WO2015166608A1 - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
WO2015166608A1
WO2015166608A1 PCT/JP2014/083094 JP2014083094W WO2015166608A1 WO 2015166608 A1 WO2015166608 A1 WO 2015166608A1 JP 2014083094 W JP2014083094 W JP 2014083094W WO 2015166608 A1 WO2015166608 A1 WO 2015166608A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
outer peripheral
semiconductor device
carbide semiconductor
well region
Prior art date
Application number
PCT/JP2014/083094
Other languages
English (en)
French (fr)
Inventor
洪平 海老原
皓洋 小山
英典 纐纈
明美 長江
洸太朗 川原
寛 渡邊
健介 田口
史郎 日野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480078514.7A priority Critical patent/CN106256024B/zh
Priority to DE112014006630.3T priority patent/DE112014006630T5/de
Priority to US15/307,303 priority patent/US10020367B2/en
Priority to JP2016500009A priority patent/JP6065154B2/ja
Publication of WO2015166608A1 publication Critical patent/WO2015166608A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0495Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a silicon carbide semiconductor device.
  • SiC silicon carbide
  • SiC silicon carbide
  • a P-type guard ring region (termination well region) is provided in a so-called termination region in the N-type silicon carbide semiconductor layer, so that the silicon carbide semiconductor layer and the guard ring are provided. It is known to relax an electric field when a reverse voltage is applied by a depletion layer formed by a PN junction with a region (for example, Patent Document 1). Further, in the Schottky barrier diode (SiC-SBD) made of SiC described in Patent Document 1, a field insulating film is provided on the silicon carbide semiconductor layer in the termination region, and the outer peripheral edge of the surface electrode is formed on the field insulating film. is doing.
  • an etching residue may be formed at the outer peripheral edge of the Schottky electrode (first surface electrode) provided on the silicon carbide semiconductor layer and the field insulating film, and the etching residue is formed.
  • electric field concentration may occur in the vicinity of the etching residue, leading to a failure of the silicon carbide semiconductor device.
  • the silicon carbide semiconductor device is formed by covering the outer peripheral end of the Schottky electrode with the electrode pad (second surface electrode) provided on the Schottky electrode so that the etching residue formed on the outer peripheral end of the Schottky electrode is not exposed. It is known to suppress such defects (for example, see Patent Document 2).
  • the outer peripheral edge of the Schottky electrode when the outer peripheral edge of the Schottky electrode is covered with the electrode pad, the outer peripheral edge of the electrode pad protrudes to the outer peripheral side on the field insulating film.
  • the electrode pad is switched during switching.
  • the inventors have newly discovered that the electric field around the outer peripheral edge of the semiconductor layer increases, causing dielectric breakdown of the surface protective film covering the outer peripheral edge of the field insulating film and the electrode pad, possibly leading to device failure. It is assumed that the electric field concentration generated at the outer peripheral edge of the electrode pad during such switching is caused by the following mechanism.
  • the depletion layer extends from the termination well region provided in the termination region to maintain the voltage and reduce the electric field.
  • a high voltage is applied at a high speed. Therefore, if the depletion layer extends from the termination well region, the termination well is delayed. The electric field relaxation effect due to the region may not be sufficiently exhibited.
  • a silicon carbide semiconductor device can be switched at a higher speed than a silicon semiconductor device having the same breakdown voltage, and the acceptor level is deeper than that of a conventional silicon semiconductor.
  • the expansion of the depletion layer from the termination well region is delayed with respect to the voltage applied at high speed, and the electric field relaxation is not sufficiently exhibited. If a sufficient voltage cannot be held on the outer peripheral side of the termination well region, an equipotential line penetrates into the termination well region. In such a case, the outer peripheral edge of the electrode pad is outer peripheral on the field insulating film. If it protrudes to the side, the density of equipotential lines around the electrode pad serving as the corner increases, and electric field concentration occurs at the outer peripheral edge of the surface electrode, which may lead to device failure.
  • the P-type dose in the termination well region In order to prevent the reduction of the electric field relaxation effect due to the termination well region at the time of switching, it may be possible to increase the P-type dose in the termination well region and promote the growth of the depletion layer. If the P-type dose in the termination well region is optimized, the electric field in the static off state increases, which may cause a decrease in breakdown voltage. That is, in the conventional silicon carbide semiconductor device, it is difficult to achieve both relaxation of the electric field in the static off state and relaxation of the electric field during dynamic switching, and it is difficult to sufficiently improve the element breakdown voltage.
  • the present invention has been made to solve the above-described problems, and provides a silicon carbide semiconductor device capable of relaxing an electric field at the time of switching and improving an element breakdown voltage while suppressing an increase in an electric field in an off state.
  • the purpose is to provide.
  • a silicon carbide semiconductor device includes a first conductivity type silicon carbide substrate, a field insulating film formed on the surface of the silicon carbide substrate, and on the surface of the silicon carbide substrate and within the field insulating film.
  • a first surface electrode formed on the peripheral side and formed on the field insulating film, and a second surface electrode covering the first surface electrode and extending on the field insulating film beyond the outer peripheral edge of the first surface electrode
  • a terminal well region of the second conductivity type formed in contact with at least a part of the first surface electrode in the upper part of the silicon carbide substrate and extending to the outer peripheral side of the second surface electrode in the silicon carbide substrate.
  • a surface protective film made of an insulating material formed on the field insulating film and the second surface electrode so as to cover the outer peripheral edge of the second surface electrode, and a back electrode formed on the back surface of the silicon carbide substrate, second Field insulation between the outer peripheral edge of the second surface electrode and the field insulation when the electric field strength applied to the lower peripheral edge of the surface electrode is equal to the smaller one of the dielectric breakdown strengths of the insulating material constituting the field insulating film or surface protection
  • the distance between the outer peripheral end of the second surface electrode and the inner peripheral end of the field insulating film is smaller than the distance from the inner peripheral end of the film.
  • the silicon carbide semiconductor device even when the depletion layer extends from the termination well region at the time of switching and the equipotential line penetrates into the termination well region at the time of switching,
  • the outer peripheral edge of the second surface electrode is located on the inner peripheral side so that the applied electric field strength is smaller than the dielectric breakdown strength of the field insulating film and the surface protective film. It is possible to suppress the electric field around the outer peripheral edge of the second surface electrode during switching while reducing the density of the potential lines and suppressing an increase in the electric field in the off state.
  • impurity amount per unit area [cm ⁇ 2 ]” of each region indicates a value calculated by integrating the impurity concentration in each region in the depth direction. Further, when the impurity concentration in each region has a concentration profile, the “impurity concentration [cm ⁇ 3 ]” in each region indicates the peak value of the impurity concentration in each region, and the impurity concentration in each region is the concentration profile. In this case, the “thickness” of each region is a thickness up to a region where the impurity concentration is 1/10 or more of the peak value of the impurity concentration in the region. However, the “impurity concentration” used when calculating the “dose amount [cm ⁇ 2 ]” in each region is not the peak value of the impurity concentration but the actual impurity concentration.
  • top does not prevent the presence of inclusions between components.
  • B provided on A it includes a case where another component C is provided between A and B and a case where no other component C is provided.
  • Embodiment 1 the configuration of silicon carbide semiconductor device 100 according to the first embodiment of the present invention will be described.
  • an N-type SiC-SBD Silicon Carbide Schottky Barrier Diode
  • a P-type silicon carbide semiconductor device whose conductivity type is N-type may be used, or a PN diode or PiN diode may be used instead of SBD.
  • FIG. 1 is a cross-sectional view showing a configuration of silicon carbide semiconductor device 100 according to the first embodiment. 1 shows only a cross-sectional portion around the termination region of silicon carbide semiconductor device 100.
  • the right side is the termination region side of the right end portion of silicon carbide semiconductor device 100, and the left side is in the on state.
  • the active region side through which the main current flows.
  • silicon carbide semiconductor device 100 includes silicon carbide substrate 1, field insulating film 3, Schottky electrode 4 that is a first surface electrode, electrode pad 5 that is a second surface electrode, and surface protective film 6.
  • SiC-SBD provided with a back electrode 7.
  • Silicon carbide substrate 1 includes a substrate layer 1a made of N + type silicon carbide and an N ⁇ type silicon carbide semiconductor layer 1b (drift layer) formed on substrate layer 1a.
  • a P-type termination well region 2 is formed in a so-called termination region in the upper part in silicon carbide semiconductor layer 1b.
  • N-type impurity Nitrogen (N) or phosphorus (P) can be used as the N-type impurity contained in the silicon carbide substrate 1, and aluminum (Al) or boron (B) can be used as the P-type impurity.
  • N-type impurities are nitrogen
  • P-type impurities are aluminum.
  • N-type impurity concentration of silicon carbide semiconductor layer 1b is lower than the N-type impurity concentration of substrate layer 1a, and the N-type impurity concentration and thickness of silicon carbide semiconductor layer 1b are set according to the design breakdown voltage of silicon carbide semiconductor device 100. Set. For example, 1.0 ⁇ 10 14 / cm 3 to 1.0 ⁇ 10 16 / cm 3 can be set.
  • the N-type impurity concentration of silicon carbide semiconductor layer 1b is 8.0 ⁇ 10 15. / Cm 3 .
  • the dose amount of the P-type impurity in the termination well region 2 is preferably 1.0 ⁇ 10 13 / cm 2 to 1.0 ⁇ 10 14 / cm 2 , more preferably 2.0 ⁇ 10 13 / cm 2 to 5.0 ⁇ 10 13 / cm 2, and 2.0 ⁇ 10 13 / cm 2 in this embodiment.
  • Field insulating film 3 and Schottky electrode 4 are formed on the surface of silicon carbide substrate 1 (silicon carbide semiconductor layer 1b).
  • Schottky electrode 4 is formed at the center (on the left side in FIG. 1) on the surface of silicon carbide semiconductor layer 1b, and forms a Schottky junction with silicon carbide semiconductor layer 1b.
  • Field insulating film 3 is formed on a so-called termination region on the outer peripheral side of Schottky electrode 4 on the surface of silicon carbide semiconductor layer 1b, and Schottky electrode 4 is Schottky joined to silicon carbide semiconductor layer 1b in plan view. It surrounds the part.
  • a part of the Schottky electrode 4 is located on the termination well region 2 and is in contact with the termination region well region 2.
  • the Schottky electrode 4 is formed so as to run over the field insulating film 3, and the outer peripheral end of the Schottky electrode 4 is located on the field insulating film 3.
  • silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used for the field insulating film 3, and the thickness can be set to 0.5 ⁇ m to 3.0 ⁇ m, for example.
  • a SiO 2 film having a thickness of 1.0 ⁇ m is used as the field insulating film 3.
  • the Schottky electrode 4 may be any metal that can be Schottky bonded to a silicon carbide semiconductor, and titanium, molybdenum, nickel, gold, tungsten, or the like can be used, and the thickness can be, for example, 30 nm to 300 nm. In this embodiment, a 200 nm thick titanium film is used as the Schottky electrode 4.
  • An electrode pad 5 is formed on the Schottky electrode 4, and the electrode pad 5 covers the outer peripheral end of the Schottky electrode 4. That is, the outer peripheral edge of the electrode pad 5 is located on the field insulating film 3 beyond the outer peripheral edge of the Schottky electrode 4.
  • a metal containing any of aluminum, copper, molybdenum, nickel, an aluminum alloy such as Al—Si, or the like can be used, and the thickness is, for example, 300.0 nm to 10.0 ⁇ m. it can.
  • an aluminum layer having a thickness of 5.0 ⁇ m is used as the electrode pad 5.
  • the outer peripheral edge of the electrode pad 5 is located on the termination well region 2, and the horizontal distance from the inner peripheral edge of the field insulating film 3 to the outer peripheral edge of the electrode pad 5 (hereinafter referred to as “the protruding width of the electrode pad 5”).
  • the outer peripheral end position of the electrode pad 5 is adjusted such that the outer peripheral edge is larger than 0 ⁇ m and equal to or smaller than 100 ⁇ m.
  • the overhang width of the electrode pad 5 if the outer peripheral end of the electrode pad 5 or the end surface of the inner peripheral end of the field insulating film 3 is inclined, the outer peripheral lower end of the electrode pad 5 and the field insulating film 3 The lower end of the inner circumference is used as a reference (the same applies to other overhang widths described later).
  • a surface protective film 6 is formed on the field insulating film 3 and the electrode pad 5.
  • the surface protective film 6 is formed so as to cover the outer peripheral edge of the electrode pad 5, and has an opening on the center portion of the electrode pad 5 in order to connect with an external terminal.
  • the surface protective film 6 is preferably an organic resin film, and polyimide is used as the surface protective film 6 in the present embodiment.
  • a back electrode 7 is formed on the back side of the silicon carbide substrate 1 (substrate layer 1a).
  • the back electrode 7 is in ohmic contact with the substrate layer 1a. Therefore, the back electrode 7 can be made of metal such as nickel, aluminum, molybdenum, or the like that can form ohmic contact with the silicon carbide that is the substrate layer 1a. In this embodiment, nickel is used.
  • a silicon carbide substrate 1 composed of an N + type substrate layer 1a and an N ⁇ type silicon carbide semiconductor layer 1b epitaxially grown on the upper surface of the substrate layer 1a is prepared. Then, the resist film is patterned into a predetermined shape by a known method such as photolithography. Thereafter, a P-type termination well region 2 (guard ring region) is formed in the upper portion of the silicon carbide semiconductor layer 1b by selectively ion-implanting P-type impurities from the resist film.
  • the impurity ions are implanted as impurity ions in the P-type impurity region, and the impurity ions are electrically activated by annealing at a high temperature of 1500 ° C. or higher after the ion implantation. Regions are formed.
  • the dose amount of the P-type impurity in the termination well region 2 is preferably 1.0 ⁇ 10 13 / cm 2 to 1.0 ⁇ 10 14 / cm 2 , more preferably 2.0.
  • the implantation energy is 100 keV to 700 keV.
  • the impurity concentration of the termination well region 2 is 1.0 ⁇ 10 17 / cm 3 to 1. 0.0 ⁇ 10 19 / cm 3 .
