WO2019021943A1 - 組成物、これを含む樹脂組成物、およびその成形体 - Google Patents

組成物、これを含む樹脂組成物、およびその成形体 Download PDF

Info

Publication number
WO2019021943A1
WO2019021943A1 PCT/JP2018/027165 JP2018027165W WO2019021943A1 WO 2019021943 A1 WO2019021943 A1 WO 2019021943A1 JP 2018027165 W JP2018027165 W JP 2018027165W WO 2019021943 A1 WO2019021943 A1 WO 2019021943A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
component
block
polyester
Prior art date
Application number
PCT/JP2018/027165
Other languages
English (en)
French (fr)
Inventor
直樹 圓城
達人 中村
直人 上田
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2019021943A1 publication Critical patent/WO2019021943A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a composition, a resin composition containing the same, and a molded article thereof, and more specifically, it is possible to continuously impart an excellent antistatic effect to a synthetic resin, and at the same time, to provide excellent processability.
  • the present invention relates to a composition that can be applied, a resin composition containing the same, and a molded article thereof.
  • Thermoplastic resins are not only lightweight and easy to process, but also have excellent properties such as being able to design the base material according to the application, so they are important materials that can not be indispensable today is there.
  • thermoplastic resins are frequently used for components of electric products, etc. because they have excellent electrical insulation properties.
  • the thermoplastic resin has too high insulation, there is a problem that it is easily charged by friction or the like.
  • thermoplastic resin attracts dust and dirt around it, there arises a problem that the appearance of the resin molded product is impaired. Further, among electronic products, for example, in precision equipment such as a computer, the circuit may not be able to operate normally due to charging. In addition, there is also a problem with lightning. When a resin generates an electric shock to the human body, it not only makes the person feel uncomfortable, but it may also cause an explosion accident in the presence of combustible gas and dust.
  • the most common antistatic treatment method is to add an antistatic agent to the synthetic resin.
  • antistatic agents include a coating type that is applied to the surface of a resin molded product and a kneading type that is added when processing and molding a resin, but the coating type has poor sustainability.
  • there is a problem that the contact with the surface is contaminated because a large amount of organic matter is applied to the surface.
  • Patent Documents 1 and 2 propose polyetheresteramides for imparting antistatic properties to polyolefin resins.
  • Patent Document 3 proposes a block polymer having a structure in which a block of polyolefin and a block of hydrophilic polymer are repeatedly and alternately bonded.
  • Patent Document 4 proposes a polymeric antistatic agent having a block of polyester.
  • an object of the present invention is to provide a composition capable of continuously imparting an excellent antistatic effect to a synthetic resin, and a composition capable of imparting excellent processability, a resin composition containing the same, And providing the molded object.
  • the present inventors have intensively studied to solve the above problems, and as a result, they find that the above problems can be solved by using a polymer compound having a predetermined structure and a salt of an alkali metal in combination. We came to complete the invention.
  • the composition of the present invention is a composition containing the (X) component comprising the polymer compound (E) and the (Y) component comprising the salt of an alkali metal, A polyester (a) obtained by the reaction of a diol with an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and a compound (b) having a hydroxyl group at both ends having one or more ethyleneoxy groups in the polymer compound (E) And a polymer compound obtained by reacting an epoxy compound (D) having two or more epoxy groups, A hydroxyl group or a hydroxyl group at an end of the polyester (a), comprising a polyester block (A) composed of the polyester (a) and a polyether block (B) composed of the compound (b) It has a structure formed by the reaction of a carboxyl group, a hydroxyl group at the end of the compound (b), and an epoxy group of the epoxy compound (D) through an ester bond or an ether bond.
  • the molar amount of the component (Y) is 2.3 to 5.4 of the number of moles of ethyleneoxy group in the block (B) of the polyether in the polymer compound (E) which is the component (X). It is characterized in that it is in the range of%.
  • the polymer compound (E) of the component (X) is composed of the polyester block (A) and the polyether block (B) repeatedly and alternately via an ester bond. It is preferable to have a structure in which a block polymer (C) having a carboxyl group at both ends formed by bonding and the epoxy compound (D) are bonded via an ester bond.
  • the polyester (a) constituting the block (A) of the polyester of the polymer compound (E) of the component (X) has a structure having carboxyl groups at both ends. Is preferred.
  • the compound (b) constituting the block (B) of the polyether of the polymer compound (E) of the component (X) is preferably polyethylene glycol.
  • the number average molecular weight of the compound (b) constituting the block (B) of the polyether of the polymer compound (E) of the component (X) is 400 to 10,000. Is preferred.
  • the number average molecular weight of the block polymer (C) in the polymer compound (E) of the component (X) is preferably 5,000 to 30,000.
  • the resin composition of the present invention is characterized in that the composition of the present invention is blended with a thermoplastic resin.
  • thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof.
  • the molded article of the present invention is characterized by comprising the resin composition of the present invention.
  • the present invention it is possible to continuously impart an excellent antistatic effect to a synthetic resin, and a composition capable of imparting excellent processability, a resin composition containing the same, and A molded body can be provided. Therefore, the resin composition of the present invention is excellent in antistatic property and its persistence, and excellent in processability. Moreover, the molded object of this invention consists of a thermoplastic resin which does not produce the fall of the commercial value by contamination of the surface by static electricity, or adhesion of dust, and is a molded object without a processability defect.
  • composition of the present invention is a composition containing a (X) component consisting of the polymer compound (E) and a (Y) component consisting of a salt of an alkali metal.
  • a (X) component consisting of the polymer compound (E)
  • a (Y) component consisting of a salt of an alkali metal.
  • the component (X) of the present invention comprises the polymer compound (E).
  • the polymer compound (E) according to the present invention has a polyester (a) obtained by reacting a diol with an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and a hydroxyl group at both ends having one or more ethyleneoxy groups. It is a high molecular compound obtained by reacting the compound (b) which it has, and the epoxy compound (D) which has an epoxy group two or more.
  • the polymer compound (E) of the present invention has a polyester block (A) composed of a polyester (a) and a polyether block (B) composed of a compound (b).
  • an ester bond or an ether bond formed by the reaction of a hydroxyl group or carboxyl group at the end of polyester (a), a hydroxyl group at the end of compound (b), and an epoxy group of epoxy compound (D) It has a structure formed by bonding.
  • the ethyleneoxy group is a group represented by the following general formula (1).
  • the block (A) of the polyester of the polymer compound (E) is composed of a polyester (a) obtained by reacting a diol with an aliphatic carboxylic acid and an aromatic dicarboxylic acid.
  • Polyester (a) can be obtained by subjecting a diol to an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid by an esterification reaction.
  • diol which is a component of polyester (a) will be described.
  • the diols used in the present invention include aliphatic diols and aromatic group-containing diols.
  • the diol may also be a mixture of two or more.
  • 1,2-ethanediol ethylene glycol
  • 1,2-propanediol propylene glycol
  • 1,3-propanediol 1,2-butanediol
  • 1,3-butanediol 2-methyl-1,3-propanediol
  • 1,4-butanediol 1,5-pentanediol
  • 2,2-diethyl- 1,3-propanediol 3-,3-dimethylolpentane
  • 2-n-butyl-2-ethyl-1,3propanediol 3-methyl-1,5-pentane Diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1
  • 1,4-cyclohexanedimethanol and hydrogenated bisphenol A are preferable from the viewpoint of the antistatic property, the durability and the processability, and 1,4-cyclohexanedimethanol is more preferable.
  • aliphatic diol since it is preferable that aliphatic diol has hydrophobicity from the point of antistatic property, its persistence, and processability, use of the polyethyleneglycol which has hydrophilicity is unpreferable.
  • aromatic group-containing diol for example, bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, ethylene oxide adduct of bisphenol A
  • examples thereof include propylene oxide adducts of bisphenol A, 1,4-bis (2-hydroxyethoxy) benzene, resorcin, polyhydroxyethyl adducts of mononuclear dihydric phenol compounds such as pyrocatechol, and the like.
  • diols having these aromatic groups ethylene oxide adduct of bisphenol A and 1,4-bis ( ⁇ -hydroxyethoxy) benzene are preferable.
  • the aromatic diol is preferably hydrophobic in view of antistatic property, its durability, and processability.
  • the aliphatic dicarboxylic acid used in the present invention may be a derivative of aliphatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.).
  • the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aliphatic dicarboxylic acid preferably includes aliphatic dicarboxylic acids having 2 to 20 carbon atoms, and examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, Examples thereof include sebacic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, fumaric acid and the like.
  • dicarboxylic acids having 4 to 16 carbon atoms are preferable, and dicarboxylic acids having 6 to 12 carbon atoms are more preferable, from the viewpoints of antistatic properties, their durability, and processability.
  • the aromatic dicarboxylic acid used in the present invention may be a derivative of aromatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.).
  • the aromatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aromatic dicarboxylic acid preferably includes an aromatic dicarboxylic acid having 8 to 20 carbon atoms, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, and ⁇ -phenyl glutar acid.
  • Acid, ⁇ -phenyl adipic acid, ⁇ -phenyl adipic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalene dicarboxylic acid, sodium 3-sulfoisophthalic acid and 3-sulfoisophthalic acid Potassium and the like can be mentioned.
  • aromatic dicarboxylic acids terephthalic acid, isophthalic acid and phthalic acid (including phthalic anhydride) are preferable from the viewpoints of antistatic property, its durability and processability, and phthalic acid (including phthalic anhydride) is preferred. More preferable.
  • the polyether block (B) is composed of a compound (b) having a hydroxyl group at both ends having one or more ethyleneoxy groups represented by the following general formula (1).
  • the compound (b) having one or more ethyleneoxy groups represented by the general formula (1) and having a hydroxyl group at both ends a compound having hydrophilicity is preferable, and an ethyleneoxy group represented by the general formula (1) Are more preferable, and from the viewpoint of the antistatic property, the durability, and the processability, polyethylene glycol is more preferable, and the polyethylene glycol represented by the following general formula (2) is particularly preferable.
  • m represents a number of 5 to 250. m is preferably 20 to 200, and more preferably 40 to 180, from the viewpoints of antistatic property, durability, and processability.
  • ethylene oxide and other alkylene oxides for example, propylene oxide, 1,2-, 1,4-, 2,3-, or
  • polyethylene glycol obtained by addition reaction of ethylene oxide The polyether which carried out the addition reaction with 1 or more types of 1, 3- butylene oxide etc. is mentioned, This polyether may be random and may be block or any.
  • Examples of the compound (b) further include a compound having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, ethylene oxide and other alkylene oxides (eg, propylene oxide, 1,2-, 1,4-, And compounds having a structure in which one or more of 2,3- or 1,3-butylene oxide etc. are added. These may be either random addition or block addition.
  • Examples of the active hydrogen atom-containing compound include glycol, dihydric phenol, primary monoamine, secondary diamine and dicarboxylic acid.
  • glycol aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, aromatic glycols having 8 to 26 carbon atoms, and the like can be used.
  • aliphatic glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3-propanediol Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane Diol, 1, 20-eicosanediol, diethylene glycol, triethylene glycol, thiodiethylene glycol and the like.
  • alicyclic glycols examples include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1-methyl-3,4-cyclohexanediol And 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1'-dihydroxy-1,1'-dicyclohexyl and the like.
  • aromatic glycols examples include dihydroxymethylbenzene, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, 2-benzyl And 1,3-propanediol, triphenyl ethylene glycol, tetraphenyl ethylene glycol, benzopinacol and the like.
  • phenol having 6 to 30 carbon atoms can be used.
  • primary monoamines examples include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine, n-icosylamine and the like.
  • aliphatic primary monoamines having 1 to 20 carbon atoms such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-o
  • secondary diamines examples include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and 8 carbon atoms.
  • Aromatic secondary diamines of ⁇ 14 and secondary alkanoldiamines having 3 to 22 carbon atoms can be used.
  • aliphatic secondary diamines include N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-dibutylethylenediamine, N, N'-dimethylpropylenediamine, N, N'-diethylpropylene Diamine, N, N'-dibutylpropylenediamine, N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine N, N'-diethylhexamethylenediamine, N, N'-dibutylhexamethylenediamine, N, N'-dimethyldecamethylenediamine, N, N'-diethyldecamethylenediamine and N, N'-dibutyldecamethylenediamine Etc.
  • heterocyclic secondary diamines examples include piperazine, 1-aminopiperidine and the like.
  • alicyclic secondary diamines include N, N'-dimethyl-1,2-cyclobutanediamine, N, N'-diethyl-1,2-cyclobutanediamine, N, N'-dibutyl-1,2- Cyclobutanediamine, N, N'-dimethyl-1,4-cyclohexanediamine, N, N'-diethyl-1,4-cyclohexanediamine, N, N'-dibutyl-1,4-cyclohexanediamine, N, N'- Dimethyl-1,3-cyclohexanediamine, N, N'-diethyl-1,3-cyclohexanediamine, N, N'-dibutyl-1,3-cyclohexanediamine and the like can be mentioned.
  • aromatic secondary diamines include N, N'-dimethyl-phenylenediamine, N, N'-dimethyl-xylylenediamine, N, N'-dimethyl-diphenylmethanediamine, N, N'-dimethyl-diphenyletherdiamine And N, N'-dimethyl-benzidine and N, N'-dimethyl-1,4-naphthalenediamine.
  • secondary alkanoldiamines include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine and N-methyldipropanolamine.
  • dicarboxylic acids having 2 to 20 carbon atoms can be used, and for example, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids can be used.
  • aliphatic dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid, ⁇ -methylglutaric acid, ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid and icosandioic acid.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2 , 2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and potassium 3-sulfoisophthalate.
