WO2015180677A1 - 大运能直达轨交系统 - Google Patents

大运能直达轨交系统 Download PDF

Info

Publication number
WO2015180677A1
WO2015180677A1 PCT/CN2015/080199 CN2015080199W WO2015180677A1 WO 2015180677 A1 WO2015180677 A1 WO 2015180677A1 CN 2015080199 W CN2015080199 W CN 2015080199W WO 2015180677 A1 WO2015180677 A1 WO 2015180677A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
rail
small car
main
station
Prior art date
Application number
PCT/CN2015/080199
Other languages
English (en)
French (fr)
Inventor
赵毅
Original Assignee
赵毅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES15798826T priority Critical patent/ES2753634T3/es
Priority to AU2015266445A priority patent/AU2015266445B2/en
Priority to CA2950639A priority patent/CA2950639A1/en
Priority to EP15798826.2A priority patent/EP3150455B1/en
Priority to KR1020167037092A priority patent/KR102424284B1/ko
Priority to BR112016028077-6A priority patent/BR112016028077B1/pt
Application filed by 赵毅 filed Critical 赵毅
Priority to JP2016571060A priority patent/JP6719389B2/ja
Priority to SG11201609996PA priority patent/SG11201609996PA/en
Priority to MX2016015814A priority patent/MX2016015814A/es
Priority to RU2016152284A priority patent/RU2696396C2/ru
Publication of WO2015180677A1 publication Critical patent/WO2015180677A1/zh
Priority to US15/363,889 priority patent/US10435037B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B15/00Combinations of railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/30Power rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B10/00Power and free systems
    • B61B10/02Power and free systems with suspended vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B3/00Elevated railway systems with suspended vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to the field of urban and inter-city transportation technologies, in particular to a public transportation method for personnel or goods, and a rail transit system formed by a related transportation infrastructure.
  • Every station must stop and need to open and close the door. It takes time to get on and off the passengers. Before, it needs to be braked and stationary. Then it needs to be restarted.... A subway car arrives at the station, maybe just for 10% of the people. It needs to be shared by the remaining 90%, what is unreasonable! For example, in Beijing and Shanghai, the number of subway commuters per year is more than 2 billion, which is an alarming price.
  • the goal of the present invention is to solve this contradiction, and to realize the great luck energy while completing one-stop direct access and saving human needs such as unnecessary waiting time.
  • the key to analyzing the inability of the Personal Rapid Transit (PRT) to achieve mass transit is: 1. Due to the traditional vehicle kinetic energy mode (corresponding to the trajectory kinetic energy in the present invention), since the cars are operated independently, for safety, if high speed operation must be maintained Large spacing, if you keep a small distance, you must also take a lower speed, and both of these conditions will cause the entire track to run low. It is best to achieve high density and high speed at the same time. 2. In addition to the above, it is also necessary to solve the problem of rapid orbital change (or switching) of vehicles under high-density conditions. In the “Progressive Future – High-speed Train 1” of DISCOVERY channel, whether a fast track-changing system can be established is listed. The problem that must be solved in order to build a new large rapid transit network.
  • the invention utilizes the trajectory kinetic energy, and the independent small car adopts the loading mode to realize the advancement. Since each of the independent small cars maintains the same direction and the same speed, that is, there is no relative displacement between the independent small cars, not only the relative displacement between the independent small cars, but not only It is safer to drive, and more importantly, the free-standing small car that runs in the system achieves high speed in high-density conditions, supplemented by the problem of rapid orbit change by using the stereoscopic orbital method, and the power is used to drive the inbound orbit.
  • the rail and the separated station are connected to solve the inbound problem.
  • a large-capacity direct-track system which system comprises a main channel, an operating car, an access station, a track and a station, wherein the operating car is a free-standing small car, said The track is laid in the main passage; the track is a power rail, the power rail continues to move at a uniform speed, and the independent small car is placed on the corresponding parking space on the power rail, and the independent small car is driven forward by the power rail; the station passes The access channel is connected to the main channel where the power rail is connected, and one end of the access station is connected to the ground platform, and the other end is connected to the main channel to form a communication structure.
  • the top of the independent small car is provided with a connecting device, and the connecting device is arranged above the access channel. The connection structure is docked to complete the orbit change.
  • the uniform motion of the power rail can be replaced by a circular motion, and a free-standing small car is provided thereon to provide main forward power; the entrance and exit channels are respectively connected to the ground platform, and the other end is connected to the main channel and can be replaced by an inbound and outbound channel.
  • One end is connected to the station, and the other end is connected to the main channel; the main channel is laid in the main channel, and the inbound and outbound tracks are laid in the inbound and outbound channels, the station is a separate station, and the separated station passes through the inbound and outbound tracks and the main station.
  • the rail connection is connected to the top of the freestanding car; the connecting structure above the access station is a top rail, and the change rail connector on the freestanding car changes to the top rail. After the completion of the stereoscopic change.
  • Main track (power rail) part The power rail is to change the power system from vehicle to rail, that is, the integrated power track structure formed by the combination of traditional track and related power device.
  • the power track can form stable and uniform motion, independent.
  • the small car is mounted on it to achieve the purpose of advancement.
  • the power rail power unit may be powered by a rotating electrical machine or may be powered by a linear motor, and may employ a magnetic levitation mode in addition to an attached contact, or other power modes as will be appreciated by those skilled in the art.
  • the linear motor sensing plates are evenly arranged on the track and the frame, so the power source is distributed and balanced.
  • One form of the power rail can be formed by the combination of the track, the wheel set, the frame and the power unit, and the connecting frame between the front and the rear frames is connected in series to cover the entire track.
  • the performance of the power rail is various, and it can be expressed in various forms according to the different power sources and the combination of different independent small cars.
  • the core feature is the track kinetic energy and its orbit. It must be in a closed loop operation or intermittent, but close to a closed operation, which keeps running at a constant speed and provides a piggyback mode to the free-standing small car. Therefore, it avoids the high energy consumption mode that the traditional subway must brake and start at every stop, and greatly reduces the failure rate of the system.
  • the closed cycle mode of the power rail may be a closed loop of up and down. As a better way, it may also be a circular loop of a plane. When a planar loop is used, the straight line segments in two directions in the loop loop are opposite. Available for transportation
  • the traffic demand in the back and forth direction; the circulation structure of the power rail can be an overall single cycle mode; it can also be a segmented cycle, which is connected in the form of a bridge, thereby achieving a more remote transportation; or multiple segments running simultaneously on multiple lines. Loop structure; or multi-segment split-loop structure; there are many possible variations in this area beyond what is described herein. The above are just a few non-limiting examples.
  • the operating compartment is a free-standing small compartment, and the free-standing small compartment is mounted on the corresponding parking space on the power rail.
  • the independent small compartment is set as a front and rear two-seat or one-seat or multi-seat or pure cargo compartment, which provides freight during the low traffic period. service. This arrangement ensures that passengers on the same vehicle have the same destination, guaranteeing the possibility of one-stop direct access from the purpose.
  • the bottom front end and the rear end are provided with driven wheels; the bottom of the vehicle has front and rearward grooves, which are matched with the corresponding portions of the power rail to prevent left and right offset; the tail has fixed grooves.
  • the elastic lifting device on the power rail frame is fixed to the groove, and the top of the independent small car is provided with a variable rail connector.
  • the variable rail connector is provided with a walking wheel and a steering wheel. When the variable rail connector is raised, After docking with the top rail in the inbound and outbound track, the freestanding small car will leave the power rail and complete the orbital change.
  • the variation mode of the track-changing connector is varied, and can be lifted, or raised, or opened, or rotated, or other means known to those skilled in the art to achieve a change of track after the top rail is engaged.
  • the access station track includes a top rail, and the top rail may be disposed on an open track directly above the entire traffic cross section, or may be a separate track on the upper side, or may be an open non-open track directly above, in some cases.
  • the tracks on both sides can also be used, and any track of different dimensions from the original track can be set as the top rail.
  • the top rail refers to the orbit that utilizes any different dimension of the orbit to achieve the orbit.
  • the track-changing connector does not directly engage the top rail, but rather the connector of the intelligent drive that is placed on the top rail, the rail-changing connector and the top rail
  • the connectors on the intelligent drive unit are adapted to achieve a change of track.
  • the intelligent driving device has its own wheel set and corresponding power device, and can carry a free-standing small car along the top rail to the required area. In this case, the walking wheel on the variable-track connector on the independent small car Waiting is not necessary.
  • a guide rail can be arranged at the front end of the inbound rail.
  • the opening of the rail is significantly larger than the top rail, and the transmission wheel and the positioning wheel are arranged to assist the rail connector to better fit.
  • Top rail can be arranged at the front end of the inbound rail.
  • the signal control system in the main track releases the main track operation, inbound and outbound signals to the independent small car, and the independent small car continues to operate or enters and exits according to the signal of the signal control system;
  • the main track operation method the power rail continues to run at a constant speed, and several independent small cars are placed on the corresponding parking spaces on the power rail according to the needs, and the equal speed advances in the same direction. Since there is no displacement between each other, the parking space spacing on the power rail can be greatly reduced. This achieves high density and provides great luck;
  • the independent small car that needs to be inbound rises the change rail connector, and the change rail connector enters the top rail according to the guide rail of the front end of the top rail, and the fixed device on the power rail is unlocked, and the independent small car passes through
  • the top rail drives from the inbound rail to the station;
  • the free-standing small car that does not need to be inbound can continue to follow the power rail as long as it does not change the rail connector;
  • the free-standing small car that enters the inbound rail is set at the top
  • the power system on the rail and the rail connector provides step-by-step deceleration until the leaf shape is completely stationary behind the passenger zone, providing passengers with a drop;
  • Outbound method After the passenger gets on the bus and sets the destination, the independent small car enters the outbound track, and the independent small car gradually accelerates to the same speed as the power track through the outbound track, and the end of the exit track and the power track It is parallel to the upper and lower sides and is located directly above the power rail.
  • the independent small car When the same speed is relatively static, the independent small car is placed on the corresponding parking space of the power rail from above, and the driven wheel at the bottom is docked with the parking space on the power rail.
  • the gravity sensor is activated, the lifting device on the power rail is lifted up, and the free-standing small car is locked to achieve the rail.
  • the free-standing small car accelerates to the same speed as the power rail in the top rail, and the end of the top rail is parallel to the power rail and is slightly higher than the power rail, from the corresponding position.
  • the push device pushes the freestanding car to the power rail.
  • Variations of other various orbital schemes are possible, and any equivalent transformation based on the present invention is within the scope of the present invention.
  • the signal control system method of Dayun can directly reach the rail transit system:
  • the locking device on the power rail After successfully entering the top rail of the inbound rail along the rail, the locking device on the power rail is opened, and the free-standing small car will follow the top rail, and the power system on the top rail and the rail connector According to the preset procedure, the step-by-step deceleration is provided until it enters the drop-off area and then stops. The passenger is released, and the free-standing small car after the passenger is entered into the passenger area according to the station instruction, waiting for the passenger to board the train;
  • the main control computer of the departure area instructs the independent small car to enter the outbound operation mode: the independent small car first enters the waiting area; when starting, it needs
  • the corresponding parking spaces on the main track power rail are vacant.
  • Each parking space has a gravity sensor.
  • the sensor does not emit a signal.
  • the sensor will pass the corresponding
  • the information is sent to the track-side sensing point disposed on the side of the main track.
  • the sensing point on the main track power track is calculated according to the time t required by the independent small car in the outbound track, and multiplied by the t time.
  • the speed of the power rail derives the distance Y, thereby deriving the specific position point along the set rail in the main track, and the receiver is directly connected with the main control computer of the departure area to issue a command to the independent small car.