  • a silicon oxide film having a thickness of 1.0 ⁇ m is deposited on the surface of the silicon carbide semiconductor layer 1b by, for example, the CVD method, and then the silicon oxide film at the center is removed by photolithography and etching, and the opening is formed.
  • a field insulating film 3 is formed. The opening end of the field insulating film 3 is formed so as to be located on the termination well region 2.
  • back electrode 7 is formed on the back surface side of substrate layer 1 a of silicon carbide substrate 1. The formation of back electrode 7 may be performed after all the steps on the surface side of silicon carbide substrate 1 described below are completed.
  • a metal film to be the Schottky electrode 4 is formed on the entire surface of the silicon carbide semiconductor layer 1b on which the field insulating film 3 is formed, for example, by sputtering.
  • the metal film to be formed is a titanium film having a thickness of 200 nm in this embodiment.
  • a resist film having a predetermined pattern shape is formed by photolithography.
  • the metal film is etched using the resist film as a mask to form a Schottky electrode 4 having a desired shape.
  • dry etching or wet etching can be used.
  • wet etching is preferably used in order to reduce damage to the chip.
  • hydrofluoric acid (HF) is used as an etchant.
  • an electrode pad 5 is formed on the field insulating film 3 and the Schottky electrode 4 so as to cover the Schottky electrode 4.
  • the electrode pad 5 can be formed by etching after a predetermined metal film is formed on the entire surface.
  • the metal film is etched using, for example, a phosphoric acid-based etching solution. The wet etching is performed.
  • surface protective film 6 is formed so as to cover electrode pad 5, thereby completing silicon carbide semiconductor device 100 according to the present embodiment.
  • silicon carbide semiconductor device 100 when a negative voltage is applied to back electrode 7 with respect to the surface electrodes (Schottky electrode 4 and electrode pad 5), a current flows from the surface electrode to back electrode 7, Silicon semiconductor device 100 is in a conductive state (on state).
  • a positive voltage is applied to back electrode 7 with respect to the front electrode, Schottky junction between Schottky electrode 4 and silicon carbide semiconductor layer 1b and between termination well region 2 and silicon carbide semiconductor layer 1b are applied. Current is blocked by the PN junction, and silicon carbide semiconductor device 100 enters a blocking state (off state).
  • the junction surface between Schottky electrode 4 and silicon carbide semiconductor layer 1b increases around the edge of the electrode, and electric field concentration occurs around the outer periphery of the Schottky electrode 4. Therefore, the electric field concentration at the outer peripheral edge of the Schottky electrode 4 can be reduced by adopting a configuration in which the Schottky electrode 4 rides on the field insulating film 3 as in the present embodiment.
  • the Schottky electrode 4 is formed so as to run on the field insulating film 3, so that the position of the outer peripheral end of the Schottky electrode 4 and the opening end of the field insulating film 3 is increased. Since the alignment margin can be increased, the manufacturing process can be simplified.
  • an etching residue is formed at the outer peripheral edge of the Schottky electrode 4, and electric field concentration may occur around the etching residue, which may cause a problem.
  • Etching residues can occur when either the Schottky electrode 4 or the electrode pad 5 is etched, or can occur when either dry etching or wet etching is performed, but the thickness of the metal film, the material of the metal film, Due to the relationship with the etching solution, etching residues are particularly likely to occur when the Schottky electrode 4 is formed. Depending on the shape of the etching residue and the like, there is a risk that the reliability of the silicon carbide semiconductor device may be reduced due to electric field concentration generated at the outer peripheral end of Schottky electrode 4.
  • the electrode pad 5 is formed so as to cover the outer peripheral edge of the Schottky electrode 4, the etching residue formed at the outer peripheral edge of the Schottky electrode 4 is not exposed. Therefore, even if an etching residue is generated in the Schottky electrode 4, the electric field at the end of the Schottky electrode 4 is not likely to be a problem.
  • the outer peripheral end of the electrode pad 5 becomes an electric field concentration point instead of the etching residue portion of the Schottky electrode 4. Compared with the Schottky electrode 4, etching residue is less likely to be formed, and even if an etching residue is formed, the shape of the etching residue is not as sharp as that of the Schottky electrode 4.
  • the outer peripheral end of the electrode pad 5 protrudes from the outer peripheral side as compared with the conventional case. It is necessary to adjust the position of the outer peripheral edge of the pad 5.
  • FIGS. 2 and 3 are cross-sectional views showing a comparative example of silicon carbide semiconductor device 101 according to the present embodiment.
  • FIG. 4 is a cross-sectional view showing silicon carbide semiconductor device 100 according to the present embodiment.
  • a curve indicated by a broken line schematically shows an equipotential line when a high voltage is applied to the back electrode 7
  • FIG. 2 shows a state after a high voltage is applied to the back electrode 7.
  • FIG. 3 and FIG. 4 show equipotential lines in a dynamic switching state when a high voltage is applied to the back electrode 7.
  • the termination well region, the silicon carbide semiconductor layer, and the like in the off state where a high voltage is applied to the back electrode Since the voltage is held by the depletion layer formed between the two, the equipotential lines are dense along the PN junction portion between the termination well region and the silicon carbide semiconductor layer.
  • the P-type impurity concentration in termination well region 2 in the static off state, is higher than the N-type impurity concentration in silicon carbide semiconductor layer 1b, and therefore, mainly on the outer peripheral side from termination well region 2.
  • the depletion layer extends to the silicon carbide semiconductor layer 1b, and as a result, the portion where the equipotential lines are dense also becomes the outer peripheral side from the termination well region 2. Therefore, if the outer peripheral edge of the electrode pad 5 is positioned on the termination well region 2, there is no fear that an equipotential line will wrap around the outer peripheral edge of the electrode pad 5 and electric field concentration will occur at the outer peripheral edge of the electrode pad 5.
  • the acceptor level of the P-type impurity is about several times deeper than that in the case of Al, which is 200 meV or more in the case of Al and 300 meV or more in the case of boron (B). Impurity ionization is significantly delayed.
  • silicon is expected to be replaced with a unipolar device instead of a bipolar device in silicon carbide.
  • the SiC-SBD as in this embodiment is It is expected to be used in place of the Si-PN diode.
  • the switching speed of the SiC-SBD that is a unipolar device is higher than that of the Si-PN diode that is a bipolar device.
  • the switching speed is higher than that of the silicon semiconductor device having the same breakdown voltage, so that a high voltage is applied at a higher speed than in the past.
  • a depletion layer formed between well region 2 and silicon carbide semiconductor layer 1b extends to terminal well region 2 side.
  • the depletion layer penetrates into the termination well region 2, so that the portion where the equipotential lines are dense also has a more inner periphery than the static off state. Will invade the side.
  • the overhang width of the electrode pad 5 is made shorter than that of the comparative example described in FIGS. 2 and 3.
  • the electric field relaxation at the outer peripheral edge of the electrode pad 5 is intended.
  • the overhanging width of the electrode pad 5 is reduced, so that equipotential lines around the outer peripheral edge of the electrode pad 5 are obtained. Therefore, the concentration of the electric field applied to the outer peripheral edge of the electrode pad 5 can be suppressed.
  • the specific overhang width of the electrode pad 5 may be set based on the dielectric breakdown strength of the field insulating film 3 and the surface protective film 6 in contact with the electrode pad 5. More specifically, the overhang of the electrode pad 5 when the electric field strength applied to the lower end of the outer periphery of the electrode pad 5 becomes equal to the smallest dielectric breakdown strength among the dielectric breakdown strengths of the field insulating film 3 or the surface protective film 6. The overhang width of the actual electrode pad 5 is made smaller than the width.
  • a method for setting the overhang width of the electrode pad 5 will be described.
  • FIG. 5 shows the result of calculation by simulation of the electric field strength applied to the outer peripheral edge of the electrode pad 5 when the protruding width of the electrode pad 5 is changed.
  • the vertical axis indicates the electric field strength at the outer peripheral edge of the electrode pad 5
  • the horizontal axis indicates the overhang width of the electrode pad 5
  • the black diamond marker has a dV / dt value of 0 kV / ⁇ s, that is, static off
  • the white circle marker indicates the electric field strength when the dV / dt value is 10 kV / ⁇ s
  • the black circle marker indicates the electric field strength when the dV / dt value is 20 kV / ⁇ s
  • the black triangular marker indicates the dV / dt value.
  • the electric field strength is indicated when the value of / dt is 50 kV / ⁇ s.
  • the electric field strength at the outer peripheral end of the electrode pad 5 in FIG. 5 indicates the electric field strength at the outer peripheral lower end of the electrode pad 5, but actually the outer peripheral end lower end of the electrode pad 5 is a singular point.
  • the electric field strength at a point on the outer peripheral side of 10 nm in the horizontal direction from the lower end of the outer periphery of the electrode pad 5 is calculated (the same applies to other simulation results described below).
  • the simulation model used in the simulation of FIG. 5 is according to the present embodiment except for the overhang width of the electrode pad 5 and the distance between the inner peripheral edge of the field insulating film 3 and the outer peripheral edge of the termination well region 2.
  • the structure is the same as that of silicon carbide semiconductor device 100, the distance between the inner peripheral edge of field insulating film 3 and the outer peripheral edge of termination well region 2 is 140 ⁇ m, and the protruding width of electrode pad 5 is varied from 5 ⁇ m to 130 ⁇ m. .
  • the outer peripheral edge of the electrode pad 5 is provided on the termination well region 2 as described above. Regardless of the overhang width, the electric field strength at the outer peripheral edge of the electrode pad 5 is a sufficiently low value.
  • the electric field strength when the value of dV / dt is 0 kV / ⁇ s is generally in the order of several E + 04 [V / cm].
  • the electric field strength at the outer peripheral edge of the electrode pad 5 increases.
  • the value of dV / dt exceeds 10 kV / ⁇ s, depending on the value of the overhang width, several [MV / cm ]
  • the electric field strength increases to the order. Therefore, it is necessary to set the overhang width in consideration of the electric field strength at the time of switching. Therefore, the electric field strength generated at the outer peripheral edge of the electrode pad 5 at the time of switching is not higher than the lowest dielectric breakdown strength among the dielectric breakdown strengths of the field insulating film 3 and the surface protective film 6 in contact with the electrode pad 5. Determine the overhang width.
  • the surface protective film 6 When the field insulating film 3 is formed of SiO 2 and the surface protective film 6 is formed of polyimide as in this embodiment, the surface protective film 6 generally has a lower dielectric breakdown strength. Based on the dielectric breakdown strength of the polyimide used. Here, the dielectric breakdown strength of polyimide is approximately 3.0 to 4.0 [MV / cm]. For example, when PIX-3400 (manufactured by Hitachi Chemical DuPont Microsystems) is used as the polyimide, the curing time and the measurement method are measured. However, the dielectric breakdown strength is about 3.5 [MV / cm].
  • the overhang width to 100 ⁇ m or less, even when the dV / dt is operated at 50 kV / ⁇ s, the dielectric breakdown strength of the polyimide due to the electric field at the time of switching is not exceeded, and the surface protection The dielectric breakdown of the film 6 can be suppressed.
  • the amount of change in the electric field strength E with respect to the overhang width L dE / dL is 567.6 [MV / cm 2 ] when the overhang width is in the range of 5 to 30 ⁇ m, 280 [MV / cm 2 ] when the overhang width is in the range of 30 to 70 ⁇ m, and the overhang width is in the range of 70 to 100 ⁇ m. It is 126.7 [MV / cm 2 ], and the electric field relaxation effect increases as the overhang width decreases.
  • the projecting width of the electrode pad 5 is more preferably 70 ⁇ m or less, even more preferably 30 ⁇ m or less, and even more preferably 30 ⁇ m or less, and by setting the projecting width of the electrode pad 5 to 100 ⁇ m or less.
  • the electric field strength at the outer peripheral edge of the electrode pad 5 can be 3.5 [MV / cm] or less, and the overhang width of the electrode pad 5 is 70 ⁇ m or less, whereby the electric field strength at the outer peripheral edge of the electrode pad 5 is 3.0 [MV]. / Cm] or less, and by setting the overhang width of the electrode pad 5 to 30 ⁇ m or less, the electric field strength at the outer peripheral edge of the electrode pad 5 can be set to 2.0 [MV / cm] or less.
  • FIG. 6 shows a simulation result in which the relationship between the protruding width of the electrode pad 5 and the electric field strength at the outer peripheral edge when the dose amount of the P-type impurity in the termination well region 2 is increased is shown.
  • the vertical axis indicates the electric field strength at the outer peripheral edge of the electrode pad 5
  • the horizontal axis indicates the overhang width of the electrode pad 5
  • the black triangular marker indicates the dose amount of the P-type impurity in the termination well region 2 is 1.0E14.
  • the electric field strength when [cm ⁇ 2 ] is indicated
  • the black square marker indicates the electric field strength when the dose amount of the P-type impurity in the termination well region 2 is 2.0E14 [cm ⁇ 2 ].
  • the value of dV / dt is set to 100 kV / ⁇ s, and in the simulation model in FIG. 6, the thickness and impurity concentration of the silicon carbide semiconductor layer 1b are designed with a withstand voltage design of 3.3 kV.
  • the silicon carbide semiconductor device 100 according to the embodiment has a configuration in which an FLR region (Field limiting Ring) is added to the outer peripheral side of the termination well region 2.
  • the electric field strength on the outer peripheral side of the electrode pad 5 can be relaxed, and the value of dV / dt shown in FIG. 5 is 50 kV / ⁇ s.
  • the electric field strength can be reduced by increasing the dose amount of the termination well region 2 in spite of the increase in the value of dV / dt, and the electric field strength regardless of the overhang width.
  • FIG. 7 is a simulation result showing the relationship between the dose [cm ⁇ 2 ] of the P-type impurity in the termination well region 2 and the avalanche breakdown voltage.
  • the simulation in FIG. 7 is performed under the same conditions as the simulation in FIG. Note that the avalanche breakdown voltage refers to an applied voltage at which avalanche breakdown occurs in the silicon carbide semiconductor layer when the voltage applied to the silicon carbide semiconductor device is gradually increased.
