WO2021125184A1 - 樹脂組成物、その成形品、および、その樹脂組成物の製造方法 - Google Patents

樹脂組成物、その成形品、および、その樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2021125184A1
WO2021125184A1 PCT/JP2020/046806 JP2020046806W WO2021125184A1 WO 2021125184 A1 WO2021125184 A1 WO 2021125184A1 JP 2020046806 W JP2020046806 W JP 2020046806W WO 2021125184 A1 WO2021125184 A1 WO 2021125184A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
nucleating agent
resin
tert
measurement
Prior art date
Application number
PCT/JP2020/046806
Other languages
English (en)
French (fr)
Inventor
晶群 佐藤
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2021565597A priority Critical patent/JPWO2021125184A1/ja
Priority to EP20902370.4A priority patent/EP4079802A4/en
Priority to US17/784,755 priority patent/US20230009252A1/en
Publication of WO2021125184A1 publication Critical patent/WO2021125184A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • the present invention relates to a resin composition, a molded product thereof, and a method for producing the resin composition. Specifically, the present invention can impart excellent mechanical strength to a molded product and is excellent in dimensional stability during molding. The present invention relates to a resin composition, a molded product thereof, and a method for producing the resin composition.
  • polyolefin-based resins are one of the resin compositions having the widest application fields in terms of physical properties, moldability, price, etc., and are used in a wide range of applications.
  • Molded products made of polyolefin resin may be required to have excellent mechanical strength.
  • a method of adding a nucleating agent to the polyolefin resin is known.
  • Patent Document 1 proposes a resin composition containing a nucleating agent composed of an aromatic phosphate metal salt.
  • an object of the present invention is a resin composition which can impart excellent mechanical strength to a molded product and which is excellent in dimensional stability at the time of molding, the molded product, and a method for producing the resin composition. Is to provide.
  • the present inventor has determined that in a resin composition containing a polyolefin resin and a nucleating agent, the degree to which the crystallization rate of the polyolefin resin is promoted by the nucleating agent is during molding. We have found that it affects dimensional stability. Furthermore, the present inventor has found that specific parameters obtained from the results of thermal analysis or dynamic viscoelasticity measurement serve as a measure for promoting the crystallization rate. Based on such findings, as a result of further diligent studies, the present inventor has found that the above problems can be solved if the resin composition has a specific numerical range for this parameter, and completes the present invention. I arrived.
  • the resin composition of the present invention is a resin composition containing a polyolefin-based resin and a nucleating agent.
  • the ratio of t2 / t1 is 0.45 or more.
  • the other resin composition of the present invention is a resin composition containing a polyolefin-based resin and a nucleating agent.
  • the dynamic viscoelasticity of the resin composition was measured by the method specified in ISO-6721-10 at a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz, the storage elastic modulus curve and the loss elastic modulus curve were obtained from the start of the measurement.
  • Time T2 until the intersection of The dynamic viscoelasticity of the nucleating agent-free resin composition having the same composition as the resin composition except that the nucleating agent is not contained is measured by the method specified in ISO-6721-10 at a measurement temperature of 150 ° C. and a measurement frequency.
  • the time T1 from the start of measurement to the point where the storage elastic modulus curve and the loss elastic modulus curve intersect, and The ratio of T2 / T1 is 0.35 or more.
  • the nucleating agent is used in the following general formula (1).
  • R 1 to R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms having a straight chain or a branch, n represents 1 or 2, and n represents 1.
  • M 1 is a hydrogen atom, an alkali metal or dihydroxy aluminum, when n is 2 M 1 is preferably a compound represented by.
  • the polyolefin-based resin contains an elastomer.
  • the resin composition of the present invention and other resin compositions of the present invention preferably further contain a filler.
  • the molded product of the present invention is characterized by being obtained by molding the resin composition of the present invention and other resin compositions of the present invention.
  • the method for producing a resin composition of the present invention is a method for producing a resin composition containing a polyolefin-based resin and a nucleating agent.
  • the ratio of t2 / t1 is 0.45 or more.
  • another method for producing a resin composition of the present invention is a method for producing a resin composition containing a polyolefin-based resin and a nucleating agent.
  • the dynamic viscoelasticity of the resin composition was measured by the method specified in ISO-6721-10 at a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz
  • the storage elastic modulus was measured from the start of the measurement.
  • the dynamic viscoelasticity of the nucleating agent-free resin composition having the same composition as the resin composition except that the nucleating agent is not contained is measured by the method specified in ISO-6721-10 at a measurement temperature of 150 ° C. and a measurement frequency.
  • the ratio of T2 / T1 is 0.35 or more.
  • a resin composition which can impart excellent mechanical strength to a molded product and which is excellent in dimensional stability at the time of molding, the molded product, and a method for producing the resin composition. can do.
  • the resin composition of the present invention contains a polyolefin-based resin and a nucleating agent. Then, the ratio t2 of the isothermal crystallization time t2 at 135 ° C. and the isothermal crystallization time t1 at 135 ° C. of the nucleating agent-free resin composition having the same composition as the above resin composition except that the nucleating agent is not contained. / T1 is 0.45 or more. That is, the resin composition of the present invention has an isothermal crystallization time at 135 ° C. at 135 ° C. and has the same composition as the resin composition of the present invention except that it does not contain a nucleating agent. When the isothermal crystallization time is t1, t2 / t1 is 0.45 or more.
  • the resin composition of the present invention can impart excellent mechanical strength to the molded product and has excellent dimensional stability during molding.
  • the isothermal crystallization time at 135 ° C. is determined by the isothermal crystallization measurement by the differential scanning calorimeter. Specifically, the isothermal crystallization time is measured by heating the sample to a temperature higher than the melting point to completely melt it, then rapidly cooling it to 135 ° C, and then holding it at 135 ° C after reaching 135 ° C. , It is determined as the time from the time when the temperature reaches 135 ° C. to the time when the top of the exothermic peak appears.
  • T2 is shorter than t1 due to the crystallization promoting effect of the nucleating agent.
  • the value of t2 / t1 is a measure of the degree to which the crystallization rate is promoted by the nucleating agent.
  • t2 / t1 is less than 1.
  • the value of t2 / t1 in the resin composition containing the polyolefin resin and the nucleating agent is the type of the polyolefin resin, the type of the nucleating agent and other components contained in the resin composition, the content ratio of these components with respect to the polyolefin resin, and the resin. It is determined by the dispersed state of these components in the composition.
  • the dispersed state of the above components in the resin composition includes the characteristics of the polyolefin-based resin as powders and granules, the physical characteristics of the components (characteristics as powders and granules, specific gravity, etc.), chemical characteristics, and resin.
  • the resin composition of the present invention can be obtained by appropriately adjusting the conditions in consideration of these conditions.
  • t1 and t2 in the resin composition of the present invention can be adjusted by appropriately designing the production conditions and the composition. For example, when the amount of the nucleating agent added to the polyolefin resin is increased, the nucleating agent Since the nucleation action of is increased, t2 / t1 becomes smaller. Further, when the particle size of the polyolefin resin is reduced, the nucleating agent is more uniformly dispersed in the resin composition, so that t2 / t1 becomes smaller. In addition to this, when the polyolefin resin and the nucleating agent are sufficiently mixed, the nucleating agent is more uniformly dispersed in the resin composition, so that t2 / t1 becomes smaller. Based on these guidelines, the resin composition of the present invention has t2 / t1 as a specific range, can impart excellent mechanical strength to a molded product, and has excellent dimensional stability during molding. It becomes a composition.
  • the value of t2 / t1 in the resin composition is 0.45 or more. If the value of t2 / t1 is less than 0.45, the dimensional stability of the resin composition during molding is not sufficient. From the viewpoint of further improving the dimensional stability during molding, the value of t2 / t1 is preferably 0.5 or more, and more preferably 0.7 or more. The upper limit of the value of t2 / t1 is preferably 0.9 or less, more preferably 0.8 or less.
  • resin compositions include polyolefin resins and nucleating agents. Then, when dynamic viscoelasticity measurement is performed at a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz by the method specified in ISO-6721-10, from the start of measurement to the point where the storage elastic modulus curve and the loss elastic modulus curve intersect.
  • a nucleating agent-free resin composition having the same composition as the above resin composition except that the measurement temperature is 150 ° C. and the measurement frequency is 0.1 Hz and no nucleating agent is contained, according to the method specified in ISO-6721-10.
  • the ratio T2 / T1 of the time T1 from the start of the measurement to the point where the storage elastic modulus curve and the loss elastic modulus curve intersect is 0.35 or more. That is, the other resin composition of the present invention is stored from the start of the measurement when the dynamic viscoelastic modulus is measured under the conditions of the measurement temperature of 150 ° C. and the measurement frequency of 0.1 Hz by the method specified in ISO-6721-10.
  • the time until the intersection of the elastic modulus curve and the loss modulus curve is T2
  • the nucleating agent-free resin composition having the same composition as the other resin compositions of the present invention except that the nucleating agent is not contained is used under the same conditions.
  • T2 / T1 is 0.35 or more, where T1 is the time from the start of the measurement to the intersection of the storage elastic modulus curve and the loss elastic modulus curve.
  • the other resin composition of the present invention can impart excellent mechanical strength to the molded product and has excellent dimensional stability during molding.
  • the sample In the dynamic viscoelasticity measurement at a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz, the sample is heated to a temperature higher than the melting point to completely melt the sample, cooled to 150 ° C., and after reaching 150 ° C. The temperature is maintained at 150 ° C. In this measurement, the time when the temperature reaches 150 ° C. is defined as the time when the measurement is started.
  • the sample is in a molten state, so the contribution of the loss elastic modulus (viscous component) in the dynamic complex elastic modulus is larger than the contribution of the storage elastic modulus (elastic component). Then, as the crystallization of the resin composition progresses, the contribution of the storage elastic modulus (elastic component) gradually increases, and the loss elastic modulus (viscous component) is at the point where the storage elastic modulus curve and the loss elastic modulus curve intersect. ) And the storage elastic modulus (elastic component) are reversed.
  • the time from the start of measurement to the intersection of the storage modulus curve and the loss modulus curve is an index of the crystallization rate of the sample obtained from a viewpoint different from the above-mentioned isothermal crystallization time.
  • T2 is shorter than T1 due to the crystallization promoting effect of the nucleating agent.
  • the value of T2 / T1 is a measure of the degree to which the crystallization rate is promoted by the nucleating agent, as in the case of t2 / t1 described above, and is obtained from a viewpoint different from that of t2 / t1.
  • T2 / T1 is less than 1.
  • the value of T2 / T1 in the resin composition containing the polyolefin resin and the nucleating agent is the same as the value of t2 / t1, the type of the polyolefin-based resin, the type of the nucleating agent and other components contained in the resin composition, and these components. Is determined by the content ratio of these components to the polyolefin resin and the dispersed state of these components in the resin composition.
  • the dispersed state of the above components in the resin composition includes the characteristics of the polyolefin-based resin as powders and granules, the physical characteristics of the components (characteristics as powders and granules, specific gravity, etc.), chemical characteristics, and resin composition.
  • the other resin composition of the present invention can be obtained by appropriately adjusting the conditions in consideration of these conditions.
  • T1 and T2 in the other resin compositions of the present invention can be adjusted by appropriately designing the production conditions and the composition. For example, when the amount of the nucleating agent added to the polyolefin resin is increased, T2 / T1 becomes smaller because the nucleation action of the nucleating agent becomes larger. Further, when the particle size of the polyolefin resin is reduced, the nucleating agent is more uniformly dispersed in the resin composition, so that T2 / T1 becomes smaller. In addition to this, when the polyolefin resin and the nucleating agent are sufficiently mixed, the nucleating agent is more uniformly dispersed in the resin composition, so that T2 / T1 becomes smaller. Based on these guidelines, the other resin composition of the present invention has T2 / T1 in a specific range, can impart excellent mechanical strength to the molded product, and has excellent dimensional stability during molding. It becomes a resin composition.
  • the value of T2 / T1 in the other resin composition of the present invention is 0.35 or more. If the value of T2 / T1 is less than 0.35, the dimensional stability of the resin composition during molding is not sufficient. From the viewpoint of further improving the dimensional stability during molding, the value of T2 / T1 is preferably 0.4 or more, and more preferably 0.6 or more. The upper limit of the value of T2 / T1 is preferably 0.9 or less, more preferably 0.8 or less.
  • polyolefin-based resin examples include low-density polyethylene (LDPE), linear low-density polyethylene (L-LDPE), and high-density polyethylene (HDPE).