  • 1,3-cyclopentane dicarboxylic acid for example, 1,3-cyclopentane dicarboxylic acid, 1,2-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,2-cyclohexane dicarboxylic acid, 1,3-cyclohexane dicarbon
  • acids 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid and dicyclohexyl-4,4'-dicarboxylic acid.
  • active hydrogen atom-containing compounds may be used alone or in combination of two or more.
  • the epoxy compound (D) used in the present invention is not particularly limited as long as it has two or more epoxy groups, and, for example, polycondensates of mononuclear polyhydric phenol compounds such as hydroquinone, resorcinol, pyrocatechol, phloroglucinol etc.
  • Glycidyl ether compounds dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (ortho cresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (ortho cresol), tetrabromo bisphenol A, 1,3- Bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4 Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, ortho cresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcinol novolak, terpene phenol
  • epoxy compounds are polymerized using a compound which is internally crosslinked by a prepolymer of terminal isocyanate or a polyvalent active hydrogen compound (polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate ester, etc.) It may be Two or more kinds of such epoxy compounds (D) may be used.
  • the molar amount of ethyleneoxy group present in the diglycidyl ether of polyethylene glycol is used.
  • the number is also added to the number of moles of ethyleneoxy group in block (B) of the polyether, and the total of both is calculated as the number of moles of ethyleneoxy group in polyether block (B) in the polymer compound (E) Do.
  • the epoxy equivalent of the epoxy compound (D) is preferably 70 to 2,000 from the viewpoint of antistatic property, its durability and processability.
  • the polymer compound (E) is an ester formed by the reaction of a hydroxyl group or carboxyl group at the end of the polyester (a), a hydroxyl group at the end of the compound (b), and an epoxy group of the epoxy compound (D). It has a structure in which the polyester block (A), the polyether block (B), and the epoxy compound (D) having an epoxy group reacted are linked via an ester bond or an ether bond by bonding or ether bonding.
  • the polymer compound (E) is a polyether composed of the block (A) of the polyester composed of the polyester (a) and the compound (b) from the viewpoint of the antistatic property, its durability, and processability.
  • a block polymer (C) having a carboxyl group at both ends, in which a block (B) is repeatedly and alternately bonded via an ester bond, and an epoxy compound (D), the carboxyl group of the block polymer (C) and the epoxy compound It is preferable to have a structure formed by bonding via an ester bond formed by the epoxy group of (D).
  • the polyester (a) constituting the block (A) of the polyester according to the present invention may be made of a diol and an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and may have antistatic properties and durability, and processing From the viewpoint of the properties, preferably, the residue excluding the hydroxyl group of the diol and the residue excluding the carboxyl group of the aliphatic dicarboxylic acid have a structure in which they are bonded via an ester bond, and the hydroxyl group of the diol And the residue other than the carboxyl group of the aromatic dicarboxylic acid have a structure in which they are linked via an ester bond.
  • the polyester (a) is preferably one having a carboxyl group at both ends from the viewpoint of antistatic properties, its durability, and processability. Furthermore, the polymerization degree of the polyester (a) is preferably in the range of 2 to 50 from the viewpoint of the antistatic property, the durability and the processability.
  • the aliphatic dicarboxylic acid may be a derivative of aliphatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.), and when the derivative is used to obtain polyester (a), Finally, both ends may be treated to form carboxyl groups, and in the state as such, the reaction may be advanced to obtain a block polymer (C) having a structure having carboxyl groups at both ends.
  • the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aromatic dicarboxylic acid may be a derivative of aromatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.), and if derivative is used to obtain polyester, the final Both ends may be treated to form a carboxyl group, and in the state as it is, the reaction may proceed to the next reaction for obtaining a block polymer (C) having a structure having a carboxyl group at both ends.
  • the aromatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the ratio of the residue of the aliphatic dicarboxylic acid other than the carboxyl group in the polyester (a) to the residue other than the carboxyl group of the aromatic dicarboxylic acid is the antistatic property, its durability, and the processability
  • the molar ratio is preferably 90:10 to 99.9: 0.1, more preferably 93: 7 to 99.9: 0.1.
  • the polyester (a) having a carboxyl group at both ends can be obtained, for example, by subjecting the above-mentioned aliphatic dicarboxylic acid or its derivative and the above-mentioned aromatic dicarboxylic acid or its derivative to a polycondensation reaction with the above-mentioned diol.
  • the reaction ratio of aliphatic dicarboxylic acid or derivative thereof and aromatic dicarboxylic acid or derivative thereof with diol is such that aliphatic dicarboxylic acid or derivative thereof and aromatic dicarboxylic acid or derivative thereof are obtained such that both ends are carboxyl groups. It is preferable to use an excess, and it is preferable to use in a molar ratio of 1 molar excess to the diol.
  • the compounding ratio of the aliphatic dicarboxylic acid or derivative thereof to the aromatic dicarboxylic acid or derivative thereof during the polycondensation reaction is preferably 90:10 to 99.9: 0.1 in molar ratio, and 93: 7 to 99.9. 0.1 is more preferable.
  • a polyester composed of only diol and aliphatic dicarboxylic acid, or a polyester composed only of diol and aromatic dicarboxylic acid may be produced. They may be mixed in a), and they may be reacted with compound (b) to obtain block polymer (C).
  • a catalyst that promotes the esterification reaction may be used, and as the catalyst, conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, zinc acetate and the like can be used.
  • a suitable polyester (a) consisting of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and having carboxyl groups at both ends forms an ester bond by reacting with the compound (b) to form a block polymer (C).
  • Those forming a structure are preferred, and the carboxyl groups at both ends may be protected, modified or in the form of a precursor.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system.
  • the compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends reacts with the polyester (a) to form a structure formed by bonding via an ester bond or an ether bond, preferably an ester bond. And those forming the structure of the block polymer (C), and the hydroxyl groups at both ends may be protected, modified, or in the form of a precursor.
  • the block polymer (C) having a structure having a carboxyl group at both ends comprises a block (A) composed of the above polyester (a) and a block (B) composed of the above compound (b) And has a structure in which these blocks are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group. If an example of this block polymer (C) is given, what has a structure represented by following General formula (3) will be mentioned, for example.
  • (A) represents a block composed of a polyester (a) having a carboxyl group at the both ends, and (B) represents a compound (b) having a hydroxyl group at the both ends It represents a constructed block, and t is the number of repeating units, preferably 1 to 10 in terms of antistatic property, durability and processability. t is more preferably a number of 1 to 7, and most preferably a number of 1 to 5.
  • part of the block composed of the polyester (a) is a block composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, or composed only of a diol and an aromatic dicarboxylic acid It may be replaced by a block of polyester.
  • the block polymer (C) having a structure having a carboxyl group at both ends is obtained by subjecting the polyester (a) having a carboxyl group at both ends to a polycondensation reaction with the compound (b) having a hydroxyl group at both ends.
  • the structure is equivalent to one having a structure in which the polyester (a) and the compound (b) are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group. It is not necessary to synthesize from the above-mentioned polyester (a) and the above-mentioned compound (b) as long as it has the
  • the reaction ratio of the polyester (a) to the compound (b) is adjusted such that the polyester (a) is X + 1 mol with respect to X mol of the compound (b), carboxyl groups at both ends are obtained.
  • the block polymer (C) having
  • the compound (b) may be added to the reaction system without isolating the polyester (a), and the reaction may be carried out as it is.
  • a catalyst that promotes the esterification reaction may be used, and as the catalyst, conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, zinc acetate and the like can be used.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system.
  • the polyester (a) may be mixed with a polyester composed only of a diol and an aliphatic dicarboxylic acid, or a polyester composed only of a diol and an aromatic dicarboxylic acid, and these may be directly used as a compound (b) And the block polymer (C).
  • the block polymer (C) is composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, in addition to a block (A) composed of a polyester (a) and a block (B) composed of a compound (b) Or a block composed of a polyester composed only of a diol and an aromatic dicarboxylic acid may be included in the structure.
  • the polymer compound (E) according to the present invention is preferably a block polymer (C) having a structure having a carboxyl group at both ends, and an epoxy compound (D) having two or more epoxy groups, a block polymer ( It has a structure formed by bonding via an ester bond formed by the terminal carboxyl group of C) and the epoxy group of the epoxy compound (D).
  • the polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (a) and the epoxy group of the epoxy compound (D).
  • the polymer compound (E) further includes an ether bond formed by the hydroxyl group of the polyester (a) or the hydroxyl group of the compound (b) and the epoxy group of the epoxy compound (D). It is also good.
  • the carboxyl group of the block polymer (C) and the epoxy group of the epoxy compound (D) may be reacted.
  • the number of epoxy groups of the epoxy compound is preferably 0.5 to 5 equivalents of the number of carboxyl groups of the block polymer (C) to be reacted, and more preferably 0.5 to 1.5 equivalents.
  • the reaction may be carried out in various solvents or in a molten state.
  • the epoxy compound (D) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalents, and 0.2 to 1.5 equivalents of the number of carboxyl groups of the block polymer (C) to be reacted. More preferable.
  • the epoxy compound (D) may be added to the reaction system without isolation of the block polymer (C) and reacted as it is. In that case, the carboxyl group of the unreacted polyester (a) used in excess when synthesizing the block polymer (C) reacts with a part of epoxy groups of the epoxy compound (D) to form an ester bond.
  • a preferred polymer compound (E) of the present invention comprises a block polymer (C) having a structure having a carboxyl group at both ends and an epoxy compound (D) having two or more epoxy groups, each having a carboxyl group and an epoxy group It is not necessary to synthesize from the block polymer (C) and the epoxy compound (D) as long as it has a structure equivalent to one having a structure bonded via an ester bond formed by the above.
  • the number average molecular weight of the block (A) composed of the polyester (a) in the polymer compound (E) is preferably 800, in terms of polystyrene, from the viewpoint of antistaticity, durability and processability. And 8,000, more preferably 1,000 to 6,000, and still more preferably 2,000 to 4,000.
  • the number average molecular weight of the block (B) composed of the compound (b) having hydroxyl groups at both ends in the polymer compound (E) is calculated from the measured value of the hydroxyl value, And from the viewpoint of its durability and processability, it is preferably 400 to 10,000, more preferably 1,000 to 8,000, and still more preferably 2,000 to 8,000.
  • the number average molecular weight of the block composed of the block polymer (C) having a structure having a carboxyl group at both ends is preferably 5,000 to 30,000 in terms of polystyrene More preferably, it is 7,000 to 20,000, and more preferably 9,000 to 17,000.
  • the polymer compound (E) of the present invention does not isolate the polyester (a), the compound (b) and the compound (b) and And / or may be reacted with an epoxy compound (D).
  • the (Y) component according to the present invention is a salt of an alkali metal.
  • the alkali metal salt include salts of organic acids or inorganic acids, and examples of the alkali metal include lithium, sodium, potassium, cesium, rubidium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid and the like Aliphatic dicarboxylic acids having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethane Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • Examples of the inorganic acid include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfuric acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the like.
  • sodium is preferred from the viewpoint of the antistatic property, its durability and processability.
  • salts of dodecylbenzenesulfonic acid are preferred.
  • alkali metal salt examples include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, perchlorine Lithium acid, sodium perchlorate, potassium perchlorate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, potassium p-toluenesulfonate, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, dodecylbenzenesulfonic acid Potassium and the like can be mentioned.
  • sodium dodecylbenzene sulfonate is preferable from the viewpoint of the antistatic property, the durability and the processability.
  • the molar amount of the component (Y) is ethyleneoxy represented by the general formula (1) in the block (B) of the polyether in the polymer compound (E) which is the component (X). And preferably in the range of 2.7 to 5.0% in view of the antistatic property and its durability, and the processability. Preferably, it is in the range of 3.1 to 4.6%.
  • the number of moles of the ethyleneoxy group represented by the general formula (1) in the polyether block (B) in the polymer compound (E) which is the component (X) is the same as the general formula (1) present in the compound (b) It corresponds to the total number of moles of ethyleneoxy group in
  • composition of the present invention is excellent in the antistatic property, the durability, and the processability by the component (Y) being within this range is not clear, but the alkali metal is surrounded by the general formula (1) It is considered that the antistatic property, the durability, and the processability are excellent because the ethyleneoxy group shown in the above is coordinated to appropriately adjust the compatibility of the alkali metal with the synthetic resin.
  • the essential components (X) and (Y), and other optional components as required may be mixed, and various mixing machines can be used for mixing. It may be heated at the time of mixing. Examples of mixers that can be used include tumbler mixers, Henschel mixers, ribbon blenders, V-type mixers, W-type mixers, super mixers, Nauta mixers, and the like.