  • the invention also includes a method for switching a conversion travel path of a large-capacity direct-to-rail system, comprising a main line track, a branch track and a conversion body, and the branch track is set at a different point from the main line track at the switch point, the main line
  • the track and the bifurcation track are not in the same X and Y planes, but have different dimensional differences in the three-dimensional space, and then the connecting devices on the conversion body are used to connect the bifurcation tracks of different dimensions to realize the changing traveling path.
  • the connecting device is directly connected to the branching track.
  • the connecting device is connected to the connecting structure on the branching track.
  • the bifurcation track is ensembled directly above the main line track or separated above the side of the main line track or separated on either side of the main line track.
  • the switching method is as follows: the conversion body of the switching path needs to be in the corresponding position in front of the branching port, and the connecting device is raised.
  • the connecting device connects the branching track, and at the same time, the temporary fixing structure of the conversion body and the main line track is unlocked. Separation, the conversion body will follow the guidance of the bifurcation orbit to complete the path switching and travel in a new direction; without switching the conversion body of the path, as long as the connection device is not changed, that is, there is no intrusion relationship with the bifurcation orbit, then the vehicle Will continue to run along the main line track path.
  • the auxiliary rail device is provided at the front end of the branching track to provide correctiveness.
  • the auxiliary railing device opening is larger than the branching rail portion, and the positioning wheel is provided at the entrance to help the biased connecting device to realize the deviation correction; the auxiliary rail device is also provided.
  • Guide wheels are provided, and the guide wheels provide internal rotation power to help the connecting device overcome the frictional force when contacting the branching track, reduce the instability during the connection process, and achieve a smooth track.
  • the preceding trackside signal system before the path change point will continuously issue the confirmation signal of the track change address, and the control system in the conversion body accepts After the signal is compared, it is confirmed that the track needs to be changed, then the corresponding device is activated, the connection device is changed, the connection device is ensured to correspond to the branching track, the connecting device is connected to the auxiliary track device, the offset angle is corrected, and the guiding wheel is adjusted.
  • the conversion body vehicle control system needs to obtain the vacancy signal confirmation next to the front rail to confirm that the main line track to be imported has a safe space. After that, the conversion body gradually advances from the branching track to the main line track.
  • the branching track is parallel to the upper and lower dimensions of the main line track, the main body is raised and connected to the connecting device, which is equivalent to lowering the conversion body and fitting with the main line track. After leaving the end of the bifurcation track, follow the main line track to achieve the path transformation.
  • the switching method of the conversion travel path of the Grand Canal to the rail transit system can be applied to the field of transportation or amusement equipment or the field of movable machinery.
  • the power rail and small car loading mode enable the small-vehicle traffic to be at the same time with high density and high speed, realizing the great capacity of each person with a seat and one-stop direct state, and the stereoscopic orbit mode solves the problem of large-scale networked traffic.
  • the trolley that needs to be transferred can realize the seamless transfer of "the passenger does not need to get off the train" via the access station track and the separate station, which will alleviate the difficulty of transfer.
  • the size of the trolley body of the large-capacity direct-travel system is significantly smaller than that of the traditional subway, and the radius of the passage can be greatly reduced.
  • the ratio of tunnel and station engineering costs to total investment exceeds 60. %, this improvement has obvious meaning.
  • the Grand Canal can directly reach the rail transit system, it avoids the braking and starting required for each stop, which greatly saves energy consumption; and during the low passenger flow period, it can also open a direct freight car without personnel. Following, and improving the safety and immediacy of the goods, the present invention has practical significance in reducing energy consumption.
  • Figure 1 is a schematic view of a large frame of the present invention
  • Figure 2 is a partial schematic view of the power track of the present invention
  • FIG. 3 is a schematic view of an induction plate when a power rail adopts a linear motor according to the present invention
  • FIG. 4 is a schematic view of a lower perspective view of the freestanding small car in the present invention.
  • Figure 5 is a side view of the freestanding small car of the present invention.
  • Figure 6 is a schematic view showing the independent small car mounted on the power rail in the present invention.
  • Figure 7 is a schematic view showing the power rail in the present invention as a whole single cycle operation mode
  • FIG. 8 is a schematic diagram of a segmented cycle mode in which the power rail in the present invention is in the form of a bridge;
  • FIG. 9 is a schematic diagram of a power rail in the present invention in a multi-segment cyclic mode
  • Figure 10 is a schematic view showing the power rail of the present invention in a multi-segment split type circulation mode
  • Figure 11 is a schematic view showing the leaf-shaped lower passenger zone of the split station of the present invention.
  • Figure 12 is a schematic view of the rail portion of the rail-changing connector of the present invention.
  • FIG. 13 is a schematic diagram of calculation of a track-side sensing point in the present invention.
  • FIG. 14 is a schematic diagram of realizing stereoscopic orbit change by using different dimension tracks in the present invention.
  • Figure 15 is a schematic view of the transition of the rail connector into the top rail of the present invention
  • Figure 16 is a schematic view showing the use of a separate type of top rail in a free-standing small car according to the present invention.
  • Figure 17 is a schematic view showing the integrated non-open top rail of the independent small car in the present invention
  • Figure 18 is a schematic view showing the lifting mode of the variable rail connector of the present invention
  • Figure 19 is a schematic view showing the rotation opening mode of the variable rail connector of the present invention
  • 21 is a schematic diagram of an outbound mode of a stereo orbital change in a power rail condition according to the present invention.
  • connection intelligent driving device 22 is a schematic diagram of a connection intelligent driving device in a stereoscopic orbital change according to the present invention.
  • Figure 23 is a side view of the connecting device connecting the branching rail of the converting body of the present invention.
  • Figure 24 is a schematic view of a side rail mode branching track in the present invention.
  • Figure 25 is a schematic view showing the change of the connecting device in a manner of extending to both sides in the present invention.
  • Figure 26 is a schematic view showing the change of the connecting device by the jacking method in the present invention.
  • Figure 27 is a schematic view showing the change of the connecting device by means of opening on both sides in the present invention.
  • A1 and A2 represent the traffic demand in the main orbit that meets the two directions respectively.
  • Main track power rail
  • Wheel set 102
  • Frame 103.
  • top rail 300. Inbound and outbound track (top rail) 301. Integral non-opening track in the top rail 302. Integral open track in the top rail 303. Separate track in the top rail 304. Top rail with intelligent drive 305. Top Side rails 310 in the rails. Guide rails 311. Positioning wheels 312 on the rails. Guide rails on the rails 320. Intelligent drives on the top rails 321. Walking wheels on the intelligent drive 322. Power on the smart drives Device 323. Connector on the smart drive
  • CW parking space KCW empty parking space MCW full parking space ZK station central control system X top rail part acceleration section distance Y is to ensure that there is space when the small car is in orbit, the distance on the power rail is signaled in advance Va outbound track end speed Vb Force rail speed
  • Figure 6 is designated as an abstract drawing of the present invention.
  • the Grand Canal direct rail transit system is an innovative model of public transportation in cities (including intercity traffic). This model has greatly improved the traditional subway operation mode, combining the advantages of the metro's Grand Canal with each taxi. People have a seat, a direct function, so that the future urban traffic can be achieved: when you go, everyone has a seat, a station directly to the next big capacity.
  • the operation mode of the Grand Canal Direct Rail Transit System can be operated on underground tunnels, pavements, elevated or connected passages between buildings or other mode-built passages or open platforms. Its stations are located on underground, pavement, elevated platforms or buildings as needed.
  • the Grand Canal direct rail transit system includes the main track, the inbound and outbound track, the operating car, and the separate station.
  • the operating car is a free-standing small car
  • the main track is the power rail
  • the power rail continues to rotate at a constant speed.
  • the small car is mounted on the corresponding parking space on the power rail, and the independent small car is driven forward by the power rail.
  • the separated station communicates with the main track through the inbound and outbound rails.
  • the top of the independent small car is provided with an orbiting connector, and the variable rail connection is provided. The docking of the inbound and outbound tracks is required to complete the orbital change.
  • the trajectory kinetic energy is to change the power system from vehicle to rail. It can be integrated by rail, wheel set, frame and power unit to form an integrated structure. There are connecting devices between the front and rear frames, which are connected in series. Cover the entire track. The whole track runs in a closed loop, which keeps running at a constant speed, avoiding the high energy consumption mode that the traditional subway must brake and start at every stop, and greatly reduces the failure rate of the system.
  • the kinetic energy is provided by the power rail, and the independent small car is only mounted thereon. Therefore, during the entire operation of the main track, there is no relative displacement between the independent small cars, which reduces the safety accident and the workshop spacing can be Significantly reduced, which greatly improved transportation capacity.
  • the power system of the power rail can adopt the mode of linear motor.
  • the primary induction board is laid on the track, and the secondary induction board is suspended in the lower part of the frame to energize the primary induction board on the track to generate power and drive power.
  • the linear motor induction plates are evenly arranged on the track and the frame, so the power source of the power rail driven by the linear motor is not centralized but distributed. According to the characteristics of the linear motor, the primary sensor board and the secondary sensor board can also be converted to each other.
  • the power rail can also be powered by a rotating electrical machine, similar to the combination of a rotating electrical machine and a track in a conventional subway train.
  • the operating compartment is a free-standing small compartment, and the independent small compartment can be mounted on the corresponding parking space on the power rail; the front and rear ends of the independent small compartment are provided with driven wheels; After the groove is matched with the corresponding part of the power rail, the left and right offset can be prevented; the tail has a fixed groove, and the elastic lifting device on the power rail frame is lifted to the groove to form a fixed.
  • front and rear or side-by-side double seats or one-seat, four-seat or multi-seat, or cargo compartment
  • the passengers in the same car have the same destination and guarantee one stop from the purpose.
  • Direct implementation is possible. Pure cargo compartments provide urban freight services during periods of low traffic.
  • the power rail is a closed loop uninterrupted track
  • the circulation structure can be an overall single cycle mode according to requirements, as shown in Fig. 8, or the segmented cycle is connected in the form of a bridge, as shown in Fig. 9. , or a multi-segment loop structure in which a plurality of lines operate simultaneously; as shown in FIG. 10, the above-described multi-segment loop can also adopt various structures, such as a multi-segment split type.
  • the "stereo-tracking mode" can be used to realize the cycle from the previous power rail to the next power rail.
  • a top rail is built above the two loops, the free-standing small car rises the rail connector before the loop, the rail connector enters the top rail, and the free-standing small car leaves the original power rail cycle, following the top rail Go forward and go to the next cycle. It should be pointed out that since the single-direction free-standing small car on the power rail cycle passes through the bridge to the next cycle, the reverse direction of the cycle is completely vacant, so it accepts the independent cycle from the other power track. It is not a difficult process for small cars to access the new cycle through the bridge.
  • the feature of the three-dimensional orbital change is that at the switching point, that is, the port of the branching track, the branching track is disposed in a different dimension space from the main line track, and then the connecting device carried by the converting body is used to connect the branching track through the connecting device. Incoming, wrapping or absorbing connections, the guidance of which is switched from the main line track to the branching track to achieve switching of different travel paths.
  • the connecting device on the conversion main body can be changed in position, that is, it can be in a position that does not correspond to the bifurcation track, or can be changed to a position that can correspond to the bifurcation track.
  • a fast top stereo orbit is realized by using a top rail that is in a different dimension from the original running track.
  • the top rail arrangement can be various, and the rail can be an open rail located directly above the entire traffic cross section, or can be a separate rail on the upper side, or can be positive. Above the whole non-opening track, in some cases, the tracks on both sides can also be used. It should be understood that the top rail refers to any track with different dimensions from the original track.
  • the top of the free-standing small car is provided with a changeable track connector, and the track switch is provided with a walking wheel and a steering wheel; as shown in Figures 18 and 19, the change of the track changer