  • LDPE low-density polyethylene
  • L-LDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • Isotactic polypropylene Syndiotactic polypropylene, Hemiisotactic polypropylene, Cycloolefin polymer, Stereoblock polypropylene, Poly-3-methyl-1-butene, Poly-3-methyl-1-pentene, Poly-4-methyl -1-Olefin polymers such as -1-pentene, ethylene / propylene block or random copolymers, impact copolymer polypropylenes, ethylene-methyl methacrylate copolymers, ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, Examples thereof include an ethylene-butyl acrylate copolymer, an ethylene-vinyl acetate copolymer, and an ⁇ -olefin copolymer such as an ethylene-vinyl alcohol resin (EVOH).
  • the polyolefin-based resin may be a blend of two or more of these, a block polymer forming a block cop
  • the polyolefin-based resin preferably contains a polypropylene-based resin.
  • the polypropylene-based resin include isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene, stereoblock polypropylene, ethylene / propylene block or random copolymer, impact copolymer polypropylene and the like.
  • impact copolymer polypropylene is particularly preferable from the viewpoint of imparting excellent impact resistance to the molded product.
  • the polyolefin-based resin preferably contains an elastomer.
  • the resin composition can impart excellent impact resistance to the molded product.
  • the elastomer examples include a thermoplastic elastomer composed of a hard segment made of a polyolefin resin and a soft segment made of a rubber component.
  • the thermoplastic elastomer may be one in which soft segments are crosslinked by a method such as dynamic cross-linking.
  • Examples of the polyolefin-based resin constituting the hard segment include polypropylene homopolymers, polypropylene block copolymers, polypropylene random copolymers, and the like.
  • the hard segment may include two or more of these.
  • the rubber components constituting the soft segment include ethylene- ⁇ -olefin copolymers such as ethylene-propylene copolymer (EPM), ethylene-1-hexene copolymer, and ethylene-1-octene copolymer, and ethylene-.
  • EPM ethylene-propylene copolymer
  • EVA ethylene-vinyl acetate copolymer
  • vinyl acetate homopolymer and the like examples thereof include a propylene-diene copolymer (EPDM), an ethylene-vinyl acetate copolymer (EVA), a vinyl acetate homopolymer and the like, and among these, an ethylene- ⁇ -olefin copolymer is particularly preferable. Further, among the ethylene- ⁇ -olefin copolymers, the ethylene-1-octene copolymer is particularly preferable.
  • the soft segment may include two or more of these types.
  • the content of the elastomer is preferably 1 to 50% by mass of the entire polyolefin resin.
  • the resin composition can impart more excellent impact resistance to the molded product, and the molded product has excellent impact resistance in a low temperature environment.
  • the content of the elastomer is more preferably 3% by mass or more, and particularly preferably 5% by mass or more of the total amount of the polyolefin resin. Further, the content of the elastomer is more preferably 40% by mass or less, and particularly preferably 30% by mass or less of the total amount of the polyolefin resin.
  • the resin composition of the present invention and the polyolefin-based resin according to other resin compositions of the present invention include a cheegler catalyst, a chigler-natta catalyst, a metallocene catalyst and other various polymerization catalysts as co-catalysts, catalyst carriers and chain transfer agents.
  • a resin having physical properties suitable for packaging materials such as temperature, pressure, concentration, flow velocity, removal of catalyst residue, and other various polymerization conditions can be obtained. It is manufactured by appropriately selecting a material that can obtain a resin having physical properties suitable for the molding process of the packaging material.
  • the nucleating agent contained in the resin composition of the present invention and other resin compositions of the present invention is not particularly limited, and is, for example, a carboxylic acid metal salt, an aromatic phosphate metal salt, an amide compound, and sorbitol. Examples include compounds.
  • the nucleating agent may be a combination of two or more of these.
  • metal carboxylate salt examples include sodium benzoate, 4-tert-butyl benzoate aluminum salt, sodium adipate, disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate, and calcium cyclohexanedi. Carboxylate and the like can be mentioned.
  • the carboxylic acid metal salt may be a combination of two or more of these.
  • aromatic phosphate metal salt examples include compounds represented by the following general formula (1).
  • R 1 to R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms having a straight chain or a branch, n represents 1 or 2, and n is 1.
  • M 1 represents a hydrogen atom, an alkali metal or dihydroxy aluminum, when n is 2
  • M 1 represents an alkaline earth metal, zinc or hydroxy aluminum.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, and an amyl group.
  • an isopropyl group, a tert-butyl group and a tert-amyl group are preferable, and a tert-butyl group is particularly preferable.
  • alkali metal examples include lithium, sodium, potassium and the like.
  • alkaline earth metals examples include magnesium, calcium and the like.
  • M 1 is preferably at least one selected from the group consisting of lithium, sodium, dihydroxyaluminum and hydroxyaluminum, and preferably at least one selected from the group consisting of lithium, sodium and hydroxyaluminum.
  • Specific examples of the compound represented by the general formula (1) include compounds P-1 to P-6 having the following structures.
  • the compound represented by the general formula (1) may be a combination of two or more of these.
  • amide compound examples include N, N', N "-tris [2-methylcyclohexyl] -1,2,3-propanetricarboxamide, N, N', N" -tricyclohexyl-1,3,5-.
  • Benzene tricarboxamide, N, N'-dicyclohexylnaphthalenedicarboxamide, 1,3,5-tri (2,2-dimethylpropanamide) benzene and the like can be mentioned.
  • the amide compound may be a combination of two or more of these.
  • sorbitol compound examples include dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (3,4-dimethylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol.
  • the sorbitol compound may be a combination of two or more of these.
  • the nucleating agent contained in the resin composition of the present invention and other resin compositions of the present invention is particularly preferably a compound represented by the general formula (1).
  • the resin composition of the present invention and other resin compositions of the present invention can impart particularly excellent mechanical strength to the molded product.
  • the content of the nucleating agent is preferably 0.005 to 1 part by mass with respect to 100 parts by mass of the polyolefin resin.
  • the resin composition of the present invention and the other resin composition of the present invention can impart more excellent mechanical strength to the molded product, and the extraction of the nucleating agent from the molded product is sufficient. Is suppressed.
  • the content of the nucleating agent is more preferably 0.01 part by mass or more, and particularly preferably 0.05 part by mass or more with respect to 100 parts by mass of the polyolefin resin.
  • the content of the nucleating agent is more preferably 0.5 parts by mass or less, further preferably 0.25 parts by mass or less, and 0.2 parts by mass or less with respect to 100 parts by mass of the polyolefin resin. Is particularly preferable.
  • the resin composition of the present invention and other resin compositions of the present invention preferably further contain a filler.
  • the resin composition of the present invention and the other resin compositions of the present invention can impart further excellent mechanical strength to the molded product.
  • the filler examples include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, and dolomite. , Silica, Alumina, Potassium Titanium Whisker, Wallastenite, Fibrous Magnesium Oxysulfate and the like.
  • talc is particularly preferable because it can impart particularly excellent mechanical strength to the molded product and is easily available.
  • the particle size fiber diameter, fiber length and aspect ratio in the form of fibers
  • a surface-treated filler can also be used.
  • the content of the filler is preferably 0.01 to 80 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the content of the filler is more preferably 1 part by mass or more with respect to 100 parts by mass of the polyolefin resin.
  • the molded product has particularly excellent mechanical strength.
  • the content of the filler is more preferably 50 parts by mass or less with respect to 100 parts by mass of the polyolefin resin. In this case, the molded product has particularly excellent impact resistance.
  • the resin composition of the present invention and other resin compositions of the present invention may further contain phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, and other antioxidants, as long as the performance is not significantly impaired.
  • Additives such as hindered amine compounds, UV absorbers, flame retardants, flame retardants, lubricants, hydrotalcites, fatty acid metal salts, antioxidants, fluorescent whitening agents, pigments, dyes and the like may be included.
  • phenolic antioxidant examples include 2,6-di-tert-butyl-4-ethylphenol, 2-tert-butyl-4,6-dimethylphenol, styrene phenol, and 2,2'-methylenebis (4-).
  • Ethyl-6-tert-butylphenol 2,2'-thiobis- (6-tert-butyl-4-methylphenol), 2,2'-thiodiethylenebis [3- (3,5-di-tert-butyl) -4-Hydroxyphenyl) propionate], 2-methyl-4,6-bis (octylsulfanylmethyl) phenol, 2,2'-isobutylidenebis (4,6-dimethylphenol), isooctyl-3- (3,3) 5-Di-tert-butyl-4-hydroxyphenyl) propionate, N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], 2,2'-Oxamide-bis [ethyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2-ethylhexyl-3- (3', 5
  • the content may be 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • Phenyl antioxidants include, for example, triphenylphosphite, diisooctylphosphite, heptaxis (dipropylene glycol) triphosphite, triisodecylphosphite, diphenylisooctylphosphite, diisooctylphenylphosphite, diphenyltri.
  • Decylphosphite triisooctylphosphite, trilaurylphosphite, diphenylphosphite, tris (dipropylene glycol) phosphite, dioleylhydrogenphosphite, trilauryltrithiophosphite, bis (tridecyl) phosphite, tris (tridecyl) Isodecyl) phosphite, tris (tridecyl) phosphite, diphenyldecylphosphite, dinonylphenylbis (nonylphenyl) phosphite, poly (dipropylene glycol) phenylphosphite, tetraphenyldipropylglycoldiphosphite, trisnonylphenyl Phosphite, Tris (2,4-di-tert-butylphenyl) Ph
  • Sulfur-based antioxidants include, for example, tetrakis [methylene-3- (laurylthio) propionate] methane, bis (methyl-4- [3-n-alkyl (C12 / C14) thiopropionyloxy] 5-tert-butylphenyl).
  • the sulfur-based antioxidant is contained, the content may be 0.001 to 10 parts by mass, more preferably 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the polyolefin-based resin. ..
  • antioxidants include N-benzyl- ⁇ -phenylnitrone, N-ethyl- ⁇ -methylnitrone, N-octyl- ⁇ -heptylnitrone, N-lauryl- ⁇ -undecylnitrone, N-tetradecyl- ⁇ .
  • Examples of the ultraviolet absorber include 2-hydroxybenzophenones such as 2,4-dihydroxybenzophenone and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone); 2- (2-hydroxy-5-methylphenyl).
  • 2-hydroxybenzophenones such as 2,4-dihydroxybenzophenone and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone); 2- (2-hydroxy-5-methylphenyl).
  • Benzotriazole 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2) -Hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tert- Octyl-6-benzotri
  • the hindered amine compounds are, for example, 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6-tetra.
  • Methyl-4-piperidylbenzoate bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2,6,6-tetra Methyl-4-piperidyl) di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -di (tridecyl
  • Flame retardants include, for example, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, cresyl-2,6-dixylenyl phosphate, resorcinolbis (diphenyl phosphate), (1-methylethylidene)-. 4,1-Phenylenetetraphenyldiphosphate, 1,3-phenylenetetrakis (2,6-dimethylphenyl) phosphate, manufactured by ADEKA Co., Ltd.
  • Type A epoxy resin brominated phenol novolac type epoxy resin, hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl), ethylenebistetrabromophthalimide, 1,2-dibromo-4- (1,2-dibromoethyl) ) Cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated polystyrene and 2,4,6-tris (tribromophenoxy) -1,3,5-triazine , Tribromophenylmaleimide, tribromophenyl acrylate, tribromophenyl methacrylate, tetrabromobisphenol A-type dimethacrylate, pentabromobenzyl acrylate, and bromine-based flame retardants
  • flame retardants are preferably used in combination with a drip inhibitor such as fluororesin and a flame retardant aid such as polyhydric alcohol and hydrotalcite.
  • a drip inhibitor such as fluororesin
  • a flame retardant aid such as polyhydric alcohol and hydrotalcite.
  • the content may be 1 to 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, and more preferably 10 to 70 parts by mass.
  • Lubricants are added for the purpose of imparting slipperiness to the surface of the molded product and enhancing the scratch prevention effect.
  • the lubricant include unsaturated fatty acid amides such as oleic acid amide and erucic acid amide; saturated fatty acid amides such as bechenic acid amide and stearic acid amide, butyl stearate, stearyl alcohol, stearic acid monoglyceride, and sorbitan monopalmitite. Examples thereof include sorbitan monostearate, mannitol, stearic acid, hardened castor oil, stearic acid amide, oleic acid amide, and ethylene bisstearic acid amide.
  • the content may be 0.01 to 2 parts by mass and more preferably 0.03 to 0.5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • a compound represented by the following general formula (2) is preferable from the viewpoint of heat resistance and the effect of dispersing the nucleating agent in the resin.
  • R 6 represents a linear or branched fatty acid residue having 12 to 20 carbon atoms, and this fatty acid residue may be substituted with a hydroxy group
  • M 2 represents a 1- to trivalent metal atom, the metal atom may be bonded to a hydroxy group, and m represents an integer of 1 to 3.