  • the component (Y) may be added to the reaction system during the synthesis reaction of the polymer compound (E) which is the component (X).
  • composition of the present invention other components may be blended as optional components in addition to the components (X) and (Y) as long as the effects of the present invention are not impaired.
  • Other components may be directly blended into the composition, or even when the composition of the present invention is blended into a synthetic resin such as a thermoplastic resin and used as a resin composition, it may be blended into a synthetic resin Good.
  • composition of the present invention may further contain a salt of a Group 2 element as long as the effects of the present invention are not impaired.
  • Salts of group 2 elements include salts of organic acids or inorganic acids, and examples of group 2 elements include beryllium, magnesium, calcium, strontium, barium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid and the like Aliphatic dicarboxylic acids having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethane Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids. Examples of the inorganic
  • blend surfactant with the composition of this invention in the range which does not impair the effect of this invention.
  • the surfactant which is an alkali metal salt since it is contained in the (Y) component, it is necessary to be careful in its blending.
  • nonionic, anionic, cationic or amphoteric surfactants can be used.
  • Polyethylene glycol type nonionic surfactants such as higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, polypropylene glycol ethylene oxide adducts as nonionic surfactants; fatty acid esters of polyethylene oxide, glycerin And polyvalent alcohol type nonionic surfactants such as fatty acid esters of pentaerythritol, fatty acid esters of sorbite or sorbitan, alkyl ethers of polyhydric alcohols, aliphatic amides of alkanolamines, etc., and as anionic surfactants
  • carboxylates such as alkali metal salts of higher fatty acids
  • sulfates such as higher alcohol sulfates, higher alkyl ether sulfates, alkyl benzenes
  • Sulfonic acid salts such as fluoro acid salts, alkyl sulfonic acid salt
  • Amphoteric surfactants include amino acid type amphoteric surfactants such as higher alkyl amino propionates, and betaine type amphoteric surfactants such as higher alkyl dimethyl betaines and higher alkyl dihydroxyethyl betaines, etc. These may be used alone or in combination. Two or more can be used in combination.
  • anionic surfactants are preferred, and in particular, sulfonates such as alkylbenzene sulfonates, alkyl sulfonates and paraffin sulfonates are preferred.
  • the surfactant may be blended in the composition of the present invention, and may be blended together with the composition into a synthetic resin such as a thermoplastic resin.
  • the content of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition of the present invention .
  • a polymer type antistatic agent may be added to the composition of the present invention as long as the effects of the present invention are not impaired.
  • the polymer antistatic agent for example, polymer type antistatic agents such as known polyether ester amide can be used, and as the known polyether ester amide, for example, JP-A 7-10989 Mention may be made of the polyetheresteramides which consist of polyoxyalkylene adducts of bisphenol A as described.
  • block polymers in which the bonding units of the polyolefin block and the hydrophilic polymer block have a repeating structure of 2 to 50 can be used, and for example, block polymers described in US Pat. No. 6,552,131 can be mentioned.
  • the high molecular weight antistatic agent may be blended into the composition of the present invention, and may be blended together with the composition into a synthetic resin such as a thermoplastic resin.
  • the compounding amount of the high molecular weight type antistatic agent is preferably 0 to 50 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the composition of the present invention.
  • the composition of the present invention may contain an ionic liquid as long as the effects of the present invention are not impaired.
  • the ionic liquid it has a melting point below room temperature, and at least one of the cations or anions constituting the ionic liquid is an organic ion, and the initial conductivity is 1 to 200 ms / cm, preferably 10 to 200 ms. It is a room temperature molten salt which is / cm, for example, the room temperature molten salt described in WO 95/15572.
  • the cation chosen from the group which consists of amidinium, pyridinium, pyrazolium, and guanidinium cation is mentioned.
  • the amidinium cation the following may be mentioned.
  • Imidazolinium cation those having 5 to 15 carbon atoms, and examples thereof include 1,2,3,4-tetramethylimidazolinium, 1,3-dimethylimidazolinium;
  • Imidazolium cation examples thereof include those having 5 to 15 carbon atoms, such as 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
  • Tetrahydropyrimidinium cation those having 6 to 15 carbon atoms, and examples thereof include 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra Methyl-1,4,5,6-tetrahydropyrimidinium;
  • Dihydropyrimidinium cation examples thereof include those having 6 to 20 carbon atoms, and examples thereof include 1,3-dimethyl-1,4-dihydropyrimidinium and 1,3-dimethyl-1,6-dihydropyrimidi. , 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
  • pyridinium cations include those having 6 to 20 carbon atoms, such as 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • the pyrazolium cation includes those having 5 to 15 carbon atoms, and examples thereof include 1,2-dimethyl pyrazolium and 1-n-butyl-2-methyl pyrazolium.
  • Guanidinium cation having an imidazolinium skeleton those having 8 to 15 carbon atoms, and examples thereof include 2-dimethylamino-1,3,4-trimethylimidazolinium, 2-diethylamino-1,3. , 4-trimethylimidazolinium;
  • Guanidinium cation having an imidazolium skeleton those having 8 to 15 carbon atoms, and examples thereof include 2-dimethylamino-1,3,4-trimethylimidazolium and 2-diethylamino-1,3,4. -Trimethylimidazolium;
  • Guanidinium cation having a tetrahydropyrimidinium skeleton those having 10 to 20 carbon atoms, and examples thereof include 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydrofuran Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium;
  • Guanidinium cation having a dihydropyrimidinium skeleton those having 10 to 20 carbon atoms, and examples thereof include 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium, 2-Dimethylamino-1,3,4-trimethyl-1,6-dihydropyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4-dihydropyrimidinium, 2-diethylamino-1 , 3-Dimethyl-4-ethyl-1,6-dihydropyrimidinium.
  • the cations may be used alone or in combination of two or more.
  • an amidinium cation is preferable from the viewpoint of antistatic properties, more preferably an imidazolium cation, and particularly preferably a 1-ethyl-3-methylimidazolium cation.
  • Examples of the organic acid or inorganic acid constituting the anion in the ionic liquid include the following.
  • As an organic acid for example, carboxylic acid, sulfuric acid ester, sulfonic acid and phosphoric acid ester;
  • As an inorganic acid for example, super strong acid (eg, borofluoric acid, tetraboronic acid, perchloric acid, phosphorus hexafluoride) Acids, hexafluoroantimonic acid and hexaarsenic acid), phosphoric acid and boric acid.
  • the organic acid and the inorganic acid may be used alone or in combination of two or more.
  • organic acids and inorganic acids preferred from the viewpoint of the antistatic property of the ionic liquid is a conjugate of a super strong acid whose Hammett acidity function (-H 0 ) of the anion constituting the ionic liquid is 12 to 100.
  • Bases acids which form anions other than the conjugate bases of super strong acids, and mixtures thereof.
  • halogen eg, fluorine, chlorine and bromine
  • alkyl C 1-12 carbon atoms
  • benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid
  • fluoroalkanesulfonic acid eg, undecafluoropentanesulfonic acid
  • super acids include those derived from protic acids and combinations of protic acids and Lewis acids, and mixtures thereof.
  • borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imidic acid and bis (pentafluoroethylsulfonyl) imidic acid are preferable from the viewpoint of easiness of synthesis.
  • Protic acids used in combination with Lewis acids include, for example, hydrogen halide (eg, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, trifluoromethane Sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid and mixtures thereof can be mentioned.
  • hydrogen fluoride is preferred from the viewpoint of the initial conductivity of the ionic liquid.
  • Lewis acid for example, boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride and mixtures thereof can be mentioned.
  • boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • the combination of a protonic acid and a Lewis acid is optional, but as a superstrong acid comprising these combinations, for example, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorotantalic acid, hexafluoroantimonic acid, hexafluorinated acid And tantalum sulfonic acid, boron tetrafluoride, phosphoric acid hexafluoride, boron trichloride chloroborate, arsenic hexafluoride hexafluoride, and mixtures thereof.
  • tetrafluoroboric acid hexafluorophosphoric acid, hexafluorotantalic acid, hexafluoroantimonic acid, hexafluorinated acid And tantalum sulfonic acid, boron tetrafluoride, phosphoric acid hexafluoride, boron trichloride chlor
  • super-acid conjugate bases (super-strong acids consisting of protic acids and super-strong acids consisting of a combination of protic acids and Lewis acids) from the viewpoint of the antistatic properties of ionic liquids, more preferred Is a conjugate base of a super strong acid consisting of a protic acid and a super strong acid consisting of a protic acid and a boron trifluoride and / or a phosphorus pentafluoride.
  • an ionic liquid having an amidinium cation is preferable from the viewpoint of antistaticity, an ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and an ionic liquid having a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is particularly preferable.
  • the ionic liquid may be blended in the composition of the present invention, and may be blended together with the composition into a synthetic resin such as a thermoplastic resin.
  • the content of the ionic liquid is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition of the present invention .
  • the composition of the present invention may contain a compatibilizer as long as the effects of the present invention are not impaired.
  • a compatibilizer modified vinyl polymers having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group, for example, Examples thereof include polymers described in JP-A-3-258850, modified vinyl polymers having a sulfonyl group described in JP-A-6-345927, and block polymers having a polyolefin portion and an aromatic vinyl polymer portion.
  • the compatibilizer may be blended into the composition of the present invention, or may be blended into a synthetic resin such as a thermoplastic resin together with the composition of the present invention.
  • the blending amount of the compatibilizer is preferably 0.1 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition of the present invention.
  • the composition of the present invention can be used as a resin composition by blending it with a synthetic resin, particularly preferably a thermoplastic resin.
  • thermoplastic resins include polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, crosslinked polyethylene, ultrahigh molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene and the like
  • Polyolefin resins such as ⁇ -olefin polymers or ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene copolymers and copolymers thereof; polyvinyl chloride, polyvinylidene chloride, chlorine Polyethylene, chlorinated polypropylene, polyvinylidene fluoride, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-
  • Polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonates, polycarbonates / ABS resin, branched polycarbonate, polyacetal, polyphenylene sulfide, polyurethane, fibrous resin, polyimide resin
  • Polysulfone, polyphenylene ether, polyether ketone, polyether ether ketone include thermoplastic resins and blends thereof such as a liquid crystal polymer.
  • thermoplastic resin is isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, nylon It may be an elastomer such as a system elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. In the present invention, these thermoplastic resins may be used alone or in combination of two or more. The thermoplastic resin may be alloyed.
  • thermoplastic resins have a molecular weight, polymerization degree, density, softening point, ratio of insoluble matter to solvent, degree of stereoregularity, presence or absence of catalyst residue, kind and blending ratio of raw material monomers, kind of polymerization catalyst It can be used regardless of (eg, Ziegler catalyst, metallocene catalyst, etc.) and the like.
  • thermoplastic resins at least one selected from the group consisting of polyolefin resins, polystyrene resins, and copolymers thereof is preferable from the viewpoint of antistatic property, its durability, and processability.
  • the mass ratio of the thermoplastic resin to the composition of the present invention in the resin composition of the present invention is preferably in the range of 99/1 to 40/60.
  • the method of blending the composition of the present invention into the thermoplastic resin is not particularly limited, and any commonly used method can be used. For example, mixing by roll kneading, bumper kneading, extruder, kneader, etc. , And may be blended.
  • the composition of the present invention may be added as it is to the thermoplastic resin, but it may be added after being impregnated into the carrier, if necessary. In order to impregnate the carrier, it may be heated and mixed as it is, or, if necessary, it may be diluted with an organic solvent and then impregnated into the carrier, and then the solvent may be removed.
  • a filler known as a filler of a synthetic resin or a filler, or a flame retardant or a light stabilizer which is solid at normal temperature can be used.
  • a filler of a synthetic resin or a filler or a flame retardant or a light stabilizer which is solid at normal temperature
  • calcium silicate powder, silica powder, talc powder, alumina powder examples thereof include titanium oxide powder, those obtained by chemically modifying the surface of these carriers, and solid substances among the flame retardants and antioxidants listed below.
  • these carriers those in which the surface of the carrier is chemically modified are preferable, and those in which the surface of the silica powder is chemically modified are more preferable.
  • the carrier preferably has an average particle diameter of 0.1 to 100 ⁇ m, and more preferably 0.5 to 50 ⁇ m.
  • the polymer compound (E) which is the component (X) while simultaneously kneading the block polymer (C) and the epoxy compound (D) into the resin component ) May be synthesized and mixed, and at that time a salt of an alkali metal which is the (Y) component may be simultaneously kneaded, or a polymer compound (E) which is the (X) component at the time of molding such as injection molding. ) And the alkali metal salt of the (Y) component and the resin component may be mixed to obtain a molded product, and further, in advance, the (X) component and / or the (Y) component and the synthetic resin A masterbatch may be produced and then blended.
  • the polymer compound (E) which is the component (X) and the alkali metal salt of the component (Y) may be mixed in advance and then added to the synthetic resin.
  • the polymer compound (E) synthesized by adding a salt may be blended into the synthetic resin.
  • various additives such as phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet light absorbers, hindered amine light stabilizers and the like are further added as necessary.