  • the avalanche breakdown voltage decreases as the dose of the P-type impurity in the termination well region 2 increases. This is because the dose of the P-type impurity increases and the electric field at the end of the termination well region 2 in the silicon carbide semiconductor layer 1b in the static off state increases. Therefore, if the dose amount of the P-type impurity in termination well region 2 is excessively increased for the purpose of electric field relaxation at the time of switching, the avalanche breakdown voltage of silicon carbide semiconductor layer 1b decreases, and the device breakdown voltage may decrease.
  • the withstand voltage static withstand voltage
  • the withstand voltage determined by the electric field in the static off state Is in a trade-off relationship.
  • the dose amount of the P-type impurity in the termination well region 2 is set to 1.0 ⁇ 10 13 / cm 2 to 1 ⁇ 10 14 / cm 2 (more preferably 2.0 ⁇ 10 13 / 2.0 ⁇ 10 13 / cm 2 , which is within the range of cm 2 to 5 ⁇ 10 13 / cm 2 ), suppresses a decrease in avalanche breakdown voltage and ensures a static withstand voltage, and extends the electrode pad 5
  • the width is set to 100 ⁇ m or less (more preferably 70 ⁇ m or less, more preferably 30 ⁇ m or less), the electric field at the time of switching can be relaxed and the dynamic withstand voltage can be secured, and both the static withstand voltage and the dynamic withstand voltage can be realized. it can.
  • the electric field at the upper peripheral edge of the electrode pad 5 increases, which may cause dielectric breakdown of polyimide.
  • FIG. 8 is a simulation result of calculating the relationship between the distance D [ ⁇ m] between the outer peripheral edge of the termination well region 2 and the outer peripheral edge of the electrode pad 5 and the electric field strength [MV / cm] at the outer peripheral upper edge of the electrode pad 5. .
  • the vertical axis indicates the electric field strength at the upper end of the outer periphery of the electrode pad 5
  • the horizontal axis indicates the distance D
  • the black diamond marker indicates the electric field strength at a dV / dt value of 10 kV / ⁇ s
  • the black square marker indicates The dV / dt value indicates the electric field strength at 20 kV / ⁇ s
  • the black triangular marker indicates the electric field strength at the dV / dt value of 50 kV / ⁇ s.
  • the simulation model in FIG. 8 is the same as the simulation model in FIG. 5, and the electric field strength at the outer peripheral upper end of the electrode pad 5 in FIG.
  • the electric field strength at a point on the outer peripheral side of 10 nm is shown.
  • the distance D when the outer peripheral end of the electrode pad 5 and the end face of the outer peripheral end of the termination well region 2 are inclined, the lower end of the outer periphery of the electrode pad 5 and the upper peripheral end of the termination well region 2 are used as a reference. To do.
  • the electric field strength at the outer peripheral upper end of the electrode pad 5 is on the order of several MV / cm when the distance D between the outer peripheral end of the termination well region 2 and the outer peripheral end of the electrode pad 5 is short.
  • the thickness is set to 20 ⁇ m or more, more preferably 40 ⁇ m or more, the electric field strength at the upper outer periphery of the electrode pad 5 can be reduced to 1.0 MV / cm or less. As described above with reference to FIGS. 3 and 4, this is because the outer peripheral edge of the electrode pad 5 is separated from the outer peripheral edge of the termination well region 2 where the depletion layer penetrates and the equipotential lines become dense.
  • the distance D between the outer peripheral edge of the termination well region 2 and the outer peripheral edge of the electrode pad 5 is desirably 20 ⁇ m or more, and more preferably 40 ⁇ m or more. This also reduces the electric field at the outer periphery upper end of the electrode pad 5. Therefore, the reliability of silicon carbide semiconductor device 100 can be further improved.
  • the present invention is not limited to this.
  • a JTE (Junction Termination Extension) region may be provided adjacent to the outer peripheral side of the termination well region 2 so that the P-type impurity concentration decreases toward the outer peripheral side.
  • a plurality of FLR regions may be provided apart from the termination well region 2.
  • the JTE region is provided, one termination well region 2 including the JTE region is used, and the distance D between the outer peripheral end of the termination well region 2 and the outer peripheral end of the electrode pad 5 is the same as the outer peripheral end of the JTE region and the electrode. The distance from the outer peripheral edge of the pad 5 is used.
  • the electric field at the upper end of the outer periphery of the electrode pad 5 is relaxed by setting the distance between the outer peripheral end of the JTE region and the outer peripheral end of the electrode pad 5 to 20 ⁇ m or more (more preferably 40 ⁇ m or more). be able to.
  • SiC-SBD is exemplified, but a PN diode or a PiN diode provided with an active region in ohmic contact with the surface electrode in the active region may be used. Furthermore, a so-called JBS (Junction Barrier Schottky diode) or MPS (Merged PiN Schottky diode) called Schottky electrode 4 may be mixed with a region where the Schottky contact with the silicon carbide semiconductor layer 1b is in ohmic contact. .
  • JBS Junction Barrier Schottky diode
  • MPS Merged PiN Schottky diode
  • Embodiment 2 FIG.
  • the electric field relaxation at the time of switching is achieved by reducing the overhang width of the electrode pad 5, but in order to further reduce the electric field, the P-type impurity concentration is more increased in the termination well region.
  • a high concentration terminal well region may be provided. Therefore, as a second embodiment, a silicon carbide semiconductor device having a high concentration termination well region will be described below.
  • FIG. 9 is a cross-sectional view showing a silicon carbide semiconductor device 200 according to the present embodiment. Since silicon carbide semiconductor device 200 is different from silicon carbide semiconductor device 100 according to the first embodiment in that high-concentration termination well region 8 is provided, only high-concentration termination well region 8 will be described below. The description of the configuration is omitted.
  • the high-concentration termination well region 8 is formed inside the termination well region 2 and is a P-type impurity region in which the dose amount of the P-type impurity is higher than that of the termination well region 2. Further, the high concentration termination well region 8 extends to the inner peripheral side from the inner peripheral end of the field insulating film 3 so as to be in contact with the Schottky electrode 4, and the Schottky electrode 4 is formed on the high concentration termination well region 8.
  • the outer peripheral end and the outer peripheral end of the electrode pad 5 extend to the outer peripheral side with respect to the outer peripheral end of the electrode pad 5 so as to be positioned.
  • the high concentration termination well region 8 is accommodated in the termination well region 2, that is, the outer peripheral portion of the high concentration termination well region 8 is in the termination well region 2, and the high concentration termination well region 8 and the silicon carbide semiconductor layer 1b are formed. It is preferable not to touch.
  • the dose amount of the P-type impurity in the high-concentration termination well region 8 is 1.0 ⁇ 10 14 / cm 2 or more and 1.0 ⁇ 10 15 / cm 2 or less, more preferably 2.0 ⁇ 10 14 / cm 2. That's it.
  • the high-concentration termination well region 8 is provided in the termination well region 2, it is possible to suppress a decrease in effective acceptor concentration when the ionization of the P-type impurity is delayed during switching.
  • An equipotential line can be prevented from entering the termination well region 2.
  • the density of equipotential lines around the outer peripheral edge of the electrode pad 5 can be relaxed, the electric field strength applied to the outer peripheral edge of the electrode pad 5 can be relaxed.
  • the electric field in the silicon carbide semiconductor layer 1b may increase in the static off state, and the avalanche breakdown voltage may decrease.
  • an increase in the electric field in silicon carbide semiconductor layer 1b is suppressed by partially providing high-concentration termination well region 8 having a high dose of P-type impurities in termination well region 2.
  • high-concentration termination well region 8 is formed so as to be accommodated in termination well region 2, an increase in the electric field in silicon carbide semiconductor layer 1b can be effectively suppressed.
  • FIG. 10 is a cross-sectional view showing a silicon carbide semiconductor device 201 according to a comparative example of the present embodiment
  • FIG. 11 is a cross-sectional view showing a silicon carbide semiconductor device 200 according to the present embodiment. The curve shown schematically shows equipotential lines when a high voltage is applied to the back electrode 7 during switching.
  • the outer peripheral end of the high concentration termination well region 8 exists inside the outer peripheral end of the electrode pad 5. Therefore, as shown in FIG. 10, the equipotential line penetrates to the periphery of the outer periphery of the high concentration termination well region 8 at the time of switching, and the electrode pad 5 extends to the outer periphery from the high concentration termination well region 8. Since the equipotential line wraps around the outer peripheral edge of the electrode pad 5, the electric field relaxation effect at the outer peripheral edge of the electrode pad 5 is limited.
  • the outer peripheral end of high concentration termination well region 8 exceeds the outer peripheral end of electrode pad 5, and the outer peripheral end of electrode pad 5 is positioned on high concentration termination well region 8.
  • the penetration of equipotential lines at the time of switching is suppressed by the high concentration termination well region 8 existing on the outer peripheral side with respect to the electrode pad 5, so that the outer periphery of the electrode pad 5
  • the density and curvature of equipotential lines around the edges can be relaxed, and the electric field relaxation effect can be further improved.
  • the high concentration termination well region 8 is provided as in the present embodiment, and the outer peripheral end of the electrode pad 5 is positioned on the high concentration termination well region 8, so that the outer peripheral end of the electrode pad 5 is at the lower end of the outer periphery.
  • the applied electric field strength can be reduced.
  • a tapered portion 5 a may be provided at the outer peripheral end of the electrode pad 5.
  • the protruding width of the electrode pad 5 to 100 ⁇ m or less (more preferably 70 ⁇ m or less, more preferably 30 ⁇ m or less), while suppressing an increase in the electric field in a static off state, The electric field strength at the outer peripheral edge of the electrode pad 5 in dynamic switching can be relaxed. Furthermore, by setting the distance between the outer peripheral edge of the electrode pad 5 and the outer peripheral edge of the termination well region 2 to 20 ⁇ m or more (more preferably 40 ⁇ m), the electric field strength at the outer peripheral upper end of the electrode pad 5 at the time of switching is reduced, The reliability of the silicon carbide semiconductor device can be further improved.
  • the taper shape specified by the taper portion 5a refers to a shape in which the upper end position of the outer peripheral end of the electrode pad 5 is retreated to the inner peripheral side with respect to the lower end position.
  • the receding amount of the outer peripheral upper end is preferably 40% to 100% with respect to the thickness of the electrode pad 5.
  • the end surface of the tapered portion 5a is shown to be flat. However, since the purpose is to relax the electric field at the upper end of the outer periphery, which is one of the electric field concentration points, the end surface of the tapered portion 5a is strictly flat.
  • the shape does not need to be an arbitrary shape, and may be a shape in which the outer peripheral upper end is recessed toward the inner peripheral side with respect to the outer peripheral lower end of the electrode pad 5.
  • the high concentration termination well region 8 may have a plurality of separated shapes. Furthermore, termination well region 2 may be provided at a position deeper than the surface of silicon carbide semiconductor layer 1b as in silicon carbide semiconductor device 204 shown in FIG. That is, silicon carbide semiconductor layer 1 b may be interposed between termination well region 2 and Schottky electrode 4 and field insulating film 3. Although not shown, the high concentration termination well region 8 may be provided at a position deeper than the surface of the silicon carbide semiconductor layer 1b.
  • Embodiment 3 FIG.
  • SiC-SBD which is a diode element
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • 15 and 16 are cross-sectional views showing silicon carbide semiconductor device 300 according to the present embodiment.
  • 15 is a cross-sectional view of a region where a source electrode 15 described later extends to the termination region side.
  • FIG. 16 illustrates a gate electrode 13 described later extends to the termination region side and is connected to the gate pad 16. It is sectional drawing of the area
  • silicon carbide semiconductor device 300 includes silicon carbide substrate 1, interlayer insulating film 12, gate electrode 13, gate insulating film 14, source electrode 15, field insulating film 3, surface protective film 6, and back electrode 7. It is MOSFET provided with (drain electrode). Silicon carbide substrate 1 includes substrate layer 1a and silicon carbide substrate 1b as in the first and second embodiments. A back electrode 7 that is a drain electrode is formed on the back side of the substrate layer 1a. An active well region 9, a high concentration active well region 10, and a source region 11 are formed in a so-called active region (left side in FIGS. 15 and 16) in silicon carbide semiconductor layer 1b, and a termination well region is formed in the termination region. 2 is formed.
  • the active well region 9 is a P-type impurity region formed in a part of the upper layer of the silicon carbide semiconductor layer 1b.
  • a high-concentration active well region 10 and a source region 11 are formed in a part of the upper layer of the active well region 9, and the high-concentration active well region 10 has a P-type impurity amount higher than that of the active well 9.
  • the source region 11 is an N-type impurity region.
  • the gate electrode 13 is formed so as to straddle the active well region 9 and the source region 11 via the gate insulating film 14, and the interlayer insulating film 12 is formed so as to cover the gate electrode 13.
  • the source electrode 15 extends on the interlayer insulating film 12 and is connected to the source region 11 and the high concentration active well region 10 through a contact hole.
  • field insulating film 3 is formed on silicon carbide semiconductor layer 1 b on the termination region side, and the outer peripheral end of source electrode 15 extends on field insulating film 3.
  • the outer peripheral edge of the source electrode 15 is located on the termination well region 2, and the horizontal distance from the inner peripheral edge of the field insulating film 3 to the outer peripheral edge of the source electrode 15 (hereinafter, “source electrode 15 The overhanging width of “) is 100 ⁇ m or less, more preferably 70 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the distance between the outer peripheral edge of the source electrode 15 and the outer peripheral edge of the termination well region 2 is preferably 20 ⁇ m or more, and more preferably 40 ⁇ m or more.
  • a surface protective film 6 is formed on the source electrode 15 and the field insulating film 3 so as to cover the outer peripheral edge of the source electrode 15.
  • field insulating film 3 is formed on silicon carbide semiconductor layer 1 b on the termination region side, and the outer peripheral end of gate electrode 13 extends on field insulating film 3. Further, the interlayer insulating film 12 is formed on the gate electrode 13 on the termination region, but a contact hole is formed in a part thereof, and the gate pad 16 is connected to the gate electrode 13 through the contact hole of the interlayer insulating film 12. It is connected.