  • M 2 in the general formula (2) include sodium, potassium, lithium, calcium, zinc, barium, magnesium, hydroxyaluminum and the like, with sodium, potassium and lithium being particularly preferable.
  • the content may be 0.005 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin, and more preferably 0.01 to 0.5 parts by mass.
  • Hydrotalcites are complex salt compounds consisting of magnesium, aluminum, hydroxyl groups, carbonate groups and arbitrary crystalline water known as natural products and synthetic products, and magnesium or a part of aluminum is part of other metals such as alkali metal and zinc. Examples thereof include those substituted with, and those substituted with a hydroxyl group and a carbonate group with another anionic group.
  • the metal of hydrotalcite represented by the following general formula (3) is substituted with an alkali metal. Things can be mentioned.
  • the Al—Li-based hydrotalcites a compound represented by the following general formula (4) can also be used.
  • x1 and x2 are the following formulas, respectively. 0 ⁇ x2 / x1 ⁇ 10,2 ⁇ x1 + x2 ⁇ 20 Represents a number satisfying the condition represented by, and p represents 0 or a positive number.
  • a q- represents a q-valent anion
  • p represents 0 or a positive number.
  • the carbonate anion in hydrotalcites may be partially replaced with another anion.
  • Hydrotalcites may be obtained by dehydrating crystalline water, and are higher fatty acids such as stearic acid, higher fatty acid metal salts such as oleic acid alkali metal salt, and organic sulfonic acid metals such as dodecylbenzene sulfonic acid alkali metal salt. It may be coated with a salt, a higher fatty acid amide, a higher fatty acid ester, a wax or the like.
  • Hydrotalcites may be natural products or synthetic products. Examples of the method for synthesizing hydrotalcites include Japanese Patent Publication No. 46-2280, Japanese Patent Publication No. 50-30039, Japanese Patent Publication No. 51-29129, Japanese Square Root Extraction 3-36839, and Japanese Patent Application Laid-Open No. 61-174270. , Known methods described in JP-A-5-179502, etc. can be mentioned. Further, hydrotalcites can be used without being limited by their crystal structure, crystal particles and the like. When hydrotalcites are contained, the content may be 0.001 to 5 parts by mass and more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the antistatic agent examples include a low molecular weight antistatic agent using a nonionic, anionic, cationic or amphoteric surfactant, and a high molecular weight antistatic agent using a polymer compound.
  • Nonionic surfactants include polyethylene glycol-type nonionic surfactants such as higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts; fatty acid esters of polyethylene oxide and glycerin.
  • a carboxylate such as an alkali metal salt of a higher fatty acid
  • a sulfate ester salt such as a higher alcohol sulfate ester salt, a higher alkyl ether sulfate ester salt, an alkylbenzene sulfonate, an alkyl sulfonate, a paraffin sulfonate, etc.
  • amphoteric tenside examples include amino acid amphoteric tenside agents such as higher alkylaminopropionate, betaine amphoteric tenside agents such as higher alkyldimethylbetaine and higher alkyldihydroxyethyl betaine, and among these, anionic amphoteric tensides.
  • a surfactant is preferable, and a sulfonate such as an alkylbenzene sulfonate, an alkyl sulfonate, and a paraffin sulfonate is particularly preferable.
  • the content may be 0.1 to 10 parts by mass and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin. ..
  • Examples of the polymer type antistatic agent include ionomer and block polymer having polyethylene glycol as a hydrophilic part.
  • Examples of the ionomer include the ionomer described in JP-A-2010-132927.
  • Examples of the polymer having polyethylene glycol as a hydrophilic portion include a polyether ester amide described in JP-A-7-10989, a polymer composed of polyolefin and polyethylene glycol described in US Pat. No. 6,552,131, and JP-A-2016-023254. Examples thereof include polymers composed of polyester and polyethylene glycol described in the publication.
  • the content may be 3 to 60 parts by mass with respect to 100 parts by mass of the polyolefin resin, more preferably 5 to 25 parts by mass, and 7 to 20 parts by mass. It is more preferably a part.
  • Fluorescent whitening agent is a compound that absorbs ultraviolet rays of sunlight or artificial light, converts it into purple to blue visible light and radiates it, and promotes the whiteness and bluish tint of the molded product.
  • the fluorescent whitening agent include benzoxazole compounds C.I. I. Fluorescent Fluorescenter 184; Coumarin-based compound C.I. I. Fluorescent Fluorescent 52; diaminostilbene disulphonic acid-based compound C.I. I. Fluorescent Fluorescenter 24, 85, 71 and the like can be mentioned.
  • the fluorescent whitening agent When the fluorescent whitening agent is contained, the content may be 0.00001 to 0.1 parts by mass with respect to 100 parts by mass of the polyolefin resin, and may be 0.00005 to 0.05 parts by mass. More preferred.
  • the pigment is not particularly limited, and for example, a commercially available pigment can be used.
  • examples of commercially available pigments include Pigment Red 1, 2, 3, 9, 10, 17, 22, 23, 31, 38, 41, 48, 49, 88, 90, 97, 112, 119, 122, 123, 144.
  • the dye is not particularly limited, and is not particularly limited, for example, azo dye, anthraquinone dye, indigoid dye, triarylmethane dye, xanthene dye, alizarin dye, aclysine dye, stillben dye, thiazole dye, naphthol dye, quinoline dye, nitro dye. , Indamine dyes, oxazine dyes, phthalocyanine dyes, cyanine dyes and the like, and a plurality of these may be mixed and contained.
  • the molded product of the present invention is obtained by molding the resin composition of the present invention or another resin composition of the present invention.
  • the molded product of the present invention has excellent dimensional stability, less warpage, and excellent dimensional accuracy.
  • the method for molding the molded product is not particularly limited, and is an injection molding method, an extrusion molding method, a blow molding method, a rotary molding method, a vacuum molding method, an inflation molding method, a calendar molding method, a slush molding method, and a dip molding. Methods such as a method and a foam molding method can be mentioned.
  • molded products include building materials, agricultural materials, vehicle parts such as automobiles, packaging materials, miscellaneous goods, toys, home appliances, medical products, and more specifically, bumpers and dashes.
  • Automotive parts such as boards, instrument panels, battery cases, luggage cases, door panels, door trims, fender liners; resin parts for home appliances such as refrigerators, washing machines, vacuum cleaners; tableware, bottle caps, buckets, bath products, etc.
  • Household products Resin parts for connection such as connectors; Miscellaneous goods such as toys, storage containers, synthetic paper; Medical packs, injectors, catheters, medical tubes, syringe preparations, infusion bags, reagent containers, medicine containers, medicines Medical molded products such as individual packaging; wall materials, floor materials, window frames, wallpaper, building materials such as windows; wire coating materials; agricultural materials such as houses, tunnels, flat yarn mesh bags; pallets, pail cans, back grinds Industrial materials such as tapes, LCD protective tapes, pipes, modified silicone polymers for sealing materials; food packaging materials such as wraps, trays, cups, films, bottles, caps, storage containers, 3D printer materials, separator films for batteries, Examples include fibers such as clothing, woven fabrics, and non-woven fabrics. Among these, large-sized molded products such as bumpers, dashboards, instrument panels, pallets, and storage containers, which are required to have both mechanical strength and dimensional stability, are particularly preferable.
  • the method for producing a resin composition of the present invention is to produce a resin composition capable of improving dimensional stability during molding of a molded product obtained by molding a resin composition containing a polyolefin-based resin.
  • the resin composition containing a nucleating agent has the same composition as the above resin composition except that it has an isothermal crystallization time t2 at 135 ° C. and does not contain a nucleating agent.
  • the ratio t2 / t1 of the contained resin composition to the isothermal crystallization time t1 at 135 ° C. is 0.45 or more.
  • the value of t2 / t1 is preferably 0.5 or more, and more preferably 0.7 or more. Note that t2 / t1 is less than 1, and the upper limit of the value of t2 / t1 is preferably 0.9 or less, more preferably 0.8 or less.
  • another method for producing a resin composition of the present invention is to produce a resin composition that improves dimensional stability during molding of a molded product obtained by molding a resin composition containing a polyolefin-based resin. ..
  • the dynamic viscoelastic modulus of the resin composition containing a nucleating agent is obtained under the conditions of a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz by the method specified in ISO-6721-10.
  • the time T2 from the start of the measurement to the intersection of the storage modulus curve and the loss modulus curve the nucleating agent having the same composition as the above resin composition except that the nucleating agent is not contained under the same conditions.
  • the ratio T2 / T1 to the time T1 from the start of the measurement to the intersection of the storage modulus curve and the loss modulus curve is 0.35 or more.
  • Is. T2 / T1 is less than 1, and the upper limit of the value of T2 / T1 is preferably 0.9 or less, more preferably 0.8 or less.
  • the isothermal crystallization temperatures t1 and t2 and the times T1 and T2 until the storage elastic modulus curve and the loss elastic modulus curve intersect are indicators of the crystallization rate of the resin composition. These are determined by the type of polyolefin resin, the type of nucleating agent and other components contained in the resin composition, the content ratio of these components with respect to the polyolefin resin, and the dispersed state of these components in the resin composition.
  • the dispersed state of the above components in the resin composition includes the characteristics of the polyolefin-based resin as powders and granules, the physical characteristics of the components (characteristics as powders and granules, specific gravity, etc.), chemical characteristics, and resin.
  • the production conditions particularly the mixing method of the polyolefin resin and the nucleating agent and other components contained in the resin composition
  • the isothermal crystallization temperatures t1 and t2 and the times T1 and T2 until the storage elastic modulus curve and the loss elastic modulus curve intersect can be appropriately adjusted.
  • the nucleating action of the nucleating agent becomes large, so that t2 / t1 and T2 / T1 become small.
  • the particle size of the polyolefin resin is reduced, the nucleating agent is more uniformly dispersed in the resin composition, so that t2 / t1 and T2 / T1 become smaller.
  • the nucleating agent is more uniformly dispersed in the resin composition, so that t2 / t1 and T2 / T1 become smaller.
  • the resin composition of the present invention and the other resin compositions of the present invention have t2 / t1 and T2 / T1 in a specific range, and can impart excellent mechanical strength to the molded product. Moreover, it is a resin composition having excellent dimensional stability during molding.
  • the polyolefin-based resin powder or pellet, the nucleating agent, and if necessary, other additives are used, for example, by a method such as dry blending. It may be blended.
  • the dry blending method is not particularly limited, and examples thereof include a method using a known mixing device such as an FM mixer and a locking mixer.
  • the nucleating agent and other additives may be added to the polyolefin resin at the same time, or may be added separately. Further, the nucleating agent and other additives may be added to the polyolefin resin as a masterbatch.
  • the method for producing the resin composition of the present invention and other resin compositions of the present invention preferably includes a melt-kneading step.
  • a resin composition having a more uniform quality can be obtained.
  • the method of melt-kneading is not particularly limited, and for example, a method such as a melt extrusion method using a single-screw extruder or a twin-screw extruder may be used.
  • the polyolefin-based resin 1 and the polyolefin-based resin 2 were prepared as follows.
  • Tetrakis [methylene-3- (3', 5'-di-t-) with respect to impact copolymer polypropylene (trade name J707G, 230 ° C., MFR 30 g / 10 minutes under the condition of 2.16 kg load) manufactured by Prime Polymer Co., Ltd. Butyl-4-hydroxyphenyl) propionate] Methane was blended in an amount of 0.05% by mass, tris (2,4-di-t-butylphenyl) phosphite was blended in an amount of 0.1% by mass, and calcium stearate was blended in an amount of 0.1% by mass. Mixing was performed for 30 minutes using a locking mixer. The obtained mixture was melt-kneaded at 230 ° C.
  • the pellet thus obtained was sieved through a sieve having a mesh size of 4.75 mm, the pellet passed through the sieve was further sieved through a sieve having a mesh size of 2.8 mm, and the pellet remaining on the sieve was designated as a polyolefin resin 1. Further, the pellets were pulverized by a pulverizer at room temperature to obtain a powder, which was then sieved through a sieve having a mesh size of 1.4 mm, and the powder passed through the sieve was used as a polyolefin resin 2.
  • Mixing method A Mixing for 30 minutes using a locking mixer Mixing method B: Mixing at 1000 rpm for 1 minute using a Henschel mixer Mixing method C: Mixing by hand blending
  • the resin composition thus obtained is melt-kneaded at 230 ° C. using a twin-screw extruder (manufactured by Japan Steel Works, Ltd., TEX28V), granulated, and then dried at 60 ° C. for 8 hours to pellet the resin composition.
  • a twin-screw extruder manufactured by Japan Steel Works, Ltd., TEX28V
  • the unit of the blending amount is a mass part.