  • the resin composition of the present invention can be stabilized.
  • antioxidants such as these antioxidants may be blended into the composition of the present invention before blending into the synthetic resin. Furthermore, you may mix
  • phenolic antioxidants examples include 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-tert-butyl-4) -Hydroxybenzyl) phosphonate, 1,6-hexamethylene bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis (6-tert-butyl) -M-cresol), 2,2'-ethylidenebis (4,6-di-tert-butylphenol), 2,2'-ethylidenebis (4-sec-but
  • Examples of the above-mentioned phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] Phosphite, tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di) Tert-Butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tri-tert-butyl
  • thioether-based antioxidants examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid). Esters are mentioned.
  • the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • UV absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5-chloro Benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-5'-third) Octylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-dicumylphenyl) benzotriazole, 2 2- (2) -methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2'-hydroxy-3'-tert-butyl-5'-carboxyphenyl) benzotriazole, etc.
  • hindered amine light stabilizers examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,3, 6,6-Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4- Butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis (2, , 6,6-Tetramethyl-4-piperidyl), di (tride
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxy stearoamide) and stearic acid amide.
  • fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate
  • fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxy stearoamide) and stearic acid amide.
  • the compound is mentioned and these neutralizing agents may be mixed and used.
  • the neutralizing agent which is an alkali metal salt is blended, since it is contained in the (Y) component, it is necessary to be careful in the blending.
  • the resin composition of the present invention may further contain, as other additives, metal salts of aromatic carboxylic acids, metal salts of alicyclic alkyl carboxylic acids, and p-numbers as long as the effects of the present invention are not impaired.
  • Nucleating agents such as aluminum tributylbenzoate, metal salts of aromatic phosphates, dibenzylidene sorbitols, metal soaps, hydrotalcites, triazine ring-containing compounds, metal hydroxides, phosphoric acid ester flame retardants, condensed phosphorus Acid ester flame retardants, phosphate flame retardants, inorganic phosphorus flame retardants, (poly) phosphate flame retardants, halogen flame retardants, silicon flame retardants, antimony oxides such as antimony trioxide, other inorganic flame retardants Fuel aids, other organic fire retardant aids, fillers, pigments, lubricants, foaming agents, etc. may be added. However, when the above-mentioned other additive
  • triazine ring-containing compounds examples include melamine, ammeline, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylene diguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Examples thereof include dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, and 1,3-hexylene dimelamine.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.), and the like.
  • phosphate ester flame retardant examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, tris dichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, Trixylenyl phosphate, octyl diphenyl phosphate, xylenyl diphenyl phosphate, tris isopropyl phenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butyl phenyl phosphate) Phenyl) phosphate, isopropylphenyl diphenyl phosphate, bis-
  • condensed phosphoric acid ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
  • Examples of the (poly) phosphate flame retardants include ammonium salts and amine salts of (poly) phosphoric acids such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate and piperazine pyrophosphate. .
  • inorganic flame retardant aids include, for example, inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 Titanium oxide: manufactured by Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: manufactured by Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.
  • Alkamizer 4 zinc modified hydro
  • Talsite Various commercial products such as Kyowa Chemical Industry Co., Ltd. can be used.
  • organic type flame retardant auxiliary agent pentaerythritol is mentioned, for example.
  • the resin composition of the present invention may, if necessary, be an additive generally used for a synthetic resin, as long as the effects of the present invention are not impaired, such as a crosslinking agent, an antifogging agent, an antiplateout agent, Surface treatment agents, plasticizers, lubricants, flame retardants, fluorescent agents, fungicides, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc. It can mix
  • the additive to be blended into the resin composition of the present invention may be directly added to the thermoplastic resin, or may be blended into the thermoplastic resin after being blended to the composition of the present invention.
  • a molded object can be obtained by molding the resin composition of the present invention.
  • the molding method is not particularly limited, and extrusion, calendering, injection molding, rolling, compression molding, blow molding, rotational molding, etc. may be mentioned, resin plate, sheet, film, bottle, fiber, profiled article Molded articles of various shapes such as can be manufactured.
  • the molded object obtained by the resin composition of this invention is excellent in antistatic performance and its sustainability.
  • the resin composition of the present invention is excellent in processability, and there is no possibility of generating processing defects such as silver streaks. Therefore, a molded article free of processing defects can be obtained.
  • the resin composition of the present invention and a molded article using the same are used in electric / electronic / communication, agriculture, forestry and fisheries, mining, construction, food, fiber, clothing, medical, coal, petroleum, rubber, leather, automobile, precision equipment, wood It can be used in a wide range of industrial fields such as construction materials, civil engineering, furniture, printing and musical instruments.
  • the resin composition of the present invention and the molded article thereof can be used in printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), Calculators, electronic organizers, cards, holders, stationery, office work, office automation equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, household appliances such as irons, TVs, VTRs, video cameras, radio cassette players , Tape recorder, mini disc, CD player, speaker, AV equipment such as liquid crystal display, connector, relay, capacitor, switch, printed circuit board, coil bobbin, semiconductor sealing material, LED sealing material, electric wire, cable, transformer, deflection yoke , Electric and electronic parts such as distribution boards and watches, and communication devices, interior and exterior materials for automobiles, plate making Film, adhesive film, bottles, food containers, food packaging films, pharmaceutical and pharmaceutical wrap film, product packaging film, agricultural film, agricultural sheeting, used in applications such as
  • the resin composition of the present invention and the molded article thereof can be used in a seat (filler, outer fabric, etc.), a belt, a ceiling, a convertible top, an armrest, a door trim, a rear package tray, a carpet, a mat, a sun visor, a foil cover, a mattress cover , Air bag, insulation material, hanging hand, hanging band, electric wire coating material, electric insulation material, paint, coating material, covering material, flooring material, floor material, corner wall, carpet, wallpaper, wall covering material, exterior material, interior material , roofing materials, decking materials, wall materials, pillars, floorboards, materials for fences, frameworks and moldings, windows and door profiles, shingles, crosses, terraces, balconies, soundproofing boards, insulation boards, window materials, etc.
  • the polymer compound (E) of the component (X) used in the present invention was produced according to the following production example. Moreover, in the following production example, the number average molecular weight of the compound (b) was measured by the following ⁇ molecular weight measuring method 1>, and the number average molecular weights other than the compound (b) were measured by the following ⁇ molecular weight measuring method 2> .
  • ⁇ Molecular weight measurement method 1> The hydroxyl value was measured by the following hydroxyl value measurement method, and the number average molecular weight (hereinafter also referred to as "Mn") was determined by the following equation. Number average molecular weight (56110 ⁇ 2) / hydroxyl value ⁇ hydroxyl value measurement method>
  • Reagent A acetylating agent
  • Triethyl phosphate 1560 mL (2) 193 mL of acetic anhydride (3)
  • the above reagents are mixed in the order of (1) ⁇ (2) ⁇ (3).
  • ⁇ Reagent B Pyridine and pure water are mixed in a volume ratio of 3: 1.
  • ⁇ Reagent C Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol, and neutralize with 1N aqueous KOH solution.
  • Mn number average molecular weight
  • block polymer (C) -2 having a structure having a carboxyl group at both ends obtained, 4.7 g of bisphenol F diglycidyl ether (epoxy equivalent 170 g / eq) is charged as an epoxy compound (D) -1, 240 The polymerization was carried out under reduced pressure at 3 ° C. for 3 hours to obtain 507 g of a polymer compound (E) -2 which is the component (X) of the present invention. In 507 g of (E) -2 there are 4.5 moles of —CH 2 —CH 2 —O— groups derived from the (b) -1 compound in the block (B) of the polyether.
  • polyester (a) -1 was obtained.
  • 207 g of block polymer (C) -3 having a structure having a carboxyl group at both ends was obtained.
  • the acid value of the block polymer (C) -3 having a structure having a carboxyl group at both ends was 11, and the number average molecular weight Mn was 16,000 in terms of polystyrene.
  • Example 1 Composition 1 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzene sulfonate (molecular weight 348.5) as component (Y). Since 2.3 moles of ethyleneoxy group exist in (E) -1, 0.052 moles of sodium dodecylbenzene sulfonate containing 2.3 moles of Na with respect to the moles was used.
  • Example 2 Composition 2 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y). Since 2.3 moles of ethyleneoxy group exist in (E) -1, 0.057 moles of sodium dodecylbenzene sulfonate containing 2.5% of the number of moles of Na with respect to the number of moles was used.
  • Composition-3 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y).
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.061 moles of sodium dodecylbenzene sulfonate containing 2.7 moles of Na with respect to its moles was used.
  • Example 4 Composition (4) was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y). The ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.070 moles of sodium dodecylbenzene sulfonate containing 3.1 moles of Na with respect to its moles was used.
  • Composition-5 was prepared by mixing the polymer compound (E) -2 obtained in Production Example 2 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y). Since 4.5 moles of ethyleneoxy group exist in (E) -2, 0.15 moles of sodium dodecylbenzene sulfonate containing 3.2 moles of Na with respect to the moles was used.
  • Composition 6 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y). Since 2.3 moles of ethyleneoxy group exist in (E) -1, 0.077 moles of sodium dodecylbenzene sulfonate containing 3.4 moles of Na with respect to the moles was used.
  • Composition 7 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y).
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.086 moles of sodium dodecylbenzene sulfonate containing 3.8 moles of Na with respect to its moles was used.
  • the obtained resin composition -7 was used as in Example 1 to obtain a test piece (100 mm x 100 mm x 3 mm). Processability and surface resistivity were evaluated by the following evaluation method using the obtained test piece. The results are shown in Table 2.
  • Example 8 Composition (8) was prepared by mixing the polymer compound (E) -3 obtained in Production Example 3 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y). The ethyleneoxy group is present in 2.3 moles in (E) -3, so 0.086 moles of sodium dodecylbenzene sulfonate containing 3.8 moles of Na with respect to its moles was used.
  • Composition 9 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y).
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.095 moles of sodium dodecylbenzene sulfonate containing 4.2 mole of Na with respect to its mole was used.
  • Composition 10 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y).
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.10 moles of sodium dodecylbenzene sulfonate containing 4.6 moles of Na with respect to its moles was used.
  • Composition 11 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y). Since (E) -1 contains 2.3 moles of ethyleneoxy group, 0.11 mole of sodium dodecylbenzene sulfonate containing 5.0% of the number of moles of Na with respect to the number of moles was used.
  • Composition 12 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as the component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as the component (Y).
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.12 moles of sodium dodecylbenzene sulfonate containing 5.4% moles of Na with respect to the moles was used.
  • Comparative Example 1 Comparative Composition 1 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzene sulfonate (molecular weight 348.5) as component (Y). . Since 2.3 moles of ethyleneoxy group exist in (E) -1, 0.043 moles of sodium dodecylbenzene sulfonate containing 1.9 mole of Na with respect to its mole was used.
  • Comparative Example 2 Comparative Composition 2 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y). .
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.048 moles of sodium dodecylbenzene sulfonate containing 2.1 moles of Na with respect to its moles was used.
  • Comparative Example 3 Comparative Composition 3 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzenesulfonate (molecular weight 348.5) as component (Y). .
  • the ethyleneoxy group is present in 2.3 moles in (E) -1, so 0.13 moles of sodium dodecylbenzene sulfonate containing 5.7 moles of Na with respect to its moles was used.
  • Comparative Example 4 Comparative Composition 4 was prepared by mixing the polymer compound (E) -1 obtained in Production Example 1 as component (X) and sodium dodecylbenzene sulfonate (molecular weight 348.5) as component (Y). . Since 2.3 moles of ethyleneoxy group exist in (E) -1, 0.14 moles of sodium dodecylbenzene sulfonate containing 6.1 moles of Na with respect to the moles was used.
  • ⁇ Processability evaluation method> The surface of the obtained test piece was visually observed to confirm the area of the surface on which silver streaks were generated. In the evaluation, the surface of one test piece was divided into 10 parts, and the presence or absence of silver streaks was evaluated in 10% steps, and the average value of five test pieces was calculated. 0% where no silver streaks are generated is most excellent in processability, and 100% generated on all surfaces is most inferior in processability.
  • SR value ⁇ Method of measuring surface resistivity (SR value)>
  • the obtained test piece is stored under the conditions of temperature 25 ° C. and humidity 50% RH, and after storage for 1 day and 30 days of molding processing, under the same atmosphere, R8340 resistance meter made by Advantest Corp.
  • the surface resistivity ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an application time of 1 minute. The measurement was carried out at five points per five test pieces, and the average value was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