  • the outer peripheral end of the gate electrode 13 is located on the termination well region 2, and the horizontal distance from the inner peripheral end of the field insulating film 3 to the outer peripheral end of the gate electrode 13 (hereinafter referred to as “gate electrode 13”).
  • the overhanging width of “) is 100 ⁇ m or less, more preferably 70 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • a surface protection film 6 is formed on the gate electrode 13 and the field insulating film 3 so as to cover the outer peripheral edge of the gate electrode 13.
  • silicon carbide semiconductor device 300 as a switching element, when a high voltage is applied to back electrode 7 in the off state, a depletion layer extends from termination well region 2 formed in the termination region.
  • the voltage can be maintained and the breakdown voltage can be improved.
  • the extension of the depletion layer from the termination well region 2 is delayed, so that the equipotential line penetrates into the termination well region 2 and the outer peripheral edge of the source electrode 15 formed on the field insulating film 3
  • electric field concentration may occur at the outer peripheral edge of the gate electrode 13.
  • the projecting width of the source electrode 15 and the projecting width of the gate electrode 13 are 100 ⁇ m or less, more preferably 70 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the electric fields around the outer peripheral edges of the source electrode 15 and the gate electrode 13 can be alleviated.
  • the distance between the outer peripheral end of the source electrode 15 and the outer peripheral end of the termination well region 2 and the distance between the outer peripheral end of the gate electrode 13 and the outer peripheral end of the termination well region 2 are set to 20 ⁇ m or more (more preferably 40 ⁇ m or more).
  • the electric field at the outer peripheral end of the source electrode 15 and the electric field at the outer peripheral end of the gate electrode 13 can be alleviated.
  • the distance from the inner peripheral edge of the field insulating film 3 to the outer peripheral edge of the gate pad 16 is 100 ⁇ m or less, more preferably 70 ⁇ m.
  • the gate pad 16 is preferably 30 ⁇ m or less, or the distance between the outer peripheral end of the gate pad 16 and the outer peripheral end of the termination well region 2 is 20 ⁇ m or more (more preferably 40 ⁇ m or more). It is possible to relax the density and curvature of equipotential lines around the outer peripheral edge of the metal, and to reduce electric field concentration.
  • a barrier metal made of Ti or the like may be provided between the source electrode 15 and the interlayer insulating film 12 and the field insulating film 3.
  • the barrier metal may be, for example, a metal thin film containing Ti such as Ti, TiN, or TiSi, and may have a structure in which a plurality of these metals are stacked. Since the barrier metal is a thin film of several tens of nanometers and etching residues may be formed at the outer peripheral edge, the outer peripheral edge of the barrier metal is covered with the source electrode 15 in the same manner as the Schottky electrode 4 in the first embodiment. The electric field concentration at the outer peripheral edge of the barrier metal can be suppressed.
  • the barrier metal becomes the first surface electrode, and the source electrode 15 or the gate pad 16 becomes the second surface electrode.
  • the high-concentration termination well region 8 may be formed in the termination well region 2 to further reduce the electric field.
  • the electric field at the outer peripheral end of the source electrode 15 is further relaxed by providing the outer peripheral end of the source electrode 15 on the high concentration termination well region 8 as shown in FIG. Can do.
  • the same effect can be obtained by providing the outer peripheral end on the high-concentration termination well region 8 with respect to the gate electrode 13 and the gate pad 16 as well.
  • the high concentration termination well region 8 is formed in the termination well region 2, the high concentration termination well region 8 is extended to the cell region side,
  • the source electrode 15 may be contacted instead of the concentration active well region 10.
  • a tapered portion is provided at the outer peripheral end of source electrode 15 in order to relax the electric field at the upper end of outer peripheral end of source electrode 15.
  • a tapered portion may be provided also at the outer peripheral ends of the gate electrode 13 and the gate pad 16.
  • the outermost peripheral high concentration active well region well region 10 may be extended into the termination well region 2 and used as the high concentration termination well region.
  • a plurality of spaced high concentration termination well regions well regions 10 may be provided on the outer peripheral side.
  • the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 スイッチング時における電界を緩和し、素子耐圧を向上させることができる炭化珪素半導体装置を提供することを目的とする。 炭化珪素基板1の表面上に形成されたフィールド絶縁膜3と、フィールド絶縁膜3に乗り上げて形成された第一表面電極4と、第一表面電極4を覆い第一表面電極4の外周端を越えてフィールド絶縁膜3上に延在する第二表面電極5と、炭化珪素基板1内において第二表面電極5の外周端よりも外周側に延在する第二導電型の終端ウェル領域2とを備え、第二表面電極5の外周下端に印加される電界強度がフィールド絶縁膜3又は表面保護6を構成する絶縁材料の絶縁破壊強度のうち小さい方の絶縁破壊強度と等しくなる時の第二表面電極5の外周端とフィールド絶縁膜3の内周端との距離よりも第二表面電極5の外周端とフィールド絶縁膜3の内周端との距離が小さい炭化珪素半導体装置100とする。

Description

炭化珪素半導体装置
 本発明は、炭化珪素半導体装置に関するものである。
 近年、高耐圧かつ低損失を実現することができる次世代の半導体装置として、炭化珪素(SiC)を用いた半導体装置(以下、「炭化珪素半導体装置」という。)が注目されている。従来の半導体装置に用いられてきたシリコン(Si)と比較して、SiCは絶縁破壊電界強度が約10倍となることから、炭化珪素半導体装置は特に高耐圧の電力用半導体装置への展開が期待されている。
 炭化珪素半導体装置において、更なる耐圧向上を図るため、N型の炭化珪素半導体層内のいわゆる終端領域にP型のガードリング領域(終端ウェル領域)を設けることで、炭化珪素半導体層とガードリング領域とのPN接合によって形成される空乏層によって逆電圧が印加された際の電界を緩和することが知られている(例えば、特許文献1。)。また、特許文献1記載SiCからなるショットキバリアダイオード(SiC-SBD)では、終端領域における炭化珪素半導体層上にフィールド絶縁膜を設け、表面電極の外周端がフィールド絶縁膜上に乗り上がるように形成している。
 一方、SiC-SBDにおいて、炭化珪素半導体層およびフィールド絶縁膜上に設けられるショットキー電極(第一表面電極)の外周端にはエッチング残渣が形成されてしまうことがあり、エッチング残渣が形成されるとエッチング残渣周辺に電界集中が発生し炭化珪素半導体装置の不良を招く恐れがある。そこで、ショットキー電極上に設けられる電極パッド(第2表面電極)によりショットキー電極の外周端を覆うことで、ショットキー電極の外周端に形成されるエッチング残渣が露出しないため、炭化珪素半導体装置の不良を抑制することが知られている(例えば、特許文献2参照。)
特表2006-516815号公報 特開2013-211503号公報
 しかしながら、電極パッドによってショットキー電極の外周端を覆うと、フィールド絶縁膜上において電極パッドの外周端が外周側に張り出すこととなるが、電極パッドの張り出し幅が大きくなると、スイッチング時において電極パッドの外周端周辺における電界が増大し、フィールド絶縁膜や電極パッドの外周端を覆う表面保護膜の絶縁破壊が発生し、素子不良を招く恐れがあることを発明者らは新たに発見した。このようなスイッチング時において電極パッドの外周端に発生する電界集中は、以下のようなメカニズムで生じるものと推察される。
 上述のように、炭化珪素半導体装置のオフ状態、すなわち、一定の電圧が印加された静的な状態において、終端領域に設けられる終端ウェル領域から空乏層が伸びることで電圧を保持し電界緩和を図っているが、炭化珪素半導体装置のオン状態からオフ状態へと切り替わるスイッチング状態では、高速に高電圧が印加されることになるため、終端ウェル領域からの空乏層の伸びが遅れると、終端ウェル領域による電界緩和効果が十分に発揮されないことがある。特に、炭化珪素半導体装置では、同耐圧のシリコン半導体装置よりも高速でのスイッチングが可能となるとともに、アクセプタレベルが従来のシリコン半導体と比較して深く空乏層の伸びが遅くなることから、スイッチング時に高速で印加される電圧に対して終端ウェル領域からの空乏層の伸びが遅れ電界緩和が十分に発揮されない。そして、終端ウェル領域の外周側で十分に電圧を保持することができなくなった場合、終端ウェル領域内部にまで等電位線が入りこむこととなり、かかる場合電極パッドの外周端がフィールド絶縁膜上において外周側に張り出していると、角部となる電極パッド周辺における等電位線の密度が高くなり、表面電極の外周端において電界集中が発生してしまい、素子不良を招く恐れがあった。
 このようなスイッチング時における終端ウェル領域による電界緩和効果の低下を防ぐため、終端ウェル領域におけるP型ドーズ量を増加させ空乏層の伸びを促進させることが考えられるが、スイッチング時における電界緩和を考慮して終端ウェル領域のP型ドーズ量を最適化すると、静的なオフ状態における電界が増大してしまい耐圧低下を招く恐れがあった。つまり、従来の炭化珪素半導体装置においては、静的なオフ状態における電界緩和と、動的なスイッチング時における電界緩和の両立が困難となり、素子耐圧を十分に向上させることが困難となっていた。
 本発明は、上述のような問題を解決するためになされたもので、オフ状態における電界増加を抑制しつつ、スイッチング時における電界を緩和し、素子耐圧を向上させることができる炭化珪素半導体装置を提供することを目的とする。
 本発明にかかる炭化珪素半導体装置は、第一導電型の炭化珪素基板と、炭化珪素基板の表面上に形成されたフィールド絶縁膜と、炭化珪素基板の表面上であってフィールド絶縁膜よりも内周側に形成されるとともにフィールド絶縁膜に乗り上げて形成された第一表面電極と、第一表面電極を覆い第一表面電極の外周端を越えてフィールド絶縁膜上に延在する第二表面電極と、炭化珪素基板内の上部において第一表面電極の少なくとも一部と接して形成され炭化珪素基板内において第二表面電極の外周端よりも外周側に延在する第二導電型の終端ウェル領域と、第二表面電極の外周端を覆うようにフィールド絶縁膜上および第二表面電極上に形成され絶縁材料からなる表面保護膜と、炭化珪素基板の裏面に形成された裏面電極とを備え、第二表面電極の外周下端に印加される電界強度がフィールド絶縁膜又は表面保護を構成する絶縁材料の絶縁破壊強度のうち小さい方の絶縁破壊強度と等しくなる時の第二表面電極の外周端とフィールド絶縁膜の内周端との距離よりも第二表面電極の外周端とフィールド絶縁膜の内周端との距離が小さいものである。
 本発明にかかる炭化珪素半導体装置によれば、スイッチング時において終端ウェル領域からの空乏層の伸びが遅れ、等電位線が終端ウェル領域内部にまで入りこんだとしても、第二表面電極の外周下端に印加される電界強度がフィールド絶縁膜および表面保護膜の絶縁破壊強度より小さくなるよう、第二表面電極の外周端が内周側に位置しているため、第二表面電極の外周端周辺における等電位線の密度を低減し、オフ状態における電界増加を抑制しつつ、スイッチング時における第二表面電極の外周端周辺における電界を抑制することができる。
本発明の実施の形態1にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態1の比較例にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態1の比較例にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態1にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態1にかかるシミュレーション結果を示すグラフである。 本発明の実施の形態1にかかるシミュレーション結果を示すグラフである。 本発明の実施の形態1にかかるシミュレーション結果を示すグラフである。 本発明の実施の形態1にかかるシミュレーション結果を示すグラフである。 本発明の実施の形態2にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態2の比較例にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態2にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態2にかかる炭化珪素半導体装置の変形例の構成を示す断面図である。 本発明の実施の形態2にかかる炭化珪素半導体装置の変形例の構成を示す断面図である。 本発明の実施の形態2にかかる炭化珪素半導体装置の変形例の構成を示す断面図である。 本発明の実施の形態3にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態3にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態3の変形例にかかる炭化珪素半導体装置の構成を示す断面図である。 本発明の実施の形態3の変形例にかかる炭化珪素半導体装置の構成を示す断面図である。
 本明細書において、各領域の「単位面積当たりの不純物量[cm-2]」とは各領域における不純物濃度を深さ方向に積分することで算出される値を示すこととする。また、各領域の不純物濃度が濃度プロファイルを有する場合において、各領域の「不純物濃度[cm-3]」とは各領域における不純物濃度のピーク値を示すものとし、各領域の不純物濃度が濃度プロファイルを有する場合において、各領域の「厚さ」は不純物濃度が当該領域における不純物濃度のピーク値の1/10の値以上となる領域までの厚さとする。ただし、各領域における「ドーズ量[cm-2]」を算出する際にいう「不純物濃度」については、不純物濃度のピーク値ではなく、実際の不純物濃度とする。
 また、本明細書において、「~上」という場合、構成要素間に介在物が存在することを妨げるものではない。例えば、「A上に設けられたB」と記載している場合、AとBとの間に他の構成要素Cが設けられたものも設けられていないものも含む。
実施の形態1.
 まず、本発明の実施の形態1にかかる炭化珪素半導体装置100の構成を説明する。以下、第一導電型をN型とし第二導電型をP型とするN型のSiC-SBD(Silicon Carbide Schottky Barrier Diode)について例示して説明するが、第一導電型をP型とし第二導電型をN型とするP型の炭化珪素半導体装置でもよいし、SBDではなくPNダイオードやPiNダイオードであってもよい。
 図1は、実施の形態1にかかる炭化珪素半導体装置100の構成を示す断面図である。図1においては、炭化珪素半導体装置100の終端領域周辺における断面部分のみを図示しており、図1において、右側が炭化珪素半導体装置100の右端部の終端領域側であり、左側がオン状態において主電流が流れる活性領域側である。
 図1において、炭化珪素半導体装置100は、炭化珪素基板1と、フィールド絶縁膜3と、第一表面電極であるショットキー電極4と、第二表面電極である電極パッド5、表面保護膜6と、裏面電極7とを備えたSiC-SBDである。炭化珪素基板1は、N+型の炭化珪素からなる基板層1aと、基板層1a上に形成されたN-型の炭化珪素半導体層1b(ドリフト層)とからなる。炭化珪素半導体層1b内の上部のいわゆる終端領域にはP型の終端ウェル領域2が形成されている。
 炭化珪素基板1に含まれるN型の不純物としては窒素(N)やリン(P)を、P型の不純物としてはアルミニウム(Al)やホウ素(B)を用いることができ、本実施の形態においては、N型の不純物は窒素とし、P型の不純物はアルミニウムとする。炭化珪素半導体層1bのN型の不純物濃度は基板層1aのN型の不純物濃度よりも低く、炭化珪素半導体装置100の設計耐圧に応じて炭化珪素半導体層1bのN型の不純物濃度と厚みを設定する。例えば、1.0×1014/cm~1.0×1016/cmとすることができ、本実施の形態では炭化珪素半導体層1bのN型の不純物濃度を8.0×1015/cmとする。終端ウェル領域2のP型不純物のドーズ量は1.0×1013/cm~1.0×1014/cmとすることが好ましく、より好ましくは2.0×1013/cm~5.0×1013/cmとし、本実施の形態では2.0×1013/cmとする。
 炭化珪素基板1(炭化珪素半導体層1b)の表面上には、フィールド絶縁膜3と、ショットキー電極4とが形成されている。ショットキー電極4は、炭化珪素半導体層1bの表面上の中央部(図1において左側)に形成され、炭化珪素半導体層1bとショットキー接合する。フィールド絶縁膜3は、炭化珪素半導体層1bの表面上においてショットキー電極4よりも外周側のいわゆる終端領域上に形成され、平面視においてショットキー電極4が炭化珪素半導体層1bにショットキー接合している部分を取り囲んでいる。ショットキー電極4の一部は、終端ウェル領域2上に位置し終端領域ウェル領域2とコンタクトしている。また、ショットキー電極4はフィールド絶縁膜3に乗り上がるように形成されており、ショットキー電極4の外周端はフィールド絶縁膜3上に位置している。
 また、フィールド絶縁膜3には、酸化珪素(SiO)や窒化珪素(SiN)を用いることができ、厚さは例えば0.5μm~3.0μmとすることができる。本実施の形態ではフィールド絶縁膜3として厚さ1.0μmのSiO膜を用いることとする。ショットキー電極4は、炭化珪素半導体とショットキー接合する金属であればよく、チタン、モリブデン、ニッケル、金、タングステン等を用いることができ、厚さは例えば30nm~300nmとすることができる。本実施の形態ではショットキー電極4として厚さ200nmのチタン膜を用いることとする。
 ショットキー電極4上には電極パッド5が形成されており、電極パッド5はショットキー電極4の外周端を覆っている。すなわち、電極パッド5の外周端はショットキー電極4の外周端を越えてフィールド絶縁膜3上に位置している。電極パッド5には、アルミニウム、銅、モリブデン、ニッケルのいずれかを含む金属やAl-Siのようなアルミニウム合金等を用いることができ、厚さは例えば300.0nm~10.0μmとすることができる。本実施の形態では電極パッド5として厚さ5.0μmのアルミニウム層を用いることとする。
 さらに、電極パッド5の外周端は終端ウェル領域2上に位置し、フィールド絶縁膜3の内周端から電極パッド5の外周端までの水平方向の距離(以下、「電極パッド5の張り出し幅」という。)が0μmよりも大きく100μm以下なるように電極パッド5の外周端位置が調整されている。なお、電極パッド5の張り出し幅を算出するにあたって、電極パッド5の外周端やフィールド絶縁膜3の内周端の端面が傾いている場合には、電極パッド5の外周下端およびフィールド絶縁膜3の内周下端を基準とする(後述する他の張り出し幅において同様。)。
 フィールド絶縁膜3および電極パッド5上には、表面保護膜6が形成されている。表面保護膜6は、電極パッド5の外周端を覆うように形成されており、外部端子との接続を行うため、電極パッド5の中央部上において開口を有する。また、外部環境からの応力を緩和するため、表面保護膜6は有機樹脂膜であることが望ましく、本実施の形態では表面保護膜6としてポリイミドを用いる。
 炭化珪素基板1(基板層1a)の裏面側には裏面電極7が形成されている。裏面電極7は基板層1aとオーミック接合している。そのため、裏面電極7には、基板層1aである炭化珪素とオーミック接合することができるニッケル、アルミニウム、モリブデン等の金属を用いることができ、本実施の形態ではニッケルを用いる。
 次に、炭化珪素半導体装置100の製造方法について説明する。
 N+型の基板層1aと基板層1aの上面にエピタキシャル結晶成長させたN-型の炭化珪素半導体層1bから構成される炭化珪素基板1を用意する。そして、公知の方法、例えば写真製版技術により、所定の形状にレジスト膜をパターニングする。その後、レジスト膜上からP型の不純物を選択的にイオン注入することで、炭化珪素半導体層1b内の上部にP型の終端ウェル領域2(ガードリング領域)を形成する。
 ここで、P型の不純物領域には例えば不純物イオンとしてアルミニウムイオンまたはホウ素イオンが注入され、イオン注入後1500℃以上の高温でアニールすることで不純物イオンが電気的に活性化され、所定の導電型の領域が形成される。なお、上述したように、終端ウェル領域2のP型不純物のドーズ量は1.0×1013/cm~1.0×1014/cmとすることが好ましく、より好ましくは2.0×1013/cm~5.0×1013/cmとし、本実施の形態では2.0×1013/cmとする。
 また、P型不純物のイオン注入は、例えば注入エネルギーを100keV~700keVとする。かかる場合、上述した各領域におけるP型不純物のドーズ量[cm-2]を不純物濃度[cm-3]に換算すると、終端ウェル領域2の不純物濃度は1.0×1017/cm~1.0×1019/cmとなる。
 続いて、例えばCVD法により、炭化珪素半導体層1bの表面上に厚さ1.0μmのシリコン酸化膜を堆積し、その後写真製版とエッチングにより、中央部のシリコン酸化膜を除去し、開口部を有するフィールド絶縁膜3を形成する。フィールド絶縁膜3の開口端は終端ウェル領域2上に位置するよう形成される。そして、炭化珪素基板1の基板層1aの裏面側に裏面電極7を形成する。なお、裏面電極7の形成は、以下で説明する炭化珪素基板1の表面側の工程が全て完了した後に行うこととしても構わない。
 次に、例えばスパッタ法により、フィールド絶縁膜3の形成された炭化珪素半導体層1bの表面上の全面に、ショットキー電極4となる金属膜を成膜する。成膜する金属膜は、本実施の形態においては、厚さ200nmのチタン膜とする。さらに、写真製版技術により、所定のパターン形状のレジスト膜を成膜する。その後、レジスト膜をマスクとして金属膜をエッチングし、所望の形状のショットキー電極4を形成する。金属膜のエッチングにおいては、ドライエッチングやウェットエッチングを用いることができるが、チップへのダメージを軽減するためウェットエッチングを用いることが望ましく、例えばエッチング液としてフッ酸(HF)を用いる。
 続いて、ショットキー電極4を覆うように、フィールド絶縁膜3およびショットキー電極4上に電極パッド5を形成する。電極パッド5の形成は、ショットキー電極4の形成と同様に、所定の金属膜を全面に成膜した後にエッチングを行うことで可能となり、金属膜のエッチングは例えばリン酸系のエッチング液を用いたウェットエッチングによって行うこととする。その後、電極パッド5を覆うように表面保護膜6を形成することで、本実施の形態に係る炭化珪素半導体装置100が完成する。
 次に、本実施の形態に係る炭化珪素半導体装置100の動作について説明する。本実施の形態に係る炭化珪素半導体装置において、表面電極(ショットキー電極4および電極パッド5)に対して裏面電極7に負の電圧を印加すると、表面電極から裏面電極7に電流が流れ、炭化珪素半導体装置100は導通状態(オン状態)となる。一方、表面電極に対して裏面電極7に正の電圧を印加すると、ショットキー電極4と炭化珪素半導体層1bとの間のショットキー接合及び終端ウェル領域2と炭化珪素半導体層1bとの間のPN接合によって電流が阻止され、炭化珪素半導体装置100は阻止状態(オフ状態)となる。
 以下、本実施の形態に係る炭化珪素半導体装置100の作用・効果について説明する。
 本実施の形態とは異なり、フィールド絶縁膜3を設けずに、ショットキー電極4の全面が炭化珪素半導体層1b上に形成される場合、ショットキー電極4と炭化珪素半導体層1bとの接合面の端部周辺において等電位面の曲率が大きくなり、ショットキー電極4の外周端周辺に電界集中が発生する。そのため、本実施の形態のように、ショットキー電極4をフィールド絶縁膜3に乗り上がるような構成とすることで、ショットキー電極4の外周端における電界集中を緩和することができる。さらに、フィールド絶縁膜3を設けた場合において、ショットキー電極4をフィールド絶縁膜3上に乗り上がるように形成することで、ショットキー電極4の外周端とフィールド絶縁膜3の開口端との位置合わせのマージンを拡大させることができるため、製造プロセスを簡素化することができる。
 また、ショットキー電極4の外周端においては、エッチング残渣が形成され、エッチング残渣の周辺において電界集中が発生し問題となる恐れがある。エッチング残渣は、ショットキー電極4又は電極パッド5のいずれをエッチングする場合においても生じ得るし、ドライエッチング又はウェットエッチングのいずれの場合においても生じ得るが、金属膜の厚さや、金属膜の材料とエッチング液との関係から、ショットキー電極4を形成する際にエッチング残渣が特に生じやすい。そして、エッチング残渣の形状等によっては、ショットキー電極4の外周端部で発生する電界集中によって炭化珪素半導体装置の信頼性が低下する恐れがあった。
 本実施の形態では、ショットキー電極4の外周端を覆うように電極パッド5を形成しているため、ショットキー電極4の外周端に形成されるエッチング残渣が露出することがない。そのため、ショットキー電極4にエッチング残渣が生じたとしても、ショットキー電極4の端部における電界が問題となる恐れはない。一方、電極パッド5によってショットキー電極4の端部(エッチング残渣)を覆うことで、ショットキー電極4のエッチング残渣部に代わり、電極パッド5の外周端が電界集中ポイントとなるが、電極パッド5はショットキー電極4と比較してエッチング残渣が形成されにくく、エッチング残渣が形成されたとしてもショットキー電極4ほど尖った形状とならないため、電極端部における電界集中を緩和することができる。
 さらに、本実施の形態のように、電極パッド5によってショットキー電極4を覆う場合、電極パッド5の外周端が従来よりも外周側により張り出すことになるが、以下の観点を考慮して電極パッド5の外周端の位置を調整する必要がある。
 図2および図3に本実施の形態にかかる炭化珪素半導体装置101の比較例を示す断面図である。また、図4は、本実施の形態にかかる炭化珪素半導体装置100を示す断面図である。図2ないし図4において、破線で示す曲線は裏面電極7に高電圧が印加された際の等電位線を模式的に図示しており、図2は裏面電極7に高電圧が印加された後の静的なオフ状態の等電位線を示しており、図3および図4は裏面電極7に高電圧が印加された際の動的なスイッチング状態における等電位線を示している。
 本実施の形態にように、終端領域にガードリングとして機能する終端ウェル領域を設けた炭化珪素半導体装置では、裏面電極に高電圧が印加されたオフ状態において、終端ウェル領域と炭化珪素半導体層との間で形成される空乏層によって電圧が保持されることになるため、終端ウェル領域と炭化珪素半導体層とのPN接合部分に沿って等電位線が密となる。図2に示すように、静的なオフ状態においては、終端ウェル領域2のP型不純物濃度が炭化珪素半導体層1bのN型不純物濃度よりも高いため、主に終端ウェル領域2よりも外周側の炭化珪素半導体層1bへ空乏層が伸びることとなり、その結果等電位線が密となる部分も終端ウェル領域2より外周側となる。従って、電極パッド5の外周端が終端ウェル領域2上に位置していれば、電極パッド5の外周端に等電位線が回り込み電極パッド5の外周端で電界集中が発生する恐れもない。
 一方、動的なスイッチング時においては、終端ウェル領域2内のP型不純物のイオン化が遅れてしまい、終端ウェル領域2から炭化珪素半導体層1b側へ十分に空乏層を伸ばすことができないことがある。特に、炭化珪素半導体装置では、Alの場合には200meV以上、ボロン(B)の場合は300meV以上と、P型不純物のアクセプタレベルがシリコンの場合と比較して数倍程度深くなるため、P型不純物のイオン化が顕著に遅延する。
 さらに、同耐圧クラスの半導体装置で比較すると、シリコンではバイポーラデバイスであったものが、炭化珪素ではユニポーラデバイスに置き換わることが期待されており、例えば、本実施の形態のようなSiC-SBDは、Si-PNダイオードに代えて利用されることが期待されている。そうすると、ユニポーラデバイスであるSiC-SBDでは、バイポーラデバイスであるSi-PNダイオードよりもスイッチング速度が高くなる。このように炭化珪素半導体装置では、同耐圧のシリコン半導体装置と比較してスイッチング速度が高くなるため、従来よりも高速で高電圧が印加されることとなる。
 その結果、炭化珪素半導体装置では、高電圧が印加される速度に対してP型不純物のイオン化が極端に遅れてしまうため、終端ウェル領域2の実効的なアクセプタ濃度が十分に確保できなくなり、終端ウェル領域2と炭化珪素半導体層1bとの間で形成される空乏層が終端ウェル領域2側へ伸びることとなる。これにより、図3に示すように、動的なスイッチングでは、空乏層が終端ウェル領域2内へ侵入するため、等電位線が密となる部分も、静的なオフ状態に対してより内周側に侵入することとなる。そのため、電極パッド5の外周端が終端ウェル領域2上に存在していたとしても、終端ウェル領域2上の電極パッド5の位置によっては電極パッド5の外周端に等電位線が回り込み、電極パッド5の外周端で電界集中が発生してしまうことを新たに発見した。特に、電極パッド5の外周端における電界集中は、等電位線の曲率がより大きくなる電極パッド5の外周下端において顕著となる。
 そこで、本実施の形態では、スイッチング時において発生する電極パッド5の外周端における電界集中を考慮して、図2および図3に記載した比較例よりも電極パッド5の張り出し幅を短くすることで、電極パッド5の外周端における電界緩和を図っている。これにより、図4に示すように、スイッチング時において終端ウェル領域2内に空乏層が侵入したとしても、電極パッド5の張り出し幅を低減することで、電極パッド5の外周端周辺における等電位線の密度を緩和できるため、電極パッド5の外周端に印加される電界集中を抑制することができる。
 電極パッド5の具体的な張り出し幅は、電極パッド5に接するフィールド絶縁膜3と表面保護膜6の絶縁破壊強度に基づき設定すればよい。より、具体的には、電極パッド5の外周下端に印加される電界強度がフィールド絶縁膜3又は表面保護膜6の絶縁破壊強度のうち最も小さい絶縁破壊強度と等しくなる時の電極パッド5の張り出し幅よりも、実際の電極パッド5の張り出し幅が小さくなるようにする。以下、電極パッド5の張り出し幅の設定方法について説明する。
 図5に、電極パッド5の張り出し幅を変更した際の電極パッド5の外周端に印加される電界強度をシミュレーションにより算出した結果を示す。図5において、縦軸は電極パッド5の外周端における電界強度を示し、横軸は電極パッド5の張り出し幅を示し、黒いダイヤマーカーはdV/dtの値が0kV/μs、すなわち静的なオフ状態における電界強度を示し、白い丸マーカーはdV/dtの値が10kV/μsにおける電界強度を示し、黒い丸マーカーはdV/dtの値が20kV/μsにおける電界強度を示し、黒い三角マーカーはdV/dtの値が50kV/μsにおける電界強度を示している。
 また、図5における電極パッド5の外周端における電界強度とは、電極パッド5の外周下端における電界強度を示すこととするが、実際には電極パッド5の外周端下端は特異点となるため、電極パッド5の外周下端よりも水平方向に10nm外周側の点における電界強度を算出している(以下で説明する他のシミュレーション結果においても同様。)。なお、図5のシミュレーションに用いたシミュレーションモデルは、電極パッド5の張り出し幅およびフィールド絶縁膜3の内周端と終端ウェル領域2の外周端との距離以外の構成については本実施の形態にかかる炭化珪素半導体装置100と同様の構成であり、フィールド絶縁膜3の内周端と終端ウェル領域2の外周端との距離は140μmとし、電極パッド5の張り出し幅を5μm~130μmまで変化させている。
 図5に示すように、dV/dtの値が0kV/μsである静的なオフ状態においては、上述したように、電極パッド5の外周端が終端ウェル領域2上に設けられているため、張り出し幅に関係なく、電極パッド5の外周端における電界強度は十分低い値となる。なお、図5におけるシミュレーション結果において、dV/dtの値が0kV/μsの場合の電界強度は、詳細には、概ね数E+04[V/cm]オーダーとなっている。
 一方、dV/dtの値が増大するに連れて電極パッド5の外周端における電界強度は増大し、dV/dtの値が10kV/μsを超えると、張り出し幅の値によっては数[MV/cm]オーダーまで電界強度が増大してしまう。そのため、スイッチング時の電界強度を考慮して張り出し幅を設定する必要がある。そこで、電極パッド5が接しているフィールド絶縁膜3と表面保護膜6の絶縁破壊強度のうち最も小さい絶縁破壊強度よりも、スイッチング時に電極パッド5の外周端に発生する電界強度が高くならないように張り出し幅を決定する。
 本実施の形態のように、フィールド絶縁膜3をSiO、表面保護膜6をポリイミドで形成する場合、一般的に表面保護膜6の絶縁破壊強度の方が低くなるため、表面保護膜6に用いるポリイミドの絶縁破壊強度を基準とする。ここで、ポリイミドの絶縁破壊強度は、概ね3.0~4.0[MV/cm]であり、例えば、ポリイミドとしてPIX-3400(日立化成デュポンマイクロシステムズ製)を用いると、硬化時間や測定方法によっても異なるが、絶縁破壊強度は約3.5[MV/cm]となる。よって、本実施の形態では、張り出し幅を100μm以下とすることで、dV/dtを50kV/μsで動作させたとしても、スイッチング時の電界によるポリイミドの絶縁破壊強度を越えることがなく、表面保護膜6の絶縁破壊を抑制することができる。
 また、フィールド絶縁膜3や表面保護膜6に印加される電界が小さければ小さいほど、絶縁膜の寿命を伸ばすことができるため、電極パッド5の外周端に印加される電界強度がフィールド絶縁膜3や表面保護膜6の絶縁破壊強度よりも小さかったとしても、より一層電極パッド5の外周端における電界を緩和することが望ましい。そして、図5に示すように、張り出し幅低減による電界緩和効果は、張り出し幅が小さければ小さいほど大きくなり、dV/dtの値が50kV/μsの場合、張り出し幅Lに対する電界強度Eの変化量dE/dLは、張り出し幅が5~30μmの範囲で567.6[MV/cm]、張り出し幅が30~70μmの範囲で280[MV/cm]、張り出し幅が70~100μmの範囲で126.7[MV/cm]となっており、張り出し幅が小さいほど電界緩和効果が増大していく。
 そのため、電極パッド5の張り出し幅は、100μm以下の中でも、70μm以下とすることがより好ましく、30μm以下とすることがより一層好ましく、電極パッド5の張り出し幅を100μm以下とすることで電極パッド5の外周端における電界強度を3.5[MV/cm]以下とすることができ、電極パッド5の張り出し幅を70μm以下とすることで電極パッド5の外周端における電界強度を3.0[MV/cm]以下とすることができ、電極パッド5の張り出し幅を30μm以下とすることで電極パッド5の外周端における電界強度を2.0[MV/cm]以下とすることができる。
 ところで、スイッチング時に電極パッド5の外周端に印加される電界強度を緩和するため、終端ウェル領域2のP型不純物のドーズ量を増大させることで、スイッチング時にP型不純物のイオン化が遅れたとしても実効的なアクセプタ濃度を十分に確保し、終端ウェル領域2内に空乏層が侵入することを抑制することができる。これにより、電極パッド5の外周端に等電位線が回りこむことを防ぎ、電極パッド5の外周端における電界を緩和することができると考えられる。
 図6に、終端ウェル領域2のP型不純物のドーズ量を増大させた場合の電極パッド5の張り出し幅と外周端における電界強度との関係を算出したシミュレーション結果を示す。図6において、縦軸は電極パッド5の外周端における電界強度を示し、横軸は電極パッド5の張り出し幅を示し、黒い三角マーカーは終端ウェル領域2のP型不純物のドーズ量が1.0E14[cm-2]のときの電界強度を示し、黒い四角マーカーは終端ウェル領域2のP型不純物のドーズ量が2.0E14[cm-2]のときの電界強度を示している。なお、図6におけるシミュレーションでは、dV/dtの値を100kV/μsとして、図6におけるシミュレーションモデルでは、3.3kVの耐圧設計で炭化珪素半導体層1bの厚みと不純物濃度を設計しており、本実施の形態にかかる炭化珪素半導体装置100に対して終端ウェル領域2よりも外周側にFLR領域(Field limiting Ring)を追加した構成としている。
 図6に示すように、終端ウェル領域2のドーズ量を増加させるに連れて電極パッド5の外周側における電界強度を緩和することができ、図5において示したdV/dtの値が50kV/μsの場合と比較しても、dV/dtの値が増大しているにも関わらず終端ウェル領域2のドーズ量を増加させることで電界強度を緩和することができ、張り出し幅に関わらず電界強度を2.5[MV/cm]以下とすることができる。
 しかしながら、終端ウェル領域2のドーズ量を増加させると静的なオフ状態において炭化珪素半導体層1b内の電界強度が増大し、炭化珪素半導体装置100の耐圧が低下する恐れがあった。図7は終端ウェル領域2のP型不純物のドーズ量[cm-2]とアバランシェ降伏電圧との関係を示すシミュレーション結果である。図7におけるシミュレーションは図6におけるシミュレーションと同様の条件で行っている。なお、アバランシェ降伏電圧とは、炭化珪素半導体装置に印加する電圧を徐々に大きくした際に、炭化珪素半導体層においてアバランシェ降伏が生じる時点の印加電圧を言うこととする。
 図7に示すように、終端ウェル領域2のP型不純物のドーズ量が増大するに連れて、アバランシェ降伏電圧が低下してしまう。これは、P型不純物のドーズ量が増加するとともに、静的なオフ状態における炭化珪素半導体層1b内の終端ウェル領域2の端部における電界が増大することに起因する。そのため、スイッチング時の電界緩和を目的に終端ウェル領域2のP型不純物のドーズ量を増加させすぎると、炭化珪素半導体層1bのアバランシェ降伏電圧が低下するため素子耐圧が低下する恐れがある。つまり、静耐圧と動耐圧で終端ウェル領域2の最適なドーズ量が異なるため、静的なオフ状態における電界によって定まる耐圧(静耐圧)と動的なスイッチング時の電界によって定まる耐圧(動耐圧)とはトレードオフの関係にある。
 そこで、本実施の形態では、終端ウェル領域2のP型不純物のドーズ量を、1.0×1013/cm~1×1014/cm(より好ましくは、2.0×1013/cm~5×1013/cm)の範囲内である2.0×1013/cmとすることで、アバランシェ降伏電圧の低下を抑制し静耐圧を確保するとともに、電極パッド5の張り出し幅を100μm以下(より好ましくは70μm以下、より好ましくは30μm以下)とすることでスイッチング時の電界を緩和し動耐圧を確保することができ、静耐圧と動耐圧との両立を実現することができる。
 さらに、電極パッド5の外周端が終端ウェル領域2の外周端に近接していると、電極パッド5の外周上端における電界が増大し、ポリイミドの絶縁破壊を招く恐れがある。
 図8は、終端ウェル領域2の外周端と電極パッド5の外周端との距離D[μm]と電極パッド5の外周上端における電界強度[MV/cm]との関係を算出したシミュレーション結果である。図8において、縦軸は電極パッド5の外周上端における電界強度を示し、横軸は距離Dを示し、黒いダイヤマーカーはdV/dtの値が10kV/μsにおける電界強度を示し、黒い四角マーカーはdV/dtの値が20kV/μsにおける電界強度を示し、黒い三角マーカーはdV/dtの値が50kV/μsにおける電界強度を示している。図8におけるシミュレーションモデルは、図5におけるシミュレーションモデルと同様であり、図8における電極パッド5の外周上端における電界強度とは、図5の場合と同様に、電極パッド5の外周上端から平面方向に10nm外周側の点における電界強度を示している。なお、距離Dを算出するにあたって、電極パッド5の外周端と終端ウェル領域2の外周端の端面が傾いている場合には、電極パッド5の外周下端および終端ウェル領域2の外周上端を基準とする。
 図8に示すように、電極パッド5の外周上端における電界強度は、終端ウェル領域2の外周端と電極パッド5の外周端との距離Dが短いと数MV/cmオーダーとなるが、距離Dを20μm以上、より好ましくは40μm以上とすることで、電極パッド5の外周上端における電界強度を1.0MV/cm以下に低減できる。これは、図3および図4を用いて上述したように、空乏層が侵入し等電位線が密となる終端ウェル領域2の外周端周辺から電極パッド5の外周端を離すことで、角部となる電極パッド5の外周上端周辺における等電位線の密度を緩和することができることに起因すると考えられる。従って、終端ウェル領域2の外周端と電極パッド5の外周端との距離Dは、20μm以上、より好ましくは40μm以上とすることが望ましく、これにより電極パッド5の外周上端における電界についても緩和することが可能となり、炭化珪素半導体装置100の信頼性をより一層向上させることができる。
 また、本実施の形態では、終端領域にガードリングとして機能する終端ウェル領域2のみを設けることとしているが、これに限定されるものではない。例えば、終端ウェル領域2の外周側に隣接しJTE(Junction Termination Extension)領域を設け、外周側に向かうに連れてP型不純物濃度が低下するような構成としても構わないし、終端ウェル領域2の外周側において、終端ウェル領域2とは離間して複数のFLR領域を設けた構成としても良い。なお、JTE領域を設ける場合にはJTE領域も含めて一つの終端ウェル領域2とし、上述した終端ウェル領域2の外周端と電極パッド5の外周端の距離Dは、JTE領域の外周端と電極パッド5の外周端との距離とする。よって、JTE領域を設ける場合にはJTE領域の外周端と電極パッド5の外周端との距離を20μm以上(より好ましくは、40μm以上)とすることで電極パッド5の外周上端の電界を緩和することができる。
 なお、本実施の形態では、SiC-SBDについて例示したが、活性領域において表面電極とオーミックコンタクトする活性領域を設けたPNダイオードやPiNダイオードとすることとしても良い。さらに、いわゆるJBS(Junction Barrier Schottky diode)やMPS(Merged PiN Schottky diode)と呼ばれる、ショットキー電極4が炭化珪素半導体層1bとショットキーコンタクトする領域とオーミックコンタクトする領域が混在する構成してもよい。
実施の形態2.
 上述した実施の形態1においては、電極パッド5の張り出し幅を低減することでスイッチング時の電界緩和を図っていたが、更なる電界緩和を図るため、終端ウェル領域内にP型不純物濃度がより高い高濃度終端ウェル領域を設けることとしてもよい。そこで、実施の形態2として、高濃度終端ウェル領域を備えた炭化珪素半導体装置について、以下説明する。
 図9は、本実施の形態にかかる炭化珪素半導体装置200を示す断面図である。炭化珪素半導体装置200は、実施の形態1にかかる炭化珪素半導体装置100に対して、高濃度終端ウェル領域8を備える点で相違するため、以下、高濃度終端ウェル領域8についてのみ説明し、他の構成については説明を省略する。
 図9に示すように、高濃度終端ウェル領域8は、終端ウェル領域2の内部に形成されており、P型不純物のドーズ量が終端ウェル領域2よりも高いP型不純物領域である。また、高濃度終端ウェル領域8はショットキー電極4に接するようフィールド絶縁膜3の内周端よりも内周側にまで延在しており、高濃度終端ウェル領域8上にショットキー電極4の外周端および電極パッド5の外周端が位置するよう電極パッド5の外周端よりも外周側に延在している。
 さらに、高濃度終端ウェル領域8は終端ウェル領域2内に収まり、すなわち、高濃度終端ウェル領域8の外周部分は終端ウェル領域2内にあり高濃度終端ウェル領域8と炭化珪素半導体層1bとが接しないようにすることが好ましい。高濃度終端ウェル領域8のP型不純物のドーズ量は、1.0×1014/cm以上、1.0×1015/cm以下とし、より好ましくは2.0×1014/cm以上とする。なお、注入エネルギーを100keV~700keVとして、高濃度終端ウェル領域8のドーズ量を[cm-2]を不純物濃度[cm-3]に換算すると、8.0×1017/cm~2.0×1020/cmとなる。
 以下、本実施の形態に係る炭化珪素半導体装置200の作用・効果について説明する。
 本実施の形態では、終端ウェル領域2内に高濃度終端ウェル領域8を設けることで、スイッチング時にP型不純物のイオン化が遅れた際の実効的なアクセプタ濃度の低下を抑制することができるため、終端ウェル領域2内へ等電位線が入り込むことを抑制することができる。その結果、電極パッド5の外周端周辺における等電位線の密度を緩和することができるため、電極パッド5の外周端に印加される電界強度を緩和することができる。
 また、終端ウェル領域2のP型不純物のドーズ量を増加させると、上述したように、静的なオフ状態において炭化珪素半導体層1b内の電界が増加しアバランシェ降伏電圧が低下する恐れがあるところ、本実施の形態では、P型不純物のドーズ量が高い高濃度終端ウェル領域8を終端ウェル領域2内に部分的に設けることで炭化珪素半導体層1b内の電界増加を抑制している。特に、高濃度終端ウェル領域8を終端ウェル領域2内に収まるように形成しているので、炭化珪素半導体層1b内の電界増加を効果的に抑制することができる。
 さらに、本実施の形態では、高濃度終端ウェル領域8上に電極パッド5の外周端が位置するようにしているため、電極パッド5の外周端における電界をより一層緩和することができる。図10は本実施の形態の比較例にかかる炭化珪素半導体装置201を示す断面図であり、図11は本実施の形態にかかる炭化珪素半導体装置200を示す断面図であり、両図において破線で示す曲線はスイッチング時において裏面電極7に高電圧が印加された際の等電位線を模式的に示している。
 図10に示す比較例にかかる炭化珪素半導体装置201は、電極パッド5の外周端よりも内側に高濃度終端ウェル領域8の外周端が存在している。そのため、図10示すようにスイッチング時において等電位線が高濃度終端ウェル領域8の外周端周辺にまで侵入してしまい、高濃度終端ウェル領域8よりも外周側に延在している電極パッド5の外周端に等電位線が回り込んでしまうため、電極パッド5の外周端における電界緩和効果が限定的であった。
 そこで、本実施の形態にかかる炭化珪素半導体装置200では、高濃度終端ウェル領域8の外周端が電極パッド5の外周端を越え、電極パッド5の外周端が高濃度終端ウェル領域8上に位置するようにすることで、図11に示すように、スイッチング時の等電位線の侵入が電極パッド5よりも外周側に存在する高濃度終端ウェル領域8によって抑制されるため、電極パッド5の外周端周辺の等電位線の密度や曲率を緩和することができ、電界緩和効果をより一層向上させることができる。
 本実施の形態のように高濃度終端ウェル領域8を設け、高濃度終端ウェル領域8上に電極パッド5の外周端が位置するようにすることで、電極パッド5の外周端のうち外周下端に印加される電界強度を特に低減することができる。かかる場合、電極パッド5の外周下端よりも外周上端に印加される電界強度の方が高くなることがあるため、電極パッド5の外周上端における電界強度をより一層低減する必要がある場合には、図12に示す炭化珪素半導体装置202のように、電極パッド5の外周端にテーパー部5aを設けることとしてもよい。これにより、電極パッド5の外周上端周辺における等電位線の曲率を緩和することができる。
 また、本実施の形態においても、電極パッド5の張り出し幅を100μm以下(より好ましくは70μm以下、より好ましくは30μm以下)とすることで、静的なオフ状態における電界の増大を抑制しつつ、動的なスイッチングにおける電極パッド5の外周端における電界強度を緩和することができる。さらに、電極パッド5の外周端と終端ウェル領域2の外周端との距離を20μm以上(より好ましくは、40μm)とすることで、スイッチング時における電極パッド5の外周上端の電界強度を低減し、炭化珪素半導体装置の信頼性をより一層向上させることができる。
 なお、テーパー部5aで特定するテーパー形状とは、電極パッド5の外周端の上端位置が下端位置に対して内周側に後退している形状をいう。外周上端の後退量は、電極パッド5の厚さに対して、40%~100%とすることが望ましい。また、図12においては、テーパー部5aの端面が平坦なように図示しているが、電界集中ポイントの一つとなる外周上端の電界緩和が目的であるため、テーパー部5aの端面は厳密に平坦な形状である必要はなく、電極パッド5の外周下端に対して外周上端が内周側に後退しているような形状であればよい。
 また、図13に記載する炭化珪素半導体装置203のように、高濃度終端ウェル領域8は複数の離間した形状とすることとしても構わない。さらに、終端ウェル領域2は、図14に示す炭化珪素半導体装置204のように、炭化珪素半導体層1bの表面より深い位置に設けることとしてもよい。すなわち、終端ウェル領域2とショットキー電極4およびフィールド絶縁膜3との間には炭化珪素半導体層1bが介在することとなっても構わない。また、図示はしないが、高濃度終端ウェル領域8についても、同様に炭化珪素半導体層1bの表面より深い位置に設けることとしてもよい。
実施の形態3.
 上述した実施の形態1および2においてはダイオード素子であるSiC-SBDを例について説明を行ったが、本発明をスイッチング素子に適用することとしてもよい。そこで、実施の形態3としてスイッチング素子であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に本発明を適用した場合について説明する。
 図15および図16は、本実施の形態に係る炭化珪素半導体装置300を示す断面図である。図15は、後述するソース電極15が終端領域側にまで延在している領域の断面図であり、図16は、後述するゲート電極13が終端領域側にまで延在しゲートパッド16に接続する領域の断面図である。すなわち、図15はソース電極15が最も外周側に延在している領域の断面図であり、図16はゲート電極が最も外周側に延在している領域の断面図である。
 図15および図16において、炭化珪素半導体装置300は、炭化珪素基板1、層間絶縁膜12、ゲート電極13、ゲート絶縁膜14、ソース電極15、フィールド絶縁膜3、表面保護膜6、裏面電極7(ドレイン電極)を備えたMOSFETである。炭化珪素基板1は、実施の形態1および2と同様に、基板層1aと炭化珪素基板1bとからなる。基板層1aの裏面側にはドレイン電極である裏面電極7が形成されている。炭化珪素半導体層1b内のいわゆる活性領域(図15および図16において左側)には、活性ウェル領域9、高濃度活性ウェル領域10、ソース領域11が形成されており、終端領域には終端ウェル領域2が形成されている。
 活性ウェル領域9は、炭化珪素半導体層1bの上層の一部に形成されたP型不純物領域である。活性ウェル領域9の上層の一部には、高濃度活性ウェル領域10とソース領域11が形成されており、高濃度活性ウェル領域10はP型の不純物量が活性ウェル9よりも高いP型不純物領域であり、ソース領域11はN型不純物領域である。ゲート電極13は、ゲート絶縁膜14を介して活性ウェル領域9およびソース領域11上に跨るように形成されており、ゲート電極13を覆うように層間絶縁膜12が形成されている。ソース電極15は、層間絶縁膜12上に延在しており、コンタクトホールを介してソース領域11と高濃度活性ウェル領域10とに接続している。
 図15において、終端領域側の炭化珪素半導体層1b上にはフィールド絶縁膜3が形成されており、ソース電極15の外周端はフィールド絶縁膜3上に延在している。そして、図15において、ソース電極15の外周端は終端ウェル領域2上に位置し、フィールド絶縁膜3の内周端からソース電極15の外周端までの水平方向の距離(以下、「ソース電極15の張り出し幅」という。)は100μm以下、より好ましくは70μm以下、より好ましくは30μm以下とする。さらに、ソース電極15の外周端と終端ウェル領域2の外周端との距離は、20μm以上とすることが好ましく、40μm以上とすることがより好ましい。ソース電極15とフィールド絶縁膜3上には、ソース電極15の外周端を覆うように、表面保護膜6が形成されている。
 また、図16において、終端領域側の炭化珪素半導体層1b上にはフィールド絶縁膜3が形成されており、ゲート電極13の外周端はフィールド絶縁膜3上に延在している。また、終端領域上のゲート電極13上に層間絶縁膜12が形成されているが、その一部にコンタクトホールが形成され、ゲートパッド16が層間絶縁膜12のコンタクトホールを介してゲート電極13に接続されている。そして、図16において、ゲート電極13の外周端は終端ウェル領域2上に位置し、フィールド絶縁膜3の内周端からゲート電極13の外周端までの水平方向の距離(以下、「ゲート電極13の張り出し幅」という。)は100μm以下、より好ましくは70μm以下、より好ましくは30μm以下とする。ゲート電極13とフィールド絶縁膜3上には、ゲート電極13の外周端を覆うように、表面保護膜6が形成されている。
 本実施の形態のように、スイッチング素子である炭化珪素半導体装置300においても、オフ状態において裏面電極7に高電圧が印加されると、終端領域に形成された終端ウェル領域2から空乏層が伸びることで電圧を保持し耐圧を向上させることができる。しかしながら、スイッチング時においては、終端ウェル領域2からの空乏層の伸びが遅れるため等電位線が終端ウェル領域2内に侵入してしまい、フィールド絶縁膜3上に形成されたソース電極15の外周端およびゲート電極13の外周端に電界集中が発生する恐れがある。
 そこで、本実施の形態では、実施の形態1および2と同様に、ソース電極15の張り出し幅とゲート電極13の張り出し幅をそれぞれ100μm以下、より好ましくは70μm以下、より好ましくは30μm以下とすることで、それぞれソース電極15およびゲート電極13の外周端周辺における電界を緩和することができる。また、ソース電極15の外周端と終端ウェル領域2の外周端との距離、ゲート電極13の外周端と終端ウェル領域2の外周端との距離を、20μm以上(より好ましくは40μm以上)とすることで、ソース電極15の外周端における電界とゲート電極13の外周端における電界とをそれぞれ緩和することができる。
 なお、図16に示すゲートパッド16に関しても、ソース電極15やゲート電極13と同様に、フィールド絶縁膜3の内周端からゲートパッド16の外周端までの距離を、100μm以下、より好ましくは70μm以下、より好ましくは30μm以下とすることや、ゲートパッド16の外周端と終端ウェル領域2の外周端との距離を20μm以上(より好ましくは40μm以上)とすることで、スイッチング時におけるゲートパッド16の外周端周辺における等電位線の密度および曲率を緩和し、電界集中を緩和することができる。
 また、図示はしないが、ソース電極15と層間絶縁膜12およびフィールド絶縁膜3との間には、Ti等からなるバリアメタルを設けることとしてもよい。バリアメタルは、例えば、Ti、TiN、TiSi等のTiを含む金属薄膜とし、これらの金属を複数積層する構造としても構わない。バリアメタルは数十nmの薄膜となり、外周端にエッチング残渣が形成される恐れがあるため、実施の形態1におけるショットキー電極4と同様に、バリアメタルの外周端をソース電極15によって覆うことで、バリアメタルの外周端における電界集中を抑制できる。なお、ゲート16と層間絶縁膜12との間においても同様に、バリアメタルを設け、ゲートパッド16によってバリアメタルの外周端を覆うことでバリアメタルの外周端における電界集中を抑制できる。かかる場合、バリアメタルが第一表面電極となり、ソース電極15又はゲートパッド16が第二表面電極となる。
 なお、本実施の形態においても、終端ウェル領域2内に高濃度終端ウェル領域8を形成し、更なる電界緩和を図ることとしてもよい。高濃度終端ウェル領域8を形成する場合、図17に示すようにソース電極15の外周端を高濃度終端ウェル領域8上に設けることで、ソース電極15の外周端における電界をより一層緩和することができる。なお、図示はしないが、ゲート電極13やゲートパッド16に関しても、外周端を高濃度終端ウェル領域8上に設けることで同様の効果が得られる。
 また、図17に示す炭化珪素半導体装置301のように、高濃度終端ウェル領域8を終端ウェル領域2内に形成し、高濃度終端ウェル領域8をセル領域側に延在させ、最外周の高濃度活性ウェル領域10に代わりソース電極15とコンタクトさせることとしてもよい。さらに、図17に示す炭化珪素半導体装置301では、ソース電極15の外周端上端の電界を緩和するため、ソース電極15の外周端にテーパー部を設けている。なお、図示はしないが、ゲート電極13やゲートパッド16の外周端においてもテーパー部を設けることとしてもよい。
 また、図18に示す炭化珪素半導体装置302のように、最外周の高濃度活性ウェル領域ウェル領域10を終端ウェル領域2内にまで延在させ、高濃度終端ウェル領域として用いることとしてもよく、外周側に複数の離間した高濃度終端ウェル領域ウェル領域10を設けることとしても構わない。
 また、本発明の実施の形態3では、本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。
 なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
 1 炭化珪素基板、1a 基板層、1b 炭化珪素半導体層、2 終端ウェル領域、3 フィールド絶縁膜、4 ショットキー電極(第一表面電極)、5 電極パッド(第二表面電極)、5a テーパー部、6 表面保護膜、7 裏面電極、8 高濃度終端ウェル領域、9 活性ウェル領域、10 高濃度活性ウェル領域、11 ソース領域、12層間絶縁膜、13 ゲート電極、14 ゲート絶縁膜、15 ソース電極、16 ゲートパッド、100・200・300 炭化珪素半導体装置。

Claims (11)

  1.  第一導電型の炭化珪素基板と、
     前記炭化珪素基板の表面上に形成されたフィールド絶縁膜と、
     前記炭化珪素基板の表面上であって前記フィールド絶縁膜よりも内周側に形成されるとともに、前記フィールド絶縁膜に乗り上げて形成された第一表面電極と、
     前記第一表面電極を覆い、前記第一表面電極の外周端を越えて前記フィールド絶縁膜上に延在する第二表面電極と、
     前記炭化珪素基板内の上部において前記第一表面電極の少なくとも一部と接して形成され、前記炭化珪素基板内において前記第二表面電極の外周端よりも外周側に延在する第二導電型の終端ウェル領域と、
     前記第二表面電極の外周端を覆うように前記フィールド絶縁膜上および前記第二表面電極上に形成され、絶縁材料からなる表面保護膜と、
     前記炭化珪素基板の裏面に形成された裏面電極とを備え、
     前記第二表面電極の外周下端に印加される電界強度が前記フィールド絶縁膜又は前記表面保護膜の絶縁破壊強度のうち最も小さい絶縁破壊強度と等しくなる時の前記第二表面電極の外周端と前記フィールド絶縁膜の内周端との距離よりも、前記第二表面電極の外周端と前記フィールド絶縁膜の内周端との距離が小さい、
     ことを特徴とする炭化珪素半導体装置。
  2.  第一導電型の炭化珪素基板と、
     前記炭化珪素基板の表面上に形成されたフィールド絶縁膜と、
     前記炭化珪素基板の表面上であって前記フィールド絶縁膜よりも内周側に形成されるとともに、前記フィールド絶縁膜に乗り上げて形成された第一表面電極と、
     前記第一表面電極を覆い、前記第一表面電極の外周端を越えて前記フィールド絶縁膜上に延在する第二表面電極と、
     前記炭化珪素基板内の上部において前記第一表面電極の少なくとも一部と接して形成され、前記炭化珪素基板内において前記第二表面電極の外周端よりも外周側に延在する第二導電型の終端ウェル領域と、
     前記第二表面電極の外周端を覆うように前記フィールド絶縁膜上および前記第二表面電極上に形成され、絶縁材料からなる表面保護膜と、
     前記炭化珪素基板の裏面に形成された裏面電極とを備え、
     前記第二表面電極の外周端と前記フィールド絶縁膜の内周端との距離が100μm以下である、
     ことを特徴とする炭化珪素半導体装置。
  3.  前記第二表面電極の外周端と前記終端ウェル領域の外周端との距離が20μm以上である、
     ことを特徴とする請求項1又は2記載の炭化珪素半導体装置。
  4.  前記終端ウェル領域内の第二導電型不純物のドーズ量が1.0×1013/cm~1.0×1014/cmである、
     ことを特徴とする請求項1ないし3のいずれか1項記載の炭化珪素半導体装置。
  5.  前記終端ウェル領域内において、第二導電型のドーズ量が前記終端ウェル領域よりも高い第二導電型の高濃度終端ウェル領域を備える、
     ことを特徴とする請求項1ないし4のいずれか1項記載の炭化珪素半導体装置。
  6.  前記高濃度終端ウェル領域上に前記第二表面電極の外周端が存在する、
     ことを特徴とする請求項5記載の炭化珪素半導体装置。
  7.  前記終端ウェル領域の第二導電型不純物のドーズ量が2.0×1013/cm~5.0×1013/cmである、
     ことを特徴とする請求項1ないし6のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記第二表面電極は、Al、Cu、Moの少なくともいずれか一つの金属を含む、
     ことを特徴とする請求項1ないし7のいずれか1項に記載の炭化珪素半導体装置。
  9.  前記第一表面電極は、Ti、Mo、Ni、Au、Wの少なくともいずれか一つの金属を含む、
     ことを特徴とする請求項1ないし8のいずれか1項に記載の炭化珪素半導体装置。
  10.  前記第二表面電極の外周端部には、テーパー部が設けられた、
     ことを特徴とする請求項1ないし9のいずれか1項に記載の炭化珪素半導体装置。
  11.  前記炭化珪素基板内の上部であって、前記終端ウェル領域よりも外周側に形成された第二導電型のFLR領域を備えた、
     ことを特徴とする請求項1ないし10のいずれか1項に記載の炭化珪素半導体装置。
PCT/JP2014/083094 2014-04-30 2014-12-15 炭化珪素半導体装置 WO2015166608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480078514.7A CN106256024B (zh) 2014-04-30 2014-12-15 碳化硅半导体装置
DE112014006630.3T DE112014006630T5 (de) 2014-04-30 2014-12-15 Siliziumcarbidhalbleiterbauteil
US15/307,303 US10020367B2 (en) 2014-04-30 2014-12-15 Silicon carbide semiconductor device
JP2016500009A JP6065154B2 (ja) 2014-04-30 2014-12-15 炭化珪素半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-093252 2014-04-30
JP2014093252 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015166608A1 true WO2015166608A1 (ja) 2015-11-05

Family

ID=54358355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083094 WO2015166608A1 (ja) 2014-04-30 2014-12-15 炭化珪素半導体装置

Country Status (5)

Country Link
US (1) US10020367B2 (ja)
JP (1) JP6065154B2 (ja)
CN (1) CN106256024B (ja)
DE (1) DE112014006630T5 (ja)
WO (1) WO2015166608A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099122A1 (ja) * 2015-12-11 2017-06-15 ローム株式会社 半導体装置
JP2017118097A (ja) * 2015-12-17 2017-06-29 日亜化学工業株式会社 電界効果トランジスタ
JP2017152463A (ja) * 2016-02-23 2017-08-31 サンケン電気株式会社 半導体装置
JP2018022851A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 半導体装置およびその製造方法
US9972710B2 (en) 2015-12-17 2018-05-15 Nichia Corporation Field effect transistor
JP2018098288A (ja) * 2016-12-09 2018-06-21 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2019140239A (ja) * 2018-02-09 2019-08-22 ローム株式会社 半導体装置
WO2020035938A1 (ja) * 2018-08-17 2020-02-20 三菱電機株式会社 半導体装置および電力変換装置
WO2020235690A1 (ja) * 2019-05-23 2020-11-26 株式会社Flosfia 半導体装置
JP2020202345A (ja) * 2019-06-13 2020-12-17 三菱電機株式会社 半導体装置、及び、半導体装置の製造方法
US10892319B2 (en) 2016-08-19 2021-01-12 Rohm Co., Ltd. Semiconductor device
WO2021010428A1 (ja) * 2019-07-16 2021-01-21 株式会社Flosfia 半導体装置および半導体システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297666B2 (en) 2015-04-14 2019-05-21 Mitsubishi Electric Corporation Semiconductor device with a well region
JP6745458B2 (ja) * 2015-04-15 2020-08-26 パナソニックIpマネジメント株式会社 半導体素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267871A (ja) * 1985-09-20 1987-03-27 Toshiba Corp 半導体装置
JP2013211503A (ja) * 2012-03-30 2013-10-10 Fuji Electric Co Ltd SiC半導体デバイス
JP2014041920A (ja) * 2012-08-22 2014-03-06 Rohm Co Ltd 半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288426A (ja) * 1985-06-17 1986-12-18 Matsushita Electronics Corp アルミニウム膜のテ−パエツチング方法
JP3708057B2 (ja) * 2001-07-17 2005-10-19 株式会社東芝 高耐圧半導体装置
US7026650B2 (en) 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
US7394158B2 (en) * 2004-10-21 2008-07-01 Siliconix Technology C.V. Solderable top metal for SiC device
JP4921880B2 (ja) * 2006-07-28 2012-04-25 株式会社東芝 高耐圧半導体装置
EP2047514A4 (en) * 2006-07-31 2010-12-01 Vishay Siliconix MOLYBDENUM BARRIER METAL FOR SIC SCHOTTKY DIODE AND METHOD FOR MANUFACTURING THE SAME
EP2092561B1 (en) * 2006-11-13 2013-04-10 Nxp B.V. Bond pad structure and method for producing same
JP2009094433A (ja) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology 炭化珪素装置
JP2012023199A (ja) 2010-07-14 2012-02-02 Rohm Co Ltd ショットキバリアダイオード
JP5406171B2 (ja) * 2010-12-08 2014-02-05 ローム株式会社 SiC半導体装置
JP5966556B2 (ja) 2012-04-18 2016-08-10 富士電機株式会社 半導体デバイスの製造方法
JP6202944B2 (ja) * 2013-08-28 2017-09-27 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP6269276B2 (ja) * 2014-04-11 2018-01-31 豊田合成株式会社 半導体装置、半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267871A (ja) * 1985-09-20 1987-03-27 Toshiba Corp 半導体装置
JP2013211503A (ja) * 2012-03-30 2013-10-10 Fuji Electric Co Ltd SiC半導体デバイス
JP2014041920A (ja) * 2012-08-22 2014-03-06 Rohm Co Ltd 半導体装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017099122A1 (ja) * 2015-12-11 2018-09-27 ローム株式会社 半導体装置
WO2017099122A1 (ja) * 2015-12-11 2017-06-15 ローム株式会社 半導体装置
JP7286715B2 (ja) 2015-12-11 2023-06-05 ローム株式会社 半導体装置、半導体パッケージおよび電源装置
US10832922B2 (en) 2015-12-11 2020-11-10 Rohm Co., Ltd. Semiconductor device
JP2021158388A (ja) * 2015-12-11 2021-10-07 ローム株式会社 半導体装置、半導体パッケージおよび電源装置
US10366905B2 (en) 2015-12-11 2019-07-30 Rohm Co., Ltd. Semiconductor device
US9972710B2 (en) 2015-12-17 2018-05-15 Nichia Corporation Field effect transistor
JP2017118097A (ja) * 2015-12-17 2017-06-29 日亜化学工業株式会社 電界効果トランジスタ
JP2017152463A (ja) * 2016-02-23 2017-08-31 サンケン電気株式会社 半導体装置
US11855134B2 (en) 2016-08-05 2023-12-26 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2018022851A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 半導体装置およびその製造方法
US10840326B2 (en) 2016-08-05 2020-11-17 Fuji Electric Co., Ltd. Power semiconductor device using wide bandgap semiconductor material and method of manufacturing power semiconductor device using wide bandgap semiconductor material
US10892319B2 (en) 2016-08-19 2021-01-12 Rohm Co., Ltd. Semiconductor device
CN108231895A (zh) * 2016-12-09 2018-06-29 瑞萨电子株式会社 半导体器件及其制造方法
JP2018098288A (ja) * 2016-12-09 2018-06-21 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN108231895B (zh) * 2016-12-09 2023-11-17 瑞萨电子株式会社 半导体器件及其制造方法
JP7190256B2 (ja) 2018-02-09 2022-12-15 ローム株式会社 半導体装置
US11695036B2 (en) 2018-02-09 2023-07-04 Rohm Co., Ltd. Semiconductor device
JP2019140239A (ja) * 2018-02-09 2019-08-22 ローム株式会社 半導体装置
US11961883B2 (en) 2018-02-09 2024-04-16 Rohm Co. Ltd. Semiconductor device
JPWO2020035938A1 (ja) * 2018-08-17 2021-02-15 三菱電機株式会社 半導体装置および電力変換装置
JP6995209B2 (ja) 2018-08-17 2022-01-14 三菱電機株式会社 半導体装置および電力変換装置
WO2020035938A1 (ja) * 2018-08-17 2020-02-20 三菱電機株式会社 半導体装置および電力変換装置
WO2020235690A1 (ja) * 2019-05-23 2020-11-26 株式会社Flosfia 半導体装置
US11437465B2 (en) 2019-06-13 2022-09-06 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
JP2020202345A (ja) * 2019-06-13 2020-12-17 三菱電機株式会社 半導体装置、及び、半導体装置の製造方法
JP7258668B2 (ja) 2019-06-13 2023-04-17 三菱電機株式会社 半導体装置、及び、半導体装置の製造方法
US11935919B2 (en) 2019-06-13 2024-03-19 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
WO2021010428A1 (ja) * 2019-07-16 2021-01-21 株式会社Flosfia 半導体装置および半導体システム

Also Published As

Publication number Publication date
US20170221998A1 (en) 2017-08-03
JP6065154B2 (ja) 2017-01-25
CN106256024A (zh) 2016-12-21
JPWO2015166608A1 (ja) 2017-04-20
US10020367B2 (en) 2018-07-10
CN106256024B (zh) 2019-11-26
DE112014006630T5 (de) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6065154B2 (ja) 炭化珪素半導体装置
JP6241572B2 (ja) 半導体装置
US10128370B2 (en) Semiconductor device
JP5452718B2 (ja) 半導体装置
JP5101985B2 (ja) ジャンクションバリアショットキーダイオード
JP6099749B2 (ja) 炭化珪素半導体装置およびその製造方法
US20200066921A1 (en) Trench mos schottky diode
JP5642191B2 (ja) 半導体装置
US10229969B2 (en) Power semiconductor device
JP6513339B2 (ja) 炭化珪素半導体装置
WO2017098547A1 (ja) 炭化珪素半導体装置
JPWO2012077617A1 (ja) 半導体装置およびその製造方法
JP6745458B2 (ja) 半導体素子
WO2012131768A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2015185700A (ja) 半導体装置
JP2024019464A (ja) 半導体装置
CN106489210B (zh) 半导体装置
JP5755722B2 (ja) 半導体装置
JP6275353B2 (ja) 炭化珪素半導体装置
JP5943846B2 (ja) 炭化珪素半導体装置及びその製造方法
JP5476439B2 (ja) ジャンクションバリアショットキーダイオード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016500009

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15307303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006630

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890945

Country of ref document: EP

Kind code of ref document: A1