23 | 2006-11-02 | Toyo Kagaku Kk | ポリエステル系処理剤及び該処理剤で処理された被処理品 |
JP2011225634A (ja) * | 2010-04-15 | 2011-11-10 | Adeka Corp | 帯電防止剤及び熱可塑性樹脂組成物 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2519012B1 (fr) * | 1981-12-29 | 1987-04-10 | Ato Chimie | Composition nouvelle formee d'un melange intime de polyolefines et de polyetheresteramides |
JPH03290464A (ja) | 1990-04-05 | 1991-12-20 | Toray Ind Inc | 熱可塑性樹脂組成物 |
JPH10287738A (ja) * | 1997-04-15 | 1998-10-27 | Asahi Chem Ind Co Ltd | 帯電防止用ポリエーテルエステル |
JP3488163B2 (ja) | 1999-02-10 | 2004-01-19 | 三洋化成工業株式会社 | ブロックポリマー及びこれからなる帯電防止剤 |
US8187280B2 (en) * | 2007-10-10 | 2012-05-29 | Biomet Manufacturing Corp. | Knee joint prosthesis system and method for implantation |
JP5322409B2 (ja) | 2007-07-23 | 2013-10-23 | 竹本油脂株式会社 | 帯電防止性熱可塑性樹脂組成物の調製方法、帯電防止性熱可塑性樹脂組成物及び帯電防止性熱可塑性樹脂成形体 |
KR102165657B1 (ko) * | 2013-01-23 | 2020-10-14 | 가부시키가이샤 아데카 | 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체 |
BR112015024274A2 (pt) * | 2013-03-21 | 2017-07-18 | Adeka Corp | agente antiestático, composição de agente antiestático, composição de resina antiestática e artigo moldado |
-
2014
- 2014-07-22 JP JP2014149019A patent/JP6377437B2/ja active Active
-
2015
- 2015-06-11 US US15/327,666 patent/US10138402B2/en active Active
- 2015-06-11 CN CN201580039639.3A patent/CN106536670B/zh active Active
- 2015-06-11 EP EP15825161.1A patent/EP3173454B1/en active Active
- 2015-06-11 WO PCT/JP2015/066933 patent/WO2016013323A1/ja active Application Filing
- 2015-06-11 KR KR1020177005076A patent/KR102424656B1/ko active IP Right Grant
- 2015-06-11 BR BR112017000918-8A patent/BR112017000918B1/pt active IP Right Grant
- 2015-07-09 TW TW104122327A patent/TWI645023B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001500168A (ja) * | 1996-02-28 | 2001-01-09 | アルコ ケミカル テクノロジー,エル.ピー | 高性能のポリエーテルエステル樹脂および熱硬化性樹脂の製造方法 |
JPH11269391A (ja) * | 1998-03-23 | 1999-10-05 | Teijin Ltd | 永久帯電防止性に優れる熱可塑性樹脂組成物およびそれから成形されたエレクトロニクス分野の搬送用冶具 |
JP2001089750A (ja) * | 1999-09-22 | 2001-04-03 | Dainippon Ink & Chem Inc | 帯電防止剤および透明性帯電防止性樹脂組成物 |
JP2006045386A (ja) * | 2004-08-05 | 2006-02-16 | Daiso Co Ltd | 制電性ポリエステル樹脂組成物 |
JP2006299494A (ja) * | 2005-04-23 | 2006-11-02 | Toyo Kagaku Kk | ポリエステル系処理剤及び該処理剤で処理された被処理品 |
JP2011225634A (ja) * | 2010-04-15 | 2011-11-10 | Adeka Corp | 帯電防止剤及び熱可塑性樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3173454A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3249018A4 (en) * | 2015-01-19 | 2018-09-05 | Adeka Corporation | Antistatic resin composition, and container and packaging material which use same |
EP3279264A4 (en) * | 2015-03-31 | 2019-02-13 | Adeka Corporation | RESIN ADDITIVE COMPOSITION AND ANTISTATIC THERMOPLASTIC RESIN COMPOSITION |
US10323166B2 (en) | 2015-03-31 | 2019-06-18 | Adeka Corporation | Resin additive composition and antistatic thermoplastic resin composition |
WO2020202642A1 (ja) * | 2019-03-29 | 2020-10-08 | 株式会社Adeka | 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体 |
JPWO2020202642A1 (ja) * | 2019-03-29 | 2020-10-08 | ||
CN111363319A (zh) * | 2020-03-22 | 2020-07-03 | 李丹丹 | 一种抗菌抗静电聚酯薄膜 |
CN111363319B (zh) * | 2020-03-22 | 2022-07-08 | 温州强润新材料科技有限公司 | 一种抗菌抗静电聚酯薄膜 |
Also Published As
Publication number | Publication date |
---|---|
US10138402B2 (en) | 2018-11-27 |
JP6377437B2 (ja) | 2018-08-22 |
KR102424656B1 (ko) | 2022-07-22 |
EP3173454B1 (en) | 2021-05-05 |
CN106536670A (zh) | 2017-03-22 |
CN106536670B (zh) | 2018-06-19 |
EP3173454A4 (en) | 2018-01-31 |
EP3173454A1 (en) | 2017-05-31 |
TWI645023B (zh) | 2018-12-21 |
BR112017000918B1 (pt) | 2022-02-22 |
KR20170038009A (ko) | 2017-04-05 |
JP2016023254A (ja) | 2016-02-08 |
US20170210959A1 (en) | 2017-07-27 |
TW201615799A (zh) | 2016-05-01 |
BR112017000918A2 (pt) | 2018-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6377437B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP6275654B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP6309506B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP6453003B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP6452993B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP6619930B2 (ja) | ポリオレフィン系樹脂組成物 | |
WO2019021944A1 (ja) | 高分子化合物、これを含む組成物、これらを含む樹脂組成物、およびその成形体 | |
JP7329934B2 (ja) | 組成物、これを含有する樹脂組成物、およびその成形体 | |
JP6472669B2 (ja) | 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 | |
JP2022021149A (ja) | 組成物、これを含有する合成樹脂組成物およびその成形体 | |
JP2019006951A (ja) | ブロックポリマー、これを含む組成物、これらを含む樹脂組成物およびその成型体 | |
JP2019006950A (ja) | 高分子化合物、これを含む組成物、これらを含む樹脂組成物およびその成型体 | |
WO2024048524A1 (ja) | 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム | |
WO2019021943A1 (ja) | 組成物、これを含む樹脂組成物、およびその成形体 | |
WO2020203618A1 (ja) | 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム | |
JP2022089622A (ja) | 組成物、これを含有する合成樹脂組成物およびその成形体 | |
JP2022070756A (ja) | 組成物、これを含有する合成樹脂組成物、およびその成形体 | |
WO2020203619A1 (ja) | 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム | |
JP2019116523A (ja) | 高分子化合物、これを含有する組成物、これらを含有する樹脂組成物およびその成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15825161 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327666 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017000918 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015825161 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015825161 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177005076 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112017000918 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017000918 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170116 |