合成樹脂に対して、優れた帯電防止効果を持続的に付与することができ、優れた加工性を付与することができる組成物、これを含む樹脂組成物、およびその成形体を提供する。 高分子化合物(E)からなる(X)成分とアルカリ金属の塩からなる(Y)成分とを含有する組成物であり、高分子化合物(E)が、ジオールと脂肪族ジカルボン酸等とが反応して得られるポリエステル(a)と、エチレンオキシ基を1以上有する両末端に水酸基を有する化合物(b)と、エポキシ基を2以上有するエポキシ化合物(D)と、が反応して得られ、ポリエステル(a)からなるブロック(A)の末端の水酸基等と、化合物(b)からなるブロック(B)の末端の水酸基と、エポキシ化合物(D)のエポキシ基と、からなるエステル結合等を介して結合してなり、(Y)成分の含有モル量が、ブロック(B)中のエチレンオキシ基のモル数の、2.3~5.4%の範囲内である。

Description

組成物、これを含む樹脂組成物、およびその成形体
 本発明は、組成物、これを含む樹脂組成物、およびその成形体に関し、詳しくは、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができるとともに、優れた加工性を付与することができる組成物、これを含む樹脂組成物、およびその成形体に関する。
 熱可塑性樹脂は、軽量で加工が容易であるのみならず、用途に応じて基材を設計することができる等の優れた特性を有しているため、現代では欠かすことのできない重要な素材である。また、熱可塑性樹脂は電気絶縁性に優れるという特性を有するため、電気製品のコンポーネント等に頻繁に利用されている。しかしながら、熱可塑性樹脂はあまりにも絶縁性が高いため、摩擦等により帯電しやすいという問題がある。
 帯電した熱可塑性樹脂は周囲の埃や塵を引き付けるため、樹脂成形品の外観を損ねるという問題が生ずる。また、電子製品の中でも、例えば、コンピューター等の精密機器は、帯電により回路が正常に作動することができなくなる場合がある。さらに、電撃による問題も存在する。樹脂から人体に対して電撃が発生すると、人に不快感を与えるだけでなく、可燃性気体や粉塵のあるところでは、爆発事故を誘引する可能性もある。
 このような問題を解消するために、従来から、合成樹脂に対して帯電を防止する処理がなされている。最も一般的な帯電防止処理方法は、合成樹脂に帯電防止剤を加える方法である。このような帯電防止剤には、樹脂成形体表面に塗布する塗布型のものと、樹脂を加工成形する際に添加する練り込み型のものとがあるが、塗布型のものは持続性に劣ることに加え、表面に大量の有機物が塗布されるために、その表面に触れたものが汚染されるという問題があった。
 かかる観点から、従来、主として練り込み型の帯電防止剤が検討されており、例えば、特許文献1、2では、ポリオレフィン系樹脂への帯電防止性付与のためにポリエーテルエステルアミドが提案されている。また、特許文献3では、ポリオレフィンのブロックと親水性ポリマーのブロックとが、繰り返し交互に結合した構造を有するブロックポリマーが提案されている。さらに、特許文献4では、ポリエステルのブロックを有する高分子型帯電防止剤が提案されている。
特開昭58-118838号公報 特開平3-290464号公報 特開2001-278985号公報 特開2016-23254号公報
 しかしながら、これら従来の帯電防止剤は、帯電防止性能において、必ずしも充分とはいえなかった。また、これら帯電防止剤を用いた合成樹脂の加工成形時等に、バリやシルバーストリーク等が発生することがあり、加工性に問題があり、さらなる改良が求められているのが現状である。
 そこで、本発明の目的は、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができるとともに、優れた加工性を付与することができる組成物、これを含む樹脂組成物、およびその成形体を提供することにある。
 本発明者等は、上記課題を解消するために鋭意検討した結果、所定の構造を有する高分子化合物とアルカリ金属の塩とを併用することにより、上記課題を解消することができることを見出し、本発明を完成するに至った。
 すなわち、本発明の組成物は、高分子化合物(E)からなる(X)成分と、アルカリ金属の塩からなる(Y)成分とを含有する組成物において、
 前記高分子化合物(E)が、ジオールと脂肪族ジカルボン酸および芳香族ジカルボン酸とが反応して得られるポリエステル(a)と、エチレンオキシ基を1以上有する両末端に水酸基を有する化合物(b)と、エポキシ基を2以上有するエポキシ化合物(D)と、が反応して得られる高分子化合物であって、
 前記ポリエステル(a)から構成されるポリエステルのブロック(A)と、前記化合物(b)から構成されるポリエーテルのブロック(B)と、を有し、前記ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、前記化合物(b)の末端に有する水酸基と、前記エポキシ化合物(D)のエポキシ基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有し、
 前記(Y)成分の含有モル量が、前記(X)成分である高分子化合物(E)中のポリエーテルのブロック(B)中のエチレンオキシ基のモル数の、2.3~5.4%の範囲内であることを特徴とするものである。
 本発明の組成物においては、前記(X)成分の高分子化合物(E)が、前記ポリエステルのブロック(A)と、前記ポリエーテルのブロック(B)と、がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することが好ましい。また、本発明の組成物においては、前記(X)成分の高分子化合物(E)のポリエステルのブロック(A)を構成する前記ポリエステル(a)が、両末端にカルボキシル基を有する構造であることが好ましい。さらに、本発明の組成物においては、前記(X)成分の高分子化合物(E)のポリエーテルのブロック(B)を構成する前記化合物(b)が、ポリエチレングリコールであることが好ましい。さらにまた、本発明の組成物においては、前記(X)成分の高分子化合物(E)のポリエーテルのブロック(B)を構成する前記化合物(b)の数平均分子量が400~10,000であることが好ましい。また、本発明の組成物においては、前記(X)成分の高分子化合物(E)における、ブロックポリマー(C)の数平均分子量が5,000~30,000であることが好ましい。
 本発明の樹脂組成物は、熱可塑性樹脂に対し、本発明の組成物が配合されてなることを特徴とするものである。
 本発明の樹脂組成物においては、前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上であることが好ましい。
 本発明の成形体は、本発明の樹脂組成物からなることを特徴とするものである。
 本発明によれば、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができるとともに、優れた加工性を付与することができる組成物、これを含む樹脂組成物、およびその成形体を提供することができる。そのため、本発明の樹脂組成物は、帯電防止性とその持続性に優れ、加工性に優れている。また、本発明の成形体は、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくい熱可塑性樹脂からなり、加工性不良のない成形体である。
 以下、本発明の実施形態について詳細に説明する。本発明の組成物は、高分子化合物(E)からなる(X)成分と、アルカリ金属の塩からなる(Y)成分とを含有する組成物である。まず、本発明の(X)成分について説明する。
 本発明の(X)成分は高分子化合物(E)からなる。本発明に係る高分子化合物(E)は、ジオールと、脂肪族ジカルボン酸および芳香族ジカルボン酸と、が反応して得られるポリエステル(a)と、エチレンオキシ基を1以上有する両末端に水酸基を有する化合物(b)と、エポキシ基を2以上有するエポキシ化合物(D)と、が反応して得られる高分子化合物である。本発明の高分子化合物(E)は、ポリエステル(a)から構成されるポリエステルのブロック(A)と、化合物(b)から構成されるポリエーテルのブロック(B)を有している。また、ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、化合物(b)の末端に有する水酸基と、エポキシ化合物(D)のエポキシ基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有している。ここで、エチレンオキシ基とは、下記一般式(1)で示される基である。
Figure JPOXMLDOC01-appb-I000001
 高分子化合物(E)のポリエステルのブロック(A)は、ジオールと、脂肪族カルボン酸および芳香族ジカルボン酸と、が反応して得られるポリエステル(a)から構成される。ポリエステル(a)はジオールと、脂肪族ジカルボン酸および芳香族ジカルボン酸と、をエステル化反応させれば得ることができる。
 まず、ポリエステル(a)の構成成分であるジオールについて説明する。本発明で用いられるジオールとしては、脂肪族ジオール、芳香族基含有ジオールが挙げられる。また、ジオールは、2種以上の混合物でもよい。
 脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、水添ビスフェノールAが、帯電防止性とその持続性、加工性の点から好ましく、1,4-シクロヘキサンジメタノールがより好ましい。なお、脂肪族ジオールは、帯電防止性とその持続性、加工性の点から、疎水性を有することが好ましいので、親水性を有するポリエチレングリコールの使用は好ましくない。
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、ピロカテコール等の単核2価フェノール化合物のポリヒドロキシエチル付加物等が挙げられる。これら芳香族基を有するジオールの中でも、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。芳香族ジオールは、帯電防止性とその持続性、加工性の点から、疎水性を有することが好ましい。
 次に、ポリエステル(a)の構成成分であるジカルボン酸について説明する。本発明で用いられる脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
 脂肪族ジカルボン酸としては、好ましくは炭素原子数2~20の脂肪族ジカルボン酸が挙げられ、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸、マレイン酸、フマル酸等が挙げられる。これら脂肪族ジカルボン酸の中でも、帯電防止性とその持続性、加工性の点から、炭素原子数4~16のジカルボン酸が好ましく、炭素原子数6~12のジカルボン酸がより好ましい。
 本発明で用いられる芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
 芳香族ジカルボン酸としては、好ましくは炭素原子数8~20の芳香族ジカルボン酸が挙げられ、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。これら芳香族ジカルボン酸の中でも、帯電防止性とその持続性、加工性の点から、テレフタル酸、イソフタル酸、フタル酸(無水フタル酸を含む)が好ましく、フタル酸(無水フタル酸を含む)がより好ましい。
 次に、高分子化合物(E)のポリエーテルのブロック(B)について説明する。ポリエーテルのブロック(B)は、下記一般式(1)で示されるエチレンオキシ基を1以上有する両末端に水酸基を有する化合物(b)から構成される。
Figure JPOXMLDOC01-appb-I000002
 上記一般式(1)で示されるエチレンオキシ基を1以上有し両末端に水酸基を有する化合物(b)としては、親水性を有する化合物が好ましく、上記一般式(1)で示されるエチレンオキシ基を有するポリエーテルがより好ましく、帯電防止性とその持続性、加工性の点から、ポリエチレングリコールがさらにより好ましく、下記一般式(2)で表されるポリエチレングリコールが特に好ましい。
Figure JPOXMLDOC01-appb-I000003
 上記一般式(2)中、mは5~250の数を表す。mは、帯電防止性とその持続性、加工性の点から、20~200が好ましく、40~180がより好ましい。
 化合物(b)としては、エチレンオキサイドを付加反応させて得られるポリエチレングリコール以外に、エチレンオキサイドと、他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の1種以上とを付加反応させたポリエーテルが挙げられ、このポリエーテルはランダムでもブロックでもいずれでもよい。
 化合物(b)の例をさらに挙げると、活性水素原子含有化合物にエチレンオキサイドが付加した構造の化合物や、エチレンオキサイドおよび他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の1種以上が付加した構造の化合物が挙げられる。これらはランダム付加およびブロック付加のいずれでもよい。
 活性水素原子含有化合物としては、グリコール、2価フェノール、1級モノアミン、2級ジアミンおよびジカルボン酸等が挙げられる。
 グリコールとしては、炭素原子数2~20の脂肪族グリコール、炭素原子数5~12の脂環式グリコールおよび炭素原子数8~26の芳香族グリコール等が使用できる。
 脂肪族グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、ジエチレングリコール、トリエチレングリコールおよびチオジエチレングリコール等が挙げられる。
 脂環式グリコールとしては、例えば、1-ヒドロキシメチル-1-シクロブタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1-メチル-3,4-シクロヘキサンジオール、2-ヒドロキシメチルシクロヘキサノール、4-ヒドロキシメチルシクロヘキサノール、1,4-シクロヘキサンジメタノールおよび1,1’-ジヒドロキシ-1,1’-ジシクロヘキシル等が挙げられる。
 芳香族グリコールとしては、例えば、ジヒドロキシメチルベンゼン、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、2-フェニル-1,3-プロパンジオール、2-フェニル-1,4-ブタンジオール、2-ベンジル-1,3-プロパンジオール、トリフェニルエチレングリコール、テトラフェニルエチレングリコールおよびベンゾピナコール等が挙げられる。
 2価フェノールとしては、炭素原子数6~30のフェノールが使用でき、例えば、カテコール、レゾルシノール、1,4-ジヒドロキシベンゼン、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルチオエーテル、ビナフトールおよびこれらのアルキル(炭素原子数1~10)またはハロゲン置換体等が挙げられる。
 1級モノアミンとしては、炭素原子数1~20の脂肪族1級モノアミンが挙げられ、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、イソブチルアミン、n-アミルアミン、イソアミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、n-オクタデシルアミンおよびn-イコシルアミン等が挙げられる。
 2級ジアミンとしては、炭素原子数4~18の脂肪族2級ジアミン、炭素原子数4~13の複素環式2級ジアミン、炭素原子数6~14の脂環式2級ジアミン、炭素数8~14の芳香族2級ジアミンおよび炭素原子数3~22の2級アルカノールジアミン等が使用できる。
 脂肪族2級ジアミンとしては、例えば、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N,N’-ジメチルプロピレンジアミン、N,N’-ジエチルプロピレンジアミン、N,N’-ジブチルプロピレンジアミン、N,N’-ジメチルテトラメチレンジアミン、N,N’-ジエチルテトラメチレンジアミン、N,N’-ジブチルテトラメチレンジアミン、N,N’-ジメチルヘキサメチレンジアミン、N,N’-ジエチルヘキサメチレンジアミン、N,N’-ジブチルヘキサメチレンジアミン、N,N’-ジメチルデカメチレンジアミン、N,N’-ジエチルデカメチレンジアミンおよびN,N’-ジブチルデカメチレンジアミン等が挙げられる。
 複素環式2級ジアミンとしては、例えば、ピペラジン、1-アミノピペリジン等が挙げられる。
 脂環式2級ジアミンとしては、例えば、N,N’-ジメチル-1,2-シクロブタンジアミン、N,N’-ジエチル-1,2-シクロブタンジアミン、N,N’-ジブチル-1,2-シクロブタンジアミン、N,N’-ジメチル-1,4-シクロヘキサンジアミン、N,N’-ジエチル-1,4-シクロヘキサンジアミン、N,N’-ジブチル-1,4-シクロヘキサンジアミン、N,N’-ジメチル-1,3-シクロヘキサンジアミン、N,N’-ジエチル-1,3-シクロヘキサンジアミン、N,N’-ジブチル-1,3-シクロヘキサンジアミン等が挙げられる。
 芳香族2級ジアミンとしては、例えば、N,N’-ジメチル-フェニレンジアミン、N,N’-ジメチル-キシリレンジアミン、N,N’-ジメチル-ジフェニルメタンジアミン、N,N’-ジメチル-ジフェニルエーテルジアミン、N,N’-ジメチル-ベンジジンおよびN,N’-ジメチル-1,4-ナフタレンジアミン等が挙げられる。
 2級アルカノールジアミンとしては、例えば、N-メチルジエタノールアミン、N-オクチルジエタノールアミン、N-ステアリルジエタノールアミンおよびN-メチルジプロパノールアミン等が挙げられる。
 ジカルボン酸としては、炭素数2~20のジカルボン酸が使用でき、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸および脂環式ジカルボン酸等が用いられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、β-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジ酸、ドデカンジ酸、トリデカンジ酸、テトラデカンジ酸、ヘキサデカンジ酸、オクタデカンジ酸およびイコサンジ酸が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。
 脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸、1,3-シクロヘキサンジ酢酸、1,2-シクロヘキサンジ酢酸およびジシクロヘキシル-4、4’-ジカルボン酸等が挙げられる。
 これらの活性水素原子含有化合物は、1種でも2種以上の混合物でも使用することができる。
 次に、高分子化合物(E)を構成するエポキシ基を2以上有するエポキシ化合物(D)について説明する。
 本発明に用いるエポキシ化合物(D)としては、エポキシ基を2以上有するものであれば特に制限されず、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物、ジシクロペンタジエンジメタノール等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物、エポキシ化大豆油等が挙げられる。また、これらのエポキシ化合物は、末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)を用いて高分子量化したものであってもよい。かかるエポキシ化合物(D)は、2種以上を使用してもよい。
 また、高分子化合物(E)の構成成分のエポキシ化合物(D)としてポリエチレングリコールのジグリシジルエーテルを使用する場合は、本発明においては、ポリエチレングリコールのジグリシジルエーテル中に存在するエチレンオキシ基のモル数も、ポリエーテルのブロック(B)中のエチレンオキシ基のモル数に合算し、両者の合計を、高分子化合物(E)中のポリエーテルブロック(B)中のエチレンオキシ基のモル数とする。
 また、エポキシ化合物(D)のエポキシ当量は、帯電防止性とその持続性、加工性の点から、70~2,000が好ましい。
 高分子化合物(E)は、ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、化合物(b)の末端に有する水酸基と、エポキシ化合物(D)のエポキシ基と、の反応により形成されたエステル結合またはエーテル結合により、ポリエステルのブロック(A)、ポリエーテルのブロック(B)、エポキシ基が反応したエポキシ化合物(D)が、エステル結合またはエーテル結合を介して結合してなる構造を有する。
 さらに、高分子化合物(E)は、帯電防止性とその持続性、加工性の点から、ポリエステル(a)から構成されるポリエステルのブロック(A)および化合物(b)から構成されるポリエーテルのブロック(B)がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、エポキシ化合物(D)とが、ブロックポリマー(C)のカルボキシル基とエポキシ化合物(D)のエポキシ基により形成されたエステル結合を介して結合してなる構造を有することが好ましい。
 本発明に係るポリエステルのブロック(A)を構成するポリエステル(a)は、ジオールと、脂肪族ジカルボン酸および芳香族ジカルボン酸と、からなるものであればよく、帯電防止性とその持続性、加工性の点から、好ましくは、ジオールの水酸基を除いた残基と、脂肪族ジカルボン酸のカルボキシル基を除いた残基とが、エステル結合を介して結合する構造を有し、かつ、ジオールの水酸基を除いた残基と、芳香族ジカルボン酸のカルボキシル基を除いた残基とが、エステル結合を介して結合する構造を有する。
 また、ポリエステル(a)は、帯電防止性とその持続性、加工性の点から両末端にカルボキシル基を有する構造のものが好ましい。さらに、ポリエステル(a)の重合度は、帯電防止性とその持続性、加工性の点から好適には2~50の範囲である。
 脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステル(a)を得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。また、脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物であってもよい。
 芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステルを得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物であってもよい。
 ポリエステル(a)中の、脂肪族ジカルボン酸のカルボキシル基を除いた残基と、芳香族ジカルボン酸のカルボキシル基を除いた残基との比は、帯電防止性とその持続性、加工性の点からモル比で90:10~99.9:0.1が好ましく、93:7~99.9:0.1がより好ましい。
 両末端にカルボキシル基を有するポリエステル(a)は、例えば、上記脂肪族ジカルボン酸またはその誘導体および上記芳香族ジカルボン酸またはその誘導体と、上記ジオールとを重縮合反応させることにより得ることができる。
 脂肪族ジカルボン酸またはその誘導体および芳香族ジカルボン酸またはその誘導体と、ジオールとの反応比は、両末端がカルボキシル基となるように、脂肪族ジカルボン酸またはその誘導体および芳香族ジカルボン酸またはその誘導体を過剰に使用することが好ましく、モル比で、ジオールに対して1モル過剰に使用することが好ましい。
 重縮合反応時の脂肪族ジカルボン酸またはその誘導体と芳香族ジカルボン酸またはその誘導体との配合比は、モル比で90:10~99.9:0.1が好ましく、93:7~99.9:0.1がより好ましい。
 また、配合比や反応条件によっては、ジオールおよび脂肪族ジカルボン酸のみから構成されるポリエステルや、ジオールおよび芳香族ジカルボン酸からのみ構成されるポリエステルが生成する場合もあるが、本発明では、ポリエステル(a)に、それらが混入していてもよく、そのままそれらを化合物(b)と反応させて、ブロックポリマー(C)を得てもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。