  • the obtained resin composition pellets and nucleating agent-free resin composition pellets were subjected to isothermal crystallization measurement and dynamic viscoelasticity measurement under the following conditions to determine t2 / t1 and T2 / T1. Furthermore, the mechanical strength and dimensional stability of the resin composition pellets were evaluated under the conditions shown below.
  • the resin composition pellets are injection-molded using an injection molding machine (EC100-2A manufactured by Toshiba Machine Co., Ltd.) under the conditions of an injection temperature of 230 ° C. and a mold temperature of 50 ° C. to obtain a flat plate-shaped test piece of 60 mm ⁇ 60 mm ⁇ 2 mm. Made. After allowing this test piece to stand in an incubator at 23 ° C. for 48 hours, a disk-shaped test piece having a diameter of 25 mm is punched out from the flat plate-shaped test piece, and a dynamic viscoelasticity measuring device (manufactured by TA Instruments, device name Discovery Hybrid Rheometer) is punched out. , HR-2).
  • the sample was heated from room temperature to 230 ° C. under a nitrogen atmosphere to completely melt the sample, and then held at 230 ° C. for 10 minutes. Subsequently, the sample is cooled to 150 ° C. at a cooling rate of 15 ° C./min, and after reaching 150 ° C., the sample is maintained at 150 ° C. under the conditions of a measurement temperature of 150 ° C. and a measurement frequency of 0.1 Hz, as specified in ISO-6721-10. Dynamic viscoelasticity measurement was performed. In this measurement, the time when the temperature reached 150 ° C. was defined as the measurement start time, and the time from the measurement start time to the intersection of the storage elastic modulus curve and the loss elastic modulus curve was determined as T2 (seconds).
  • the dynamic viscoelasticity measurement was also performed on the nucleating agent-free resin composition under the same conditions, and the time from the start of the measurement to the intersection of the storage elastic modulus curve and the loss elastic modulus curve was determined as T1 (seconds).
  • T1 seconds
  • the values of T2 / T1 were calculated from T2 and T1 obtained as described above. The results are shown in Tables 1-12.
  • the resin composition pellets are injection-molded using an injection molding machine (EC100-2A manufactured by Toshiba Machine Co., Ltd.) under the conditions of an injection temperature of 230 ° C. and a mold temperature of 40 ° C. to obtain a flat plate-shaped test piece of 80 mm ⁇ 10 mm ⁇ 4 mm. Made. After allowing this test piece to stand in an incubator at 23 ° C. for 48 hours, the flexural modulus was measured using a bending tester (AG-IS manufactured by Shimadzu Corporation) in accordance with ISO178. The value of flexural modulus (GPa) thus obtained was used as an index of mechanical strength. The results are shown in Tables 1-12.
  • the resin composition pellets are injection-molded using an injection molding machine (EC-100-2A manufactured by Toshiba Machine Co., Ltd.) under the conditions of an injection temperature of 230 ° C. and a mold temperature of 50 ° C. to form a flat plate of 60 mm ⁇ 60 mm ⁇ 2 mm.
  • a test piece was prepared. After allowing this test piece to stand in a thermostat at 23 ° C. for 48 hours, the size of the test piece in the resin flow direction (mm) and the size in the direction perpendicular to the resin flow direction (mm) are measured, and the resin flow direction is measured.
  • MD / TD is a value indicating shrinkage anisotropy during molding of the molded product, and it can be said that the closer this value is to 1, the higher the dimensional stability of the molded product.
  • the resin composition of the present invention can impart excellent mechanical strength to the molded product and has excellent dimensional stability during molding.

Abstract

成形品に優れた機械的強度を付与することができ、かつ成形時における寸法安定性に優れた樹脂組成物、その成形品、および、その樹脂組成物の製造方法を提供する。 ポリオレフィン系樹脂と核剤とを含む樹脂組成物において、135℃における等温結晶化時間t2と、核剤を含まない以外はその樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、の比t2/t1が0.45以上である。

Description

樹脂組成物、その成形品、および、その樹脂組成物の製造方法
 本発明は、樹脂組成物、その成形品、および、その樹脂組成物の製造方法に関し、詳しくは、成形品に優れた機械的強度を付与することができ、かつ成形時における寸法安定性に優れた樹脂組成物、その成形品、および、その樹脂組成物の製造方法に関する。
 ポリオレフィン系樹脂は、各種熱可塑性汎用樹脂の中でも、物性、成形加工性、価格等の点で最も応用分野の広い樹脂組成物の一つであり、幅広い用途に使用されている。
 ポリオレフィン系樹脂からなる成形品には、優れた機械的強度が求められることがある。そして、ポリオレフィン系樹脂からなる成形品に優れた機械的強度を付与する方法の一つとして、ポリオレフィン系樹脂に核剤を添加する方法が知られている。この方法によって得られる樹脂組成物として、例えば、特許文献1では、芳香族リン酸エステル金属塩からなる核剤を含む樹脂組成物が提案されている。
特開昭58-1736号公報
 自動車部材(バンパー、ダッシュボード、インスツルメントパネル等)や産業部材(パレット、収納容器等)のような大型成形品用の樹脂組成物としては、成形品に優れた機械的強度を付与でき、かつ、成形時における寸法安定性に優れた樹脂組成物が求められる。しかしながら、特許文献1で提案された樹脂組成物は、成形時における寸法安定性については必ずしも満足のいくものではなく、さらなる改善が求められているのが現状である。
 そこで、本発明の目的は、成形品に優れた機械的強度を付与することができ、かつ成形時における寸法安定性に優れた樹脂組成物、その成形品、および、その樹脂組成物の製造方法を提供することにある。
 本発明者は、上記課題を解決すべく鋭意検討した結果、ポリオレフィン系樹脂と核剤とを含む樹脂組成物において、核剤によってポリオレフィン系樹脂の結晶化速度が促進される程度が、成形時の寸法安定性に影響することを見出した。さらに本発明者は、熱分析または動的粘弾性測定の結果から求められる特定のパラメータが結晶化速度促進の尺度となることを見出した。かかる知見をもとに、本発明者は、さらに鋭意検討した結果、このパラメータが特定の数値範囲となるような樹脂組成物とすれば、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の樹脂組成物は、ポリオレフィン系樹脂と核剤とを含む樹脂組成物であって、
 前記樹脂組成物の135℃における等温結晶化時間t2と、
 前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、
の比t2/t1が0.45以上であることを特徴とするものである。
 また、本発明の他の樹脂組成物は、ポリオレフィン系樹脂と核剤とを含む樹脂組成物であって、
 前記樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2と、
 前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1と、
の比T2/T1が0.35以上であることを特徴とするものである。
 本発明の樹脂組成物および本発明の他の樹脂組成物においては、前記核剤が、下記一般式(1)、
Figure JPOXMLDOC01-appb-I000002
(一般式(1)中、R~Rはそれぞれ独立に水素原子または直鎖もしくは分岐を有する炭素原子数1~6のアルキル基を表し、nは1または2を表し、nが1の場合Mは水素原子、アルカリ金属、またはジヒドロキシアルミニウムを表し、nが2の場合Mはアルカリ土類金属、亜鉛またはヒドロキシアルミニウムを表す。)で表される化合物であることが好ましい。また、本発明の樹脂組成物および本発明の他の樹脂組成物においては、前記ポリオレフィン系樹脂がエラストマーを含むことが好ましい。さらに、本発明の樹脂組成物および本発明の他の樹脂組成物においては、さらに充填剤を含むことが好ましい。
 本発明の成形品は、本発明の樹脂組成物および本発明の他の樹脂組成物を成形して得られることを特徴とするものである。
 さらに、本発明の樹脂組成物の製造方法は、ポリオレフィン系樹脂と核剤とを含む樹脂組成物の製造方法であって、
 前記樹脂組成物の135℃における等温結晶化時間t2と、
 前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、
の比t2/t1を、0.45以上とすることを特徴とするものである。
 さらにまた、本発明の他の樹脂組成物の製造方法は、ポリオレフィン系樹脂と核剤とを含む樹脂組成物の製造方法であって、
 前記樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzにて動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2と、
 前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzにて行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1と、
の比T2/T1を、0.35以上とすることを特徴とするものである。
 本発明によれば、成形品に優れた機械的強度を付与することができ、かつ成形時における寸法安定性に優れた樹脂組成物、その成形品、および、その樹脂組成物の製造方法を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
<樹脂組成物>
 先ず、本発明の樹脂組成物について説明する。本発明の樹脂組成物は、ポリオレフィン系樹脂と核剤とを含む。そして、135℃における等温結晶化時間t2と、核剤を含まない以外は上記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、の比t2/t1が0.45以上である。すなわち、本発明の樹脂組成物は、135℃における等温結晶化時間をt2、核剤を含まない以外は本発明の樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間をt1としたとき、t2/t1が0.45以上である。
 このような条件を満足することにより、本発明の樹脂組成物は、成形品に優れた機械的強度を付与することができ、かつ、成形時における寸法安定性に優れたものとなる。
 ここで、135℃における等温結晶化時間は、示差走査熱量測定装置による等温結晶化測定によって決定される。具体的には、等温結晶化時間は、融点より高い温度まで試料を加熱して完全に融解させた後、135℃まで急速に冷却し、135℃に到達後、135℃に保持する測定を行い、135℃到達時点から発熱ピークトップが出現する時点までの時間として決定される。
 核剤の結晶化促進効果により、t2はt1と比べて短くなる。そしてt2/t1の値は核剤により結晶化速度が促進される程度の尺度となる。なお、t2/t1は1未満である。
 ポリオレフィン系樹脂と核剤とを含む樹脂組成物におけるt2/t1の値は、ポリオレフィン系樹脂の種類、核剤その他樹脂組成物に含まれる成分の種類、これら成分のポリオレフィン系樹脂に対する含有割合および樹脂組成物中におけるこれら成分の分散状態によって定まる。そして、樹脂組成物中における上記成分の分散状態は、ポリオレフィン系樹脂の粉粒体としての特性、および、上記成分の物理的特性(粉粒体としての特性、比重等)、化学的特性、樹脂組成物の製造方法(製造条件、特にポリオレフィン系樹脂と核剤その他樹脂組成物に含まれる成分との混合方法等)等によって定まる。これらの条件を考慮し、適宜条件を調整することで、本発明の樹脂組成物を得ることができる。
 具体的には、本発明の樹脂組成物におけるt1、t2は、製造条件および配合を適宜設計することで調整することができる、例えば、ポリオレフィン系樹脂に対する核剤の添加量を多くすると、核剤の核形成作用が大きくなるため、t2/t1は小さくなる。また、ポリオレフィン系樹脂の粒子サイズを小さくすると、樹脂組成物中において核剤がより均一に分散されるため、t2/t1は小さくなる。これ以外にも、ポリオレフィン系樹脂と核剤との混合を十分にすると、樹脂組成物中において核剤がより均一に分散されるため、t2/t1は小さくなる。本発明の樹脂組成物は、これらの指針に基づき、t2/t1を特定の範囲とし、成形品に優れた機械的強度を付与することができ、かつ、成形時における寸法安定性に優れた樹脂組成物となる。