  • the manner is varied and can be ascending, or it can be rotated or other forms known to those skilled in the art.
  • the separated station is connected to the main track by the "in and out station track", and the independent small car that needs to enter the station is decelerated from the inbound track to the separate station after the three-dimensional orbit is realized through the top rail.
  • the leaf-shaped lower passenger area after the stop, provides passengers to leave, and the free-standing small car is deployed in the station to the passenger area to provide new passenger demand.
  • the leaf-shaped lower passenger area is shown in Figure 11.
  • the specific mode of the stand-alone small car is as follows: Before arriving at a station, the stand-alone small car that needs to enter the station raises the track changer without the need for the inbound stand-alone small car. Action, the raised orbital connector first enters the guide rail at the front end of the top rail. There are several driving wheels on the upper and lower sides of the rail, and the wheel set rotates inward to help the rail-changing connector to smoothly enter the top rail by the rail. The small car follows the top rail and is separated from the power rail path to achieve stereoscopic orbit change.
  • a linear motor induction plate is arranged on the top rail, and a linear motor induction plate is also arranged on the variable rail connector to provide the power or resistance required for the independent small car to achieve the effects of deceleration, rest to start, acceleration and the like.
  • the free-standing small car running on the inbound track gradually decelerates and enters the station-shaped lower passenger zone and then rests for passengers to get off. An empty free-standing small car enters the station's leaf-shaped upper passenger zone for new passengers.
  • the track change connector does not directly fit into the top rail, but rather the connector of the intelligent drive device disposed on the top rail, the intelligent drive
  • the self-contained wheel set and the corresponding power unit can carry the free-standing small car along the top rail to the required area. In this case, the walking wheel on the variable-track connector on the independent small car is not have to.
  • the specific mode of the independent small car outbound is as follows: After the passenger gets on the bus and enters the corresponding destination, the independent small car will enter the waiting area of the departure. When the departure command of the station is obtained, the independent small car will Entering the off-track, in the off-track, after accelerating through the linear motor induction plate on the top rail, the speed of the free-standing small car is accelerated to the running speed equivalent to the power rail, and then the free-standing small car is mounted from above. On the power track, follow the power track.
  • the station in the direct transportation rail transit system of this Universiade is a separate station, that is, the station is separated from the main track, and the outbound track and the inbound track are connected with the main track.
  • the separate station can be set according to needs, and the same line can be adjacent. If there are multiple separate stations as required, the separate stations can set up the stations as needed in the case of the same main line. The coverage of the stations is also much larger, and a separate station can be added after the foundation construction.
  • Main track operation method the power rail continues to run at a constant speed, and some independent small cars are mounted on the corresponding parking spaces on the power rail according to the needs, and the same speed advances in the same direction. Since there is no displacement between each other, the parking space spacing on the power rail can be greatly reduced. , thereby achieving high density and providing great luck;
  • Inbound (away from the power rail) method the independent free-standing small car needs to be raised and changed the rail connector, the rail-changing connector is inserted into the top rail according to the rail, the fixing device on the power rail is unlocked, and the independent small compartment From the inbound track to the station via the top rail; the free-standing small car that does not need to be inbound can continue to follow the power rail as long as the variable rail connector is not raised; the independent small car that enters the inbound track is set
  • the power system on the top rail and the rail-changing connector provides step-by-step deceleration until the leaf-shaped passenger compartment is completely stationary, providing passengers to get off;
  • Outbound (into the power rail) method After the passenger gets on the bus and set the destination, the independent small car enters the outbound track, and gradually accelerates to the same speed as the power track in the outbound track, and the tail end of the outbound track Parallel to the power rail, at the position above the power rail, the same speed is relatively static, the independent small car is mounted on the corresponding parking space of the power rail from above, the driven wheel at the bottom is docked with the parking space on the power rail, and the gravity on the power rail The sensor is activated, the lifting device is lifted up, and the free-standing small car is locked to achieve the track.
  • the locking device on the power rail is opened, and the free-standing small car is driven by inertia along the top rail, and the top rail and the rail connector are connected.
  • the power system provides step-by-step deceleration according to the preset procedure, until it enters the drop-off area and then stops.
  • the free-standing small car after the passenger enters the passenger area according to the station instruction, waiting Passengers get on the bus.
  • the main control computer of the departure area indicates that the independent small car enters the outbound (in orbit) operation mode: the independent small car first enters the waiting area of the train; as shown in Figure 13,
  • the corresponding parking space on the main track power rail is required to be vacant.
  • Each parking space has a gravity sensor. When the parking space is full, the sensor does not emit a signal. When the parking space is empty, the sensor will The information is sent on the side of the main track, and the receiver is directly connected with the central vacant system of the departure area to issue a command to the independent small car. The independent small car accelerates into the empty parking space on the power track.
  • the calculation formula of the track side sensing point is as follows: the outbound orbital acceleration distance section X is known, and the time required for the independent small car in the outbound track is known, and the time is multiplied by the speed of the power rail to obtain the distance Y.
  • the Y point sets the trackside signal receiver.
  • the invention also includes a method for stereoscopic orbit change.
  • the stereoscopic orbit change in the present invention is an innovative technical method when a travel path needs to be converted in transportation, and the method sets the track of the branching path of the conversion point to the main line path.
  • the track is in different dimensions.
  • the main track is the bottom track
  • the branch track is the top track
  • the front end of the branch track is in different dimensions from the main track, but a considerable part is parallel to the top and bottom, and the connecting device on the main body is switched.
  • Connections, such as incorporation, wrapping or absorbing the branching track, the conversion body and the main line track are unlocked if there is a safety locking structure, and then follow the gradual lifting of the branching track away from the main line track and steering to achieve the orbit change.
  • the advantage of this kind of stereo orbital change is that even if the distance between the two front and rear conversion bodies is very close, the conversion body is under high-speed operation, and the effective orbit can be realized without affecting the vehicle that does not need to be changed, and The orbits do not change during the orbital process, which greatly reduces the risk of instability due to orbital movement during the orbital process.
  • auxiliary orbital devices at the front end of the bifurcation track, such as the guide rails, to provide certain correctiveness.
  • the guide rail portion The opening will be significantly larger than the branching track portion, and there will be a positioning wheel at the entrance to help the biased connecting device to achieve the correcting deviation; and the guiding wheel provides a certain internal rotating power to help the connecting device overcome the frictional force when contacting the branching track.
  • Reduce the connection process such as instability during the incorporation or wrapping or adsorption process, to achieve a smooth track. The above situation can be set as needed, not required.
  • the operation method of the above-mentioned stereo orbital change is specifically: when the conversion body is changed from the main line track to the bifurcation track at the branching point: the preceding track side signal system before the change point point will continuously issue the track change address
  • the control system in the conversion body receives the signal and compares it to confirm that the track needs to be changed, then activates the corresponding device to change the connection device, such as lifting, jacking, rotating, stretching, opening, etc. or lifting the conversion body. , to ensure that the connecting device corresponds to the bifurcation track.
  • the moment of change of the rail the connection of the connecting device, such as the incorporation, wrapping or adsorption of the rail portion, the angle of the offset is corrected, the guiding wheel is transmitted inward to overcome the frictional force, and the connecting device of the converting main body enters the bifurcation rail via the guiding rail, and the main body is converted. If there is a locking structure with the main line track, the structure is unlocked, and the conversion body is gradually lifted upwards away from the main track by the guidance of the branching track. Road, and follow the bifurcation track to run on the new path to achieve the orbit.
  • the conversion body vehicle control system needs to obtain the vacancy signal confirmation next to the front rail to confirm that the main line track to be imported has a safe space. After that, the conversion body gradually advances from the branching track to the main line track.
  • the branching track is parallel to the upper and lower dimensions of the main line track, the main body is raised and connected to the connecting device, which is equivalent to lowering the conversion body and fitting with the main line track. After leaving the end of the bifurcation track, follow the main track to advance the track.
  • the body that changes the travel path is usually a vehicle, and may be other various types of appliances that require a change path, hereinafter referred to simply as a vehicle.
  • a vehicle can be a single car, or multiple car connections or other real-life conditions.
  • one or more connecting devices can be equipped on the vehicle.
  • the branching track can be set to be directly above or above the side of the vehicle (top rail), for the sake of simplicity of explanation, it is not explicitly stated below.
  • the default main line track is the bottom track
  • the branch track is the top track.
  • This method is suitable for vehicles with forward kinetic energy, as well as for other vehicles that provide external kinetic energy.
  • the vehicle advances because it is placed on the frame of the power rail, and the power rail is always moving.
  • the vehicle needs to be changed, the vehicle is to be transferred from the branch rail to the main rail.
  • the main track is a power rail
  • the incoming vehicle must maintain the same speed as the power rail, and the conversion body converts the three-step state of the main body when the main body is fed from the branching rail to the main rail in the form of a power rail, wherein When Va must be equal to Vb, accurate orbit can be achieved.
  • the power rail runs through the entire track, and the main body of the conversion can be placed on the power rail.
  • the main rail is the main rail.
  • the orbital track When the orbital track is changed to the bifurcation track where the non-power rail is located, it is similar to the above-mentioned normal change rail, and when the bifurcation track is changed to the main line track where the power rail is located (importing), the speed of the conversion body must be the same.
  • the effective orbit can be realized only when the power rails are kept in the same condition. Due to the existence of the modern control system and the signal system, the above conditions can be realized under the existing technical conditions.
  • the bifurcation track can be either integral or separate. When the track is different, it will be connected by different connecting devices. There are more types of track combinations in the stereo orbiting, and there are various types. Correspondingly, any equivalent transformation based on the present invention is within the scope of the present invention.
  • the core of the stereoscopic orbital transformation is that the bifurcation orbits of different dimensions are set at the transition.
  • the above-mentioned example of the transition from the bottom rail to the top rail is only a case of stereoscopic orbital change.
  • the conversion body may have only one way of changing the connection device, or there may be multiple ways to achieve the correspondence between the connection device and the bifurcation track, including but not limited to including lifting, jacking, rotating, stretching, opening, and the like. The way the skilled artisan will understand.
  • the connecting device of the conversion body will be ready to fit with the changing track by means of lifting; the connecting device of the vehicle will be ready to engage with the changing track by extending to both sides; the connecting device of the vehicle will be prepared to conform to the changing track by means of rotation; The connecting device will be ready to engage the changing track by jacking; the connecting device of the vehicle will be ready to engage the changing track by opening to both sides; as will be appreciated by those skilled in the art, a variety of means can be used including multiple forces The way to achieve this can include magnetic force, air pressure, hydraulic pressure, etc., as well as various other mechanical forces.
  • the rails described in the present invention include, but are not limited to, including, for example, conventional rails, rails, and the materials of the rails include, but are not limited to, rails, rails, and other materials such as: alloy materials, steel materials, carbon fiber materials, cement materials, and stone materials.
  • Orbital facilities formed by sand and soil mixing, which can carry and guide the vehicle, can be underground, pavement, elevated, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Architecture (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Railway Tracks (AREA)
  • Escalators And Moving Walkways (AREA)
  • Branching, Merging, And Special Transfer Between Conveyors (AREA)
  • Leg Units, Guards, And Driving Tracks Of Cranes (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

一种大运能直达轨交系统,包括主通道、运营车厢、出入站通道、轨道与车站,运营车厢为独立式小车厢(200),主通道(100)中铺设轨道;轨道为持续匀速运动的动力轨,独立式小车厢安置于其上相应车位,带动独立式小车厢匀速向前;车站(400)通过出入站通道(300)连接动力轨所在的主通道,出入站通道分别一端连接车站,一端连接主通道,形成联通结构,独立式小车厢顶部设有连接装置,连接装置与设置在出入站通道上方的连接结构对接完成变轨需要。该系统采用独立式小车厢模式,人人有座,实现一站直达,提供稳定、持续的前进动能,独立式小车厢彼此间无相对位移,可以实现高密度状态下的高速度。

Description

大运能直达轨交系统 [技术领域]
本发明涉及城市与城际交通技术领域,具体来说是一种人员或货物的公共交通运输方法,以及相关的交通运输基础设施形成的轨道交通系统。
[背景技术]
当下,交通特别是城市交通质量深深的影响着人类的生活质量。在中科院发布《2010中国新型城市化报告》中,北京以“平均52分钟”位居上班耗时榜首。一个城市市内交通的运能、耗时及舒适度,已经深深的影响着一座城市的竞争力与发展潜力。公共交通的不畅与不适,将刺激加大私家车的购置,反过来影响整个路面交通,以及对城市雾霾推波助澜,所以,从根本上解决城市公共交通意义巨大。
在交通耗时中,公共交通由于是集中运输,乘客目的地各不相同,造成公共交通必须每站必停,而其中的停靠时间,开关门时间,以及加减速时间都造成了巨大的耗时,根据笔者在上海做的测算,地铁两站间的开行时间与停靠时间的耗时比大约是1:1的关系,也就是说,每站必停等造成的无谓耗时大约要占整个交通耗时的50%。
根据当斯-托马斯悖论,城市公共交通的耗时的延长也将影响到路面交通的拥堵,由此产生城市交通的并发症,而据北京市交通发展研究中心的研究报告,2011年,北京城市交通拥堵造成1056亿元损失,相当于损耗北京GDP的7.5%。
每站必停需要开关门耗时,上下客耗时,而之前需要刹车、静止,其后需要重新启动……,一辆地铁车到站,也许只是为了其中10%的人的上下客,就需要其余90%的人共同承担,多么的不合理!如以北京、上海每年20多亿人次的地铁通勤人次,这个代价惊人。
而每一次的刹车与启动,也在增加大量的磨损与能源消耗。
不但如此,地铁站拥挤,候车时间长,换乘不方便,种种弊端明显。2014年,上海地铁已有14条线路通车运行,但线路之间的换乘极其不便,换乘不便已成为世界城市地铁的普遍状况,降低了城市交通的效率。
这些城市交通问题,都源于我们采用了“把人集中起来运输”的集运模式,因为要把人集中起来,所以一定是人等车;因为每个人的下车点不同,所以一定每站必停;因为乘客的 换乘需求不一,所以需要下车换乘,造成换乘难;由于只能送你到固定的集中区域,所以一定造成最后一公里问题。
现代城市交通问题已经是一个世界性难题,根本缘由就是因为这种陈旧的交通集运模式,例如:现在地铁采用的交通模式是自其诞生以来,150年来不曾改变过的。而关于城市公共交通的设计与改良,过去人类的工作大部分都停留在交通工具与交通路面的改善中,而对于交通模式的改良非常有限。
在国内外的研究中,无论是快速公交(BRT),还是旅客自动捷运系统(APM)或者空轨等模式,都没有离开集运模式这个范畴,真正具有革新意义的是:个人捷运模式(PRT),美国弗吉尼亚以及英国希斯罗机场就建成过相关的系统。
在PRT中,采用小车厢模式,依靠无人驾驶基本能达成一站直达,这是它的优势,但总体运输能力不足是致命缺陷,比如2011年新建成的希斯罗机场PRT,它的日运送乘客也就在40000人次左右,而这仅仅是上海地铁站一个高峰站台1小时的通勤量,由于运能太小,这种新颖的交通方式无法成为城市交通的主角,而更多成为一种观光休闲的交通模式。
由此,城市公共交通陷入一对矛盾中:运能大的交通系统无法满足乘客人性需求,而能够满足人性需求的交通系统整体运能又太小。
本发明的目标正是解决这一对矛盾,能够在完成一站直达,节省无谓交通等候时间等人性需求的同时实现大运能。
分析个人捷运系统(PRT)无法达成大运量的关键是:1、由于采用传统的车辆动能模式(对应本发明中的轨道动能),由于小车各自独立运行,为了安全,如果高速运行必须保持大间距,如果保持较小间距则也必须采取较低速度,而这两种情况都会造成整个轨道的运能低下。实现大运能最好是能同时保持高密度与高速度。2、除上述以外,还需解决高密度状况下的车辆快速变轨(或转辙)的问题,在DISCOVERY频道的“前进大未来-高速列车1”中,能否建立快速变轨系统被列为能否构建新的大型快速交通网络中必须解决的问题。
本发明利用轨道动能,独立式小车厢在其上利用搭载模式来实现前进,由于每个独立式小车厢都保持同一方向且同一速度,即各独立式小车厢间之间无相对位移,所以不但行驶更安全,更重要的是:在该系统运行的独立式小车厢实现了高密度情况下的高速度,再辅以利用立体变轨方法解决了快速变轨的问题,用出入站轨道将动力轨与分离式车站连接解决出入站问题,以上的综合实现了一站直达式交通的同时,轨道整体有一个较大的运能。
[发明内容]
鉴于以上内容,本发明的目的是提供可以实现一站式直达并且整体运能较大的一种公共交通运输方法及相关设备。
为了实现上述目的,设计一种大运能直达轨交系统,该系统包括主通道、运营车厢、出入站通道、轨道与车站,其特征在于所述的运营车厢为独立式小车厢,所述的主通道中铺设轨道;所述的轨道为动力轨,动力轨持续匀速运动,独立式小车厢安置于动力轨上的相应车位,由动力轨带动独立式小车厢匀速向前;所述的车站通过出入站通道连接动力轨所在的主通道,出入站通道分别一端连接地面站台,另一端连接主通道,形成联通结构,独立式小车厢顶部设有连接装置,连接装置与设置在出入站通道上方的连接结构对接完成变轨需要。
所述的动力轨匀速运动可替换为循环运动,提供独立式小车厢搭载其上,为其提供主要前进动力;出入站通道分别一端连接地面站台,另一端连接主通道可替换为为出入站通道分别一端连接车站,另一端连接主通道;所述的主通道中铺设主轨道,所述的出入站通道中铺设出入站轨道,所述车站为分离式车站,分离式车站通过出入站轨道与主轨道连接;所述的独立式小车厢顶部的连接装置为变轨连接器,所述的出入站通道上方的连接结构为顶轨,当独立式小车厢上的变轨连接器变化与顶轨对接后完成立体变轨。
主轨道(动力轨)部分:动力轨是把动力系统由车辆携带改为轨道携带,即由传统轨道与相关动力装置组合形成的一体化动力轨道结构,动力轨能形成稳定、匀速的运动,独立式小车厢搭载其上,就可以实现前进的目的。
动力轨的动力装置可以由旋转电机提供动力源,也可以由直线电机提供动力源,除了采用附着式接触,也可以采取磁悬浮模式,或者如所属领域的技术人员将了解的其他动力方式。当动力装置采用直线电机时,直线电机感应板均匀的排列在轨道与车架上,所以该动力源是分布式且均衡的。
动力轨的其中一种形式,可以由轨道、车轮组、车架与动力装置结合形成一体化结构,其前后车架间有连接装置,彼此串联,覆盖住整条轨道。在实际实施过程中,动力轨的表现形式是多种多样的,根据其采用动力源的不同以及与不同的独立式小车厢组合可以表现为多种形式,其核心特征在于轨道带动能,其轨道必然是呈闭合状循环运行或虽有间断但接近于闭合状运行,其保持持续匀速运行,向独立式小车厢提供搭载模式。由此其避免了传统地铁每到一站必须刹车、启动的高耗能模式,也大大降低了系统的故障率。
动力轨的闭合式循环模式可以是上下闭合式循环,作为一种更优的方式,也可以呈平面的环状循环,当采用平面环状循环时,环状循环中两个方向相对的直线段可提供交通所需的 来回方向的交通需求;动力轨的循环结构可以为整体单一循环模式;也可以为分段循环,中间以过桥形式连接,由此达成较远程的运输;或多条线路同时运行的多重分段循环结构;或多重分段分体式循环结构;这方面存在超出本文所描述内容的许多可能的变化。以上只是几个非限制性的实例。
运营车厢为独立式小车厢,独立式小车厢搭载于动力轨上相应的车位上,独立式小车厢设置为前后两人座或一人座或多人座或纯货物车厢,在交通低谷期提供货运服务。这样的设置确保同一车辆上的乘客有同一目的地,从目的性上保证了一站直达的可能。
作为独立式小车厢的一种形式,其底部前端与后端设有从动轮;车底有前、后向凹槽,与动力轨相应部分契合后防止左右偏移;尾部有可固定凹槽,供动力轨车架上的弹升装置弹升至凹槽后形成固定,独立式小车厢顶部设有变轨连接器,变轨连接器上设有行走轮与转向轮,当变轨连接器升起,与出入站轨道中的顶轨对接后,独立式小车厢将脱离动力轨,完成变轨。
变轨连接器的变化模式是多种多样的,可以是抬升,或是顶升,或是打开,也可以旋转,或者所属领域技术人员了解的其他方式,与顶轨契合后实现变轨。
所述的出入站轨道包括顶轨,顶轨可以设在整个交通截面正上方的开口式轨道,也可以是侧上方的分离式轨道,也可以是正上方整体非开口式轨道,在某些情况下,两侧的轨道也是可以被使用的,任意与原有轨道不同维度的轨道都可设置为顶轨。总之,很多变化都是可能的,任何基于本发明的等效变换都属于本发明的保护范围之内,需要理解的是顶轨是指利用任意不同维度的轨道实现变轨的那根轨道。
在另一种备选的更优方案中,变轨连接器并不直接契入顶轨,而是契入安置在顶轨上的智能驱动装置的连接器,变轨连接器与设置在顶轨上的智能驱动装置上的连接器相契合实现变轨。该智能驱动装置自带轮组与相应的动力装置,可以带着独立式小车厢顺着顶轨到达需要的区域,在这种情况下,独立式小车厢上的变轨连接器上的行走轮等就并非必须。
作为顶轨的另一个备选项,在入站轨道的顶轨前端可设置引轨,引轨的开口明显大于顶轨,其上设置传动轮与定位轮,协助变轨连接器更好的契入顶轨。
上述的大运能直达轨交系统的运行方法具体为:
主轨道中的信号控制系统向独立式小车厢发布主轨道运行、入站、出站的讯号,独立式小车厢根据信号控制系统的讯号继续运行或出入站;
主轨道运行方法:动力轨持续匀速运行,若干独立式小车厢根据需要安置于动力轨上的相应车位,等速度同向前进,由于彼此间没有位移,动力轨上的车位间距可以大幅缩小,由此达成高密度,提供大运能;
入站方法:需要入站的独立式小车厢升起变轨连接器,变轨连接器依据顶轨前端的引轨的引导契入顶轨,动力轨上的固定装置解锁,独立式小车厢经顶轨从入站轨道驶向车站;而不需要入站的独立式小车厢只要不变化变轨连接器,可以继续跟随动力轨前行;驶入入站轨道的独立式小车厢由设置在顶轨与变轨连接器上的动力系统提供逐级减速,直至叶形下客区后完全静止,提供旅客下车;
出站方法:旅客上车,设置好目的地后,独立式小车厢进入出站轨道,独立式小车厢经出站轨道中逐渐加速到与动力轨同速,而出站轨道的末端与动力轨呈上下平行,处在动力轨正上方位置,同速即相对静止时,独立式小车厢从上方被安置于动力轨相应的车位,底部的从动轮与动力轨上的车位对接,动力轨车位上重力感应器启动,启动动力轨上的固定装置上抬,将独立式小车厢锁定,实现入轨。
作为出站入轨的另一种选择方案,独立式小车厢在顶轨中加速至与动力轨同速,顶轨的末端与动力轨处于左右平行的位置并稍稍高于动力轨,由相应位置的推送装置把独立式小车厢推送到动力轨上。类似的其他各种入轨方案的变例都是可能的,任何基于本发明的等效变换都属于本发明的保护范围之内。
大运能直达轨交系统的信号控制系统方法:
A.主轨道运行时:当独立式小车厢安置到动力轨上相应车位时,车位上的重力感应装置发出信号,启动车架上的固定装置上抬,契入独立式小车厢下部的固定凹槽,并完成锁定,独立式小车厢搭载在动力轨上匀速前进;