 また、脂肪族ジカルボン酸および芳香族ジカルボン酸は、ジカルボン酸の代わりに、カルボン酸エステル、カルボン酸金属塩、カルボン酸ハライド等の誘導体を使用した場合には、それらとジオールとの反応後に、両末端を処理してジカルボン酸としてもよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。
 ジオールと、脂肪族ジカルボン酸および芳香族ジカルボン酸からなり両末端にカルボキシル基を有する好適なポリエステル(a)は、化合物(b)と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものが好ましく、両末端のカルボキシル基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 エチレンオキシ基を1以上有し両末端に水酸基を有する化合物(b)は、ポリエステル(a)と反応することでエステル結合またはエーテル結合を介して結合してなる構造、好ましくはエステル結合を形成し、ブロックポリマー(C)の構造を形成するものが好ましく、両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。
 本発明に係る両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、上記ポリエステル(a)から構成されたブロック(A)と、上記化合物(b)から構成されたブロック(B)とを有し、これらのブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有する。かかるブロックポリマー(C)の一例を挙げると、例えば、下記一般式(3)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-I000004
 上記一般式(3)中、(A)は、上記両末端にカルボキシル基を有するポリエステル(a)から構成されたブロックを表し、(B)は、上記両末端に水酸基を有する化合物(b)から構成されたブロックを表し、tは繰り返し単位の繰り返しの数であり、帯電防止性とその持続性、加工性の点から好ましくは1~10の数を表す。tは、より好ましくは1~7の数であり、最も好ましくは1~5の数である。
 ブロックポリマー(C)中の、ポリエステル(a)から構成されたブロックの一部は、ジオールおよび脂肪族ジカルボン酸のみから構成されたポリエステルからなるブロック、または、ジオールおよび芳香族ジカルボン酸のみから構成されたポリエステルからなるブロックに置き換えられていてもよい。
 両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、上記両末端にカルボキシル基を有するポリエステル(a)と、上記両末端に水酸基を有する化合物(b)とを、重縮合反応させることによって得ることができるが、上記ポリエステル(a)と上記化合物(b)とが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有するものと同等の構造を有するものであれば、必ずしも上記ポリエステル(a)と上記化合物(b)とから合成する必要はない。
 上記ポリエステル(a)と上記化合物(b)との反応比は、上記化合物(b)がXモルに対して、上記ポリエステル(a)がX+1モルとなるように調整すれば、両末端にカルボキシル基を有するブロックポリマー(C)を好ましく得ることができる。
 反応に際しては、上記ポリエステル(a)の合成反応の完結後に、上記ポリエステル(a)を単離せずに、上記化合物(b)を反応系に加えて、そのまま反応させてもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 また、ポリエステル(a)には、ジオールおよび脂肪族ジカルボン酸のみから構成されるポリエステルや、ジオールおよび芳香族ジカルボン酸からのみ構成されるポリエステルが混入していてもよく、それらをそのまま化合物(b)と反応させ、ブロックポリマー(C)を得てもよい。
 ブロックポリマー(C)は、ポリエステル(a)から構成されるブロック(A)と化合物(b)から構成されるブロック(B)以外に、ジオールと脂肪族ジカルボン酸のみから構成されるポリエステルから構成されるブロックや、ジオールと芳香族ジカルボン酸からのみ構成されるポリエステルから構成されるブロックが構造中に含まれていてもよい。
 本発明に係る高分子化合物(E)は、好ましくは、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、2以上のエポキシ基を有するエポキシ化合物(D)とが、ブロックポリマー(C)の末端のカルボキシル基とエポキシ化合物(D)のエポキシ基とにより形成されたエステル結合を介して結合してなる構造を有する。また、かかる高分子化合物(E)は、さらに、上記ポリエステル(a)のカルボキシル基と上記エポキシ化合物(D)のエポキシ基とにより形成されたエステル結合を含んでいてもよい。また、かかる高分子化合物(E)は、さらに、上記ポリエステル(a)の水酸基または上記化合物(b)の水酸基と、上記エポキシ化合物(D)のエポキシ基とにより形成されたエーテル結合を含んでいてもよい。
 高分子化合物(E)を得るためには、上記ブロックポリマー(C)のカルボキシル基と、上記エポキシ化合物(D)のエポキシ基とを反応させればよい。エポキシ化合物のエポキシ基の数は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.5~5当量が好ましく、0.5~1.5当量がより好ましい。上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。
 反応させるエポキシ基を2個以上有するエポキシ化合物(D)は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.1~2.0当量が好ましく、0.2~1.5当量がより好ましい。
 反応に際しては、上記ブロックポリマー(C)の合成反応の完結後に、ブロックポリマー(C)を単離せずに、反応系にエポキシ化合物(D)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(C)を合成するときに過剰に使用した未反応のポリエステル(a)のカルボキシル基と、エポキシ化合物(D)の一部のエポキシ基とが反応して、エステル結合を形成してもよい。
 本発明の好ましい高分子化合物(E)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)とエポキシ基を2以上有するエポキシ化合物(D)とが、それぞれのカルボキシル基とエポキシ基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしも上記ブロックポリマー(C)と上記エポキシ化合物(D)とから合成する必要はない。
 本発明において、高分子化合物(E)における、ポリエステル(a)から構成されるブロック(A)の数平均分子量は、帯電防止性とその持続性、加工性の点から、好ましくはポリスチレン換算で800~8,000であり、より好ましくは1,000~6,000であり、さらに好ましくは2,000~4,000である。
 また、本発明において、高分子化合物(E)における、両末端に水酸基を有する化合物(b)から構成されるブロック(B)の数平均分子量は、水酸基価の測定値から算出し、帯電防止性とその持続性、加工性の点から、好ましくは400~10,000であり、より好ましくは1,000~8,000であり、さらに好ましくは2,000~8,000である。
 さらに、高分子化合物(E)における、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で5,000~30,000であり、より好ましくは7,000~20,000であり、より好ましくは9,000~17,000である。
 さらにまた、本発明の高分子化合物(E)は、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸からポリエステル(a)を得たのち、ポリエステル(a)を単離せずに、化合物(b)および/またはエポキシ化合物(D)と反応させてもよい。
 次に、本発明の組成物の(Y)成分について説明する。
 本発明に係る(Y)成分は、アルカリ金属の塩である。アルカリ金属の塩としては有機酸または無機酸の塩が挙げられ、アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、帯電防止性とその持続性、加工性の点から、ナトリウムが好ましい。また、帯電防止性とその持続性、加工性の点から、ドデシルベンゼンスルホン酸の塩が好ましい。
 アルカリ金属の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中でも、帯電防止性とその持続性、加工性の点から、ドデシルベンゼンスルホン酸ナトリウムが好ましい。
 本発明の組成物において、(Y)成分の含有モル量は、(X)成分である高分子化合物(E)中のポリエーテルのブロック(B)中の一般式(1)で示されるエチレンオキシ基のモル数の2.3~5.4%の範囲内であり、帯電防止性とその持続性、加工性の点から好ましくは、2.7~5.0%の範囲内であり、より好ましくは3.1~4.6%の範囲内である。
 (X)成分である高分子化合物(E)中のポリエーテルブロック(B)中の一般式(1)で示されるエチレンオキシ基のモル数は、化合物(b)中に存在する一般式(1)のエチレンオキシ基の総モル数に対応する。
 (Y)成分がこの範囲内であることで、本発明の組成物が、帯電防止性とその持続性、加工性に優れる理由は、定かではないが、アルカリ金属の周りを一般式(1)で示されるエチレンオキシ基が配位することにより、アルカリ金属の合成樹脂に対する相溶性を適度に調整するため、帯電防止性とその持続性、さらに加工性に優れると考えられる。
 本発明の組成物を得るためには、必須成分の(X)成分および(Y)成分、必要に応じて他の任意成分を混合すればよく、混合には各種混合機を用いることができる。混合時には加熱してもよい。使用できる混合機の例を挙げると、タンブラーミキサー、ヘンシェルミキサー、リボンブレンダー、V型混合機、W型混合機、スーパーミキサー、ナウターミキサー等が挙げられる。また、(X)成分である高分子化合物(E)の合成反応中に、反応系に(Y)成分を添加したものでもよい。
 本発明の組成物には、本発明の効果を損なわない範囲で、上記(X)成分および(Y)成分以外に、任意成分として、他の成分を配合してもよい。他の成分は、組成物に直接配合してもよいし、本発明の組成物を熱可塑性樹脂等の合成樹脂に配合して、樹脂組成物として使用する場合に、合成樹脂に配合してもよい。
 以下、本発明の組成物に配合できる(X)成分および(Y)成分以外の他の成分について説明する。本発明の組成物には、本発明の効果を損なわない範囲で、さらに第2族元素の塩を配合してもよい。
 第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、第2族元素の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。
 また、本発明の組成物には、本発明の効果を損なわない範囲で、界面活性剤を配合してもよい。ただし、アルカリ金属塩である界面活性剤を配合する場合は、(Y)成分に含有されるため、その配合には注意が必要である。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられ、アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられ、カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらは単独でまたは2種以上組み合わせて使用することができる。本発明においては、上記界面活性剤の中でも、アニオン性界面活性剤が好ましく、特に、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩が好ましい。
 界面活性剤は、本発明の組成物に配合してもよく、組成物とともに、熱可塑性樹脂等の合成樹脂に配合して使用してもよい。界面活性剤の配合量は、本発明の組成物の100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。
 さらに、本発明の組成物には、本発明の効果を損なわない範囲で、高分子型帯電防止剤を配合してもよい。高分子帯電防止剤としては、例えば、公知のポリエーテルエステルアミド等の高分子型帯電防止剤を使用することができ、公知のポリエーテルエステルアミドとしては、例えば、特開平7-10989号公報に記載のビスフェノールAのポリオキシアルキレン付加物からなるポリエーテルエステルアミドが挙げられる。また、ポリオレフィンブロックと親水性ポリマーブロックとの結合単位が2~50の繰り返し構造を有するブロックポリマーを使用することができ、例えば、米国特許第6552131号明細書記載のブロックポリマーを挙げることができる。
 高分子型帯電防止剤は、本発明の組成物に配合してもよく、組成物とともに、熱可塑性樹脂等の合成樹脂に配合して使用してもよい。高分子型帯電防止剤の配合量は、本発明の組成物の100質量部に対して、0~50質量部が好ましく、5~20質量部がより好ましい。
 さらにまた、本発明の組成物は、本発明の効果を損なわない範囲で、イオン性液体を配合してもよい。イオン性液体の例としては、室温以下の融点を有し、イオン性液体を構成するカチオンまたはアニオンのうち少なくとも一つが有機物イオンであり、初期電導度が1~200ms/cm、好ましくは10~200ms/cmである常温溶融塩であって、例えば、国際公開第95/15572号に記載の常温溶融塩が挙げられる。
 イオン性液体を構成するカチオンとしては、アミジニウム、ピリジニウム、ピラゾリウムおよびグアニジニウムカチオンからなる群から選ばれるカチオンが挙げられる。このうち、アミジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(2)イミダゾリウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(3)テトラヒドロピリミジニウムカチオン
 炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウムカチオン
 炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
 ピリジニウムカチオンとしては、炭素原子数6~20のものが挙げられ、例えば、3-メチル-1-プロピルピリジニウム、1-ブチル-3,4-ジメチルピリジニウムが挙げられる。
 ピラゾリウムカチオンとしては、炭素原子数5~15のものが挙げられ、例えば、1、2-ジメチルピラゾリウム、1-n-ブチル-2-メチルピラゾリウムが挙げられる。
 グアニジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
 上記カチオンは1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。これらのうち、帯電防止性の観点から好ましくはアミジニウムカチオン、より好ましくはイミダゾリウムカチオン、特に好ましくは1-エチル-3-メチルイミダゾリウムカチオンである。
 イオン性液体において、アニオンを構成する有機酸または無機酸としては、下記のものが挙げられる。有機酸としては、例えば、カルボン酸、硫酸エステル、スルホン酸およびリン酸エステル;無機酸としては、例えば、超強酸(例えば、ホウフッ素酸、四フッ化ホウ素酸、過塩素酸、六フッ化リン酸、六フッ化アンチモン酸および六フッ化ヒ素酸)、リン酸およびホウ酸が挙げられる。上記有機酸および無機酸は、1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。
 上記有機酸および無機酸のうち、イオン性液体の帯電防止性の観点から好ましいのは、イオン性液体を構成するアニオンのHammett酸度関数(-H)が12~100である、超強酸の共役塩基、超強酸の共役塩基以外のアニオンを形成する酸およびこれらの混合物である。
 超強酸の共役塩基以外のアニオンとしては、例えば、ハロゲン(例えば、フッ素、塩素および臭素)イオン、アルキル(炭素原子数1~12)ベンゼンスルホン酸(例えば、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸)イオンおよびポリ(n=1~25)フルオロアルカンスルホン酸(例えば、ウンデカフルオロペンタンスルホン酸)イオンが挙げられる。
 また、超強酸としては、プロトン酸およびプロトン酸とルイス酸との組み合わせから誘導されるもの、およびこれらの混合物が挙げられる。超強酸としてのプロトン酸としては、例えば、ビス(トリフルオロメチルスルホニル)イミド酸、ビス(ペンタフルオロエチルスルホニル)イミド酸、トリス(トリフルオロメチルスルホニル)メタン、過塩素酸、フルオロスルホン酸、アルカン(炭素原子数1~30)スルホン酸(例えば、メタンスルホン酸、ドデカンスルホン酸等)、ポリ(n=1~30)フルオロアルカン(炭素原子数1~30)スルホン酸(例えば、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸およびトリデカフルオロヘキサンスルホン酸)、ホウフッ素酸および四フッ化ホウ素酸が挙げられる。これらのうち、合成の容易さの観点から好ましいのはホウフッ素酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド酸およびビス(ペンタフルオロエチルスルホニル)イミド酸である。
 ルイス酸と組合せて用いられるプロトン酸としては、例えば、ハロゲン化水素(例えば、フッ化水素、塩化水素、臭化水素およびヨウ化水素)、過塩素酸、フルオロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸およびこれらの混合物が挙げられる。これらのうち、イオン性液体の初期電導度の観点から好ましいのはフッ化水素である。
 ルイス酸としては、例えば、三フッ化ホウ素、五フッ化リン、五フッ化アンチモン、五フッ化ヒ素、五フッ化タンタルおよびこれらの混合物が挙げられる。これらのうちでも、イオン性液体の初期電導度の観点から好ましいのは三フッ化ホウ素および五フッ化リンである。
 プロトン酸とルイス酸との組み合わせは任意であるが、これらの組み合わせからなる超強酸としては、例えば、テトラフルオロホウ酸、ヘキサフルオロリン酸、六フッ化タンタル酸、六フッ化アンチモン酸、六フッ化タンタルスルホン酸、四フッ化ホウ素酸、六フッ化リン酸、塩化三フッ化ホウ素酸、六フッ化ヒ素酸およびこれらの混合物が挙げられる。
 上記のアニオンのうち、イオン性液体の帯電防止性の観点から好ましいのは超強酸の共役塩基(プロトン酸からなる超強酸およびプロトン酸とルイス酸との組合せからなる超強酸)であり、さらに好ましいのはプロトン酸からなる超強酸およびプロトン酸と、三フッ化ホウ素および/または五フッ化リンとからなる超強酸の共役塩基である。
 イオン性液体のうち、帯電防止性の観点から好ましいのは、アミジニウムカチオンを有するイオン性液体、より好ましいのは1-エチル-3-メチルイミダゾリウムカチオンを有するイオン性液体、特に好ましいのは1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。
 イオン性液体は、本発明の組成物に配合してもよく、組成物とともに、熱可塑性樹脂等の合成樹脂に配合して使用してもよい。イオン性液体の配合量は、本発明の組成物の100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。
 さらにまた、本発明の組成物は、本発明の効果を損なわない範囲で、相溶化剤を配合してもよい。相溶化剤を配合することで、組成物の成分と、他成分や熱可塑性樹脂等の合成樹脂との相溶性を向上させることができる。かかる相溶化剤としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基およびポリオキシアルキレン基からなる群から選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体、例えば、特開平3-258850号公報に記載の重合体や、特開平6-345927号公報に記載のスルホニル基を有する変性ビニル重合体、あるいはポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。
 相溶化剤は、本発明の組成物に配合してもよく、本発明の組成物とともに熱可塑性樹脂等の合成樹脂に配合して使用してもよい。相溶化剤の配合量は、本発明の組成物の100質量部に対して、0.1~15質量部が好ましく、1~10質量部がより好ましい。
 本発明の組成物は、合成樹脂、特に好ましくは、熱可塑性樹脂に配合して、樹脂組成物として使用できる。熱可塑性樹脂の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS(アクリロニトリルブタジエンスチレン共重合体)樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。また、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。本発明において、これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。これらの熱可塑性樹脂の中でも、帯電防止性とその持続性、加工性の点から、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上が好ましい。
 本発明の樹脂組成物中の、熱可塑性樹脂と、本発明の組成物との質量比は、99/1~40/60の範囲が好ましい。
 本発明の組成物の熱可塑性樹脂への配合方法は特に限定されず、通常使用されている任意の方法を用いることができ、例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。また、本発明の組成物は、そのまま熱可塑性樹脂に添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。
 さらに、本発明の組成物の樹脂成分への配合方法としては、ブロックポリマー(C)と、エポキシ化合物(D)とを樹脂成分に同時に練り込みながら、(X)成分である高分子化合物(E)を合成して配合してもよく、そのときに(Y)成分であるアルカリ金属の塩を同時に練り込んでもよく、また、射出成型等の成型時に(X)成分である高分子化合物(E)と(Y)成分のアルカリ金属の塩と樹脂成分とを混合して成形品を得る方法で配合してもよく、さらに、あらかじめ(X)成分および/または(Y)成分と合成樹脂とのマスターバッチを製造しておき、このマスターバッチを配合してもよい。
 さらにまた、(X)成分である高分子化合物(E)と(Y)成分のアルカリ金属の塩は、あらかじめ混合しておいてから合成樹脂に配合してもよく、合成反応中にアルカリ金属の塩を添加して合成した高分子化合物(E)を合成樹脂に配合してもよい。
 本発明の樹脂組成物には、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の樹脂組成物を安定化させることができる。
 これら酸化防止剤等の各種添加剤は、合成樹脂に配合するまえに、本発明の組成物中に配合しておいてもよい。さらには高分子化合物(E)の製造時に配合しておいてもよい。特に酸化防止剤は、高分子化合物(E)の製造時に配合することで、製造中の高分子化合物(E)の酸化劣化も防ぐことができるので好ましい。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、熱可塑性樹脂100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 また、熱可塑性樹脂としてポリオレフィン系樹脂を使用する場合は、本発明の効果を損なわない範囲で、必要に応じてさらに、ポリオレフィン樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。ただし、アルカリ金属塩である中和剤を配合する場合は、(Y)成分に含有されるため、その配合には注意が必要である。