 上述したように、樹脂組成物におけるt2/t1の値は0.45以上である。t2/t1の値が0.45未満である場合、樹脂組成物の成形時における寸法安定性が十分なものとならない。成形時の寸法安定性をさらに優れたものとする観点から、t2/t1の値は0.5以上であることが好ましく、0.7以上であることがより好ましい。t2/t1の値の上限は、好ましくは0.9以下、より好ましくは0.8以下である。
 次に、本発明の他の樹脂組成物について説明する。他の樹脂組成物は、ポリオレフィン系樹脂と核剤とを含む。そして、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2と、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで核剤を含まない以外は上記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1と、の比T2/T1が0.35以上である。すなわち、本発明の他の樹脂組成物は、ISO-6721-10に規定の方法により、測定温度150℃、測定周波数0.1Hzの条件で動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間をT2、核剤を含まない以外は本発明の他の樹脂組成物と同一の組成を有する核剤未含有樹脂組成物を同条件で動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間をT1としたとき、T2/T1が0.35以上である。
 このような条件を満足することにより、本発明の他の樹脂組成物は、成形品に優れた機械的強度を付与することができ、かつ、成形時における寸法安定性に優れたものとなる。
 測定温度150℃、測定周波数0.1Hzでの動的粘弾性測定は、融点より高い温度まで試料を加熱して試料を完全に溶融させた後、150℃まで冷却し、150℃に到達後、150℃に保持して行う。なお、この測定においては、150℃に到達した時点を測定開始の時点とする。
 測定開始直後においては、試料は溶融状態にあるため、動的複素弾性率における損失弾性率(粘性成分)の寄与は貯蔵弾性率(弾性成分)の寄与に比べて大きい。そして樹脂組成物の結晶化が進行するに伴い、次第に貯蔵弾性率(弾性成分)の寄与が大きくなっていき、貯蔵弾性率曲線と損失弾性率曲線とが交わる点において、損失弾性率(粘性成分)と貯蔵弾性率(弾性成分)の寄与率が逆転する。
 この測定において、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間は、上述した等温結晶化時間とは別の観点から得られる試料の結晶化速度の指標となる。
 核剤の結晶化促進効果により、T2はT1と比べて短くなる。そしてT2/T1の値は、上述したt2/t1と同様に、核剤により結晶化速度が促進される程度の尺度であって、t2/t1とは別の観点から得られるものである。なお、T2/T1は1未満である。
 ポリオレフィン系樹脂と核剤とを含む樹脂組成物におけるT2/T1の値は、t2/t1の値と同様に、ポリオレフィン系樹脂の種類、核剤その他樹脂組成物に含まれる成分の種類、これら成分のポリオレフィン系樹脂に対する含有割合および樹脂組成物中におけるこれら成分の分散状態によって定まる。そして樹脂組成物中における上記成分の分散状態は、ポリオレフィン系樹脂の粉粒体としての特性、および、上記成分の物理的特性(粉粒体としての特性、比重等)、化学的特性、樹脂組成物の製造方法(製造条件、特にポリオレフィン系樹脂と核剤その他樹脂組成物に含まれる成分との混合方法等)等によって定まる。これらの条件を考慮し、適宜条件を調整することで、本発明の他の樹脂組成物を得ることができる。
 具体的には、本発明の他の樹脂組成物におけるT1、T2は、製造条件および配合を適宜設計することで調整することができる、例えば、ポリオレフィン系樹脂に対する核剤の添加量を多くすると、核剤の核形成作用が大きくなるため、T2/T1は小さくなる。また、ポリオレフィン系樹脂の粒子サイズを小さくすると、樹脂組成物中において核剤がより均一に分散されるため、T2/T1は小さくなる。これ以外にも、ポリオレフィン系樹脂と核剤との混合を十分にすると、樹脂組成物中において核剤がより均一に分散されるため、T2/T1は小さくなる。本発明の他の樹脂組成物は、これらの指針に基づき、T2/T1を特定の範囲とし、成形品に優れた機械的強度を付与することができ、かつ、成形時における寸法安定性に優れた樹脂組成物となる。
 上述したように、本発明の他の樹脂組成物におけるT2/T1の値は0.35以上である。T2/T1の値が0.35未満である場合、樹脂組成物の成形時における寸法安定性が十分なものとならない。成形時の寸法安定性をさらに優れたものとする観点から、T2/T1の値は0.4以上であることが好ましく、0.6以上であることがより好ましい。T2/T1の値の上限は、好ましくは0.9以下、より好ましくは0.8以下である。
<ポリオレフィン系樹脂>
 本発明の樹脂組成物および本発明の他の樹脂組成物に係るポリオレフィン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、高密度ポリエチレン(HDPE)、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、シクロオレフィンポリマー、ステレオブロックポリプロピレン、ポリ-3-メチル-1-ブテン、ポリ-3-メチル-1-ペンテン、ポリ-4-メチル-1-ペンテン等のα-オレフィン重合体、エチレン/プロピレンブロックまたはランダム共重合体、インパクトコポリマーポリプロピレン、エチレン-メチルメタクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール樹脂(EVOH)等のα-オレフィン共重合体等が挙げられる。ポリオレフィン系樹脂は、これら2種以上のブレンドであってもよく、ブロック共重合体を形成したブロックポリマーであってもよく、樹脂アロイであってもよく、これらの塩素化物であってもよい。
 本発明の樹脂組成物および本発明の他の樹脂組成物においては、ポリオレフィン系樹脂は、ポリプロピレン系樹脂を含むことが好ましい。ポリプロピレン系樹脂としては、例えばアイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ステレオブロックポリプロピレン、エチレン/プロピレンブロックまたはランダム共重合体、インパクトコポリマーポリプロピレン等が挙げられる。成形品に優れた耐衝撃性を付与する観点から、これらの中でも、インパクトコポリマーポリプロピレンが特に好ましい。
 本発明の樹脂組成物および本発明の他の樹脂組成物においては、ポリオレフィン系樹脂は、エラストマーを含むことが好ましい。この場合、樹脂組成物は成形品に優れた耐衝撃性を付与できるものとなる。
 上記エラストマーとしては、例えば、ポリオレフィン系樹脂からなるハードセグメントおよびゴム成分からなるソフトセグメントから構成される熱可塑性エラストマー等が挙げられる。熱可塑性エラストマーは、動的架橋等の方法によってソフトセグメントが架橋されたものであってもよい。
 ハードセグメントを構成するポリオレフィン系樹脂としては、例えば、ポリプロピレンホモポリマー、ポリプロピレンブロックコポリマー、ポリプロピレンランダムコポリマー等が挙げられる。ハードセグメントはこれら2種以上を含むものであってもよい。
 ソフトセグメントを構成するゴム成分としては、エチレン-プロピレン共重合体(EPM)、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体等のエチレン-α-オレフィン共重合体、エチレン-プロピレン-ジエン共重合体(EPDM)、エチレン-酢酸ビニル共重合体(EVA)、酢酸ビニルホモポリマー等が挙げられ、これらの中でもエチレン-α-オレフィン共重合体が特に好ましい。また、エチレン-α-オレフィン共重合体の中ではエチレン-1-オクテン共重合体が特に好ましい。ソフトセグメントはこれら2種以上を含むものであってもよい。
 エラストマーの含有量は、ポリオレフィン系樹脂全体の1~50質量%であることが好ましい。この場合、樹脂組成物は、成形品にさらに優れた耐衝撃性を付与でき、かつ、成形品の低温環境下における耐衝撃性が優れたものになる。エラストマーの含有量は、ポリオレフィン系樹脂全体の3質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。また、エラストマーの含有量は、ポリオレフィン系樹脂全体の40質量%以下であることがさらに好ましく、30質量%以下であることが特に好ましい。
 本発明の樹脂組成物および本発明の他の樹脂組成物に係るポリオレフィン系樹脂は、チーグラー触媒、チーグラー・ナッタ触媒、メタロセン触媒その他の各種重合触媒を助触媒、触媒の担体、連鎖移動剤を含め、また、気相重合、溶液重合、乳化重合、塊状重合等の各種重合方法において、温度、圧力、濃度、流速や触媒残渣の除去等の各種重合条件等包装資材に適した物性の樹脂が得られるものや包装資材の成形加工に適した物性の樹脂が得られるものを適宜選択して製造される。ポリオレフィン系樹脂の数平均分子量、重量平均分子量、分子量分布、メルトフローレート、融点、融解ピーク温度、アイソタクチック、シンジオタクチック等の立体規則性、分岐の有無や程度、比重、各種溶媒への溶解成分の比率、Haze、グロス、衝撃強度、曲げ弾性率、オルゼン剛性、その他の特性および各特性値が特定の式を満足するか否か等は所望する特性に応じて適宜選択することができる。
<核剤>
 本発明の樹脂組成物および本発明の他の樹脂組成物に含まれる核剤としては、特に限定されるものではなく、例えば、カルボン酸金属塩、芳香族リン酸エステル金属塩、アミド化合物、ソルビトール化合物等が挙げられる。核剤はこれら二種以上の組み合わせであってもよい。
 カルボン酸金属塩としては、例えば、安息香酸ナトリウム、4-tert-ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム、2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート、カルシウムシクロヘキサンジカルボキシレート等が挙げられる。カルボン酸金属塩はこれら二種以上の組み合わせであってもよい。
 芳香族リン酸エステル金属塩としては、例えば、下記一般式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000003
 一般式(1)中、R~Rはそれぞれ独立に水素原子または直鎖もしくは分岐を有する炭素原子数1~6のアルキル基を表し、nは1または2を表し、nが1の場合Mは水素原子、アルカリ金属、またはジヒドロキシアルミニウムを表し、nが2の場合Mはアルカリ土類金属、亜鉛またはヒドロキシアルミニウムを表す。
 直鎖もしくは分岐を有する炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、アミル基、イソアミル基、tert-アミル基、ヘキシル基、2-ヘキシル基、3-ヘキシル基等が挙げられる。これらの中では、イソプロピル基、tert-ブチル基、tert-アミル基が好ましく、tert-ブチル基が特に好ましい。
 アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム等が挙げられる。
 アルカリ土類金属としては、例えば、マグネシウム、カルシウム等が挙げられる。
 Mは、リチウム、ナトリウム、ジヒドロキシアルミニウムおよびヒドロキシアルミニウムからなる群より選ばれる少なくとも一種であることが好ましく、リチウム、ナトリウムおよびヒドロキシアルミニウムからなる群より選ばれる少なくとも一種であることが好ましい。
 一般式(1)で表される化合物の具体例としては、例えば、下記の構造を有する化合物P-1~P-6等が挙げられる。一般式(1)で表される化合物はこれら2種以上の組み合わせであってもよい。
Figure JPOXMLDOC01-appb-I000004
 アミド化合物としては、例えば、N,N’,N”-トリス[2-メチルシクロヘキシル]-1,2,3-プロパントリカルボキサミド、N,N’,N”-トリシクロヘキシル-1,3,5-ベンゼントリカルボキサミド、N,N’-ジシクロヘキシルナフタレンジカルボキサミド、1,3,5-トリ(2,2-ジメチルプロパンアミド)ベンゼン等が挙げられる。アミド化合物はこれら2種以上の組み合わせであってもよい。
 ソルビトール化合物としては、例えば、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、およびビス(ジメチルベンジリデン)ソルビトール等が挙げられる。ソルビトール化合物はこれら2種以上の組み合わせであってもよい。
 本発明の樹脂組成物および本発明の他の樹脂組成物に含まれる核剤は、一般式(1)で表される化合物であることが特に好ましい。この場合、本発明の樹脂組成物および本発明の他の樹脂組成物は、成形品に特に優れた機械的強度を付与することができる。
 核剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.005~1質量部であることが好ましい。この場合、本発明の樹脂組成物および本発明の他の樹脂組成物は、成形品にさらに優れた機械的強度を付与することができるものとなり、かつ、成形品からの核剤の抽出が十分に抑制される。核剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.01質量部以上であることがさらに好ましく、0.05質量部以上であることが特に好ましい。また核剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.5質量部以下であることがさらに好ましく、0.25質量部以下であることがさらに一層好ましく、0.2質量部以下であることが特に好ましい。
 本発明の樹脂組成物および本発明の他の樹脂組成物は、さらに充填剤を含むことが好ましい。この場合、本発明の樹脂組成物および本発明の他の樹脂組成物は、成形品にさらに優れた機械的強度を付与できるものとなる。
 充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、ガラス繊維、クレー、ドロマイト、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェート等を挙げることができる。これらの中では、成形品に特に優れた機械的強度を付与でき、かつ入手が容易であることから、タルクが特に好ましい。充填剤は粒子径(繊維状においては繊維径や繊維長およびアスペクト比)を適宜選択して用いることができ、必要に応じて表面処理したものを用いることもできる。成形品の機械的強度および耐衝撃性を優れたものとする観点から、充填剤の含有量は、ポリオレフィン系樹脂100質量部に対して、0.01~80質量部であることが好ましい。充填剤の含有量は、ポリオレフィン系樹脂100質量部に対して1質量部以上であることがさらに好ましい。この場合、成形品は特に優れた機械的強度を有するものとなる。また、充填剤の含有量は、ポリオレフィン系樹脂100質量部に対して50質量部以下であることがさらに好ましい。この場合、成形品は特に優れた耐衝撃性を有するものとなる。
 本発明の樹脂組成物および本発明の他の樹脂組成物には、性能を大きく損なわない限り、さらにフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、その他の酸化防止剤、ヒンダードアミン化合物、紫外線吸収剤、難燃剤、難燃助剤、滑剤、ハイドロタルサイト類、脂肪酸金属塩、帯電防止剤、蛍光増白剤、顔料、染料等の添加剤が含まれていてもよい。
 フェノール系酸化防止剤は、例えば、2,6-ジ-tert-ブチル-4-エチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、スチレン化フェノール、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2’-チオビス-(6-tert-ブチル-4-メチルフェノール)、2,2’-チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-メチル-4,6-ビス(オクチルスルファニルメチル)フェノール、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、2,2’-オキサミド-ビス[エチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-エチルヘキシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、2,2’-エチレンビス(4,6-ジ-tert-ブチルフェノール)、3,5-ジ-tert-ブチル-4-ヒドロキシベンゼンプロパン酸およびC13-15アルキルのエステル、2,5-ジ-tert-アミルヒドロキノン、ヒンダードフェノールの重合物(ADEKA POLYMER ADDITIVES EUROPE SAS社製 商品名「AO.OH.98」)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルベンズ[d,f][1,3,2]-ジオキサホスフォビン、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[モノエチル(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ホスホネート]カルシウム塩、5,7-ビス(1,1-ジメチルエチル)-3-ヒドロキシ-2(3H)-ベンゾフラノンとo-キシレンとの反応生成物、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、DL-a-トコフェノール(ビタミンE)、2,6-ビス(α-メチルベンジル)-4-メチルフェノール、ビス[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチル-フェニル)ブタン酸]グリコールエステル、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ホスホネート、トリデシル-3,5-tert-ブチル-4-ヒドロキシベンジルチオアセテート、チオジエチレンビス[(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-tert-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、ビス[3,3-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(2,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、ビス[2-tert-ブチル-4-メチル-6-(2-ヒドロキシ-3-tert-ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-tert-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス[(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、テトラキス[メチレン-3-(3’,5’-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、2-tert-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-tert-ブチル-5-メチルベンジル)フェノール、3,9-ビス[2-(3-tert-ブチル-4-ヒドロキシ-5-メチルヒドロシンナモイルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコールビス[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、ステアリル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド、パルミチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド、ミリスチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド、ラウリル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド等の3-(3,5-ジアルキル-4-ヒドロキシフェニル)プロピオン酸誘導体等が挙げられる。フェノール系酸化防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して0.001~5質量部であればよく、0.01~3質量部であることがより好ましい。
 リン系酸化防止剤は、例えば、トリフェニルホスファイト、ジイソオクチルホスファイト、ヘプタキス(ジプロピレングリコール)トリホスファイト、トリイソデシルホスファイト、ジフェニルイソオクチルホスファイト、ジイソオクチルフェニルホスファイト、ジフェニルトリデシルホスファイト、トリイソオクチルホスファイト、トリラウリルホスファイト、ジフェニルホスファイト、トリス(ジプロピレングリコール)ホスファイト、ジオレイルヒドロゲンホスファイト、トリラウリルトリチオホスファイト、ビス(トリデシル)ホスファイト、トリス(イソデシル)ホスファイト、トリス(トリデシル)ホスファイト、ジフェニルデシルホスファイト、ジノニルフェニルビス(ノニルフェニル)ホスファイト、ポリ(ジプロピレングリコール)フェニルホスファイト、テトラフェニルジプロピルグリコールジホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチル-5-メチルフェニル)ホスファイト、トリス〔2-tert-ブチル-4-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリ(デシル)ホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジステアリルペンタエリスリトールとステアリン酸カルシウム塩との混合物、アルキル(C10)ビスフェノールAホスファイト、テトラフェニル-テトラ(トリデシル)ペンタエリスリトールテトラホスファイト、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)エチルホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-tert-ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、(1-メチル-1-プロペニル-3-イリデン)トリス(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン)ヘキサトリデシルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェニル)フルオロホスファイト、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェニルジトリデシル)ホスファイト、トリス(2-〔(2,4,8,10-テトラキス-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、3,9-ビス(4-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスフェススピロ[5,5]ウンデカン、2,4,6-トリ-tert-ブチルフェニル-2-ブチル-2-エチル-1,3-プロパンジオールホスファイト、ポリ4,4’-イソプロピリデンジフェノールC12-15アルコールホスファイト、ビス(ジイソデシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(オクタデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。リン系酸化防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.001~10質量部であればよく、0.01~0.5質量部であることがより好ましい。
 硫黄系酸化防止剤は、例えば、テトラキス[メチレン-3-(ラウリルチオ)プロピオネート]メタン、ビス(メチル-4-[3-n-アルキル(C12/C14)チオプロピオニルオキシ]5-tert-ブチルフェニル)スルファイド、ジトリデシル-3,3’-チオジプロピオネート、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ラウリル/ステアリルチオジプロピオネート、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、2,2’-チオビス(6-tert-ブチル-p-クレゾール)、ジステアリル-ジサルファイドが挙げられる。硫黄系酸化防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して0.001~10質量部であればよく、0.01~0.5質量部であることがより好ましい。
 その他の酸化防止剤としては、N-ベンジル-α-フェニルニトロン、N-エチル-α-メチルニトロン、N-オクチル-α-ヘプチルニトロン、N-ラウリル-α-ウンデシルニトロン、N-テトラデシル-α-トリデシルニトロン、N-ヘキサデシル-α-ペンタデシルニトロン、N-オクチル-α-ヘプタデシルニトロン、N-ヘキサデシル-α-ヘプタデシルニトロン、N-オクタデシル-α-ペンタデシルニトロン、N-ヘプタデシル-α-ヘプタデシルニトロン、N-オクタデシル-α-ヘプタデシルニトロン等のニトロン化合物、3-アリールベンゾフラン-2(3H)-オン、3-(アルコキシフェニル)ベンゾフラン-2-オン、3-(アシルオキシフェニル)ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-(3,4-ジメチルフェニル)-ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-(4-ヒドロキシフェニル)-ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-{4-(2-ヒドロキシエトキシ)フェニル}-ベンゾフラン-2(3H)-オン、6-(2-(4-(5,7-ジ-tert-2-オキソ-2,3-ジヒドロベンゾフラン-3-イル)フェノキシ)エトキシ)-6-オキソヘキシル-6-((6-ヒドロキシヘキサノイル)オキシ)ヘキサノエート、5-ジ-tert-ブチル-3-(4-((15-ヒドロキシ-3,6,9,13-テトラオキサペンタデシル)オキシ)フェニル)ベンゾフラン-2(3H)オン等のベンゾフラン化合物等が挙げられる。その他の酸化防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対し0.001~20質量部であればよく、0.01~5質量部であることがより好ましい。
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-tert-オクチル-6-ベンゾトリアゾリルフェノール)、2-(2-ヒドロキシ-3-tert-ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル、2-〔2-ヒドロキシ-3-(2-アクリロイルオキシエチル)-5-メチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-tert-ブチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-tert-オクチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-tert-ブチルフェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-tert-ブチル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-tert-アミル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-tert-ブチル-5-(3-メタクリロイルオキシプロピル)フェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-4-(2-メタクリロイルオキシメチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシプロピル)フェニル〕ベンゾトリアゾール等の2-(2-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、オクチル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート、ドデシル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート、テトラデシル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート、ヘキサデシル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート、オクタデシル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート、ベヘニル(3,5-ジ-tert-ブチル-4-ヒドロキシ)ベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、トリオクチル-2,2’,2”-((1,3,5-トリアジン-2,4,6-トリイル)トリス(3-ヒドロシキベンゼン-4-,1-ジイル)トリプロピオネート)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン、1,12-ビス[2-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-3-ヒドロキシフェノキシ]エチル]ドデカンジオエート等のトリアジン類;各種の金属塩、または金属キレート、特にニッケル、クロムの塩、またはキレート類等が挙げられる。紫外線吸収剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して0.001~20質量部であればよく、0.01~10質量部であることがより好ましい。
 ヒンダードアミン化合物は、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-tert-オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル}カーボナート等が挙げられる。ヒンダードアミン化合物を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.001~20質量部であればよく、0.01~10質量部であることがより好ましい。
 難燃剤は、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、(1-メチルエチリデン)-4,1-フェニレンテトラフェニルジホスフェート、1,3-フェニレンテトラキス(2,6-ジメチルフェニル)ホスフェート、株式会社ADEKA製商品名「アデカスタブFP-500」、「アデカスタブFP-600」、「アデカスタブFP-800」の芳香族リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸(1-ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド誘導体等のホスフィン酸エステル、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン酸ピペラジン、ピロリン酸ピペラジン、ポリリン酸ピペラジン、リン含有ビニルベンジル化合物および赤リン等のリン系難燃剤、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレンおよび2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジン、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、および、臭素化スチレン等の臭素系難燃剤等を挙げることができる。これら難燃剤はフッ素樹脂等のドリップ防止剤や多価アルコール、ハイドロタルサイト等の難燃助剤と併用することが好ましい。難燃剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、1~100質量部であればよく、10~70質量部であることがより好ましい。
 滑剤は、成形体表面に滑性を付与し傷つき防止効果を高める目的で加えられる。滑剤としては、例えば、オレイン酸アミド、エルカ酸アミド等の不飽和脂肪酸アミド;ベヘン酸アミド、ステアリン酸アミド等の飽和脂肪酸アミド、ブチルステアレート、ステアリルアルコール、ステアリン酸モノグリセライド、ソルビタンモノパルミチテート、ソルビタンモノステアレート、マンニトール、ステアリン酸、硬化ひまし油、ステアリン酸アマイド、オレイン酸アマイド、エチレンビスステアリン酸アマイド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用して用いてもよい。滑剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.01~2質量部であればよく0.03~0.5質量部であることがより好ましい。
 脂肪酸金属塩としては、耐熱性や樹脂中の核剤の分散効果が得られる観点から、下記一般式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000005
 ここで、一般式(2)中、Rは、直鎖または分岐状の炭素原子数12~20の脂肪酸残基を表し、この脂肪酸残基はヒドロキシ基で置換されていてもよく、Mは、1~3価の金属原子を表し、金属原子はヒドロキシ基と結合していてもよく、mは、1~3の整数を表す。
 一般式(2)中、Mの具体例としては、ナトリウム、カリウム、リチウム、カルシウム、亜鉛、バリウム、マグネシウム、ヒドロキシアルミニウム等が挙げられ、ナトリウム、カリウム、リチウムが特に好ましい。脂肪酸金属塩を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して0.005~5質量部であればよく、0.01~0.5質量部であることがより好ましい。
 ハイドロタルサイト類は、天然物や合成物として知られるマグネシウム、アルミニウム、水酸基、炭酸基および任意の結晶水からなる複合塩化合物であり、マグネシウムまたはアルミニウムの一部をアルカリ金属や亜鉛等他の金属で置換したものや水酸基、炭酸基を他のアニオン基で置換したものが挙げられ、具体的には、例えば、下記一般式(3)で表されるハイドロタルサイトの金属をアルカリ金属に置換したものが挙げられる。また、Al-Li系のハイドロタルサイト類としては、下記一般式(4)で表される化合物も用いることができる。
Figure JPOXMLDOC01-appb-I000006
 ここで、一般式(3)中、x1およびx2はそれぞれ下記式、
0≦x2/x1<10,2≦x1+x2≦20
で表される条件を満たす数を表し、pは0または正の数を表す。
Figure JPOXMLDOC01-appb-I000007
 ここで、一般式(4)中、Aq-は、q価のアニオンを表し、pは0または正の数を表す。また、ハイドロタルサイト類における炭酸アニオンは、一部を他のアニオンで置換したものでもよい。
 ハイドロタルサイト類は、結晶水を脱水したものであってもよく、ステアリン酸等の高級脂肪酸、オレイン酸アルカリ金属塩等の高級脂肪酸金属塩、ドデシルベンゼンスルホン酸アルカリ金属塩等の有機スルホン酸金属塩、高級脂肪酸アミド、高級脂肪酸エステルまたはワックス等で被覆されたものであってもよい。
 ハイドロタルサイト類は、天然物であってもよく、また合成品であってもよい。ハイドロタルサイト類の合成方法としては、特公昭46-2280号公報、特公昭50-30039号公報、特公昭51-29129号公報、特公平3-36839号公報、特開昭61-174270号公報、特開平5-179052号公報等に記載されている公知の方法が挙げられる。また、ハイドロタルサイト類は、その結晶構造、結晶粒子等に制限されることなく使用することができる。ハイドロタルサイト類を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.001~5質量部であればよく、0.01~3質量部であることがより好ましい。
 帯電防止剤としては、例えば、非イオン性、アニオン性、カチオン性または両性の界面活性剤等による低分子型帯電防止剤、高分子化合物による高分子型帯電防止型が挙げられる。非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられ、アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられ、カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらの中でもアニオン性界面活性剤が好ましく、特に、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩が好ましい。低分子型帯電防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.1~10質量部であればよく、0.5~5質量部であることがより好ましい。
 高分子型帯電防止剤としては、アイオノマーやポリエチレングリコールを親水部とするブロックポリマー等が挙げられる。アイオノマーとしては特開2010-132927号公報に記載のアイオノマーが挙げられる。ポリエチレングリコールを親水部とするポリマーとしては、例えば、特開平7-10989号公報に記載のポリエーテルエステルアミド、米国特許第6552131号公報記載のポリオレフィンとポリエチレングリコールからなるポリマー、特開2016-023254号公報記載のポリエステルとポリエチレングリコールからなるポリマー等が挙げられる。高分子型帯電防止剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して3~60質量部であればよく、5~25質量部であることがより好ましく、7~20質量部であることがさらに好ましい。
 蛍光増白剤とは、太陽光や人工光の紫外線を吸収し、これを紫~青色の可視光線に変えて輻射する蛍光作用によって、成形体の白色度や青味を助長させる化合物である。蛍光増白剤としては、ベンゾオキサゾール系化合物C.I.Fluorescent Brightener184;クマリン系化合物C.I.Fluorescent Brightener52;ジアミノスチルベンジスルフォン酸系化合物C.I.Fluorescent Brightener24、85、71等が挙げられる。蛍光増白剤を含有する場合の含有量は、ポリオレフィン系樹脂100質量部に対して0.00001~0.1質量部、であればよく、0.00005~0.05質量部であることがより好ましい。
 顔料としては特に限定されるものではなく、例えば、市販の顔料を用いることもできる。市販の顔料としては、例えばピグメントレッド1、2、3、9、10、17、22、23、31、38、41、48、49、88、90、97、112、119、122、123、144、149、166、168、169、170、171、177、179、180、184、185、192、200、202、209、215、216、217、220、223、224、226、227、228、240、254;ピグメントオレンジ13、31、34、36、38、43、46、48、49、51、52、55、59、60、61、62、64、65、71;ピグメントイエロー1、3、12、13、14、16、17、20、24、55、60、73、81、83、86、93、95、97、98、100、109、110、113、114、117、120、125、126、127、129、137、138、139、147、148、150、151、152、153、154、166、168、175、180、185;ピグメントグリーン7、10、36;ピグメントブルー15、15:1、15:2、15:3、15:4、15:5、15:6、22、24、29、56、60、61、62、64;ピグメントバイオレット1、15、19、23、27、29、30、32、37、40、50等が挙げられ、これらは複数が混合されて含まれていてもよい。
 染料としては特に限定されるものではなく、例えば、アゾ染料、アントラキノン染料、インジゴイド染料、トリアリールメタン染料、キサンテン染料、アリザリン染料、アクリジン染料、スチルベン染料、チアゾール染料、ナフトール染料、キノリン染料、ニトロ染料、インダミン染料、オキサジン染料、フタロシアニン染料、シアニン染料等の染料等が挙げられ、これらは複数が混合されて含まれていてもよい。
<成形品>
 次に、本発明の成形品について説明する。本発明の成形品は、本発明の樹脂組成物または本発明の他の樹脂組成物を成形して得られる。本発明の成形品は寸法安定性に優れ、反り等が少なく寸法精度に優れている。
 成形品を成形する方法としては特に限定されるものでなく、射出成形法、押出成形法、ブロー成形法、回転成形法、真空成形法、インフレーション成形法、カレンダー成形法、スラッシュ成形法、ディップ成形法、発泡成形法等の方法が挙げられる。
 成形品の具体例としては、例えば、建築資材、農業用資材、自動車等乗り物用部材、包装用資材、雑貨、玩具、家電製品、医療品等が挙げられ、さらに具体的には、バンパー、ダッシュボード、インスツルメントパネル、バッテリーケース、ラゲッジケース、ドアパネル、ドアトリム、フェンダーライナー等の自動車部材;冷蔵庫、洗濯機、掃除機等の家電製品用樹脂部品;食器、ボトルキャップ、バケツ、入浴用品等の家庭用品;コネクター等の接続用樹脂部品;玩具、収納容器、合成紙等の雑貨品;医療用パック、注射器、カテーテル、医療用チューブ、シリンジ製剤、輸液バッグ、試薬容器、飲み薬容器、飲み薬個包装等の医療用成形品;壁材、床材、窓枠、壁紙、窓等の建材;電線被覆材;ハウス、トンネル、フラットヤーンメッシュバッグ等の農業用資材;パレット、ペール缶、バックグラインドテープ、液晶プロテクト用テープ、パイプ、シーリング材用変性シリコーンポリマー等の工業用資材;ラップ、トレイ、カップ、フィルム、ボトル、キャップ、保存容器等の食品包装材、3Dプリンター材料、電池用セパレータ膜、衣類、織布、不織布等の繊維等が挙げられる。これらの中でも、バンパー、ダッシュボード、インスツルメントパネル、パレット、収納容器等、大型の成形品であって、機械的強度と寸法安定性との両立が求められる成形品が特に好ましい。
 次に、本発明の樹脂組成物の製造方法について説明する。本発明の樹脂組成物の製造方法は、ポリオレフィン系樹脂を含む樹脂組成物を成形して得られる成形品の成形時における寸法安定性を改善することができる樹脂組成物を製造するものである。本発明の樹脂組成物の製造方法においては、核剤を含む樹脂組成物の135℃における等温結晶化時間t2と、核剤を含まない以外は上記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、の比t2/t1を0.45以上とするものである。t2/t1の値は0.5以上であることが好ましく、0.7以上であることがより好ましい。なお、t2/t1は1未満であり、t2/t1の値の上限は、好ましくは0.9以下、より好ましくは0.8以下である。
 また、本発明の他の樹脂組成物の製造方法は、ポリオレフィン系樹脂を含む樹脂組成物を成形して得られる成形品の成形時における寸法安定性を改善する樹脂組成物を製造するものである。本発明の他の樹脂組成物の製造方法においては、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzの条件で、核剤を含む樹脂組成物の動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2、同条件で、核剤を含まない以外は上記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1との比T2/T1を0.35以上とするものである。なお、T2/T1は1未満であり、T2/T1の値の上限は、好ましくは0.9以下、より好ましくは0.8以下である。
 上述のとおり、等温結晶化温度t1、t2や、貯蔵弾性率曲線と損失弾性率曲線とが交わるまでの時間T1、T2は、樹脂組成物の結晶化速度の指標となる。これらは、ポリオレフィン系樹脂の種類、核剤その他樹脂組成物に含まれる成分の種類、これら成分のポリオレフィン系樹脂に対する含有割合および樹脂組成物中におけるこれら成分の分散状態によって定まる。そして、樹脂組成物中における上記成分の分散状態は、ポリオレフィン系樹脂の粉粒体としての特性、および、上記成分の物理的特性(粉粒体としての特性、比重等)、化学的特性、樹脂組成物の製造方法(製造条件、特にポリオレフィン系樹脂と核剤その他樹脂組成物に含まれる成分との混合方法等)等によって定まる。したがって、これらの条件を適宜設計することで、等温結晶化温度t1、t2や、貯蔵弾性率曲線と損失弾性率曲線とが交わるまでの時間T1、T2を適宜調整することができる。
 上述のとおり、ポリオレフィン系樹脂に対する核剤の添加量を多くすると、核剤の核形成作用が大きくなるため、t2/t1およびT2/T1は小さくなる。また、ポリオレフィン系樹脂の粒子サイズを小さくすると、樹脂組成物中において核剤がより均一に分散されるため、t2/t1およびT2/T1は小さくなる。これ以外にも、ポリオレフィン系樹脂と核剤との混合を十分にすると、樹脂組成物中において核剤がより均一に分散されるため、t2/t1およびT2/T1は小さくなる。本発明の樹脂組成物および本発明の他の樹脂組成物は、これらの指針に基づき、t2/t1およびT2/T1を特定の範囲とし、成形品に優れた機械的強度を付与することができ、かつ、成形時における寸法安定性に優れた樹脂組成物となる。
 本発明の樹脂組成物および本発明の他の樹脂組成物の製造方法において、ポリオレフィン系樹脂粉末若しくはペレットと、核剤と、必要に応じてその他の添加剤とは、例えばドライブレンド等の方法で配合されてもよい。ドライブレンドの方法としては特に限定されず、例えば、FMミキサー、ロッキングミキサー等公知の混合装置を用いた方法等が挙げられる。また、核剤およびその他の添加剤は、同時にポリオレフィン系樹脂に添加されてもよく、別々に添加されてもよい。さらに、核剤およびその他の添加剤は、マスターバッチとしてポリオレフィン系樹脂に添加されてもよい。本発明の樹脂組成物および本発明の他の樹脂組成物の製造方法は、溶融混練工程を含むことが好ましい。この場合、より均一な品質の樹脂組成物を得ることができる。溶融混練の方法としては特に限定されるものではなく、例えば、単軸押出機、二軸押出機等を用いた溶融押出法等の方法であればよい。
 以下、実施例を用いて本発明を更に具体的に説明するが、本発明は以下の実施例によって何ら制限を受けるものではない。
[実施例1~68および比較例1~7]
 ポリオレフィン系樹脂および核剤としては以下のものを使用した。
ポリオレフィン系樹脂1:230℃、荷重2.16kgの条件におけるMFR=30g/10分であるインパクトコポリマーポリプロピレンから調製されるペレット
ポリオレフィン系樹脂2:230℃、荷重2.16kgの条件におけるMFR=30g/10分であるインパクトコポリマーポリプロピレンから調製される粉末
核剤1:ADEKA社製 アデカスタブ NA-11
核剤2:ADEKA社製 アデカスタブ NA-21
核剤3:ADEKA社製 アデカスタブ NA-27
核剤4:ADEKA社製 アデカスタブ NA-71
核剤5:ADEKA社製 アデカスタブ NA-902
核剤6:1,2-シクロヘキサンジカルボン酸カルシウム
核剤7:1,3:2,4-ビス-o-(3,4-ジメチルベンジリデン)-D-ソルビトール
 なお、ポリオレフィン系樹脂1およびポリオレフィン系樹脂2は、以下の様にして準備した。
 プライムポリマー社製のインパクトコポリマーポリプロピレン(商品名J707G、230℃、荷重2.16kgの条件におけるMFR=30g/10分)に対し、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンを0.05質量%、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトを0.1質量%、ステアリン酸カルシウムを0.1質量%配合し、ロッキングミキサーを用いて30分間混合した。得られた混合物を二軸押出機(日本製鋼所社製、TEX28V)により230℃で溶融混練した後に造粒し、60℃で8時間乾燥した。こうして得られたペレットを目開き4.75mmの篩にかけ、この篩を通過したペレットをさらに目開き2.8mmの篩にかけ、この篩上に残留したペレットをポリオレフィン系樹脂1とした。さらに、このペレットを粉砕機により常温で粉砕して粉末とした後、目開き1.4mmの篩にかけ、この篩を通過した粉末をポリオレフィン系樹脂2とした。
<樹脂組成物の調製>
 先ず、表1~12に示すポリオレフィン系樹脂100質量部に対して、同表に示す核剤を同表に示す配合量、エラストマー(ダウ・ケミカル社製、商品名Engage8200)を33質量部、タルク(松村産業株式会社製、商品名Crown Talc PP)を33質量部配合した後、同表に示す混合方法で混合して樹脂組成物を得た。なお、表1~12における混合方法は以下の通りである。
 混合方法A:ロッキングミキサーを用いて30分間混合
 混合方法B:ヘンシェルミキサーを用いて1000rpmで1分間混合
 混合方法C:手ブレンドにより混合
 こうして得られた樹脂組成物を、二軸押出機(日本製鋼所社製、TEX28V)を用いて230℃で溶融混練し、造粒した後、60℃で8時間乾燥することにより樹脂組成物ペレットを得た。なお、表1~12において、配合量の単位は質量部である。
 次に、核剤を配合しない以外は上記と同様にして、核剤未含有樹脂組成物ペレットを得た。
 得られた樹脂組成物ペレットおよび核剤未含有樹脂組成物ペレットについて、以下に示す条件で等温結晶化測定および動的粘弾性測定を行い、t2/t1およびT2/T1を求めた。さらに、樹脂組成物ペレットについて、以下に示す条件で機械的強度および寸法安定性を評価した。
<等温結晶化測定>
 樹脂組成物ペレット5mgを秤量し、これを試料として示差走査熱量測定装置(パーキンエルマー社製ダイアモンド)に導入した。先ず試料を窒素雰囲気下、室温から50℃/分の昇温速度で230℃まで昇温した後、230℃で10分間保持した。続いて200℃/分の冷却速度で135℃まで冷却し、135℃に到達後、135℃で保持した。この測定においては135℃到達時点を測定開始時点とし、測定開始時点から発熱ピークトップが出現する時点までの時間をt2(秒)として求めた。核剤無添加樹脂組成物ペレットについても同条件にて示差走査熱量測定を行い、測定開始時点から発熱ピークトップが出現する時点までの時間をt1(秒)として求めた。以上のようにして求めたt2およびt1からt2/t1の値を算出した。結果を表1~12に示す。
<動的粘弾性測定>
 樹脂組成物ペレットを、射出成形機(東芝機械株式会社製EC100-2A)を用いて射出温度230℃、金型温度50℃の条件で射出成形し、60mm×60mm×2mmの平板状試験片を作製した。この試験片を23℃の恒温器中に48時間静置した後、平板状試験片から直径25mmの円盤状試験片を打抜き、動的粘弾性測定装置(TA Instruments社製、装置名Discovery Hybrid Rheometer、HR-2)に導入した。
 先ず、試料を窒素雰囲気下、室温から230℃まで昇温し、試料を完全に溶融させた後、230℃で10分間保持した。続いて試料を150℃まで15℃/分の冷却速度で冷却し、150℃に到達後、150℃に保持して測定温度150℃、測定周波数0.1Hzの条件でISO-6721-10に規定の動的粘弾性測定を行った。この測定においては150℃到達時点を測定開始時点とし、測定開始時点から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間をT2(秒)として求めた。核剤無添加樹脂組成物についても同条件にて動的粘弾性測定を行い、測定開始時点から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間をT1(秒)として求めた。以上のようにして求めたT2およびT1からT2/T1の値を算出した。結果を表1~12に示す。
<機械的強度>
 樹脂組成物ペレットを、射出成形機(東芝機械社製EC100-2A)を用いて、射出温度230℃、金型温度40℃の条件で射出成形し、80mm×10mm×4mmの平板状試験片を作製した。この試験片を23℃の恒温器中に48時間静置した後、曲げ試験機(島津製作所社製AG-IS)を用い、ISO178に準拠して曲げ弾性率を測定した。こうして得られた曲げ弾性率の値(GPa)を機械的強度の指標とした。結果を表1~12に示す。
<寸法安定性>
 樹脂組成物ペレットを、射出成形機(東芝機械株式会社製EC-100-2A)を用いて、射出温度230℃、金型温度50℃の条件で射出成形し、60mm×60mm×2mmの平板状試験片を作製した。この試験片を23℃の恒温器中に48時間静置した後、試験片の樹脂流れ方向の寸法(mm)と、樹脂流れ方向に垂直な方向の寸法(mm)を測定し、樹脂流れ方向の成形収縮率MD(%)と、樹脂流れ方向に垂直な方向の成形収縮率TD(%)との比MD/TDを算出し、これを寸法安定性の指標とした。結果を表1~12に示す。ここでMD/TDは成形品の成形時における収縮率異方性を示す値であり、この値が1に近いほど、成形品の寸法安定性が高いといえる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表1~12に示す結果より、実施例1~68の樹脂組成物は、機械的強度および成形時の寸法安定性に優れたものであった。一方、表1~12に示す結果より、比較例1~7の樹脂組成物は、機械的強度または成形時の寸法安定性が十分なものとはいえなかった。
 以上より、本発明の樹脂組成物は成形品に優れた機械的強度を付与することができ、かつ成形時の寸法安定性に優れたものであることが確認された。

Claims (8)

  1.  ポリオレフィン系樹脂と核剤とを含む樹脂組成物であって、
     前記樹脂組成物の135℃における等温結晶化時間t2と、
     前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、
    の比t2/t1が0.45以上であることを特徴とする樹脂組成物。
  2.  ポリオレフィン系樹脂と核剤とを含む樹脂組成物であって、
     前記樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2と、
     前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzで行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1と、
    の比T2/T1が0.35以上であることを特徴とする樹脂組成物。
  3.  前記核剤が、下記一般式(1)、
    Figure JPOXMLDOC01-appb-I000001
    (一般式(1)中、R~Rはそれぞれ独立に水素原子または直鎖もしくは分岐を有する炭素原子数1~6のアルキル基を表し、nは1または2を表し、nが1の場合Mは水素原子、アルカリ金属、またはジヒドロキシアルミニウムを表し、nが2の場合Mはアルカリ土類金属、亜鉛またはヒドロキシアルミニウムを表す。)で表される化合物である請求項1または2記載の樹脂組成物。
  4.  前記ポリオレフィン系樹脂がエラストマーを含む請求項1~3のうちいずれか一項記載の樹脂組成物。
  5.  さらに充填剤を含む請求項1~4のうちいずれか一項記載の樹脂組成物。
  6.  請求項1~5のうちいずれか一項記載の樹脂組成物を成形して得られることを特徴とする成形品。
  7.  ポリオレフィン系樹脂と核剤とを含む樹脂組成物の製造方法であって、
     前記樹脂組成物の135℃における等温結晶化時間t2と、
     前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の135℃における等温結晶化時間t1と、
    の比t2/t1を、0.45以上とすることを特徴とする樹脂組成物の製造方法。
  8.  ポリオレフィン系樹脂と核剤とを含む樹脂組成物の製造方法であって、
     前記樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzにて動的粘弾性測定を行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T2と、
     前記核剤を含まない以外は前記樹脂組成物と同一の組成を有する核剤未含有樹脂組成物の動的粘弾性測定を、ISO-6721-10に規定の方法により測定温度150℃、測定周波数0.1Hzにて行った際、測定開始から貯蔵弾性率曲線と損失弾性率曲線とが交わる点までの時間T1と、
    の比T2/T1を、0.35以上とすることを特徴とする樹脂組成物の製造方法。
PCT/JP2020/046806 2019-12-18 2020-12-15 樹脂組成物、その成形品、および、その樹脂組成物の製造方法 WO2021125184A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565597A JPWO2021125184A1 (ja) 2019-12-18 2020-12-15
EP20902370.4A EP4079802A4 (en) 2019-12-18 2020-12-15 RESIN COMPOSITION, CORRESPONDING MOLDED ARTICLE AND METHOD FOR PRODUCING SAID RESIN COMPOSITION
US17/784,755 US20230009252A1 (en) 2019-12-18 2020-12-15 Resin composition, molded article thereof, and method for producing said resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019228484 2019-12-18
JP2019-228484 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021125184A1 true WO2021125184A1 (ja) 2021-06-24

Family

ID=76478768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046806 WO2021125184A1 (ja) 2019-12-18 2020-12-15 樹脂組成物、その成形品、および、その樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20230009252A1 (ja)
EP (1) EP4079802A4 (ja)
JP (1) JPWO2021125184A1 (ja)
TW (1) TW202136410A (ja)
WO (1) WO2021125184A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (ja) 1966-07-25 1971-01-20
JPS5030039B1 (ja) 1967-07-17 1975-09-27
JPS5129129B1 (ja) 1970-12-31 1976-08-24
JPS581736A (ja) * 1981-06-25 1983-01-07 Adeka Argus Chem Co Ltd ポリオレフイン系樹脂組成物
JPS61174270A (ja) 1985-01-29 1986-08-05 Kyowa Chem Ind Co Ltd 耐発錆性ないし耐着色性賦与剤
JPH0336839B2 (ja) 1984-11-09 1991-06-03 Mizusawa Industrial Chem
JPH05179052A (ja) 1991-12-27 1993-07-20 Mizusawa Ind Chem Ltd 樹脂用安定剤
JPH0710989A (ja) 1993-04-16 1995-01-13 Sanyo Chem Ind Ltd ポリエーテルエステルアミドおよび樹脂組成物
US6552131B1 (en) 1999-02-10 2003-04-22 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
JP2010132927A (ja) 2007-12-07 2010-06-17 Du Pont Mitsui Polychem Co Ltd カリウムアイオノマーからなる高分子型帯電防止剤
JP2016023254A (ja) 2014-07-22 2016-02-08 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016089176A (ja) * 2014-10-31 2016-05-23 サンアロマー株式会社 ポリプロピレン系樹脂組成物及び成形品
WO2017150662A1 (ja) * 2016-03-02 2017-09-08 株式会社Adeka 樹脂添加剤組成物、熱可塑性樹脂組成物、およびその成形体
US20190136028A1 (en) * 2017-11-09 2019-05-09 Milliken & Company Additive compositions and polymer compositions comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1303270C (en) * 1986-08-01 1992-06-09 Hirokazu Nakazima High stiffness propylene polymer compositions
EP1510548B1 (en) * 2003-08-18 2013-05-01 Borealis Technology Oy Use of propylene polymers with improved oxidation stability
WO2016000910A1 (en) * 2014-07-01 2016-01-07 Basell Poliolefine Italia S.R.L. Polypropylene compositions
JP6397153B1 (ja) * 2018-05-18 2018-09-26 株式会社Adeka 粒状核剤、樹脂組成物、成形品およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (ja) 1966-07-25 1971-01-20
JPS5030039B1 (ja) 1967-07-17 1975-09-27
JPS5129129B1 (ja) 1970-12-31 1976-08-24
JPS581736A (ja) * 1981-06-25 1983-01-07 Adeka Argus Chem Co Ltd ポリオレフイン系樹脂組成物
JPH0336839B2 (ja) 1984-11-09 1991-06-03 Mizusawa Industrial Chem
JPS61174270A (ja) 1985-01-29 1986-08-05 Kyowa Chem Ind Co Ltd 耐発錆性ないし耐着色性賦与剤
JPH05179052A (ja) 1991-12-27 1993-07-20 Mizusawa Ind Chem Ltd 樹脂用安定剤
JPH0710989A (ja) 1993-04-16 1995-01-13 Sanyo Chem Ind Ltd ポリエーテルエステルアミドおよび樹脂組成物
US6552131B1 (en) 1999-02-10 2003-04-22 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
JP2010132927A (ja) 2007-12-07 2010-06-17 Du Pont Mitsui Polychem Co Ltd カリウムアイオノマーからなる高分子型帯電防止剤
JP2016023254A (ja) 2014-07-22 2016-02-08 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016089176A (ja) * 2014-10-31 2016-05-23 サンアロマー株式会社 ポリプロピレン系樹脂組成物及び成形品
WO2017150662A1 (ja) * 2016-03-02 2017-09-08 株式会社Adeka 樹脂添加剤組成物、熱可塑性樹脂組成物、およびその成形体
US20190136028A1 (en) * 2017-11-09 2019-05-09 Milliken & Company Additive compositions and polymer compositions comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079802A4

Also Published As

Publication number Publication date
US20230009252A1 (en) 2023-01-12
EP4079802A1 (en) 2022-10-26
TW202136410A (zh) 2021-10-01
JPWO2021125184A1 (ja) 2021-06-24
EP4079802A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP6728506B1 (ja) ポリオレフィン系樹脂用核剤、これを含有するポリオレフィン系樹脂用核剤組成物、ポリオレフィン系樹脂用マスターバッチ、ポリオレフィン系樹脂組成物、その成形品、そのフィルム、多孔質フィルムの製造方法および包装体
US20230143936A1 (en) Composition, thermoplastic resin composition using same, and molded article of same
JP2023175807A (ja) 組成物、これを用いた熱可塑性樹脂組成物、およびその成形体
JP7084729B2 (ja) 核剤組成物、これを含有するオレフィン系樹脂組成物およびその成形品
WO2021193886A1 (ja) 核剤、樹脂組成物、樹脂組成物の製造方法および成形品
JP7431734B2 (ja) 添加剤組成物、これを含有するポリオレフィン系樹脂組成物、ポリオレフィン系樹脂組成物の製造方法、およびその成形品
WO2021125184A1 (ja) 樹脂組成物、その成形品、および、その樹脂組成物の製造方法
WO2022265042A1 (ja) 核剤組成物、樹脂組成物、その成形品および樹脂組成物の製造方法
RU2809531C2 (ru) Композиция, композиция термопластической смолы, использующая ее, и формованное изделие из нее
JP7464538B2 (ja) 核剤組成物、オレフィン系樹脂組成物、その成形品およびオレフィン系樹脂組成物の製造方法
RU2804467C2 (ru) Композиция, композиция термопластической смолы, использующая ее, и формованное изделие из нее
JP2020152838A (ja) ポリオレフィン系樹脂の核形成を促す化合物、マスターバッチ、樹脂組成物および成形品
WO2023127938A1 (ja) 樹脂組成物、成形品および樹脂組成物の製造方法
WO2020138205A1 (ja) ポリオレフィン系樹脂用核剤、これを含有するポリオレフィン系樹脂用核剤組成物、ポリオレフィン系樹脂組成物、およびその成形品
WO2021200842A1 (ja) 添加剤組成物、これを含む樹脂組成物、その製造方法および成形品
JP2019127496A (ja) 核剤、これを含有するオレフィン系樹脂組成物およびその成形品
WO2019045014A1 (ja) 透明化剤組成物、これを用いたオレフィン系樹脂組成物、およびその成形品
WO2019045015A1 (ja) 組成物、これを用いたオレフィン系樹脂組成物、およびその成形品
JP2019044063A (ja) 結晶化遅延剤、これを含むポリオレフィン系樹脂組成物およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902370

Country of ref document: EP

Effective date: 20220718