B、进站时:当独立式小车厢到达指定车站时,在车站前N米处,主轨道中的固定讯号接发装置向独立式小车厢上的电脑系统发布即将所到车站的讯号,电脑系统比对认可为目的地后,发出指令,向车站电脑主机报告,要求进站,得到同意后变化变轨连接器,指示底部固定槽内的锁定结构准备解锁,当车厢上的变轨连接器顺着引轨成功契入入站轨道的顶轨后,动力轨上的锁定装置打开,独立式小车厢将沿着顶轨前行,顶轨与变轨连接器上的动力系统 根据事先设定好的程序提供逐级减速,直至驶入下车区后静止,完成下客,下客后的独立式小车厢根据车站指令进入上客区,等待乘客上车;
C.出站时:当乘客上车后,关门,刷卡输入目的地后,发车区主控电脑指示独立式小车厢进入出站运行模式:独立式小车厢先进入发车候车区;发车时,需要主轨道动力轨上对应的车位是空置的,每个车位上都有重力感应器,当车位上有独立式小车厢时,感应器不发出讯号,当无车时,感应器会在经过对应的地点时向设置在主轨道边上的轨旁感应点发出信息,主轨道动力轨上的感应点的计算方法是根据独立式小车厢在出站轨道中所需时间t,按该t时间乘以动力轨的速度得出距离Y,由此推算出主轨道中设置轨旁的具体位置点,接收器直接与发车区主控电脑连接,给独立式小车厢发车指令。
本发明还包括一种大运能直达轨交系统的转换行进路径的切换方法,包括主行轨道、分岔轨道和转换主体,分岔轨道在切换点设置与主行轨道处于不同维度,主行轨道和分岔轨道并不处于同一X、Y平面下,而是在三维空间中有不同的维度差,然后利用转换主体上的连接装置连接不同维度的分岔轨道以实现变化行进路径。
所述的连接装置直接与分岔轨道连接。
所述的连接装置与分岔轨道上的连接结构连接。
分岔轨道整体性的处于主行轨道的正上方或分离性的处于主行轨道的侧上方或分离的处于主行轨道的两侧。
切换方法如下:需要切换路径的转换主体在分岔口前相应位置,升起连接装置,当车辆行进到岔口,其连接装置连接分岔轨道,同时,转换主体与主行轨道的临时固定结构解锁完成分离,转换主体将顺应分岔轨道的指引完成路径切换,行进于新的方向;而无需切换路径的转换主体,则只要不变化连接装置,即不会与分岔轨道产生契入关系,那么车辆将继续沿着主行轨道路径运行。
分岔轨道前端设有辅助入轨装置,提供纠偏性,所述的辅助入轨装置开口大于分岔轨道部分,入口处设有定位轮,帮助有偏差的连接装置实现纠偏;辅助入轨装置还设有引导轮,引导轮提供内旋动力,帮助连接装置克服与分岔轨道接触时的摩擦力,降低连接过程中的不稳定,达成平稳入轨。
所述的切换方法如下:
当转换主体在分岔处由主行轨道向分岔轨道路径变换时:在路径变换点之前的前置的轨旁信号系统将连续发出该变轨地址的确认讯号,转换主体内的控制系统接受到讯号后进行比对,确认需要变轨后,则启动相应装置,使连接装置变化,确保连接装置与分岔轨道形成对应,连接装置连接辅助入轨装置,偏移的角度得到修正,引导轮向内传送克服摩擦力,转换主体的连接装置经由引轨进入分岔轨道,转换主体与主行轨道的锁定结构解锁,转换主体经由分岔轨道的引导,逐渐向上抬升脱离主行轨道,并跟随分岔轨道在新的路径运行,实现路径变换;
当转换主体在汇入口由分岔轨道向主行轨道路径变换时:在汇入之前,转换主体车载控制系统需要得到前置轨旁的空位信号确认,确认即将汇入的主行轨道有安全空间后,转换主体逐渐由分岔轨道向主行轨道前进,在分岔轨道与主行轨道上下维度平行时,转换主体抬升连接装置,相当于把转换主体放低,与主行轨道贴合,在脱离分岔轨道末端后,跟随主行轨道前行,实现路径变换。
该大运能直达轨交系统的转换行进路径的切换方法可应用于交通运输领域或游艺设备领域或可移动机械领域。
本发明的优点在于:
动力轨与小车厢搭载模式实现了小车型交通能够高密度与高速度同在,实现每人有座、一站直达状态下的大运能,而立体变轨模式解决了大型网路化交通中的变轨难题,而出入站轨道联通了主轨道与分离式车站,实现了干线交通更大的覆盖面。
另外,需要换乘的小车经由出入站轨道与分离式车站可以实现“乘客无需下车”的无缝式换乘,将缓解换乘难问题。
在建设成本上,由于大运能直达轨交系统的小车车体体积大幅小于传统地铁,由此通道半径可大幅缩小,对比现有地铁建设中,隧道与车站工程费用占总投资的比例超过60%,此项改进具有明显的意义。
在能源消耗中,由于大运能直达轨交系统避免了每次停站所需的刹车与启动,大大节省了能耗;而且在客流低谷期,还可开放一站直达的货运小车,无需人员跟随,且在货物的安全性与即时性上都有提高,所以本发明在减少能源消耗中有现实意义。
[附图说明]
图1是本发明的大框架示意图;
图2是本发明的动力轨道局部示意图;
图3为本发明中动力轨采用直线电机时感应板示意图;
图4为本发明中独立式小车厢的下方视角示意图;
图5为本发明中独立式小车厢的侧视图;
图6为本发明中独立小车厢搭载在动力轨上示意图;
图7为本发明中的动力轨为整体单一循环运行模式示意图;
图8为本发明中的动力轨为用过桥形式的分段循环模式示意图;
图9为本发明中的动力轨为多重分段循环模式示意图;
图10为本发明中的动力轨为多重分段分体式循环模式示意图;
图11为本发明中分离式车站的叶形下客区示意图;
图12为本发明中变轨连接器契入顶轨的引轨部分示意图
图13为本发明中轨旁感应点的计算示意图;
图14为本发明中利用不同维度轨道实现立体变轨示意图
图15为本发明中变轨连接器契入顶轨瞬间示意图
图16为本发明中独立式小车厢利用分离型顶轨变轨示意图
图17为本发明中独立式小车厢契入整体型非开口式顶轨示意图
图18为本发明中变轨连接器抬升方式示意图
图19为本发明中变轨连接器旋转打开方式示意图
图20为本发明中立体变轨进站模式示意图
图21为本发明中立体变轨在动力轨状况下的出站模式示意图
图22为本发明中立体变轨中连接智能驱动装置示意图
图23为本发明中转换主体的连接装置连接分岔轨道侧视图;
图24为本发明中侧轨模式分岔轨道的示意图;
图25为本发明中采用向两边伸展的方式变化连接装置时的示意图;
图26为本发明中采用顶升方式变化连接装置时的示意图;
图27为本发明中采用两边打开的方式变化连接装置时的示意图;
图28为本发明中转换主体在汇入口实现立体变轨时,转换主体的三个步骤状态图;
图中:A1、A2代表主轨道中分别满足两个方向的交通需求
100.主轨道(动力轨)101.车轮组102.车架103.前后连接装置105A.直线电机初级感应板105B.直线电机次级感应板
200.独立式小车厢201.独立式小车厢从动轮202.前后向凹槽203.固定凹槽204.座位210.变轨连接器211.变轨连接器上的行进轮212.变轨连接器上的导向轮213.连接装置上的转动轴
300.出入站轨道(顶轨)301.顶轨中整体型非开口式轨道302.顶轨中整体型开口轨道303.顶轨中的分离型轨道304.带智能驱动装置的顶轨305.顶轨中的侧轨310.引轨311.引轨上的定位轮312.引轨上引导轮320.顶轨上的智能驱动装置321.智能驱动装置上的行走轮322.智能驱动装置上的动力装置323.智能驱动装置上的连接器
400.分离式车站401.分离式车站叶形下客区
500.独立式小车厢内的电控系统600.轨旁信号发射器;
CW车位KCW空车位MCW满车位ZK车站中央控制系统X顶轨部分加速段距离Y为确保小车厢入轨时有空位,动力轨上提前发信号的距离Va出站轨道末端速度Vb动 力轨速度
指定图6作为本发明的摘要附图。
[具体实施方式]
下面结合附图对本发明作进一步说明,这种系统的结构和原理对本专业的人来说是非常清楚的。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
大运能直达轨交系统是城市(包括城际交通)公共交通中的一种创新模式,该模式对传统的地铁运行模式进行了大幅改良,融合了地铁的大运能优势与出租车的每人有座、一站直达的功能,使未来城市交通能够实现:随到随走,每人有座,一站直达下的大运能。大运能直达轨交系统的这套运行方式可以在地下隧道、路面、高架或建筑物间的连接通道或其他模式搭建的通道或开放式平台上运行。其车站根据需要设在地下、路面、高架平台或建筑物上。
如图1所示,大运能直达轨交系统包括主轨道、出入站轨道、运营车厢、分离式车站,运营车厢为独立式小车厢,主轨道为动力轨,动力轨持续匀速循环运动,独立式小车厢搭载于动力轨上的相应车位,由动力轨带动独立式小车厢匀速向前,分离式车站通过出入站轨道连通主轨道,独立式小车厢顶部设有变轨连接器,变轨连接器与出入站轨道对接完成变轨需要。
如图2所示,轨道动能是把动力系统由车辆携带改为轨道携带,可以由轨道、车轮组、车架与动力装置结合形成一体化结构,其前后车架间有连接装置,彼此串联,覆盖住整条轨道。整个轨道呈闭合状循环运行,其持续保持匀速运行,避免了传统地铁每到一站必须刹车、启动的高耗能模式,也大大降低了系统的故障率。
如图6所示,由动力轨提供动能,独立式小车厢只是搭载其上,所以在主轨道的整个运行过程中,独立式小车厢之间不存在相对位移,降低了安全事故,车间间距可以大幅缩小,从而大幅提升了交通运能。
如图2、3所示,动力轨的动力系统可采用直线电机的模式,轨道上铺设初级感应板,车架下部悬挂次级感应板,对轨道上的初级感应板通电,产生动力,推动动力轨运行。直线电机感应板均匀的排列在轨道与车架上,所以直线电机带动的动力轨的动力源不是集中式,而是分布式的。根据直线电机的特性,其初级感应板与次级感应板也可互相转换配置。
动力轨也可由旋转电机提供动能,类似于传统地铁列车中的旋转电机与轨道的组合。
如图4、5、6所示,运营车厢为独立式小车厢,独立式小车厢可搭载于动力轨上相应的车位;独立式小车厢底部前端与后端设有从动轮;车底有前后向凹槽,与动力轨相应部分契合后,能防止左右偏移;尾部有可固定凹槽,供动力轨车架上的弹升装置弹升至凹槽后形成固定。
独立式小车厢中设有前后或并排的双人座(或一人座,四人座或多人座,或货物车厢),同一车厢内的乘客具有相同的目的地,从目的性上保证了一站直达实现的可能。纯货物车厢可提供在交通低谷期的城市货运服务。
如图7所示,动力轨为闭合的循环无间断轨道,其循环结构根据需求可以为整体单一循环模式,如图8所示,或分段循环中间以过桥形式连接,如图9所示,或多条线路同时运行的多重分段循环结构;如图10所示,上述的多重分段循环还可以采取各种结构,如多重分段分体式。在上述循环中,独立式小车厢需要在两段循环间过桥时,可利用“立体变轨模式”来实现从前一动力轨循环到后一动力轨循环。具体为:两个循环间上方建有顶轨,独立式小车厢在循环间之前升起变轨连接器,变轨连接器契入顶轨,独立式小车厢脱离原动力轨循环,跟随顶轨继续前进,进入下一个循环。需要指出的是,由于动力轨循环上单一方向的独立式小车厢都经由过桥到下一个循环,所以该循环的反方向段是完全空置的,所以接受从另一动力轨循环上的独立式小车厢经过桥接入新循环并非一个困难的过程。立体变轨的特征在于:在切换点,即分岔轨道的端口,分岔轨道设置于与主行轨道处于不同维度空间,然后利用转换主体携带的连接装置,通过连接装置对分岔轨道的契入、包裹或吸附连接,其导引由主行轨道切换到分岔轨道来实现不同行进路径的切换。需要注意的是:转换主体上的连接装置是可以变化位置的,即可以处于不对应分岔轨道的位置,也可以变化到处于可对应分岔轨道的位置。
如图14所示,利用一条与原有运行轨道处于不同维度的顶轨来实现快速的立体变轨。
如图15、16、17所示,这种顶轨设置是可以多种多样的,可以是轨道设在整个交通截面正上方的开口式轨道,也可以是侧上方的分离式轨道,也可以是正上方整体非开口式轨道,在某些情况下,两侧的轨道也是可以被使用的,需要理解的是顶轨是指与原有轨道处于不同维度的任意轨道。
如图4、5所示,独立式小车厢顶部设有可变化的变轨连接器,变轨连接器上设有行走轮与转向轮;如图18、19所示,变轨连接器的变化方式是多种的,可以是抬升,也可以是旋转或其他该领域专业人员所知的其他形式。
如图1所示,分离式车站由“出入站轨道”与主轨道相互联通,需要进站的独立式小车厢经由顶轨实现立体变轨后,从入站轨道逐级减速到分离式车站的叶形下客区,停稳后提供乘客离开,独立式小车厢在车站内调配到上客区提供新的上客需求。叶形下客区如图11所示。
如图20所示,独立式小车厢进站的具体模式如下:到达某一车站前,需要进站的独立式小车厢升起变轨连接器,而不需要进站的独立式小车厢则无需动作,升起的变轨连接器先契入顶轨前端的引轨,引轨上下左右有若干主动轮,轮组向内旋转,帮助变轨连接器平稳的由引轨契入顶轨,独立式小车厢跟随顶轨运行,脱离了动力轨路径,实现立体变轨。顶轨上安置直线电机感应板,变轨连接器上也安置直线电机感应板,提供独立式小车厢所需的动力或阻力,达成减速、静止到启动,加速等效果。在进站轨道上运行的独立式小车厢,逐渐减速,进入车站叶形下客区后静止,供乘客下车离开。空的独立式小车厢驶入车站叶形上客区,供新乘客使用。
如图22所示,在另一种备选的变轨方案中,变轨连接器并不直接契入顶轨,而是契入安置在顶轨上的智能驱动装置的连接器,该智能驱动装置自带轮组与相应的动力装置,可以带着独立式小车厢顺着顶轨到达需要的区域,在这种情况下,独立式小车厢上的变轨连接器上的行走轮等就并非必须。
如图21所示,独立式小车厢出站的具体模式如下:乘客上车,输入相应目的地后,独立式小车厢将进入发车等候区,当得到车站的发车指令后,独立式小车厢将进入离站轨道,在离站轨道中,经由顶轨上的直线电机感应板加速后,使独立式小车厢的速度加速到等同于动力轨的运行速度,然后由上方将独立式小车厢搭载于动力轨上,跟随动力轨前进。
本大运能直达轨交系统中的车站是分离式车站,即车站与主轨道分离,由出站轨道和入站轨道与主轨道连接,分离式车站可根据需要设定,同一线路相近路段可根据需要设置多个分离式车站,分离式车站可以在同一条干线的情况下按需设置车站,车站的覆盖面也大的多,还可以在基础建设完后再加设分离式车站。
解释下立体变轨的价值:如以动力轨的设计时速设定为75公里,即每秒约21米,每辆独立式小车厢长2.5米,间距5米,也就是每7.5米一个车位,那么每秒21米相当于在每个变轨点每秒将通过约3辆小车,当前一辆小车需要变轨,而后一辆需要直行时,变轨系统必须保证在3分之1秒完成安全有效的切换,这是目前的变轨或转辙系统很难做到的,再考虑到在本发明中,为实现大运能必须使用轨道动能与搭载模式,立体变轨的价值就充分体现:需要继续运行的小车不升起“变轨连接器”,即不会连接到“顶轨”而继续前行,需要出站的 小车事先升起“变轨连接器”,连接“顶轨”,完成变轨。整个变轨过程无需传统模式中轨道间的来回切换,没有变轨不当的安全问题,是实现大运能直达轨交系统的核心之一。
大运能直达轨交系统的运行方法:
a.主轨道运行方法:动力轨持续匀速运行,若干独立式小车厢根据需要搭载于动力轨上的相应车位,等速度同向前进,由于彼此间没有位移,动力轨上的车位间距可以大幅缩小,由此达成高密度,提供大运能;
b.入站(离开动力轨)方法:需要入站的独立式小车厢升起变轨连接器,变轨连接器依据引轨契入顶轨,动力轨上的固定装置解锁,独立式小车厢经由顶轨从入站轨道驶向车站;而不需要入站的独立式小车厢只要不升起变轨连接器,可以继续跟随动力轨前行;驶入入站轨道的独立式小车厢由设置在顶轨与变轨连接器上的动力系统提供逐级减速,直至叶形下客区后完全静止,提供旅客下车;
c.出站(进入动力轨)方法:旅客上车,设置好目的地后,独立式小车厢进入出站轨道,在出站轨道中逐渐加速到与动力轨同速,出站轨道的尾端与动力轨平行,处在动力轨上方位置,同速则相对静止,独立式小车厢从上方被搭载于动力轨相应的车位,底部的从动轮与动力轨上的车位对接,动力轨车位上重力感应器启动,启动固定装置上抬,将独立式小车厢锁定,实现入轨。
信号控制系统方法:
A.主轨道运行时:当独立式小车厢搭载到动力轨上相应车位时,车位上的重力感应装置发出信号,启动车架上的固定装置上抬,插入独立式小车厢下部的固定凹槽,并完成锁定。独立式小车厢固定在动力轨上匀速前进。
B、进站时:当独立式小车厢到达指定车站时,在车站前N米处(考虑信号传输、变轨连接器升起需要的时间)主轨道隧道中的固定讯号接发装置向独立式小车厢上的电脑系统发布即将所到车站的讯号,电脑系统比对认可为目的地后,向车站电脑主机报告,要求进站。得到允许后,独立式小车厢升起变轨连接器,并指示底部固定槽内的锁定结构准备解锁。当变轨连接器顺着引轨成功契入入站轨道的顶轨后,动力轨上的锁定装置打开,独立式小车厢由惯性沿着顶轨前行,顶轨与变轨连接器上的动力系统根据事先设定好的程序提供逐级减速,直至驶入下车区后静止,完成下客。下客后的独立式小车厢根据车站指令进入上客区,等待 乘客上车。
C.出站时:当乘客上车后,关门,发车区主控电脑指示独立式小车厢进入出站(入轨)运行模式:独立式小车厢先进入发车候车区;如图13所示,发车时,需要主轨道动力轨上对应的车位是空置的,每个车位上都有重力感应器,当车位为满车位时,感应器不发出讯号,当车位为空车位时,感应器会对设置在主轨道边上的轨旁发出信息,接收器直接与发车区中央空置系统连接,给独立式小车厢发出发车指令,独立式小车厢加速后正好进入动力轨上的空车位。其轨旁感应点的计算公式如下:已知出站轨道加速距离段X,已知独立式小车厢在出站轨道中所需时间,按该时间乘以动力轨的速度得出距离Y,在Y点设置轨旁信号接收器。
本发明还包括立体变轨的方法,本发明中的立体变轨是交通运输中需要转换行进路径时的一种创新技术方法,该方法把转换点的分岔路径的轨道设置于与主行路径的轨道的处于不同维度,比如主行轨道是底轨,分岔轨道是顶轨,其分岔轨道的前端与主行轨道处于不同维度,但有相当部分是上下平行,转换主体上的连接装置连接,例如契入、包裹或吸附住分岔轨道,转换主体与主行轨道如有安全锁定结构则解锁,然后跟随分岔轨道的逐渐抬升脱离主行轨道及转向,实现变轨。
这种立体变轨的优势在于:即便前后两辆转换主体的间距很近,转换主体处于高速运行下,都可以实现有效的变轨,而不至于对无需变轨的车辆产生影响,并且由于变轨过程中各个轨道并不发生变化,从而大大降低了变轨过程中由于轨道移动不稳定而产生的风险性。
在一些情况下,为了更好的继续降低立体变轨的风险性,可能需要在分岔轨道前端设置一定的辅助入轨装置,比如引轨,提供一定的纠偏性,一般来说,引轨部分的开口会明显大于分岔轨道部分,入口处会有定位轮,帮助有偏差的连接装置实现纠偏;而引导轮提供一定的内旋动力,帮助连接装置克服与分岔轨道接触时的摩擦力,降低连接过程,例如契入或包裹或吸附过程中的不稳定性,达成平稳入轨。以上情况可根据需要设置,并非必须。
上述立体变轨的运行方法具体为:当转换主体在分岔处由主行轨道向分岔轨道变轨时:在变轨点之前的前置的轨旁信号系统将连续发出该变轨地址的确认讯号,转换主体内的控制系统接受到讯号后进行比对,确认需要变轨后,则启动相应装置,使连接装置变化,例如抬升、顶升、旋转、伸展、打开等或使转换主体抬升,确保连接装置与分岔轨道形成对应。
变轨瞬间:连接装置连接,例如契入、包裹或吸附引轨部分,偏移的角度得到修正,引导轮向内传送克服摩擦力,转换主体的连接装置经由引轨进入分岔轨道,转换主体如与主行轨道有锁定结构,则该结构解锁,转换主体经由分岔轨道的引导,逐渐向上抬升脱离主行轨 道,并跟随分岔轨道在新的路径运行,实现变轨。
当转换主体在汇入口由分岔轨道向主行轨道变轨时:在汇入之前,转换主体车载控制系统需要得到前置轨旁的空位信号确认,确认即将汇入的主行轨道有安全空间后,转换主体逐渐由分岔轨道向主行轨道前进,在分岔轨道与主行轨道上下维度平行时,转换主体抬升连接装置,相当于把转换主体放低,与主行轨道贴合,在脱离分岔轨道末端后,跟随主行轨道前行,实现变轨。
变换行进路径的主体通常是车辆,也可以是其他各种类型的需要变化路径的器具,以下简称为车辆。这种车辆可以是单独一辆车,也可以是多辆车连接或其他现实中的状况。以上情况下,车辆上可以装备一个或多个连接装置。在一种通常的情况,当车辆主行轨道处于车辆下方(底轨),那么可以将分岔轨道设置为处于车辆的正上方或侧上方(顶轨),为了简化说明,在以下没有明确说明的部分,默认为主行轨道是底轨,而分岔轨道是顶轨。
本方法适用于自带前进动能的车辆,也适用于其他由外部提供动能的车辆。比如在整个轨道处于运动状态的动力轨形式下,车辆的前进是由于其放置在动力轨的车架上,动力轨一直在运动,当需变轨的车辆要从分岔轨道汇入主行轨道时,由于主行轨道是动力轨,汇入的车辆必须保持与动力轨相同的速度,转换主体从分岔轨道向动力轨形式的主行轨道汇入时,转换主体的三个步骤状态,其中Va必须等于Vb时,方可实现准确变轨。
当转换主体并非自身携带前进动能,而是由轨道提供前进动能(这是一种暂时很少采用或至今没有采用的情况,但未来可能会应用,即轨道与动力装置与车架形成一个整体——动力轨,动力轨贯穿整个轨道,转换主体被安置在动力轨上即可以前行),通常情况下,只会是主行轨道会是动力轨,在上述情况下,由动力轨所在的主行轨道向非动力轨所在的分岔轨道变轨时与前述正常变轨类似,而当由分岔轨道向动力轨所在的主行轨道变轨时(汇入),转换主体的速度必须与该动力轨都保持相同状况下才可以实现有效变轨,由于现代化控制系统与讯号系统的存在,以上条件在现有技术条件下可以实现。
分岔轨道可以是整体型的,也可以是分开式的,当该轨道不同时,将由不同的连接装置去连接它,立体变轨会有更多种类型的轨道组合,也会有各种类型的连接装置对应,任何基于本发明的等效变换都属于本发明的保护范围之内。
立体变轨的核心在于转换处设置了不同维度的分岔轨道,以上所举例的底轨向顶轨变轨只是立体变轨的一种案例,除此之外,实际上还包括并不限于包括:顶轨向底轨,底轨向侧轨,侧轨向底轨,以及各种侧上方、侧下方的变轨模式等,任何基于本发明的等效变换都属于本发明的保护范围之内。
转换主体上可以只拥有一种变化连接装置的方式,也可以拥有多种方式来实现连接装置与分岔轨道的对应,包括并不限于包括抬升、顶升、旋转、伸展、打开等多种所属领域技术人员将了解的方式。转换主体的连接装置将通过抬升的方式准备与变化轨道契合;车辆的连接装置将通过向两边伸展的方式准备与变化轨道契合;车辆的连接装置将通过旋转的方式准备与变化轨道契合;车辆的连接装置将通过顶升的方式准备与变化轨道契合;车辆的连接装置将通过向两边打开的方式准备与变化轨道契合;如所属领域的技术人员将了解的,可使用多种方式包括多种力的方式来实现,可以包括磁力、气压、液压等以及其他各种机械力。
本发明中所述的轨道包括并不限于包括诸如传统钢轨、铁轨,其轨道的材质包括但不限于包括:钢轨、铁轨,也包含其他诸如:合金材料,塑钢材料、碳纤维材料、水泥材料、石材、沙土混合等形成的对车辆行进有承载与引导作用的轨道设施,可以是地下、路面、高架等多种形式
尽管已展示和描述了本发明的特定实施例,但将了解,所属领域的一般技术人员将制作的其他实施例和修改落在如所附权利要求书中所陈述的本发明的真实精神和范围内。实际上,结合一个实施例说明或描述的一个或一个以上特征可与其他实施例的一个或一个以上特征组合。此类修改和变化希望包含在本发明的范围内。

Claims (20)

  1. 一种大运能直达轨交系统,该系统包括主通道、运营车厢、出入站通道、轨道与车站,其特征在于所述的运营车厢为独立式小车厢,所述的主通道中铺设轨道;所述的轨道为动力轨,动力轨持续匀速运动,独立式小车厢安置于动力轨上的相应车位,由动力轨带动独立式小车厢匀速向前;所述的车站通过出入站通道连接动力轨所在的主通道,出入站通道分别一端连接地面站台,另一端连接主通道,形成联通结构,独立式小车厢顶部设有连接装置,连接装置与设置在出入站通道上方的连接结构对接完成变轨需要。
  2. 如权利要求1所述的一种大运能直达轨交系统,其特征在于所述的动力轨匀速运动可替换为循环运动,提供独立式小车厢搭载其上,为其提供主要前进动力;出入站通道分别一端连接地面站台,另一端连接主通道可替换为出入站通道分别一端连接车站,另一端连接主通道;所述的主通道中铺设主轨道,所述的出入站通道中铺设出入站轨道,所述车站为分离式车站,分离式车站通过出入站轨道与主轨道连接;所述的独立式小车厢顶部的连接装置为变轨连接器,所述的出入站通道上方的连接结构为顶轨,当独立式小车厢上的变轨连接器变化与顶轨对接后完成立体变轨。
  3. 如权利要求2所述的一种大运能直达轨交系统,其特征在于所述的主轨道为动力轨,由轨道、车轮组、车架与动力装置结合形成一体化结构;其前后车体间有连接装置,彼此串联,形成闭合的循环系统或虽有间断但接近于闭合的循环系统。
  4. 如权利要求3所述的闭合的循环系统或有间断但接近于闭合的循环轨道,其特征在于所述的循环系统根据需求为整体单一循环模式或分段循环中间以过桥形式连接或多条线路同时运行的多重分段循环系统或多重分段分体式。
  5. 如权利要求1所述的一种大运能直达轨交系统,其特征在于所述动力轨的动力装置采用直线电机,直线电机的感应板均匀分布于整个轨道与车架上,提供分布式均衡的动力源。
  6. 如权利要求1所述的一种大运能直达轨交系统,其特征在于所述的动力轨由旋转电机提供动能。
  7. 如权利要求1所述的一种大运能直达轨交系统,其特征在于所述的动力轨的轮组与轨道采用附着式接触或采用悬浮式。
  8. 如权利要求1所述的一种大运能直达轨交系统,其特征在于运营车厢为独立式小车厢,独立式小车厢底部前端与后端设有从动轮;车底有前、后向凹槽,与动力轨相应部分契合后,能防止左右偏移;尾部有可固定凹槽,供动力轨车架上的弹升装置弹升至凹槽后形成固定,独立式小车厢顶部设有变轨连接器,变轨连接器上设有行走轮与转向轮,当变轨连接器升起,与出入站轨道中的顶轨对接后,独立式小车厢将脱离动力轨,完成变轨。
  9. 如权利要求8所述的一种大运能直达轨交系统,其特征在于独立式小车厢设置前后两人座或一人座或多人座,或设置为纯货物车厢。
  10. 如权利要求8所述的独立式小车厢上的变轨连接器,其特征在于变轨连接器的变化包括抬升、顶升、打开、旋转,与顶轨契合后实现变轨。
  11. 如权利要求10所述的独立式小车厢上的变轨连接器,其特征在于所述的变轨连接器与设置在顶轨上的智能驱动装置上的连接器相契合实现变轨。
  12. 如权利要求1所述的大运能直达轨交系统,其特征在于所述的出入站轨道中设有顶轨,顶轨为任意与原有轨道不同维度的轨道,包括设在整个交通截面正上方的开口式轨道、侧上方的分离式轨道、正上方整体非开口式轨道、两侧的轨道。
  13. 一种如权利要求1所述的大运能直达轨交系统的运行方法,其特征在于:
    主轨道中的信号控制系统向独立式小车厢发布主轨道运行、入站、出站的讯号,独立式小车厢根据信号控制系统的讯号继续运行或出入站;
    主轨道运行方法:动力轨持续匀速运行,若干独立式小车厢根据需要搭载于动力轨上的相应车位,同向同速前进,由于彼此间没有位移,动力轨上的车位间距可以大幅缩小,由此达成高密度,提供大运能;
    入站方法:需要入站的独立式小车厢变化变轨连接器,变轨连接器依据引轨契入顶轨,动力轨上的固定装置解锁,独立式小车厢经顶轨从入站轨道驶向车站;而不需要入站的独立式小车厢只要不变化变轨连接器,可以继续跟随动力轨前行;驶入入站轨道的独立式小车厢由设置在顶轨与变轨连接器上的动力系统提供逐级减速,直至下客区后提供旅客下车。
    出站方法:旅客上车,独立式小车厢进入出站轨道,在出站轨道中逐渐加速到与动力轨同速,出站轨道的尾端与动力轨呈上下平行,处在动力轨正上方位置,同速即相对静止时,独立式小车厢从上方被安置于动力轨相应的车位,底部的从动轮与动力轨上的车位对接,动力轨车位上重力感应器启动,启动固定装置上抬,将独立式小车厢锁定,实现入轨。
  14. 如权利要求13所述的大运能直达轨交系统的运行方法,其特征在于信号控制系统的控制方法如下:
    A.主轨道运行时:当独立式小车厢安置到动力轨上相应车位时,车位上的重力感应装置发出信号,启动车架上的固定装置上抬,契入独立式小车厢下部的固定凹槽,并完成锁定,独立式小车厢固定在动力轨上匀速前进;
    B、进站时:当独立式小车厢到达指定车站时,在车站前N米处,主轨道中的固定讯号接发装置向独立式小车厢上的电脑系统发布即将到站的讯号,车载电脑系统比对认可为目的地后,发出指令,向车站电脑主机报告,要求进站,获得认可后变化变轨连接器,指示底部固定槽内的锁定结构准备解锁,当变轨连接器顺着引轨成功契入入站轨道的顶轨后,动力轨上的锁定装置打开,独立式小车厢由惯性沿着顶轨前行,顶轨与变轨连接器上的动力系统根据事先设定好的程序提供逐级减速,直至驶入下车区后完成下客,下客后的独立式小车厢根据车站指令进入上客区,等待乘客上车;
    C.出站时:当乘客上车后,关门,刷卡输入目的地后,发车区主控电脑指示独立式小车厢进入出站运行模式:独立式小车厢进入发车候车区;发车时,需要主轨道动力轨上对应的车位是空置的,每个车位上都有重力感应器,当车位上有独立式小车厢时,感应器不发出讯号,当无车时,感应器会对设置在主轨道边上的轨旁感应点发出信息,主轨道动力轨上的感应点的计算方法是根据独立式小车厢在出站通道中所需的已知时间,按该时间乘以动力轨的速度得出距离Y,由此推算出主轨道中设置轨旁的具体位置点,接收器直接与发车区中央控制系统连接,给独立式小车厢发车指令。
  15. 如权利要求13所述的大运能直达轨交系统的运行方法,其特征在于独立式小车厢在顶轨中加速至与动力轨同速,顶轨的末端与动力轨处于左右平行的位置并稍稍高于动力轨,由相应位置的推送装置把独立式小车厢推送到动力轨上。
  16. 如权利要求13所述的大运能直达轨交系统的运行方法,其特征在于大运能直达轨交系统的转换行进路径的切换方法包括主行轨道、分岔轨道和转换主体,其特征在于所述的分岔轨道在切换点设置与主行轨道处于不同维度,主行轨道和分岔轨道并不处于同一X、Y平面下,而是在三维空间中有不同的维度差,然后利用转换主体上的连接装置连接不同维度的分岔轨道以实现变化行进路径。
  17. 如权利要求16所述的大运能直达轨交系统的运行方法,其特征在于所述的切换方法如下:需要切换路径的转换主体在分岔口前相应位置,升起连接装置,当车辆行进到岔口,其连接装置连接分岔轨道,同时,转换主体与主行轨道的临时固定结构解锁完成分离,转换主体将顺应分岔轨道的指引完成路径切换,行进于新的方向;而无需切换路径的转换主体,则只要不变化连接装置,即不会与分岔轨道产生契入关系,那么车辆将继续沿着主行轨道路径运行。
  18. 如权利要求16所述的大运能直达轨交系统的运行方法,其特征在于所述的分岔轨道前端设有辅助入轨装置,提供纠偏性,所述的辅助入轨装置开口大于分岔轨道部分,入口处设有定位轮,帮助有偏差的连接装置实现纠偏;辅助入轨装置还设有引导轮,引导轮提供内旋动力,帮助连接装置克服与分岔轨道接触时的摩擦力,降低连接过程中的不稳定,达成平稳入轨。
  19. 如权利要求18所述的大运能直达轨交系统的运行方法,其特征在于所述的切换方法如下:
    当转换主体在分岔处由主行轨道向分岔轨道路径变换时:在路径变换点之前的前置的轨旁信号系统将连续发出该变轨地址的确认讯号,转换主体内的控制系统接受到讯号后进行比对,确认需要变轨后,则启动相应装置,使连接装置变化,确保连接装置与分岔轨道形成对应,连接装置连接辅助入轨装置,偏移的角度得到修正,引导轮向内传送克服摩擦力,转换主体的连接装置经由引轨进入分岔轨道,转换主体与主行轨道的锁定结构解锁,转换主体经由分岔轨道的引导,逐渐向上抬升脱离主行轨道,并跟随分岔轨道在新的路径运行,实现路径变换;
    当转换主体在汇入口由分岔轨道向主行轨道路径变换时:在汇入之前,转换主体车载控制系统需要得到前置轨旁的空位信号确认,确认即将汇入的主行轨道有安全空间后,转 换主体逐渐由分岔轨道向主行轨道前进,在分岔轨道与主行轨道上下维度平行时,转换主体抬升连接装置,相当于把转换主体放低,与主行轨道贴合,在脱离分岔轨道末端后,跟随主行轨道前行,实现路径变换。
  20. 一种如权利要求18所述的大运能直达轨交系统的运行方法的应用,其特征在于所述的切换方法能应用于交通运输领域或游艺设备领域或可移动机械领域。
PCT/CN2015/080199 2014-05-30 2015-05-29 大运能直达轨交系统 WO2015180677A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2015266445A AU2015266445B2 (en) 2014-05-30 2015-05-29 High-carrying-capacity non-stop rail transit system
CA2950639A CA2950639A1 (en) 2014-05-30 2015-05-29 High-carrying-capacity non-stop rail transit system
EP15798826.2A EP3150455B1 (en) 2014-05-30 2015-05-29 High-carrying-capacity through rail transit system
KR1020167037092A KR102424284B1 (ko) 2014-05-30 2015-05-29 큰 운송능력을 지닌 직행 레일 시스템
BR112016028077-6A BR112016028077B1 (pt) 2014-05-30 2015-05-29 Sistema de trânsito ferroviário ininterrupto de alta capacidade de transporte
ES15798826T ES2753634T3 (es) 2014-05-30 2015-05-29 Alta capacidad de transporte a través de un sistema de tránsito de ferroviario
JP2016571060A JP6719389B2 (ja) 2014-05-30 2015-05-29 大運送力直通軌道交通システム
SG11201609996PA SG11201609996PA (en) 2014-05-30 2015-05-29 High-carrying-capacity through rail transit system
MX2016015814A MX2016015814A (es) 2014-05-30 2015-05-29 Sistema de tránsito ferroviario directo con alta capacidad de transporte.
RU2016152284A RU2696396C2 (ru) 2014-05-30 2015-05-29 Рельсовая система безостановочной перевозки с высокой транспортирующей способностью
US15/363,889 US10435037B2 (en) 2014-05-30 2016-11-29 High-carrying-capacity non-stop rail transit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410239876.1A CN104015731A (zh) 2014-05-30 2014-05-30 大运能直达轨交系统
CN201410239876.1 2014-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/363,889 Continuation-In-Part US10435037B2 (en) 2014-05-30 2016-11-29 High-carrying-capacity non-stop rail transit system

Publications (1)

Publication Number Publication Date
WO2015180677A1 true WO2015180677A1 (zh) 2015-12-03

Family

ID=51432829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080199 WO2015180677A1 (zh) 2014-05-30 2015-05-29 大运能直达轨交系统

Country Status (13)

Country Link
US (1) US10435037B2 (zh)
EP (1) EP3150455B1 (zh)
JP (1) JP6719389B2 (zh)
KR (1) KR102424284B1 (zh)
CN (2) CN104015731A (zh)
AU (1) AU2015266445B2 (zh)
BR (1) BR112016028077B1 (zh)
CA (1) CA2950639A1 (zh)
ES (1) ES2753634T3 (zh)
MX (1) MX2016015814A (zh)
RU (1) RU2696396C2 (zh)
SG (1) SG11201609996PA (zh)
WO (1) WO2015180677A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104015731A (zh) 2014-05-30 2014-09-03 赵毅 大运能直达轨交系统
CN105771259A (zh) * 2016-03-11 2016-07-20 赵毅 轨道模型玩具及其使用方法
CN106541949B (zh) * 2016-08-09 2018-10-09 宁波市鄞州乐可机电科技有限公司 一种交通设施
CN106541951B (zh) * 2016-08-11 2018-07-10 宁波市鄞州乐可机电科技有限公司 一种交通设施
CN107618514A (zh) * 2016-08-22 2018-01-23 上海地捷科技有限公司 一种用于轨道交通系统的离线式车站以及轨道交通系统
US10286925B2 (en) * 2016-09-09 2019-05-14 Michael Steward Evans Intelligent POD management and transport
IT201600113502A1 (it) * 2016-11-10 2018-05-10 Italdesign Giugiaro Spa Sistema di trasporto modulare per il trasporto di persone.
CN108116296B (zh) * 2016-11-28 2023-11-14 上海嘉成轨道交通安全保障系统股份公司 电动载车捷运系统
CN106864488A (zh) * 2017-01-18 2017-06-20 王朝明 有轨高速交通系统
CN107054379B (zh) * 2017-02-15 2019-09-10 宁波市鄞州乐可机电科技有限公司 一种交通设施
CN106864464B (zh) * 2017-02-23 2018-07-06 万普华 个人悬挂式双轨道双动力自动控制轻型轨道交通系统
CN107021106A (zh) * 2017-04-19 2017-08-08 温金龙 一种城镇交通运输方法及交通运输装置
CN107117063A (zh) * 2017-05-08 2017-09-01 奚大为 网格化电动悬浮交通系统及其使用方法
CN109118415B (zh) * 2017-06-22 2022-03-22 上海地捷科技有限公司 乘车调配系统和方法
CN107264537A (zh) * 2017-06-26 2017-10-20 熊生银 公交化列车
CN107323461A (zh) * 2017-07-03 2017-11-07 熊生银 列车可分体车箱里外的设施
US20190054929A1 (en) * 2017-08-17 2019-02-21 Shawn Yao Non-stop transportation system
CN109532870B (zh) * 2017-09-22 2021-02-26 中车唐山机车车辆有限公司 一种微轨车辆系统
CN109532879B (zh) * 2017-09-22 2021-01-05 中车唐山机车车辆有限公司 一种微轨车辆系统及具有防晃功能的站台
CN109532876B (zh) * 2017-09-22 2021-02-26 中车唐山机车车辆有限公司 一种微轨车厢
DE102017218061B4 (de) * 2017-10-11 2020-07-30 Audi Ag Fahrgastzelle zum Koppeln mit einem Luftfahrzeug oder Landfahrzeug
CN111433105A (zh) * 2017-11-17 2020-07-17 罗希特·辛哈尔 用于使用静态铁路轨道配置切换铁路车辆的系统和方法
IT201800004362A1 (it) * 2018-04-10 2019-10-10 Impianto di trasporto ibrido fune/rotaia, unita' di trasporto per tale impianto di trasporto e metodo di funzionamento di tale impianto di trasporto
CN110550053A (zh) * 2018-05-30 2019-12-10 上海地捷科技有限公司 分合式车辆的一种分合、存取的系统与方法
CN110550054A (zh) * 2018-05-30 2019-12-10 上海地捷科技有限公司 一种将道路交通与轨道交通连接起来运行的方法与装置
CN109178019A (zh) * 2018-08-10 2019-01-11 杭州飞遁科技有限公司 轨道交通系统的合轨装置
CN109178020A (zh) * 2018-08-10 2019-01-11 杭州飞遁科技有限公司 一种轨道交通系统的分轨装置
CN109178021A (zh) * 2018-08-10 2019-01-11 杭州飞遁科技有限公司 轨道交通系统的分轨装置
CN109017863A (zh) * 2018-08-22 2018-12-18 王成帅 一种分散站台式列车运行方法
CN108909769A (zh) * 2018-08-22 2018-11-30 王成帅 一种分散站台式列车运行系统
CN110884507B (zh) * 2018-09-10 2021-08-20 上海地捷科技有限公司 一种帮助载客工具进行轨道运输的装置与方法
DE102018220633A1 (de) * 2018-11-29 2020-06-04 TC Consulting GbR (vertretungsberechtigter Gesellschafter: Prof. Hubert Jäger, 86637 Zusamaltheim) Intermodales Personenverkehrssystem
CN110001666A (zh) * 2019-04-25 2019-07-12 中铁第一勘察设计院集团有限公司 空地两用悬挂式空轨交通系统
CN110414361A (zh) * 2019-07-02 2019-11-05 青岛海洋科学与技术国家实验室发展中心 分布式机器视觉数据采集分析方法和系统
DE102019006296A1 (de) * 2019-09-06 2021-03-11 upBUS UHG (haftungsbeschränkt) i.G. Verkehrsmitttel und Seilbahn für einen Wechselprozess
US20210086807A1 (en) * 2019-09-24 2021-03-25 International Business Machines Corporation Modular train system
US11130503B1 (en) * 2019-12-27 2021-09-28 Jean Victor Peloquin High-speed mass transport system
CN111791900A (zh) * 2020-06-10 2020-10-20 吴金根 一种急速车
CN111775977B (zh) * 2020-07-10 2021-10-01 北京天润海图科技有限公司 轨道车的助推阻尼系统与轨道车运行控制方法
US20220144100A1 (en) * 2020-11-12 2022-05-12 Terence Alan Tamutus Magnetic levitation capture arm system for vehicle
CN112614376B (zh) * 2020-12-11 2022-11-22 中车唐山机车车辆有限公司 一种车辆的行车控制方法、装置及系统
CN112593804B (zh) * 2020-12-11 2022-07-26 中车唐山机车车辆有限公司 一种车辆的车门控制方法,装置及系统
RU2752036C1 (ru) * 2021-01-26 2021-07-22 Владимир Васильевич Шайдоров Высокоскоростной метрополитен
CN113264080B (zh) * 2021-05-27 2023-01-03 黄秉和 一种火车上下客装置
CN113638271A (zh) * 2021-08-23 2021-11-12 赵勇 一种用于城市有轨交通的轨道系统
CN116189427B (zh) * 2023-01-12 2024-05-28 东风悦享科技有限公司 一种基于prt的可移动式站点换乘方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280030A (ja) * 2008-02-26 2008-11-20 Hitachi Ltd 高速道路車両搬送設備及びそれを利用する自動車車両
CN101432177A (zh) * 2006-04-30 2009-05-13 乌韦·施塔恩 主动式轨道运输系统
CN101628583A (zh) * 2009-08-18 2010-01-20 王弘 新型高速全自动全闭合轨道列车公共交通网络化系统
CN101722955A (zh) * 2008-10-14 2010-06-09 彭宇纶 列车过站不停系统的多项相关设备
CN102328660A (zh) * 2011-07-04 2012-01-25 张宁 独立式同步轨道交通

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1755794A1 (de) * 1967-09-26 1971-06-16 Werner Hamacher Transportmittel fuer Personen,Autos und Gueter
GB1306501A (en) * 1968-11-26 1973-02-14 Goodridge W H Handling of freight containers
US3769913A (en) * 1971-09-30 1973-11-06 Transyt Corp High mass flow transportation system
ES445112A1 (es) * 1975-02-13 1978-02-16 Stphandis De Rech Mecaniques H Sistema de transporte continuo, especialmente para el trans-porte colectivo.
US4425851A (en) * 1981-02-17 1984-01-17 Long Alvin L High speed passenger transfer vehicle
US4791871A (en) * 1986-06-20 1988-12-20 Mowll Jack U Dual-mode transportation system
JPS63295730A (ja) * 1987-05-27 1988-12-02 Murao Boki Kk 粗糸ボビン搬送装置
JPH02175463A (ja) * 1988-12-28 1990-07-06 Motoyuki Mizukami サイバー・ハイウェイ・システム
JPH0667730B2 (ja) * 1989-06-15 1994-08-31 日本ケーブル株式会社 自動循環式索道の乗客の乗降用設備
US5005487A (en) * 1990-03-09 1991-04-09 Tsubakimoto Chain Company Linear motor driven conveying apparatus
US5060575A (en) * 1990-06-19 1991-10-29 Pathfinder Systems, Inc. Turn controller for suspended personal transport vehicle
US5289778A (en) * 1992-07-06 1994-03-01 Romine Richard A Automated electric transportation system
JPH07123520A (ja) * 1993-10-20 1995-05-12 Daifuku Co Ltd 電車利用の搬送装置
JP2782037B2 (ja) * 1993-12-22 1998-07-30 川鉄マシナリー株式会社 索道におけるリニアモータ式駆動装置
KR970007477B1 (ko) * 1994-06-27 1997-05-09 대우전자 주식회사 방송수신기의 자동 채널 선국 기억 방법
JPH09240466A (ja) * 1996-03-06 1997-09-16 Nippon Cable Co Ltd 自動循環式索道の屈曲運行方法
JP2920879B2 (ja) * 1996-10-09 1999-07-19 川崎重工業株式会社 物流/搬送システム
US5775227A (en) * 1996-10-28 1998-07-07 Mullen; Charles F. Electric vehicle transport system
JP2003072538A (ja) * 2001-09-04 2003-03-12 Anzen Sakudo Kk 停留場における搬器固定装置
RU2220063C2 (ru) * 2002-02-28 2003-12-27 Карфидов Владимир Николаевич Автоматическое транспортное средство карфидова и путь для него (транскар)
RU2249517C1 (ru) * 2003-10-09 2005-04-10 ШУМОВСКИЙ Владимир Валерьевич Скоростная транспортная система навесного типа
WO2005105620A1 (ja) * 2004-04-30 2005-11-10 Yuyama Mfg. Co., Ltd. カート搬送装置
US20060201376A1 (en) * 2005-03-04 2006-09-14 Georges Brigham Transportation system with increased capacity
US7784405B2 (en) * 2008-04-24 2010-08-31 Disney Enterprises, Inc. Vehicle transfer during operation of an omnimover ride
EP2157004B1 (de) * 2008-08-21 2010-11-17 Innova Patent GmbH Seilbahnanlage
ATE556911T1 (de) * 2008-12-18 2012-05-15 Innova Patent Gmbh Seilbahnkabine und seilbahnanlage wobei die kabine auf jeder längsseite mit einer tür versehen ist
RU2413640C1 (ru) * 2009-12-14 2011-03-10 Владимир Григорьевич Агафонов Общественно-индивидуальный транспорт (варианты)
KR101355672B1 (ko) * 2011-12-30 2014-01-28 주식회사 포스코아이씨티 열차제어장치 및 열차제어방법
CN103010220A (zh) * 2012-12-21 2013-04-03 葛大力 一种实现安全可靠道岔换向的悬挂式单轨快速公交系统
CN103352405B (zh) * 2013-07-12 2015-11-04 董建国 自动路
CN104015731A (zh) 2014-05-30 2014-09-03 赵毅 大运能直达轨交系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432177A (zh) * 2006-04-30 2009-05-13 乌韦·施塔恩 主动式轨道运输系统
JP2008280030A (ja) * 2008-02-26 2008-11-20 Hitachi Ltd 高速道路車両搬送設備及びそれを利用する自動車車両
CN101722955A (zh) * 2008-10-14 2010-06-09 彭宇纶 列车过站不停系统的多项相关设备
CN101628583A (zh) * 2009-08-18 2010-01-20 王弘 新型高速全自动全闭合轨道列车公共交通网络化系统
CN102328660A (zh) * 2011-07-04 2012-01-25 张宁 独立式同步轨道交通

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150455A4 *

Also Published As

Publication number Publication date
RU2016152284A (ru) 2018-07-04
JP6719389B2 (ja) 2020-07-08
KR20170012488A (ko) 2017-02-02
EP3150455A1 (en) 2017-04-05
ES2753634T3 (es) 2020-04-13
KR102424284B1 (ko) 2022-07-25
CN104908753B (zh) 2017-12-26
RU2696396C2 (ru) 2019-08-01
CN104015731A (zh) 2014-09-03
BR112016028077B1 (pt) 2022-11-16
EP3150455B1 (en) 2019-08-07
SG11201609996PA (en) 2017-01-27
CN104908753A (zh) 2015-09-16
JP2017519679A (ja) 2017-07-20
MX2016015814A (es) 2017-07-11
US20170080953A1 (en) 2017-03-23
EP3150455A4 (en) 2017-08-02
AU2015266445B2 (en) 2019-06-06
BR112016028077A8 (pt) 2021-06-29
BR112016028077A2 (pt) 2017-08-22
AU2015266445A1 (en) 2017-01-12
CA2950639A1 (en) 2015-12-03
RU2016152284A3 (zh) 2019-01-18
US10435037B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2015180677A1 (zh) 大运能直达轨交系统
WO2020047947A1 (zh) 一种移动舱、轨道及立体轨道交通系统
WO2009043203A1 (fr) Système de transport ferroviaire de passagers à arrêts multiples et passage direct
CN106043315A (zh) 流动火车站、与其配套的轨道网络及二者的组合系统
CN104386066B (zh) 并联式递速运行轨道列车及其载运方法
CN102442322B (zh) 单轨短途列车和直达列车结合的快速客车结构
WO2019052416A1 (zh) 一种智能轨道交通系统
WO2023198134A1 (zh) 一种基于复合异型翼缘轨道的高速巴士公交系统
CN103465912A (zh) 恒速环绕传输系统
US20100242782A1 (en) Transportation system
CN203511638U (zh) 恒速环绕传输系统
CN103481894A (zh) 恒速环绕传输系统的列车
WO2019109696A1 (zh) 轨道网的基本运行子段
JP2009184585A (ja) 総2階建て車両により列車当り床面積を倍増する鉄道交通システム
CN102114845A (zh) 双层轨立体快速交通系统
CN103465911A (zh) 用于将并行的两列车锁定的电磁同步器
KR20100089670A (ko) 초고속 장거리 광역 지하철 및 그에 따른 차량설비
CN205524295U (zh) 一种不停车上下客系统
CN203511639U (zh) 恒速环绕传输网
CN203511641U (zh) 用以将并行两列车对齐的对位调速系统
CN103465910A (zh) 用以将并行两列车对齐的对位调速系统
CN203511643U (zh) 恒速环绕传输系统的列车
Barbosa Automated People Mover Technology Review-A Mobility Tool for Large Capacity Airports and Connecting Transit Systems
JPS5848379B2 (ja) 人の輸送方法とその装置
CN103465913A (zh) 恒速环绕传输网

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950639

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016571060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015814

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016028077

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015798826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015798826

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167037092

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016152284

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015266445

Country of ref document: AU

Date of ref document: 20150529

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016028077

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161129