 本発明の樹脂組成物には、その他の添加剤として、必要に応じてさらに、本発明の効果を損なわない範囲で、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、ホスフェート系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、充填剤、顔料、滑剤、発泡剤等を添加してもよい。ただし、アルカリ金属塩である上記、その他の添加剤を配合する場合は、(Y)成分に含有されるため、その配合には注意が必要である。
 上記トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。
 上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。
 上記リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等が挙げられる。
 上記縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。
 上記(ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイト等の無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)等の種々の市販品を用いることができる。また、その他の有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。
 その他、本発明の樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、通常合成樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で配合することができる。
 本発明の樹脂組成物に配合される添加剤は、熱可塑性樹脂に直接添加してもよく、本発明の組成物に配合してから、熱可塑性樹脂に添加してもよい。
 本発明の樹脂組成物を成形することにより、成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。本発明の樹脂組成物により得られる成形体は、帯電防止性能およびその持続性に優れるものである。また、本発明の樹脂組成物は加工性に優れ、シルバーストリーク等の加工不良を発生する恐れがない。そのため加工不良のない成形品を得ることができる。
 本発明の樹脂組成物およびこれを用いた成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用できる。
 より具体的には、本発明の樹脂組成物およびその成形体は、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器、自動車用内外装材、製版用フィルム、粘着フィルム、ボトル、食品用容器、食品包装用フィルム、製薬・医薬用ラップフィルム、製品包装フィルム、農業用フィルム、農業用シート、温室用フィルム等の用途に用いられる。
 さらに、本発明の樹脂組成物およびその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の自動車、車両、船舶、航空機、建物、住宅および建築用材料や土木材料、衣料、カーテン、シーツ、不織布、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品等の各種用途に使用することができる。
 以下、本発明を、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 下記の製造例に従い、本発明で用いられる(X)成分の高分子化合物(E)を製造した。また、下記の製造例において、化合物(b)の数平均分子量は、下記<分子量測定方法1>で測定し、化合物(b)以外の数平均分子量は、下記<分子量測定方法2>で測定した。
<分子量測定方法1>
 下記水酸基価測定方法で水酸基価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 数平均分子量=(56110×2)/水酸基価
<水酸基価測定法>
・試薬A(アセチル化剤)
(1)トリエチルホスフェート 1560mL
(2)無水酢酸 193mL
(3)過塩素酸(60%) 16g
上記試薬を(1)→(2)→(3)の順に混合する。
・試薬B
ピリジンと純水を体積比率で3:1に混合する。
・試薬C
500mLのイソプロピルアルコールにフェノールフタレイン液を2~3滴加え、1N-KOH水溶液で中性にする。
 まず、200mL三角フラスコにサンプルを2g量りとり、キシレン10mLを加え、加熱溶解させる。試薬A15mLを加え、共栓をして激しく振盪する。試薬B20mLを加え、共栓をして激しく振盪する。試薬C50mLを加える。1N-KOH水溶液で滴定し、下式で計算する。
水酸基価[mgKOH/g]=56.11×f×(T-B)/S
f:1N-KOH水溶液のfactor
B:空試験滴定量[mL]
T:本試験滴定量[mL]
S:サンプル量[g]
<分子量測定方法2>
 数平均分子量(以下、「Mn」とも称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置        :日本分光(株)製,GPC装置
溶媒        :テトラヒドロフラン
基準物質      :ポリスチレン
検出器       :示差屈折計(RI検出器)
カラム固定相    :昭和電工(株)製,Shodex KF-804L
カラム温度     :40℃
サンプル濃度    :1mg/1mL
流量        :0.8mL/min.
注入量       :100μL
〔製造例1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを109g(0.76モル)、アジピン酸を117g(0.81モル)、無水フタル酸を0.1g(0.0008モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.5g仕込み、160℃から210℃まで徐々に昇温しながら常圧で4時間、その後210℃、減圧下で3時間重合して、ポリエステル(a)-1を得た。
 次に、得られたポリエステル(a)-1を200g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,100、エチレンオキシ基の繰り返し単位の数=70のポリエチレングリコールを100g(0.032モル、エチレンオキシ基のモル数は2.3モル)、酸化防止剤(アデカスタブAO-60)を0.5g、オクチル酸ジルコニウムを0.8g仕込み、210℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1 299gを得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1の酸価は11、数平均分子量Mnはポリスチレン換算で16,000であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1 299gに、エポキシ化合物(D)-1としてビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)3.2gを仕込み、240℃で3時間、減圧下で重合して、本発明の(X)成分である高分子化合物(E)-1を304g得た。(E)-1 304g中には、ポリエーテルのブロック(B)中に(b)-1化合物由来のエチレンオキシ基が、2.3モル存在する。
〔製造例2〕
 製造例1と同様にしてポリエステル(a)-1を300g得た。得られたポリエステル(a)-1、300g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,100、エチレンオキシ基の繰り返し単位の数=70のポリエチレングリコールを200g(0.064モル、エチレンオキシ基のモル数は4.5モル)、酸化防止剤(アデカスタブAO-60)を0.5g、オクチル酸ジルコニウムを0.8g仕込み、210℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2 498gを得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2の酸価は10、数平均分子量Mnはポリスチレン換算で16,000であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2 498gに、エポキシ化合物(D)-1としてビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)4.7gを仕込み、240℃で3時間、減圧下で重合して、本発明の(X)成分である高分子化合物(E)-2を507g得た。(E)-2 507g中には、ポリエーテルのブロック(B)中に(b)-1化合物由来の-CH-CH-O-基が、4.5モル存在する。
〔製造例3〕
 製造例1と同様にしてポリエステル(a)-1を107g得た。得られたポリエステル(a)-1、107g、両末端に水酸基を有する化合物(b)-2として数平均分子量7,500、エチレンオキシ基の繰り返し単位の数=170のポリエチレングリコールを100g(0.013モル、エチレンオキシ基のモル数は2.3モル)、酸化防止剤(アデカスタブAO-60)を0.5g、オクチル酸ジルコニウムを0.8g仕込み、210℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3 207gを得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3の酸価は11、数平均分子量Mnはポリスチレン換算で16,000であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3 207gに、エポキシ化合物(D)-1としてビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)1.7gを仕込み、240℃で3時間、減圧下で重合して、本発明の(X)成分である高分子化合物(E)-3を210g得た。(E)-3 210g中には、ポリエーテルのブロック(B)中に(b)-2化合物由来のエチレンオキシ基が、2.3モル存在する。
〔実施例1〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-1を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し2.3%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.052モルを使用した。
 次に、得られた組成物-1の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-1を得た。得られた樹脂組成物-1を、(株)池貝製2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度40℃の加工条件で成形し、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例2〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-2を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し2.5%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.057モルを使用した。
 次に、得られた組成物-2の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-2を得た。得られた樹脂組成物-2を、実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例3〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-3を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し2.7%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.061モルを使用した。
 次に、得られた組成物-3の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-3を得た。得られた樹脂組成物-3を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例4〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-4を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し3.1%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.070モルを使用した。
 次に、得られた組成物-4の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-4を得た。得られた樹脂組成物-4を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例5〕
 (X)成分として製造例2で得られた高分子化合物(E)-2を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-5を調製した。(E)-2中にエチレンオキシ基は4.5モル存在するので、そのモル数に対し3.2%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.15モルを使用した。
 次に、得られた組成物-5の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-5を得た。得られた樹脂組成物-5を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例6〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-6を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し3.4%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.077モルを使用した。
 次に、得られた組成物-6の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-6を得た。得られた樹脂組成物-6を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表1に示す。
〔実施例7〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-7を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し3.8%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.086モルを使用した。
 次に、得られた組成物-7の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-7を得た。得られた樹脂組成物-7を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔実施例8〕
 (X)成分として製造例3で得られた高分子化合物(E)-3を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-8を調製した。(E)-3中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し3.8%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.086モルを使用した。
 次に、得られた組成物-8の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-8を得た。得られた樹脂組成物-8を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔実施例9〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-9を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し4.2%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.095モルを使用した。
 次に、得られた組成物-9の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-9を得た。得られた樹脂組成物-9を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔実施例10〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-10を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し4.6%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.10モルを使用した。
 次に、得られた組成物-10の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-10を得た。得られた樹脂組成物-10を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔実施例11〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-11を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し5.0%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.11モルを使用した。
 次に、得られた組成物-11の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-11を得た。得られた樹脂組成物-11を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔実施例12〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して組成物-12を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し5.4%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.12モルを使用した。
 次に、得られた組成物-12の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、樹脂組成物-12を得た。得られた樹脂組成物-12を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表2に示す。
〔比較例1〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して比較組成物-1を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し1.9%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.043モルを使用した。
 次に、得られた比較組成物-1の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、比較樹脂組成物-1を得た。得られた比較樹脂組成物-1を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表3に示す。
〔比較例2〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して比較組成物-2を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し2.1%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.048モルを使用した。
 次に、得られた比較組成物-2の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、比較樹脂組成物-2を得た。得られた比較樹脂組成物-2を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表3に示す。
〔比較例3〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して比較組成物-3を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し5.7%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.13モルを使用した。
 次に、得られた比較組成物-3の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、比較樹脂組成物-3を得た。得られた比較樹脂組成物-3を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表3に示す。
〔比較例4〕
 (X)成分として製造例1で得られた高分子化合物(E)-1を、(Y)成分としてドデシルベンゼンスルホン酸ナトリウム(分子量348.5)を混合して比較組成物-4を調製した。(E)-1中にエチレンオキシ基は2.3モル存在するので、そのモル数に対し6.1%のNaのモル数を含有するドデシルベンゼンスルホン酸ナトリウムの0.14モルを使用した。
 次に、得られた比較組成物-4の20質量部を、ホモポリプロピレン(メルトフローレート=8)80質量部に対して配合し、比較樹脂組成物-4を得た。得られた比較樹脂組成物-4を実施例1と同様にして、試験片(100mm×100mm×3mm)を得た。得られた試験片を用いて、下記評価方法で、加工性と表面抵抗率を評価した。結果を表3に示す。
<加工性評価方法>
 得られた試験片の表面を目視で観察し、シルバーストリークの発生している表面の面積を確認した。評価は1枚の試験片の表面を10分割しシルバーストリークの有る無しを10%刻みで評価し、試験片5枚の平均値を算出した。シルバーストリークがまったく発生していない0%が最も加工性に優れ、全表面に発生している100%が最も加工性に劣ることになる。
<表面抵抗率(SR値)測定方法>
 得られた試験片を、成形加工後直ちに、温度25℃、湿度50%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、アドバンテスト社製のR8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面抵抗率(Ω/□)を測定した。測定は5枚の試験片で1枚あたり5点について行い、その平均値を求めた。
Figure JPOXMLDOC01-appb-T000005
※1:ドデシルベンゼンスルホン酸ナトリウム
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記、表1~3中に示す結果から、本発明によれば、優れた帯電防止効果とその持続性を有し、さらに優れた加工性を有する組成物が得られることが明らかである。

Claims (9)

  1.  高分子化合物(E)からなる(X)成分と、アルカリ金属の塩からなる(Y)成分とを含有する組成物において、
     前記高分子化合物(E)が、ジオールと脂肪族ジカルボン酸および芳香族ジカルボン酸とが反応して得られるポリエステル(a)と、エチレンオキシ基を1以上有する両末端に水酸基を有する化合物(b)と、エポキシ基を2以上有するエポキシ化合物(D)と、が反応して得られる高分子化合物であって、
     前記ポリエステル(a)から構成されるポリエステルのブロック(A)と、前記化合物(b)から構成されるポリエーテルのブロック(B)と、を有し、前記ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、前記化合物(b)の末端に有する水酸基と、前記エポキシ化合物(D)のエポキシ基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有し、
     前記(Y)成分の含有モル量が、前記(X)成分である高分子化合物(E)中のポリエーテルのブロック(B)中のエチレンオキシ基のモル数の、2.3~5.4%の範囲内であることを特徴とする組成物。
  2.  前記(X)成分の高分子化合物(E)が、前記ポリエステルのブロック(A)と、前記ポリエーテルのブロック(B)と、がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する請求項1記載の組成物。
  3.  前記(X)成分の高分子化合物(E)のポリエステルのブロック(A)を構成する前記ポリエステル(a)が、両末端にカルボキシル基を有する構造である請求項1または2記載の組成物。
  4.  前記(X)成分の高分子化合物(E)のポリエーテルのブロック(B)を構成する前記化合物(b)が、ポリエチレングリコールである請求項1~3のうちいずれか一項記載の組成物。
  5.  前記(X)成分の高分子化合物(E)のポリエーテルのブロック(B)を構成する前記化合物(b)の数平均分子量が400~10,000である請求項1~4のうちいずれか一項記載の組成物。
  6.  前記(X)成分の高分子化合物(E)における、ブロックポリマー(C)の数平均分子量が5,000~30,000である請求項2~5のうちいずれか一項記載の組成物。
  7.  熱可塑性樹脂に対し、請求項1~6のうちいずれか一項記載の組成物が配合されてなることを特徴とする樹脂組成物。
  8.  前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上である請求項7記載の樹脂組成物。
  9.  請求項7または8記載の樹脂組成物からなることを特徴とする成形体。
PCT/JP2018/027165 2017-07-24 2018-07-19 組成物、これを含む樹脂組成物、およびその成形体 WO2019021943A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-143023 2017-07-24
JP2017143023 2017-07-24

Publications (1)

Publication Number Publication Date
WO2019021943A1 true WO2019021943A1 (ja) 2019-01-31

Family

ID=65041198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027165 WO2019021943A1 (ja) 2017-07-24 2018-07-19 組成物、これを含む樹脂組成物、およびその成形体

Country Status (2)

Country Link
TW (1) TW201920383A (ja)
WO (1) WO2019021943A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115745A1 (ja) * 2013-01-23 2014-07-31 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016117826A (ja) * 2014-12-19 2016-06-30 株式会社Adeka ポリオレフィン系樹脂組成物
JP2016132717A (ja) * 2015-01-19 2016-07-25 株式会社Adeka 帯電防止性樹脂組成物ならびにこれを用いた容器および包装材
JP2016191165A (ja) * 2015-03-31 2016-11-10 株式会社Adeka ポリオレフィン系帯電防止性繊維およびそれを用いた布帛

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115745A1 (ja) * 2013-01-23 2014-07-31 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016117826A (ja) * 2014-12-19 2016-06-30 株式会社Adeka ポリオレフィン系樹脂組成物
JP2016132717A (ja) * 2015-01-19 2016-07-25 株式会社Adeka 帯電防止性樹脂組成物ならびにこれを用いた容器および包装材
JP2016191165A (ja) * 2015-03-31 2016-11-10 株式会社Adeka ポリオレフィン系帯電防止性繊維およびそれを用いた布帛

Also Published As

Publication number Publication date
TW201920383A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6377437B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6275654B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6309506B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6453003B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6452993B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP7339331B2 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
JP2017128681A (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2019021944A1 (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物、およびその成形体
JP7329934B2 (ja) 組成物、これを含有する樹脂組成物、およびその成形体
JP6472669B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2022021149A (ja) 組成物、これを含有する合成樹脂組成物およびその成形体
WO2019021943A1 (ja) 組成物、これを含む樹脂組成物、およびその成形体
JP2019006951A (ja) ブロックポリマー、これを含む組成物、これらを含む樹脂組成物およびその成型体
JP2019116523A (ja) 高分子化合物、これを含有する組成物、これらを含有する樹脂組成物およびその成形体
WO2024048524A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
JP2019006950A (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物およびその成型体
WO2020203618A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2020203619A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
JP2020164711A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物およびその成形体
JP2021102683A (ja) 帯電防止性樹脂組成物、及びこれを用いた電気電子機器筐体
JP2017128678A (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP