WO2015159986A1 - 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 - Google Patents
多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 Download PDFInfo
- Publication number
- WO2015159986A1 WO2015159986A1 PCT/JP2015/061910 JP2015061910W WO2015159986A1 WO 2015159986 A1 WO2015159986 A1 WO 2015159986A1 JP 2015061910 W JP2015061910 W JP 2015061910W WO 2015159986 A1 WO2015159986 A1 WO 2015159986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite membrane
- porous support
- zeolite
- water
- membrane composite
- Prior art date
Links
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 409
- 239000010457 zeolite Substances 0.000 title claims abstract description 409
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 296
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 180
- 239000013078 crystal Substances 0.000 claims abstract description 132
- 238000000926 separation method Methods 0.000 claims abstract description 84
- 239000000126 substance Substances 0.000 claims abstract description 45
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 26
- 239000012528 membrane Substances 0.000 claims description 353
- 239000002131 composite material Substances 0.000 claims description 142
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 72
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 63
- 238000005259 measurement Methods 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 57
- 239000011541 reaction mixture Substances 0.000 claims description 42
- 239000012466 permeate Substances 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 19
- 238000009792 diffusion process Methods 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000002253 acid Substances 0.000 abstract description 28
- 230000004907 flux Effects 0.000 abstract description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 26
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 30
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 29
- 239000002245 particle Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 23
- 239000007864 aqueous solution Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 22
- 239000007789 gas Substances 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 21
- -1 FAU type zeolite Chemical compound 0.000 description 17
- 238000001035 drying Methods 0.000 description 16
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 150000001768 cations Chemical class 0.000 description 13
- 150000002894 organic compounds Chemical class 0.000 description 13
- 238000005373 pervaporation Methods 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000001307 helium Substances 0.000 description 10
- 229910052734 helium Inorganic materials 0.000 description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 description 5
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 5
- 238000006884 silylation reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241000721701 Lynx Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108010085603 SFLLRNPND Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000002828 nitro derivatives Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/028—Molecular sieves
- B01D71/0281—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/268—Drying gases or vapours by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0051—Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/04—Tubular membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
- B01D2253/1085—Zeolites characterized by a silicon-aluminium ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
Definitions
- the present invention relates to a method for producing a porous support-zeolite membrane composite. More specifically, the present invention relates to a porous structure in which a CHA-type zeolite membrane is formed on a porous support by hydrothermal synthesis in the presence of a specific seed crystal. The present invention relates to a method for producing a support-zeolite membrane composite. The present invention also relates to a porous support-zeolite membrane composite excellent in separation of substances that react with the acid sites of zeolite such as lower alcohols and electrophilic molecules.
- separation or concentration of a gas or liquid mixture containing an organic substance is performed by a distillation method, an azeotropic distillation method, a solvent extraction / distillation method, an adsorbent, or the like depending on the properties of the target substance.
- these methods have drawbacks that they require a lot of energy or have a limited application range for separation and concentration.
- membrane separation and concentration methods using membranes such as polymer membranes and zeolite membranes have been proposed as separation methods instead of these methods.
- Polymer membranes such as flat membranes and hollow fiber membranes are excellent in processability, but have the disadvantage of low heat resistance.
- polymer membranes have low chemical resistance, and many of them swell when contacted with organic substances such as organic solvents and organic acids. Therefore, the range of applications for separation and concentration is limited.
- the zeolite membrane is usually used for separation and concentration as a porous support-zeolite membrane complex in which zeolite is formed in a membrane on a porous support.
- the organic substance can be separated and concentrated by bringing the mixture of the organic substance and water into contact with the porous support-zeolite membrane complex and selectively allowing water to permeate. Separation and concentration using membranes of inorganic materials such as zeolite can reduce the amount of energy used compared to separation by distillation or adsorbent, and separation and concentration can be performed over a wider temperature range than polymer membranes. Further, it can be applied to separation of a mixture containing an organic substance.
- an A-type zeolite membrane (Patent Document 1) has been used industrially as a zeolite membrane.
- A-type zeolite membrane is highly hydrophilic and has a high dehydrating ability.
- SAR SiO 2 / Al 2 O 3 molar ratio
- a method of concentrating alcohol by selectively permeating water from a mixed system of alcohol and water using a mordenite-type porous support-zeolite membrane composite (Patent Document 2), or a ferrierite-type porous support
- Patent Document 3 A method of separating and concentrating acetic acid by selectively permeating water from a mixed system of acetic acid and water using a zeolite membrane composite (Patent Document 3) has also been proposed.
- the mordenite-type porous support-zeolite membrane composite disclosed in Patent Document 2 and the ferrierite-type porous support-zeolite membrane composite disclosed in Patent Document 3 have a small permeation flux and are practically used. The amount of treatment was insufficient.
- Non-Patent Document 1 A CHA-type zeolite membrane has been proposed as a zeolite membrane composite with improved permeation flux. Further, a dense CHA type zeolite membrane having high SAR as a membrane having excellent acid resistance and water resistance, a permeation flux sufficient for practical use, and high separation performance has been proposed (Patent Document 4).
- Non-Patent Document 1 synthesis is performed using a synthetic sol having a SAR of about 5 using a CHA type seed crystal without using an organic template.
- the synthesis time of this CHA-type zeolite membrane was as long as 1 day or more, and although the permeation flux and separation factor were improved from those of conventional membranes, it was still not sufficient.
- Patent Document 4 since an organic template is used for membrane synthesis, it is necessary to perform firing in order to remove the organic template during the production of the zeolite membrane, which increases the production time and costs. There was a problem that became high.
- the zeolite membrane has many acid sites due to the organic template, and there is a problem that it is difficult to use when separating substances that react with the acid sites.
- An object of the present invention is to provide a porous support that is excellent in acid resistance and water resistance, has a sufficient permeation flux, and is suitable for separation of substances that react with acid sites of zeolite such as lower alcohols and electrophilic molecules. It is an object of the present invention to provide a body-zeolite membrane composite. Another object of the present invention is to provide a method for producing such a porous support-zeolite membrane composite industrially in an easy manner in a short time.
- a zeolite membrane having specific physical properties can solve the above problems.
- FAU type zeolite as a seed crystal during hydrothermal synthesis to form a CHA type zeolite membrane
- the SAR is appropriately controlled without using an organic template, and the permeation flux and the separation factor are high.
- the inventors have found that a CHA-type zeolite membrane can be produced in a short time, and have reached the present invention.
- the hydrothermal synthesis is performed in an aqueous reaction mixture containing a Si element source and water,
- a porous support-zeolite membrane composite having a zeolite membrane formed on a porous support A porous support-zeolite membrane composite, wherein the zeolite membrane in the vicinity of the porous support interface and the internal zeolite membrane have substantially the same crystallinity.
- a porous support-zeolite membrane composite having a zeolite membrane formed on a porous support In the water vapor diffusion measurement, a porous support-zeolite characterized in that a time Q (min) from the maximum value of the detected intensity of desorbed water to 1/20 of the value satisfies the following formula (2) Membrane complex.
- a porous support-zeolite membrane composite having excellent acid resistance and water resistance and sufficient permeation flux can be produced in a short time. Furthermore, since a porous support-zeolite membrane composite can be produced without using an organic template, the resulting porous support-zeolite membrane composite has few acid sites on the zeolite membrane due to the organic template, It is also suitable for separating substances that easily react with acid sites.
- FIG. 1 is a schematic view of an apparatus used for the pervaporation method.
- FIG. 2 is an X-ray diffraction (XRD) pattern of the zeolite membrane obtained in Example 1.
- FIG. 3A is a schematic view of an example of a zeolite membrane composite, and FIG. 3B is an enlarged view of a cross section of the zeolite membrane composite.
- the description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and the contents are not specified.
- weight and “mass”, “wt%” and “mass%” have the same meaning.
- the method for producing a porous support-zeolite membrane composite according to the present invention comprises forming a CHA-type zeolite membrane by hydrothermal synthesis on the porous support in the presence of seed crystals to form a porous support-zeolite membrane composite.
- porous support-zeolite membrane composite may be simply referred to as “zeolite membrane composite”, and “porous support” may be simply referred to as “support”.
- the CHA-type zeolite used in the present invention is a code that defines the structure of zeolite defined by International Zeolite Association (IZA) and indicates a CHA structure. It is a zeolite having a crystal structure equivalent to that of naturally occurring chabasite.
- the CHA-type zeolite has a structure characterized by having three-dimensional pores composed of 8-membered oxygen rings having a diameter of 3.8 ⁇ 3.8 mm, and the structure is characterized by X-ray diffraction data.
- the framework density of the CHA-type zeolite used in the present invention is 14.5 T / 1000 kg.
- the framework density means the number of elements constituting a skeleton other than oxygen per 1000 3 of the zeolite, and this value is determined by the structure of the zeolite.
- the relationship between the framework density and the structure of zeolite is shown in ATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIER.
- the FAU type zeolite used in the present invention is a code that defines the structure of the zeolite defined by International Zeolite Association (IZA) and indicates a FAU structure. It is a zeolite having a crystal structure equivalent to faujasite produced in nature.
- FAU type zeolite has a structure characterized by having three-dimensional pores composed of oxygen 12-membered rings having a diameter of 7.4 ⁇ 7.4 mm, and the structure is characterized by X-ray diffraction data.
- the framework density of the FAU type zeolite used in the present invention is 12.7 T / 1000 kg.
- FAU type zeolite includes X type and Y type.
- porous support used in the present invention has a chemical stability such that zeolite can be crystallized in the form of a film on the surface thereof, and is a support made of an inorganic porous material (inorganic porous support). Anything may be used. Examples thereof include sintered ceramics, sintered metals such as iron, bronze, and stainless steel, glass, and carbon molded bodies.
- porous supports there are inorganic porous supports (ceramic supports) including sintered ceramics, which are solid materials whose basic components or most of them are composed of inorganic nonmetallic substances. preferable. If this ceramic support is used, a part of the ceramic support is converted into a zeolite during synthesis of the zeolite membrane, thereby improving the adhesion at the interface.
- ceramic supports including sintered ceramics, which are solid materials whose basic components or most of them are composed of inorganic nonmetallic substances.
- this ceramic support is used, a part of the ceramic support is converted into a zeolite during synthesis of the zeolite membrane, thereby improving the adhesion at the interface.
- the ceramic support include a support of a ceramic sintered body containing, for example, alumina such as silica, ⁇ -alumina, and ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, and the like. .
- a support containing at least one of alumina, silica and mullite is preferable. When these supports are used, partial zeolitization is easy, so that the bond between the support and the zeolite becomes strong, and a dense membrane with high separation performance is easily formed.
- the shape of the porous support is not particularly limited as long as it can effectively separate a gas mixture or a liquid mixture.
- a tubular shape such as a flat plate shape or a cylindrical tubular shape, a cylindrical shape or a prismatic shape is used.
- honeycomb shape and a monolith with a large number of.
- zeolite is crystallized into a film on such a porous support, that is, on the surface of the support.
- the surface of the support may be any surface or a plurality of surfaces depending on the shape of the support.
- a cylindrical tube support it may be an outer surface or an inner surface, and in some cases both the outer and inner surfaces.
- the average pore diameter of pores on the surface of the porous support is not particularly limited, but those having controlled pore diameters are preferred.
- the average pore diameter is usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. If the average pore diameter is too small, the amount of permeation tends to be small. If it is too large, the strength of the support itself may be insufficient, and the proportion of pores on the surface of the support will increase, forming a dense zeolite membrane. It may be difficult to be done.
- the average thickness (wall thickness) of the support is usually 0.1 mm or more, preferably 0.3 mm or more, more preferably 0.5 mm or more, and usually 7 mm or less, preferably 5 mm or less, more preferably 3 mm or less. is there.
- the support is used for the purpose of giving mechanical strength to the zeolite membrane, but if the average thickness of the support is too thin, the porous support-the zeolite membrane composite does not have sufficient strength- Zeolite membrane composites tend to be vulnerable to impacts and vibrations, causing problems in practical use. If the average thickness of the support is too thick, the diffusion of the permeated material tends to be poor and the permeation flux tends to be low.
- the porosity of the porous support is usually 20% or more, preferably 25% or more, more preferably 30% or more, and usually 70% or less, preferably 60% or less, more preferably 50% or less.
- the porosity of the support influences the permeation flow rate when the gas or liquid is separated, and if it is less than the lower limit, it tends to inhibit the diffusion of the permeate, and if it exceeds the upper limit, the strength of the support tends to decrease.
- the surface of the porous support is preferably smooth, and the surface may be polished with a file or the like as necessary.
- the surface of the porous support means an inorganic porous support surface portion for crystallizing zeolite, and any surface of each shape may be used as long as it is a surface, Good.
- a cylindrical tube support it may be an outer surface or an inner surface, and in some cases both the outer and inner surfaces.
- the present invention provides a zeolite separation membrane that is particularly suitable for separation of lower alcohols and separation of substances that react with the acid sites of zeolite such as electrophilic molecules.
- the zeolite membrane satisfying the range of the above formula (1) means that the zeolite membrane in the vicinity of the support interface and the internal zeolite membrane have substantially the same crystallinity. This is expected to lead to the reason for the effects of the present invention as described above.
- the schematic diagram of an example of a zeolite membrane composite is shown to FIG. 3 (A) and (B). As shown in FIG.
- the zeolite membrane in the vicinity of the support interface means a range X1 from the interface of the zeolite membrane with the porous support to 2 ⁇ m toward the zeolite membrane surface.
- the internal zeolite membrane refers to a range Y1 from 2 ⁇ m toward the zeolite membrane surface from the interface with the porous support of the zeolite membrane toward the zeolite membrane surface.
- the SiO 2 / Al 2 O 3 molar ratio in the formula (1) is a value calculated by EDS line profile measurement of the cross section of the zeolite membrane composite, and is specifically measured by the following method. First, the zeolite membrane composite is cut to an appropriate size, and then a cross section polisher is used to irradiate an Ar ion beam to smooth the cross section. SEM-EDX measurement is performed on the prepared cross section, and spectra at points every 0.1 ⁇ m on a straight line perpendicular to the support membrane side from the zeolite membrane surface side are acquired. Semi-quantitative values of Si and Al are calculated by correcting the spectrum intensity with ZAF.
- the EDS line profile is obtained by taking the distance on the horizontal axis and plotting the obtained semi-quantitative values.
- the SiO 2 / Al 2 O 3 molar ratio is obtained from this EDS line profile.
- the acceleration voltage is preferably 6 to 10 kV (particularly preferably 6 kV), and the observation magnification is preferably 1000 to 5000 times. From the obtained SiO 2 / Al 2 O 3 molar ratio, the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface and the SiO 2 / Al 2 O 3 molar ratio Y of the inner zeolite membrane Is calculated.
- X is the average value of the SiO 2 / Al 2 O 3 molar ratio of (X1) from the interface with the support of the zeolite membrane to 2 ⁇ m toward the surface of the zeolite membrane
- Y is the interface with the support of the zeolite membrane The average value of SiO 2 / Al 2 O 3 molar ratio of (Y1) from 2 ⁇ m to the zeolite membrane surface toward the zeolite membrane surface direction.
- X / Y may be larger than 0.70 and smaller than 1.2, but is preferably 0.75 or more, more preferably 0.80 or more, further preferably 0.85 or more, preferably 1.1 or less. Preferably it is 1.0 or less, More preferably, it is 0.95 or less. By being in this range, the effect of the present invention can be obtained.
- it is important to quickly convert the seed crystal into a zeolite membrane and grow the zeolite membrane.
- a highly reactive seed crystal specifically, a method using a seed crystal having a part of the structure of the target zeolite such as FAU type zeolite
- examples thereof include a method using a seed crystal having a small particle diameter and a method using a seed crystal whose surface reactivity has been increased by surface treatment such as alkali treatment.
- a method using a FAU type zeolite having a part of the structure of the target zeolite is particularly effective, and this method will be described later.
- the present invention relates to a porous support-zeolite membrane composite having a zeolite membrane formed on a porous support, which is 1/20 of the maximum detected intensity of desorbed water in water vapor diffusion measurement.
- a porous support-zeolite membrane composite (zeolite membrane composite 2) in which the time Q (min) until the value reaches the following formula (2) is described.
- the zeolite membrane becomes a membrane having excellent hydrophilicity, uniformity and diffusibility, as well as excellent acid resistance and water resistance. Therefore, the zeolite membrane is a substance that easily reacts with lower alcohols and acid sites. It is expected to be suitably used for separation.
- the water vapor diffusion measurement is performed as follows. First, a sample obtained by cutting a zeolite membrane composite into an appropriate size is used as a sample. This sample is placed in a stainless steel measuring cell. A pipe (upstream side, downstream side) serving as a gas flow path is connected to the measurement cell. The downstream side of the measurement cell is connected to a differential exhaust pump. There is a mass spectrometer in the middle of the flow path of the measurement cell and the differential exhaust pump, and part of the gas discharged from the measurement cell does not flow to the differential exhaust pump but is introduced into the mass spectrometer. Helium gas is introduced from the upstream side, and the inside of the measurement cell containing the sample is made a helium atmosphere.
- differential evacuation is performed while flowing helium gas, so that the pressure is reduced to about 80 kPa, and the adsorbed water and the like of the sample are removed at 140 ° C.
- vapor of a mixed solution of ethanol and water water concentration 0.2 wt% is brought into contact with the sample for 1 hour.
- the inside of the measurement cell is reduced to a helium atmosphere and then depressurized. That is, the pressure is reduced to about 80 kPa by differential evacuation while flowing helium gas.
- the detected intensity of the desorbed water is obtained by observing the behavior of the water introduced into the mass spectrometer. The time when the detected intensity of the desorbed water reaches the maximum value is defined as 0 minute, and the time until the detected intensity of the desorbed water reaches 1/20 of the maximum value is defined as Q (minutes).
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane or the amount of defects is controlled.
- a method of controlling the hydrophilicity, a method of controlling the uniformity of the membrane by adjusting the crystal size to an appropriate size by controlling the synthesis conditions, or synthesizing in a short time, a zeolite having a three-dimensional pore structure And a method for improving the diffusibility by selecting zeolite having a low framework density As a method for controlling the uniformity of the membrane, a method using FAU-type zeolite described later as a seed crystal can be mentioned. Of these, one method may be used, but a plurality are preferably combined.
- the crystal structure of the zeolite membrane is not particularly limited, but the skeleton of the crystalline zeolite forming the pores of the zeolite membrane is a ring having an oxygen 8-membered ring or less. Of these, an oxygen 6- to 8-membered ring is more preferable.
- the structure of the zeolite for example, AEI, AFG, ANA, CHA, DDR, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTA, LTN, MAR, PAU, RHO, RTH , SOD, STI, TOL, UFI and the like.
- a membrane composed of AEI, CHA, DDR, ERI, KFI, LEV, PAU, RHO, RTH, SOD, LTA, UFI type zeolite, and CHA, DDR, RHO, SOD type zeolite. More preferably, it is a constructed film. Of these, CHA-type zeolite is preferred.
- the zeolite is preferably an aluminosilicate.
- n of the zeolite having an oxygen n-membered ring refers to the one having the largest number of oxygen elements among the pores composed of the zeolite skeleton and the T element (elements other than oxygen constituting the skeleton).
- an inorganic binder such as silica or alumina, a silylating agent for modifying the zeolite surface, or the like may be included as necessary in addition to zeolite.
- the zeolite membrane in the present invention may partially contain an amorphous component or the like, but a zeolite membrane composed substantially only of zeolite is preferable.
- the thickness of the zeolite membrane is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, more preferably 1.0 ⁇ m or more, further preferably 5.0 ⁇ m or more, usually 100 ⁇ m or less, preferably The range is 60 ⁇ m or less, more preferably 20 ⁇ m or less.
- the particle size of the zeolite is not particularly limited, but if it is too small, the grain boundary tends to increase and the permeation selectivity tends to decrease. Therefore, it is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and the upper limit is the film thickness or less. Furthermore, it is particularly preferred that the zeolite particle size is the same as the membrane thickness. When the zeolite particle size is the same as the membrane thickness, the zeolite grain boundary is smallest.
- a CHA-type zeolite membrane is formed on a porous support by hydrothermal synthesis using FAU-type zeolite as a seed crystal.
- hydrothermal synthesis for example, a reaction mixture for hydrothermal synthesis (hereinafter sometimes referred to as an “aqueous reaction mixture”) whose composition has been uniformized is placed in a heat-resistant and pressure-resistant container such as an autoclave, and porous.
- the support may be gently fixed inside the heat and pressure resistant container, hermetically sealed, and heated for a certain period of time.
- the aqueous reaction mixture preferably contains an Si element source and water, preferably contains an Si element source, an Al element source, and water, and further contains an alkali source as necessary.
- the Si element source used in the aqueous reaction mixture include amorphous substances such as amorphous silica, colloidal silica, silica gel, sodium silicate, amorphous aluminum silicate gel, and alkoxy such as tetraethoxysilane (TEOS) and trimethylethoxysilane.
- TEOS tetraethoxysilane
- Silanes can be used.
- Al element source for example, sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum oxide, amorphous aluminosilicate gel, or the like can be used.
- other element sources for example, element sources such as Ga, Fe, B, Ti, Zr, Sn, and Zn may be included.
- a suitable CHA-type zeolite membrane in the hydrothermal synthesis, can be obtained without containing an organic substance such as an organic template. Therefore, the aqueous reaction mixture may not contain an organic substance such as an organic template. It is desirable not to include from the viewpoint of acid sites.
- the organic template requires a calcination step, so it is preferable not to use it, but it can be used as necessary.
- the organic template refers to a structure-directing agent that regulates the crystal structure of the produced zeolite, that is, a structure-directing agent that functions as a templating agent, in particular, an organic compound.
- the ratio of the Si element source and an organic template of the aqueous reaction mixture in the case of using an organic template in a molar ratio of the organic template for SiO 2 (organic template / SiO 2 molar ratio), usually 0.005 or higher, preferably 0. It is 01 or more, and is usually 1 or less, preferably 0.4 or less, more preferably 0.2 or less, and further preferably 0.1 or less.
- organic template / SiO 2 molar ratio is in the above range, a denser zeolite membrane can be formed.
- organic template amines and quaternary ammonium salts are usually used.
- organic templates described in US Pat. No. 4,544,538 and US Patent Application Publication No. 2008/0075656 are preferred.
- Specific examples include cations derived from alicyclic amines such as cations derived from 1-adamantanamine, cations derived from 3-quinacridinal, and cations derived from 3-exo-aminonorbornene. It is done. Among these, a cation derived from 1-adamantanamine is more preferable.
- CHA-type zeolite capable of forming a dense film is crystallized.
- the N, N, N-trialkyl-1-adamantanammonium cation is more preferred.
- the three alkyl groups of the N, N, N-trialkyl-1-adamantanammonium cation are usually independent alkyl groups, preferably a lower alkyl group, more preferably a methyl group. The most preferred compound among them is the N, N, N-trimethyl-1-adamantanammonium cation.
- Such cations are accompanied by anions that do not harm the formation of CHA-type zeolite.
- Representative examples of such anions include halogen ions such as Cl ⁇ , Br ⁇ and I ⁇ , hydroxide ions, acetates, sulfates, and carboxylates. Of these, hydroxide ions are particularly preferably used.
- N, N, N-trialkylbenzylammonium cations can also be used.
- the alkyl group is an independent alkyl group, preferably a lower alkyl group, more preferably a methyl group.
- the most preferred compound is N, N, N-trimethylbenzylammonium cation. The anion accompanied by this cation is the same as described above.
- alkali metal hydroxides such as NaOH and KOH, alkaline earth metal hydroxides such as Ca (OH) 2 and the like can be used.
- the type of alkali is not particularly limited, and Na, K, Li, Rb, Cs, Ca, Mg, Sr, Ba and the like are usually used. Among these, Na and K are preferable, and K is most preferable.
- K is preferable in order to form a CHA type zeolite membrane instead of the FAU type using a FAU type seed crystal, for example, it is preferable to use K as this alkali.
- the ratio of Si element source to Al element source in the aqueous reaction mixture is usually expressed as the molar ratio of the oxides of the respective elements, that is, the SiO 2 / Al 2 O 3 molar ratio.
- the SiO 2 / Al 2 O 3 molar ratio is not particularly limited, but is usually 5 or more, preferably 6 or more, more preferably 7 or more, and still more preferably 7.5 or more. Further, it is usually 10,000 or less, preferably 1000 or less, more preferably 100 or less, and still more preferably 12 or less.
- the zeolite membrane When the SiO 2 / Al 2 O 3 molar ratio is within this range, the zeolite membrane is densely formed, and the produced zeolite exhibits strong hydrophilicity, and a hydrophilic compound, particularly water, is added from the mixture containing organic matter. It can be selectively transmitted. In addition, a zeolite membrane that is strong in acid resistance and difficult to remove from Al can be obtained.
- the ratio of the Si element source to the alkali source is M (2 / n) 2 O / SiO 2 (where M represents an alkali metal or alkaline earth metal, and n represents the valence 1 or 2). And usually 0.05 or more, preferably 0.1 or more, more preferably 0.2 or more, and usually 1.0 or less, preferably 0.7 or less, more preferably 0.5 or less.
- the ratio of Si element source to water is the molar ratio of water to SiO 2 (H 2 O / SiO 2 molar ratio), which is usually 10 or more, preferably 30 or more, more preferably 40 or more, and particularly preferably 50 or more. Usually, it is 1000 or less, preferably 500 or less, more preferably 200 or less, and particularly preferably 100 or less.
- the amount of water is particularly important in the formation of a dense zeolite membrane, and finer crystals are more likely to form and form a dense membrane when the amount of water is greater than that of the general powder synthesis method. is there.
- the amount of water in the synthesis of powdered CHA-type zeolite is about 15 to 50 in terms of H 2 O / SiO 2 molar ratio.
- a porous support with high separation performance in which CHA-type zeolite is crystallized into a dense membrane on the support by making the H 2 O / SiO 2 molar ratio high (50 or more and 1000 or less), that is, water-rich conditions.
- Body-zeolite membrane composite can be obtained.
- a CHA type zeolite membrane is formed by using FAU type zeolite as a seed crystal and performing hydrothermal synthesis in the presence of the seed crystal.
- the FAU type zeolite used as a seed crystal may be anything as long as the structure is a FAU type zeolite.
- Examples of the FAU type zeolite include silicate and phosphate.
- Examples of the silicate include aluminosilicate, gallosilicate, ferrisilicate, titanosilicate, borosilicate, and the like.
- aluminophosphates composed of aluminum and phosphorus (referred to as ALPOs such as ALPO-5) and silicoaluminophosphates composed of silicon, aluminum and phosphorus (referred to as SAPOs such as SAPO-34).
- SAPOs silicoaluminophosphates composed of silicon, aluminum and phosphorus
- metalloaluminophosphates containing elements such as Fe referred to as MeAPO, such as FAPO-5.
- MeAPO such as FAPO-5.
- aluminosilicates and silicoaluminophosphates are preferred, and aluminosilicates are more preferred.
- FAU type zeolite there are generally X type zeolite and Y type zeolite, either of which may be used or a mixture thereof, but it is desirable to use Y type zeolite.
- FAU type zeolite used as a seed crystal commercially available X type zeolite or Y type zeolite may be used or synthesized. General synthesis methods are described in, for example, P157 of VERIFED SYNTHESES OF ZEOLITIC MATERIALS Second Revised Edition 2001 ELSEVIER.
- the FAU type zeolite to be used may be proton type, ion-exchanged with alkali metal ions, alkaline earth metal ions or transition metal ions, or a mixture thereof.
- alkali metal ions include Na + , K + and Li +
- alkaline earth metal ions include Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+
- transition metal ions include Fe, Cu and Zn. Is given.
- alkali metal ions such as Na + , K + and Li + are preferable.
- Ion exchange is performed using FAU-type zeolite such as NH 4 NO 3 , ammonium salts such as NaNO 3 , hydroxide salts such as NaOH, acetate salts such as CH 3 COONa, or aqueous solutions containing ions to be exchanged, and in some cases hydrochloric acid or the like. What is necessary is just to perform by the method of washing with water after processing with an acid.
- the concentration of the aqueous solution is usually 0.00001 mol / L or more, preferably 0.0001 mol / L or more, more preferably 0.001 mol / L or more, usually 10 mol / L or less, preferably 5 mol / L or less, more preferably 2 mol / L or less.
- the temperature during the treatment is usually 10 ° C or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, usually 200 ° C or lower, preferably 150 ° C or lower, more preferably 130 ° C or lower.
- the treatment time is usually 2 hours or more, preferably 5 hours or more, more preferably 10 hours or more, further preferably 20 hours or more, usually 10 days or less, preferably 7 days or less, more preferably 4 days or less. Further, it may be fired at 200 to 500 ° C. as necessary.
- the proton type, the Na type, the K type, and a mixture thereof are particularly desirable, and the Na type, the proton type, or a mixture thereof is more preferable.
- the SiO 2 / Al 2 O 3 ratio measured by ICP emission spectroscopy of the seed crystal is usually less than 15, preferably less than 12, more preferably less than 10, and usually 1 or more, preferably 3 or more.
- the particle diameter of the seed crystal is not particularly defined, but it is desirable that at least one of the maximum particle diameter values obtained by the particle size distribution measurement is within a specific size range.
- the maximum value refers to the maximum value of a particle size distribution diagram obtained by particle size distribution measurement (the horizontal axis is the particle diameter and the vertical axis is the volume-based relative particle amount).
- the maximum value is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less, particularly preferably 1.8 ⁇ m or less, and usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more. It is.
- the seed crystal When the particle diameter is not more than the above upper limit, the seed crystal is favorably supported on the base material, and a zeolite membrane with few defects is easily formed.
- the particle diameter is equal to or larger than the lower limit, the seed crystal is difficult to dissolve during synthesis, and a zeolite film with few defects is easily formed.
- the particle size distribution of the seed crystal is not particularly limited, but the cumulative distribution diagram obtained by particle size distribution measurement (volume basis, integration from the smallest particle size) gives a diameter that gives a height of 50%, D50 is usually It is desirable that it is 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, still more preferably 3.0 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
- the proportion of seed crystals present in the range of 0.5 to 20 times the average pore diameter of the support is usually 5% or more, preferably 15% or more, more preferably 25% or more, and usually 100%. Below, it is preferably 90% or less, more preferably 80% or less.
- the seed crystal is favorably supported on the base material, and a dense and high performance zeolite membrane can be synthesized. By controlling the particle diameter of the seed crystal in this way, it becomes possible to control the state of the seed crystal supported on the base material, and a dense film with few defects is formed.
- FAU type zeolite In order to make the seed crystal into a preferred size, commercially available FAU type zeolite, FAU type zeolite obtained by synthesis, or ion exchanged FAU type zeolite crystal may be pulverized with a mortar, ball mill, jet mill or the like.
- a method of adding a seed crystal it is preferable to use a method of attaching a seed crystal on a support.
- a method of attaching a seed crystal on a support By attaching a seed crystal in advance to the support, a dense zeolite membrane with good separation performance can be easily formed.
- the method for attaching the seed crystal on the support is not particularly limited.
- a dip method in which the seed crystal is dispersed in a solvent such as water and the support is immersed in the dispersion to attach the seed crystal, or a seed crystal is attached.
- a method in which a slurry mixed with a solvent such as water is coated on a support can be used.
- the dip method is desirable for producing a zeolite membrane composite with good reproducibility by controlling the amount of seed crystals attached.
- the dispersion medium for dispersing the seed crystal is not particularly limited, but water is particularly preferable.
- the pH of the dispersion may be adjusted by adding a water-soluble substance such as hydrochloric acid, sodium hydroxide, or potassium hydroxide.
- the pH of the dispersion is usually 7.5 or more, preferably 8 or more, usually 14 or less, preferably 12 or less.
- the amount of the seed crystal to be dispersed is not particularly limited, and is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the total mass of the dispersion.
- it is 20 mass% or less normally, Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 4 mass% or less, Most preferably, it is 3 mass% or less.
- the amount of seed crystals to be dispersed is too small, the amount of seed crystals adhering to the support is small, so that a portion where no zeolite is generated on the support during hydrothermal synthesis is created, resulting in a defective film.
- the amount of seed crystals adhering to the support by the dip method becomes almost constant when the amount of seed crystals in the dispersion is higher than a certain level, so if the amount of seed crystals in the dispersion is too large, the seed crystals are wasted. It is more disadvantageous in terms of cost.
- the amount of the seed crystal to be preliminarily deposited on the support is not particularly limited, and is usually 0.01 g or more, preferably 0.1 g or more, and usually 100 g or less, preferably 50 g in mass per 1 m 2 of the base material. Hereinafter, it is more preferably 10 g or less, further preferably 5 g or less, particularly preferably 3 g or less, and most preferably 1 g or less.
- the amount of the seed crystal is equal to or more than the lower limit, the crystal is easily formed, the film growth is good, and the film growth is likely to be uniform.
- the zeolite membrane When a zeolite membrane is formed on a support by hydrothermal synthesis, there are no particular limitations on the method for immobilizing the support, and it can take any form such as vertical or horizontal placement.
- the zeolite membrane may be formed by a stationary method, or the aqueous reaction mixture may be stirred to form a zeolite membrane.
- the temperature at which the zeolite membrane is formed is not particularly limited, but is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 140 ° C. or higher, and usually 200 ° C. or lower, preferably 190 ° C. or lower. If the reaction temperature is too low, zeolite may not be produced. In addition, if the reaction temperature is too high, a type of zeolite different from the zeolite in the present invention may be produced.
- the heating time is not particularly limited, but is usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more, and usually 10 days or less, preferably 5 days or less, more preferably 3 days or less, still more preferably 2 Less than a day. If the reaction time is too short, the zeolite may not crystallize. If the reaction time is too long, a type of zeolite different from the zeolite in the present invention may be produced.
- the pressure at the time of forming the zeolite membrane is not particularly limited, and the self-generated pressure generated when the aqueous reaction mixture placed in the closed vessel is heated to this temperature range is sufficient. If necessary, an inert gas such as nitrogen may be added.
- the porous support-zeolite membrane composite obtained by hydrothermal synthesis is washed with water, heat-treated and dried.
- the heat treatment means that the porous support-zeolite membrane composite is dried by applying heat.
- the temperature of the heat treatment is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, usually 200 ° C. or lower, preferably 150 ° C. or lower when drying is intended.
- the heating time is not particularly limited as long as the zeolite membrane is sufficiently dried for the purpose of drying, and is preferably 0.5 hours or more, more preferably 1 hour or more.
- the upper limit is not particularly limited, and is usually within 100 hours, preferably within 10 hours, and more preferably within 5 hours.
- the temperature of the heat treatment is usually 350 ° C. or higher, preferably 400 ° C. or higher, more preferably 430 ° C. or higher, more preferably 480 ° C. or higher, and usually 900 ° C. or lower, preferably 850, for the purpose of firing the organic template.
- ° C or lower more preferably 800 ° C or lower, particularly preferably 750 ° C or lower.
- the heating time is not particularly limited as long as the organic template is fired for the purpose of firing the organic template, and is preferably 0.5 hours or longer, more preferably 1 hour or longer.
- the upper limit is not particularly limited, and is usually within 200 hours, preferably within 150 hours, and more preferably within 100 hours.
- the zeolite membrane may be ion exchanged as necessary.
- ions to be ion-exchanged include protons, alkali metal ions such as Na + , K + and Li + , alkaline earth metal ions such as Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+, and transitions such as Fe, Cu and Zn.
- metal ions include metal ions.
- alkali metal ions such as Na + , K + and Li + are preferable.
- Ion exchange may be performed by a method of washing the zeolite membrane after heat treatment with an aqueous solution containing ammonium salts such as NH 4 NO 3 and NaNO 3 or ions to be exchanged, usually at a temperature of room temperature to 100 ° C. and then washed with water. .
- the zeolite membrane may be silylated using a silylating agent as necessary.
- silylating agent used in the silylation treatment include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraproxysilane, tetraisoproxysilane, and tetrabutoxysilane, silicate oligomers such as methyl silicate oligomer and ethyl silicate oligomer. .
- silicate oligomers such as methyl silicate oligomer and ethyl silicate oligomer.
- tetraethoxysilane and methyl silicate oligomer are preferable.
- the zeolite membrane after the heat treatment is immersed in a solution containing a silylating agent, heated from room temperature to usually 150 ° C. or lower, preferably 100 ° C. or lower, and then washed with water or heated.
- a silylating agent to the treated zeolite membrane and heat-treating it usually at room temperature to 150 ° C. in the presence of water vapor.
- a CHA-type zeolite membrane is formed by using FAU-type zeolite as a seed crystal and performing hydrothermal synthesis in the presence of the seed crystal.
- the zeolite membrane having another structure is not substantially provided between the CHA-type zeolite membrane and the support, but the zeolite membrane having another structure is provided on the CHA-type zeolite membrane. It may be.
- the SiO 2 / Al 2 O 3 molar ratio measured by SEM-EDX of the zeolite membranes of the CHA type zeolite membrane formed by the method of the present invention is usually 5 Above, preferably 6 or more, usually 15 or less, preferably 12 or less, more preferably 10 or less, still more preferably less than 10, particularly preferably 9 or less.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane is within this range, the zeolite membrane has excellent hydrophilicity, acid resistance and water resistance, and can be used to separate substances that react with lower alcohols or acid sites. Are also preferably used.
- the SiO 2 / Al 2 O 3 molar ratio is a value obtained by SEM-EDX measurement from the zeolite membrane surface side of the zeolite membrane composite. Specific measurement methods will be described in detail in the following examples (SEM-EDX measurement (film surface side)).
- Air permeation amount [L of the obtained CHA-type zeolite membrane composite, the zeolite membrane composite 1 or the zeolite membrane composite 2 (hereinafter, these may be collectively referred to as “zeolite membrane composite of the present invention”) / (M 2 ⁇ h)] is usually 1400 L / (m 2 ⁇ h) or less, preferably 1000 L / (m 2 ⁇ h) or less, more preferably 700 L / (m 2 ⁇ h) or less, more preferably 600 L.
- the air permeation amount is the air permeation amount [L / (m 2 ⁇ h)] when the zeolite membrane composite is connected to a vacuum line having an absolute pressure of 5 kPa, as described in detail in the Examples.
- the zeolite membrane composite of the present invention can be suitably used as a membrane separation means in the separation method.
- a gas or liquid mixture (preferably a gas or liquid mixture containing an organic substance) is brought into contact with the porous support-zeolite membrane complex, and a highly permeable substance is removed from the mixture. It is characterized by permeation and separation.
- a gas or liquid mixture is brought into contact with one side of the support side or the zeolite membrane side through an inorganic porous support provided with a zeolite membrane, and the opposite side is in contact with the mixture side
- a substance having a high permeability to the zeolite membrane a substance in the mixture having a relatively high permeability
- a highly permeable substance can be separated from the mixture.
- the specific substance can be separated and recovered or concentrated by increasing the concentration of the specific substance in the mixture (the substance in the mixture having a relatively low permeability).
- a separation / concentration method called a pervaporation method (pervaporation method) or a vapor permeation method (vapor permeation method) is one embodiment of the separation method of the present invention.
- the porous support-zeolite membrane composite as a separation membrane, it is possible to perform membrane separation with a sufficient amount of treatment and sufficient separation performance.
- the sufficient amount of treatment preferably means that the permeation flux of the substance that permeates the membrane is 1 kg / (m 2 ⁇ h) or more.
- the sufficient separation performance preferably means that the separation factor represented by the following formula is 100 or more, or the concentration of the main component in the permeate is 95% by mass or more.
- the permeation flux is obtained when, for example, a mixture of 2-propanol and water having a water content of 10% by mass is permeated at 70 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa).
- it means 1 kg / (m 2 ⁇ h) or more, preferably 3 kg / (m 2 ⁇ h) or more, more preferably 5 kg / (m 2 ⁇ h) or more.
- the upper limit of the permeation flux is not particularly limited, and is usually 20 kg / (m 2 ⁇ h) or less, preferably 15 kg / (m 2 ⁇ h) or less.
- Permeance is obtained by dividing the amount of substance permeated by the product of the membrane area, time and the partial pressure difference of the permeating substance.
- units of permeance for example, water in a case where a mixture of 2-propanol having a water content of 10% by mass and water is permeated at 70 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa).
- the permeance is usually 3 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa) or more, preferably 5 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa) or more, more preferably 1 ⁇ 10 ⁇ 6 mol / (M 2 ⁇ s ⁇ Pa) or more, particularly preferably 2 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa) or more.
- the upper limit of the permeance of water is not particularly limited, and is usually 1 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ Pa) or less, preferably 5 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less.
- the separation factor is, for example, usually 500 or more when a mixture of 2-propanol having a water content of 10% by mass and water is permeated at 70 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa). Preferably it is 700 or more, More preferably, it is 1000 or more, More preferably, it is 2000 or more.
- the upper limit of the separation factor is the case where only water is completely transmitted. In this case, the separation factor is infinite, but is preferably 10000000 or less, more preferably 1000000 or less.
- the zeolite membrane composite of the present invention is excellent in water resistance, it can be suitably used for a separation target having a water content of 20% or more.
- the object to be separated is a mixture of water and an organic substance (hereinafter sometimes referred to as “hydrous organic compound”)
- the water content in the mixture is usually 5% by mass or more, preferably 10% by mass or more, more preferably It is 20 mass% or more, More preferably, it is 30 mass% or more, Usually 95 mass% or less, Preferably it is 80 mass% or less, More preferably, it is 70 mass% or less.
- the substance that permeates the zeolite membrane is usually water, if the water content decreases, the amount of treatment decreases, which is not efficient. On the other hand, if the water content is too high, the membrane required for concentration becomes a large area (in the case where the membrane is formed in a tubular shape, the number is increased), and the economic effect is reduced.
- the water-containing organic compound may have a water content adjusted in advance by an appropriate moisture adjusting method.
- the preferred water content is the same as described above.
- the moisture adjustment method include methods known per se, such as distillation, pressure swing adsorption (PSA), temperature swing adsorption (TSA), and desiccant system.
- PSA pressure swing adsorption
- TSA temperature swing adsorption
- desiccant system desiccant system.
- water may be further separated from the water-containing organic compound from which water has been separated by the porous support-zeolite membrane composite. Thereby, water can be separated to a higher degree and the water-containing organic compound can be further concentrated.
- organic compound examples include carboxylic acids such as acetic acid, acrylic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid; sulfonic acid, sulfinic acid, habituric acid, uric acid, phenol, enol, diketone type compound Organic acids such as thiophenol, imide, oxime, aromatic sulfonamide, primary and secondary nitro compounds; alcohols such as methanol, ethanol, isopropanol (2-propanol), allyl alcohol; acetone, methyl isobutyl ketone Ketones such as acetaldehyde, aldehydes such as formaldehyde; ethers such as dioxane and tetrahydrofuran; organic compounds containing nitrogen such as amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone (containing N Compounds); acetates, esters such as
- the zeolite membrane composite of the present invention can be preferably applied to an organic compound containing at least one selected from alcohol, ether, ketone, aldehyde, and amide. Especially, it is suitable also for what contains alcohol and a ketone. Among these organic compounds, those having 1 to 4 carbon atoms are preferable, and those having 1 to 3 carbon atoms are more preferable. In particular, it is suitable for separation of water and methanol or ethanol, and further suitable for separation of water and ethanol.
- the zeolite membrane composite of the present invention of the present invention is also suitably used for separation of substances that easily react with acid sites.
- Examples of the substance that easily reacts with an acid point include a compound containing a double bond, and specific examples of the double bond include a carbonyl group, an allyl group, an amide group, an imine group, and a thionyl group. More specifically, acetic acid, acrylic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid, acetone, methyl isobutyl ketone, acetaldehyde, formaldehyde, allyl alcohol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, Examples include ethyleneimine and guanidine.
- the organic compound may be a polymer compound that can form a mixture (mixed solution) with water.
- a polymer compound examples include those having a polar group in the molecule, for example, polyols such as polyethylene glycol and polyvinyl alcohol; polyamines; polysulfonic acids; polycarboxylic acids such as polyacrylic acid; Carboxylic acid esters; modified polymer compounds obtained by modifying polymers by graft polymerization, etc .; copolymerized polymer compounds obtained by copolymerization of nonpolar monomers such as olefins and polar monomers having polar groups such as carboxyl groups And the like.
- the water-containing organic compound may be a mixture of water and a polymer emulsion.
- the polymer emulsion is a mixture of a surfactant and a polymer, which is usually used for adhesives, paints, and the like.
- the polymer used in the polymer emulsion include polyvinyl acetate, polyvinyl alcohol, acrylic resin, polyolefin, olefin-polar monomer copolymer such as ethylene-vinyl alcohol copolymer, polystyrene, polyvinyl ether, polyamide, polyester, and cellulose.
- Thermoplastic resins such as derivatives; thermosetting resins such as urea resins, phenol resins, epoxy resins, polyurethanes; rubbers such as natural rubber, polyisoprene, polychloroprene, butadiene copolymers such as styrene-butadiene copolymers, etc. Can be mentioned.
- As the surfactant a known one may be used.
- the zeolite membrane composite of the present invention has acid resistance, it can be effectively used for water separation from a mixture of water and an organic acid such as acetic acid and water separation for promoting esterification reaction. Further, the porous support-zeolite membrane composite of the present invention has few acid sites and can be effectively used for separation of substances that react with acid sites.
- the separation method of the present invention may be carried out by preparing a suitable separation membrane module or separation apparatus using the zeolite membrane composite of the present invention and introducing a gas or liquid mixture into the separation membrane module or separation device. These separation membrane modules and separation devices can be produced by members known per se.
- the air permeation amount and XRD measurement were performed by the following methods.
- [Air permeability] Mass flow installed between the vacuum line and the porous support-zeolite membrane composite, with one end of the porous support-zeolite membrane composite sealed and the other end sealed in a 5 kPa vacuum line The flow rate of air was measured with a meter, and the air permeation amount [L / (m 2 ⁇ h)] was obtained.
- As the mass flow meter 8300 manufactured by KOFLOC, for N 2 gas, and a maximum flow rate of 500 ml / min (20 ° C., converted to 1 atm) were used.
- the dispersion for measuring the particle size distribution of the seed crystal is obtained by circulating the dispersion through the flow cell while stirring with a stirrer in the ultrasonic dispersion bath of the measuring device, and the intensity of the light transmitted through the dispersion is high. It was prepared by adding seed crystal powder or a liquid in which seed crystal powder was previously dispersed in water in an ultrasonic dispersion bath so as to fall within an appropriate light intensity range displayed on the apparatus.
- the amount of water as a dispersion solvent at this time is usually 250 ml, and the seed crystal to be dispersed is usually 0.01 g in the case of powder.
- measurement was performed after aggregation of seed crystals in the dispersion liquid was performed for 10 minutes with ultrasonic waves. The measurement was performed by a flow method.
- X-ray diffraction (XRD) measurement was performed based on the following conditions.
- X-rays were irradiated so as to be orthogonal to the axial direction of the sample.
- the height direction was adjusted so that the half value of the measurement peak could be maximized.
- the horizontal direction is the position where the peak intensity at the low angle is maximized.
- Quantitative method A calibration curve was prepared using briquettes prepared from zeolite powders of known composition (L and ⁇ types, manufactured by Tosoh Corporation) as standard samples, and SiO 2 / Al was calculated from the SiK ⁇ / AlK ⁇ intensity ratio. Conversion to a 2 O 3 molar ratio. The average value of the analysis results of arbitrary 5 places was adopted.
- X is an average value of SiO 2 / Al 2 O 3 molar ratio from the interface with the support of the zeolite membrane to 2 ⁇ m toward the surface of the zeolite membrane
- Y is the zeolite membrane from the interface with the support of the zeolite membrane The average value of the SiO 2 / Al 2 O 3 molar ratio from 2 ⁇ m toward the surface of the zeolite membrane was used.
- the pressure was reduced to about 80 kPa by differential evacuation while flowing helium gas, and the sample adsorbed water and the like were removed at 140 ° C.
- the vapor of a mixed solution of ethanol and water (water concentration 0.2 wt%) was brought into contact with the sample for 1 hour.
- the inside of the measurement cell was made a helium atmosphere, and then differential evacuation was performed while flowing helium gas, and the pressure was reduced to about 80 kPa.
- the detection intensity of desorbed water was obtained by observing the behavior of water introduced into a mass spectrometer (AGS-7000, manufactured by Canon Anelva). The time when the detected intensity of the desorbed water reached the maximum value was 0 minute, and the time until the detected intensity of the desorbed water became 1/20 of the maximum value was defined as Q (minutes).
- a porous alumina tube (outer diameter 12 mm, inner diameter 9 mm) was cut to a length of 80 mm, washed with an ultrasonic cleaner and dried.
- a mixture of 10.0 g of proton-type Y zeolite (HY (SAR 5), produced by Catalyst Kasei Kogyo Co., Ltd.) and 5.00 g of NaOH and 100 g of water is heated at 100 ° C. for 7 days, filtered, washed and dried. As a result, FAU type zeolite was obtained.
- the support was immersed in a dispersion of 2% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 3 g / m 2 .
- the support to which the seed crystal was attached was immersed vertically in a Teflon (registered trademark) inner cylinder (200 ml) containing the aqueous reaction mixture, and the autoclave was sealed. From room temperature to 180 ° C. over 5 hours. The temperature rose. After completion of the temperature increase, hydrothermal synthesis was performed by heating at 180 ° C. for 24 hours in a stationary state under autogenous pressure. The mixture was allowed to cool after a predetermined time, and the porous support-zeolite membrane composite was taken out of the aqueous reaction mixture, washed, and dried at 100 ° C. for 4 hours.
- the air permeation amount of the porous support-zeolite membrane composite after drying was 9 L / (m 2 ⁇ h).
- SiO 2 / Al 2 O 3 molar ratio from the membrane surface side of the zeolite membrane was measured by SEM-EDX measurement (membrane surface side), it was 6.4.
- From the XRD measurement of the porous support-zeolite membrane composite it was confirmed that a CHA type zeolite membrane was formed.
- FIG. 2 shows this XRD pattern.
- Example 2 The same aqueous reaction mixture, inorganic porous support and seed crystal as in Example 1 were used.
- the seed crystal was dispersed in water at 2% by mass, the support was immersed in the substrate for a predetermined time, and then dried at 100 ° C. for 5 hours or longer to deposit the seed crystal.
- the mass of the deposited seed crystal was 2 g. / M 2 .
- Example 2 In the same manner as in Example 1, the support to which the seed crystal was attached was immersed in the aqueous reaction mixture and the temperature was raised. After the completion of the temperature rise, the sample was heated at 180 ° C. for 18 hours under a self-generated pressure. Except for the above, a porous support-zeolite membrane composite was obtained in the same manner as in Example 1. The air permeation amount of the porous support-zeolite membrane composite after drying was 0 L / (m 2 ⁇ h). When the SiO 2 / Al 2 O 3 molar ratio from the membrane surface side of the zeolite membrane was measured by SEM-EDX measurement (membrane surface side), it was 6.4.
- the ratio of the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface to the SiO 2 / Al 2 O 3 molar ratio Y of the inner zeolite membrane, X / Y was 0.90.
- the time Q (minutes) from the maximum value of the detected intensity of desorbed water to 1/20 of the detected value was 16.7 minutes.
- Example 3 The same aqueous reaction mixture and seed crystal as in Example 1 were used.
- a porous alumina tube (outer diameter 16 mm, inner diameter 12 mm) was cut to a length of 80 mm, washed with an ultrasonic cleaner and dried.
- the support was immersed in a dispersion of 2% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 0.3 g / m 2 .
- a porous support-zeolite membrane composite was obtained.
- the air permeation amount of the porous support-zeolite membrane composite after drying was 39 L / (m 2 ⁇ h).
- SiO 2 / Al 2 O 3 molar ratio from the membrane surface side of the zeolite membrane was measured by SEM-EDX measurement (membrane surface side), it was 6.0.
- From the XRD measurement of the porous support-zeolite membrane composite it was confirmed that a CHA type zeolite membrane was formed.
- the film thickness of the zeolite membrane was confirmed by SEM, it was confirmed that a membrane having a thickness of about 10 ⁇ m was formed.
- the ratio of the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface to the SiO 2 / Al 2 O 3 molar ratio Y of the inner zeolite membrane, X / Y was 0.87.
- the time Q (minutes) from the maximum value of the detected intensity of the desorbed water to 1/20 of the detected value was 15.2 minutes.
- Example 4 The following was prepared as a reaction mixture for hydrothermal synthesis.
- aluminum hydroxide containing 53.5% by mass of Al 2 O 3 , manufactured by Aldrich
- colloidal silica Snowtech-40, manufactured by Nissan Chemical Co., Ltd.
- a porous alumina tube (outer diameter 16 mm, inner diameter 12 mm) was cut into a length of 400 mm and then air blown was used.
- the same seed crystal as in Example 1 was used.
- the support was immersed in a dispersion of 0.5% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 2 g / m 2 .
- the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder (800 ml) containing the aqueous reaction mixture in the vertical direction, and the autoclave was sealed. From room temperature to 180 ° C. over 5 hours. The temperature rose. After completion of the temperature increase, hydrothermal synthesis was performed by heating at 180 ° C. for 24 hours in a stationary state under autogenous pressure. After a predetermined time, the mixture was allowed to cool, and the porous support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours. The air permeation amount of the porous support-zeolite membrane composite after drying was 10 L / (m 2 ⁇ h).
- Example 5 The same aqueous reaction mixture, inorganic porous support and seed crystal as in Example 1 were used. The support was immersed in a dispersion of 2% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal. The mass of the attached seed crystal was 2 g / m 2 . Thereafter, a porous support-zeolite membrane composite was obtained in the same manner as in Example 1.
- the air permeation amount of the porous support-zeolite membrane composite after drying was 0 L / (m 2 ⁇ h). From the XRD measurement of the porous support-zeolite membrane composite, it was confirmed that a CHA type zeolite membrane was formed.
- Methyl silicate oligomer (MKC (registered trademark) silicate, manufactured by Mitsubishi Chemical Corporation) is applied to the porous support-zeolite membrane composite after drying as a silylating agent, followed by silylation treatment, and 100 ° C. for 6 hours in the presence of water vapor. Heated.
- Example 6 The same aqueous reaction mixture, inorganic porous support and seed crystal as in Example 1 were used. The support was immersed in a dispersion of 2% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal. The mass of the attached seed crystal was 2 g / m 2 . Thereafter, a porous support-zeolite membrane composite was obtained in the same manner as in Example 1.
- the air permeation amount of the porous support-zeolite membrane composite after drying was 0 L / (m 2 ⁇ h). From the XRD measurement of the porous support-zeolite membrane composite, it was confirmed that a CHA type zeolite membrane was formed.
- the ratio of the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface to the SiO 2 / Al 2 O 3 molar ratio Y of the internal zeolite membrane, X / Y was 1.04.
- the time Q (minutes) from the maximum value of the detected intensity of desorbed water to 1/20 of the detected value was 14.1 minutes.
- Example 7 Using the same aqueous reaction mixture, inorganic porous support and seed crystal as in Example 1, a porous support-zeolite membrane composite was obtained. The seed crystal was used by dispersing 0.5% by mass in water. After immersing the porous support for a predetermined time, the porous support was dried at 100 ° C. for 5 hours or longer to deposit a seed crystal. As a result, the mass of the deposited seed crystal was 0.9 g / m 2 .
- the air permeation amount of the porous support-zeolite membrane composite after drying was 120 L / (m 2 ⁇ h).
- the ratio of the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface to the SiO 2 / Al 2 O 3 molar ratio Y of the internal zeolite membrane, X / Y was 0.86.
- the time Q (min) from the maximum value of the detected intensity of the desorbed water to 1/20 of the detected value was 13.8 minutes.
- Example 1 The same aqueous reaction mixture and inorganic porous support as in Example 1 were used.
- CHA type zeolite was used as a seed crystal.
- the support was immersed in a dispersion of 2% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 3 g / m 2 .
- the support to which the seed crystals were attached was immersed in the aqueous reaction mixture and heated from room temperature to 180 ° C. over 5 hours. After completion of the temperature increase, a porous support-zeolite membrane composite was obtained in the same manner as in Example 1 except that it was heated at 180 ° C. for 18 hours in a stationary state under autogenous pressure.
- the air permeation amount of the zeolite membrane composite after drying was 0 L / (m 2 ⁇ h).
- the molar ratio of SiO 2 / Al 2 O 3 from the membrane surface side of the zeolite membrane was measured by SEM-EDX measurement (membrane surface side), it was 6.2.
- TMADAOH N, N, N-trimethyl-1-adamantanammonium hydroxide
- the support was immersed in a dispersion of 1% by mass of this seed crystal in water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 1 g / m 2 .
- the support to which the seed crystals were attached was immersed in a Teflon (registered trademark) inner cylinder (200 ml) containing the aqueous reaction mixture in the vertical direction, and the autoclave was sealed, and left standing at 180 ° C. for 48 hours. And heated under autogenous pressure. After a predetermined time, the mixture was allowed to cool, and the porous support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours.
- the air permeation amount of the porous support-zeolite membrane composite after drying was 926 L / (m 2 ⁇ h).
- SiO 2 / Al 2 O 3 molar ratio from the membrane surface side of the zeolite membrane was measured by SEM-EDX measurement (membrane surface side), it was 6.0.
- the synthesis time was longer than that of Example 1, the membrane had a large amount of air permeation and was not dense.
- Example 2 The same inorganic porous support as in Example 1 was used.
- a CHA-type zeolite obtained by heat-synthesized and crystallized was filtered, washed with water and dried.
- the seed crystal grain size was about 1 ⁇ m.
- the above support was immersed in a dispersion of 1% by mass of this seed crystal for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 2 g / m 2 .
- Example 2 The same inorganic porous support as in Example 1 was used.
- the support was immersed in a dispersion of 0.3% by mass of this seed crystal for a predetermined time, and then dried at 100 ° C. for 5 hours or more to attach the seed crystal.
- the mass of the attached seed crystal was 1 g / m 2 .
- the porous support-zeolite membrane composite was prepared in the same manner as in Comparative Example 1 except that the hydrothermal synthesis time after dipping the support with seed crystals attached to the aqueous reaction mixture was 140 ° C. and 168 hours. Obtained.
- the air permeation amount of the zeolite membrane composite after drying was 0 L / (m 2 ⁇ h).
- the SiO 2 / Al 2 O 3 molar ratio X of the zeolite membrane in the vicinity of the support interface and the SiO 2 / Al 2 O 3 molar ratio Y of the inner zeolite membrane, X / Y was 0.69.
- the time Q (minutes) from the maximum value of the detected intensity of desorbed water to 1/20 of the detected value was 30.6 minutes.
- Example 1 Using the porous support-zeolite membrane composite obtained in Example 1, water is selectively permeated from a 70 ° C. water / 2-propanol aqueous solution (10/90 mass%) by a pervaporation method. Separation was performed.
- FIG. 1 A schematic diagram of an apparatus used in the pervaporation method is shown in FIG.
- the inner side of the porous support-zeolite membrane composite 5 is depressurized by a vacuum pump 9, and the pressure difference is about 1 atm (1.01 ⁇ 10 5 Pa) from the outer side where the liquid to be separated 4 is in contact. It has become. Due to this pressure difference, the permeation substance (water) in the liquid to be separated 4 permeates and permeates through the porous support-zeolite membrane complex 5. The permeated substance is collected by the permeate collecting trap 7. On the other hand, the organic compound in the liquid to be separated 4 stays outside the porous support-zeolite membrane complex 5.
- the permeation flux of the porous support-zeolite membrane composite was 4.6 kg / (m 2 ⁇ h)
- the separation factor was 3400
- the concentration of water in the permeate was 99.75% by mass.
- it was 3.7 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 2 The porous support-zeolite membrane composite obtained in Example 2 was used to separate water selectively from a water / 2-propanol aqueous solution (10/90% by mass) at 70 ° C.
- the permeation flux was 5.8 kg / (m 2 ⁇ h)
- the separation factor was 1300
- the concentration of water in the permeate was 99.32% by mass.
- the water permeance was 4.7 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 5 Using the porous support-zeolite membrane composite obtained in Example 5, the pervaporation method was performed in the same manner as in Test Example 1 above, at 70 ° C. in water / 2-propanol aqueous solution (10/90% by mass). ) To selectively permeate water. As a result, the permeation flux of the porous support-zeolite membrane composite was 4.1 kg / (m 2 ⁇ h), the separation factor was 9700, and the concentration of water in the permeate was 99.91% by mass. The water permeance was 3.3 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 6 The porous support-zeolite membrane composite obtained in Example 5 was used to separate water selectively from a water / allyl alcohol aqueous solution (10/90% by mass) at 80 ° C.
- the permeation flux was 3.3 kg / (m 2 ⁇ h)
- the separation factor was 4100
- the concentration of water in the permeate was 99.75% by mass.
- Test Example 8 Using a porous support-zeolite membrane composite produced in the same manner as in Example 4, separation was performed by selectively allowing water to permeate from a water / allyl alcohol aqueous solution (10/90% by mass) at 80 ° C. It was. The permeation flux was 3.6 kg / (m 2 ⁇ h), the separation factor was 7400, and the concentration of water in the permeate was 99.85% by mass.
- Comparative Test Example 1 Using the porous support-zeolite membrane composite obtained in Comparative Example 1, by a pervaporation method, in the same manner as in Test Example 1, a 70 ° C. water / 2-propanol aqueous solution (10/90 mass%). ) To selectively permeate water. The permeation flux was 2.8 kg / (m 2 ⁇ h), the separation factor was 98, and the concentration of water in the permeate was 92.45% by mass. In terms of water permeance, 2.0 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa) was low in both permeation flow rate and separation factor.
- Comparative Test Example 3 Using the porous support-zeolite membrane composite obtained in Comparative Example 4, by a pervaporation method, from a 50 ° C. water / methanol aqueous solution (30/70 mass%) in the same manner as in Test Example 1 above. Separation with selective permeation of water was performed. The permeation flux was 0.9 kg / (m 2 ⁇ h), the separation factor was 4, and the concentration of water in the permeate was 63.19% by mass. The water permeance was 1.3 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa). Both permeation flux and separation factor were very low.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
また、本発明は低級アルコール、求電子性分子などのゼオライトの酸点と反応する物質等の分離に優れた多孔質支持体-ゼオライト膜複合体に関する。
また、耐酸性、耐水性に優れかつ、実用化に十分な透過流束をもち、高い分離性能を持つ膜としてSARが高く緻密なCHA型ゼオライト膜が提案されている(特許文献4)。
[1] 多孔質支持体上に、種結晶の存在下、水熱合成によりCHA型ゼオライト膜を形成して多孔質支持体-ゼオライト膜複合体を製造する方法であって、
前記種結晶としてFAU型ゼオライトを用いることを特徴とする、多孔質支持体-ゼオライト膜複合体の製造方法。
[2] 前記多孔質支持体に予め前記種結晶を付着させ、前記CHA型ゼオライト膜を形成することを特徴とする、前記[1]に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
[3] 前記水熱合成をSi元素源及び水を含有する水性反応混合物中で行い、
前記Si元素源はアモルファス物質またはアルコキシシラン類である、前記[1]または[2]に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
[4] 前記種結晶のSiO2/Al2O3モル比が15未満である、前記[1]~[3]のいずれか一に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
[5] 形成される前記CHA型ゼオライト膜のSiO2/Al2O3モル比が15以下である、前記[1]~[4]のいずれか一に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
[6] 前記[1]~[5]のいずれか一に記載の製造方法により製造された、多孔質支持体-ゼオライト膜複合体。
[7] 多孔質支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比をX、内部のゼオライト膜のSiO2/Al2O3モル比をYとしたとき、X/Yが下記式(1)を満たすことを特徴とする、多孔質支持体-ゼオライト膜複合体。
0.70 < X/Y < 1.2 ・・・(1)
[8] 多孔質支持体上に形成されたゼオライト膜を有する多孔質支持体-ゼオライト膜複合体であって、
前記多孔質支持体界面近傍のゼオライト膜と、内部のゼオライト膜の結晶性が実質的に同じであることを特徴とする、多孔質支持体-ゼオライト膜複合体。
[9] 多孔質支持体上に形成されたゼオライト膜を有する多孔質支持体-ゼオライト膜複合体であって、
水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)が、下記式(2)を満たすことを特徴とする、多孔質支持体-ゼオライト膜複合体。
7.0 < Q < 30 ・・・(2)
[10] 前記ゼオライト膜がCHA型ゼオライト膜である、前記[7]~[9]の何れか一に記載の多孔質支持体-ゼオライト膜複合体。
[11] 前記ゼオライト膜の膜表面側から測定したSiO2/Al2O3モル比が15以下である、前記[7]~[10]の何れか一に記載の多孔質支持体-ゼオライト膜複合体。
[12] 気体または液体の混合物を、前記[6]~[11]の何れか一に記載の多孔質支持体-ゼオライト膜複合体に接触させて、前記混合物から、透過性の高い物質を透過させて分離することを特徴とする、気体または液体の混合物の分離方法。
[13] 前記気体または液体の混合物が、二重結合を含む化合物を含む混合物である、前記[12]に記載の分離方法。
本発明の多孔質支持体-ゼオライト膜複合体の製造方法は、多孔質支持体上に、種結晶の存在下、水熱合成によりCHA型ゼオライト膜を形成して多孔質支持体-ゼオライト膜複合体を製造する方法であって、種結晶としてFAU型ゼオライトを用いることを特徴とする。
本発明において用いられるCHA型ゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでCHA構造のものを示す。天然に産出するチャバサイトと同等の結晶構造を有するゼオライトである。CHA型ゼオライトは3.8×3.8Åの径を有する酸素8員環からなる3次元細孔を有することを特徴とする構造をとり、その構造はX線回折データにより特徴付けられる。
尚、フレームワーク密度とゼオライトとの構造の関係はATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIERに示されている。
本発明において用いられるFAU型ゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでFAU構造のものを示す。天然に産出するホージャサイトと同等の結晶構造を有するゼオライトである。FAU型ゼオライトは7.4×7.4Åの径を有する酸素12員環からなる3次元細孔を有することを特徴とする構造をとり、その構造はX線回折データにより特徴付けられる。
尚、一般的にFAU型ゼオライトにはX型とY型がある。
本発明において使用される多孔質支持体としては、その表面などにゼオライトを膜状に結晶化できるような化学的安定性があり、無機の多孔質よりなる支持体(無機多孔質支持体)であれば如何なるものであってもよい。例えば、セラミックス焼結体、鉄、ブロンズ、ステンレス等の焼結金属や、ガラス、カーボン成型体などが挙げられる。
本発明において、かかる多孔質支持体上、すなわち支持体の表面などにゼオライトを膜状に結晶化させる。支持体の表面は、支持体の形状に応じて、どの表面であってもよく、複数の面であってもよい。例えば、円筒管の支持体の場合には外側の表面でも内側の表面でもよく、場合によっては外側と内側の両方の表面であってもよい。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比をX、内部のゼオライト膜のSiO2/Al2O3モル比をYとしたとき、X/Yが下記式(1)を満たす、本発明の多孔質支持体-ゼオライト膜複合体(ゼオライト膜複合体1)について説明する。
ここで、図3(A)及び(B)にゼオライト膜複合体の一例の模式図を示す。図3(B)に示す通り、支持体界面近傍のゼオライト膜とは、ゼオライト膜の多孔質支持体との界面からゼオライト膜表面方向へ向かって2μmまでの範囲X1を言う。また、内部のゼオライト膜とは、ゼオライト膜の多孔質支持体との界面からゼオライト膜表面方向へ向かって2μmから、ゼオライト膜表面までの範囲Y1を言う。
まず、ゼオライト膜複合体を適当な大きさに切断した後、クロスセクションポリッシャーを用いてArのイオンビームを照射し断面を平滑化する。作製した断面に対し、SEM-EDX測定を行い、ゼオライト膜表面側から支持体側に向かって垂直な直線上における0.1μmごとのポイントでのスペクトルを取得する。スペクトル強度をZAF補正してSi及びAlの半定量値を算出する。距離を横軸に取り、得られた半定量値をプロットすることにより、EDSラインプロファイルを得る。このEDSラインプロファイルからSiO2/Al2O3モル比を得る。
尚、SEM-EDX測定の条件としては、加速電圧は6~10kVが好ましく(特に6kVが好ましい)、観察倍率は1000~5000倍であることが好ましい。
上記得られたSiO2/Al2O3モル比から、支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと、内部のゼオライト膜のSiO2/Al2O3モル比Yを算出する。Xは、ゼオライト膜の支持体との界面からゼオライト膜表面方向へ向かって2μmまで(X1)のSiO2/Al2O3モル比の平均値とし、Yは、ゼオライト膜の支持体との界面からゼオライト膜表面方向へ向かって2μmから、ゼオライト膜表面まで(Y1)のSiO2/Al2O3モル比の平均値とする。
上記式(1)を満たす本発明の多孔質支持体-ゼオライト膜複合体を得るためには、種結晶を速くゼオライト膜に変換し、ゼオライト膜を成長させることが重要である。
種結晶を速くゼオライト膜に変換するには、反応性が高い種結晶を用いることが有効であり、具体的にはFAU型ゼオライトなど目的のゼオライトの構造の一部を有する種結晶を用いる方法、粒径が小さい種結晶を用いる方法、アルカリ処理などの表面処理によって、表面の反応性を高めた種結晶を用いる方法などがあげられる。この中でも目的のゼオライトの構造の一部を有するFAU型ゼオライトを用いる方法が特に有効であり、この方法については後述する。
上流側からヘリウムガスを導入して、試料が入った測定セル内をヘリウム雰囲気とする。その後、ヘリウムガスをフローしながら差動排気することで、約80kPa程度に減圧し、140℃で試料の吸着水等の除去を行う。1時間保持後、試料に、エタノールと水の混合液(水分濃度0.2重量%)の蒸気を1時間接触させる。1時間接触後、測定セル内をヘリウム雰囲気とした後に減圧する。すなわち、ヘリウムガスをフローしながら差動排気することで、約80kPa程度に減圧する。この際に、質量分析計に導入される水の挙動を観測することで、脱離水の検出強度を得る。脱離水の検出強度が最大値の時を0分とし、脱離水の検出強度が前記最大値の1/20の値になるまでの時間をQ(分)とする。
上記式(2)を満たす本発明の多孔質支持体-ゼオライト膜複合体を得るためには、ゼオライト膜のSiO2/Al2O3モル比を制御することや欠陥の量を制御することによって親水性を制御する方法、合成条件の制御によって、結晶サイズを適切なサイズにしたり、短時間で合成したりすることにより、膜の均一性を制御する方法、三次元の細孔構造を持つゼオライトを選択したり、フレームワーク密度の低いゼオライトを選択したりすることによって拡散性を向上させる方法があげられる。膜の均一性を制御する方法については、後述のFAU型ゼオライトを種結晶として使用する方法が挙げられる。これらのうち、一つの手法を用いてもいいが複数を組み合わせることが好ましい。
ゼオライトの構造としては、例えばAEI、AFG、ANA、CHA、DDR、EAB、ERI、ESV、FAR、FRA、GIS、ITE、KFI、LEV、LIO、LOS、LTA、LTN、MAR、PAU、RHO、RTH、SOD、STI、TOL、UFIなどが挙げられる。これらのうち、AEI、CHA、DDR、ERI、KFI、LEV、PAU、RHO、RTH、SOD、LTA、UFI型ゼオライトにより構成される膜を用いることが好ましく、CHA、DDR、RHO、SOD型ゼオライトにより構成される膜であることがより好ましい。中でもCHA型ゼオライトであることが好ましい。また、ゼオライトはアルミノケイ酸塩であることが好ましい。
ゼオライト膜を構成する成分としては、ゼオライト以外にシリカ、アルミナなどの無機バインダー、あるいはゼオライト表面を修飾するシリル化剤などを必要に応じて含んでいてもよい。また、本発明におけるゼオライト膜は、一部アモルファス成分などを含有していてもよいが、実質的にゼオライトのみで構成されるゼオライト膜が好ましい。
本発明の製造方法では、多孔質支持体上に、FAU型ゼオライトを種結晶に使用して、水熱合成によりCHA型ゼオライト膜を形成する。
水熱合成は、例えば、組成を調整して均一化した水熱合成用の反応混合物(以下これを「水性反応混合物」ということがある。)をオートクレーブなどの耐熱耐圧容器に入れて、多孔質支持体をこの耐熱耐圧容器の内部に緩やかに固定し、密閉して、一定時間加熱すればよい。
水性反応混合物に用いるSi元素源としては、例えば、無定形シリカ、コロイダルシリカ、シリカゲル、ケイ酸ナトリウム、無定形アルミのシリケートゲル等のアモルファス物質、テトラエトキシシラン(TEOS)、トリメチルエトキシシラン等のアルコキシシラン類を用いることができる。
Al元素源としては、例えば、アルミン酸ナトリウム、水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、酸化アルミニウム、無定形アルミノシリケートゲル等を用いることができる。なお、Al元素源以外に他の元素源、例えばGa、Fe、B、Ti、Zr、Sn、Znなどの元素源を含んでいてもよい。
ゼオライト膜の合成において有機テンプレートは焼成工程を必要とするので使用しない方が望ましいが、必要に応じて用いることができる。
ここで、有機テンプレートとは、生成するゼオライトの結晶構造を規制する、すなわち、鋳型剤としての働きを持つ構造規定剤(structure-directing agent)のうち、とくに有機化合物である物をいう。
具体的には、例えば、1-アダマンタンアミンから誘導されるカチオン、3-キナクリジナールから誘導されるカチオン、3-exo-アミノノルボルネンから誘導されるカチオン等の脂環式アミンから誘導されるカチオンが挙げられる。これらの中で、1-アダマンタンアミンから誘導されるカチオンがより好ましい。
1-アダマンタンアミンから誘導されるカチオンのうち、N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンがさらに好ましい。N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンの3つのアルキル基は、通常、それぞれ独立したアルキル基であり、好ましくは低級アルキル基、より好ましくはメチル基である。それらの中で最も好ましい化合物は、N,N,N-トリメチル-1-アダマンタンアンモニウムカチオンである。
アルカリの種類は特に限定されず、通常、Na、K、Li、Rb、Cs、Ca、Mg、Sr、Baなどが用いられる。これらの中で、Na、Kが好ましく、Kが含まれることが最も好ましい。本発明の製造方法において、FAU型の種結晶を用いて、FAU型ではなくCHA型のゼオライト膜を形成するには、例えば、このアルカリとしてKを用いることが好適である。
SiO2/Al2O3モル比は特に限定されないが、通常5以上、好ましくは6以上、より好ましくは7以上、更に好ましくは7.5以上である。また、通常10000以下、好ましくは1000以下、より好ましくは100以下、更に好ましくは12以下である。
Si元素源と水の比は、SiO2に対する水のモル比(H2O/SiO2モル比)で、通常10以上、好ましくは30以上、より好ましくは40以上、特に好ましくは50以上であり、通常1000以下、好ましくは500以下、より好ましくは200以下、特に好ましくは100以下である。
一般的に、粉末のCHA型ゼオライトを合成する際の水の量は、H2O/SiO2モル比で、15~50程度である。H2O/SiO2モル比が高い(50以上1000以下)、すなわち水が多い条件にすることにより、支持体上にCHA型ゼオライトが緻密な膜状に結晶化した分離性能の高い多孔質支持体-ゼオライト膜複合体を得ることができる。
ここで、本発明では、FAU型ゼオライトを種結晶とし、該種結晶の存在下で水熱合成を行うことにより、CHA型ゼオライト膜が形成される。
種結晶として用いるFAU型ゼオライトは構造がFAU型のゼオライトであれば何でもよい。
FAU型ゼオライトとしては、例えば、ケイ酸塩とリン酸塩が挙げられる。ケイ酸塩としては、例えば、アルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が挙げられる。リン酸塩としては、アルミニウムと燐からなるアルミノリン酸塩(ALPO-5などのALPOと称されるもの)、ケイ素とアルミニウムと燐からなるシリコアルミノリン酸塩(SAPO-34などのSAPOと称されるもの)、Feなどの元素を含むメタロアルミノリン酸塩(FAPO-5などのMeAPOと称されるもの)等が挙げられる。これらの中で、アルミノケイ酸塩、シリコアルミノリン酸塩が好ましく、アルミノケイ酸塩がより好ましい。
種結晶として用いるFAU型ゼオライトは市販のX型ゼオライトやY型ゼオライトを用いてもよいし、合成してもよい。一般的な合成方法はVERIFIED SYNTHESES OF ZEOLITIC MATERIALS Second Revised Edition 2001 ELSEVIERのP157などに記載されている。
該水溶液の濃度は、通常、0.00001mol/L以上、好ましくは0.0001mol/L以上、さらに好ましくは0.001mol/L以上、通常10mol/L以下、好ましくは5mol/L以下、さらに好ましくは2mol/L以下である。
また、処理時の温度は、通常10℃以上、好ましくは30℃以上、より好ましくは50℃以上、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下である。
処理時間は、通常2時間以上、好ましくは5時間以上、より好ましくは10時間以上、さらに好ましくは20時間以上、通常10日以下、好ましくは7日以下、より好ましくは4日以下である。さらに、必要に応じて200~500℃で焼成してもよい。
種結晶のICP発光分光分析法によって測定されるSiO2/Al2O3比は、通常15未満、好ましくは12未満、より好ましくは10未満であり、通常1以上、好ましくは3以上である。
なお、極大値は粒度分布測定により得られた粒度分布図(横軸に粒子径を縦軸に体積基準の相対粒子量をとった図)の極大値を指す。極大値は好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは2μm以下、特に好ましくは1.8μm以下であり、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは0.8μm以上である。粒子径が前記上限以下であることにより、基材への種結晶の担持が良好で、欠陥の少ないゼオライト膜が形成しやすい。粒子径が前記下限以上であることにより、合成中に種結晶が溶解しにくく欠陥の少ないゼオライト膜が形成しやすい。
このように種結晶の粒子径を制御することによって、基材に担持される種結晶の状態を制御することが可能になり、欠陥の少ない緻密な膜が形成される。
種結晶を好ましいサイズにするために、市販のFAU型ゼオライトや合成によって得られたFAU型ゼオライト、イオン交換したFAU型ゼオライトの結晶を乳鉢やボールミル、ジェットミルなどで粉砕しても構わない。
支持体上に種結晶を付着させる方法は特に限定されず、例えば、種結晶を水などの溶媒に分散させてその分散液に支持体を浸けて種結晶を付着させるディップ法や、種結晶を水などの溶媒と混合してスラリー状にしたものを支持体上に塗りこむ方法などを用いることができる。種結晶の付着量を制御し、再現性良くゼオライト膜複合体を製造するにはディップ法が望ましい。
分散させる種結晶の量は特に限定されず、分散液の全質量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上である。また、通常20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下、とくに好ましくは3質量%以下である。
種結晶の量が下限以上であることにより、結晶ができやすく、膜の成長が良好になり、膜の成長が均一になりやすい。また、種結晶の量が上限以下であることにより、表面の凹凸が種結晶によって増長されにくく、支持体から落ちた種結晶によって自発核が成長しにくく、支持体上の膜成長が阻害されにくい。よって、この範囲であることにより緻密なゼオライト膜が生成しやすい傾向がある。
ゼオライト膜を形成させる際の温度は特に限定されないが、通常80℃以上、好ましくは100℃以上、更に好ましくは140℃以上であり、通常200℃以下、好ましくは190℃以下である。反応温度が低すぎると、ゼオライトが生成しない場合がある。また、反応温度が高すぎると、本発明におけるゼオライトとは異なるタイプのゼオライトが生成する場合がある。
ゼオライト膜形成時の圧力は特に限定されず、密閉容器中に入れた水性反応混合物を、この温度範囲に加熱したときに生じる自生圧力で十分である。さらに必要に応じて、窒素などの不活性ガスを加えても差し支えない。
加熱処理の温度は、乾燥を目的とする場合は通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上、通常200℃以下、好ましくは150℃以下である。加熱時間は、乾燥を目的とする場合にはゼオライト膜が十分に乾燥する時間であれば特に限定されず、好ましくは0.5時間以上、より好ましくは1時間以上である。上限は特に限定されず、通常100時間以内、好ましくは10時間以内、より好ましくは5時間以内である。
加熱時間は有機テンプレートの焼成を目的とする場合には有機テンプレートが焼成する時間であれば特に限定されず、好ましくは0.5時間以上、より好ましくは1時間以上である。上限は特に限定されず、通常200時間以内、好ましくは150時間以内、より好ましくは100時間以内である。
イオン交換は加熱処理後のゼオライト膜を、NH4NO3、NaNO3などアンモニウム塩あるいは交換するイオンを含む水溶液で、通常、室温から100℃の温度で処理後、水洗する方法などにより行えばよい。
本発明において、CHA型ゼオライト膜と支持体との間には他の構造のゼオライト膜を実質的に有さないことが好ましいが、CHA型ゼオライト膜上には他の構造のゼオライト膜を有していてもよい。
尚、ここでのSiO2/Al2O3モル比は、ゼオライト膜複合体のゼオライト膜表面側からSEM-EDX測定をすることにより得られる値である。具体的測定方法については、以下の実施例で詳述する(SEM-EDX測定(膜表面側))。
ここで、空気透過量とは、実施例で詳述するとおり、ゼオライト膜複合体を絶対圧5kPaの真空ラインに接続した時の空気の透過量[L/(m2・h)]である。
本発明のゼオライト膜複合体は、分離方法における膜分離手段として好適に用いることができる。
本発明の分離方法は気体または液体の混合物(好ましくは有機物を含む気体または液体の混合物)を、上記多孔質支持体-ゼオライト膜複合体に接触させて、該混合物から、透過性の高い物質を透過させて分離することに特徴をもつものである。
例えば、水と有機物の混合物の場合、通常水がゼオライト膜に対する透過性が高いので、混合物から水が分離され、有機物は元の混合物中で濃縮される。パーベーパレーション法(浸透気化法)、ベーパーパーミエーション法(蒸気透過法)と呼ばれる分離・濃縮方法は、本発明の分離方法におけるひとつの実施形態である。
ここで、十分な処理量とは、好ましくは、膜を透過する物質の透過流束が1kg/(m2・h)以上であることをいう。また十分な分離の性能とは、好ましくは、次式で表される分離係数が100以上であること、あるいは透過液中の主成分の濃度が95質量%以上であることをいう。
[ここで、Pαは透過液中の主成分の質量パーセント濃度示し、Pβは透過液中の副成分の質量パーセント濃度を示し、Fαは透過液において主成分となる成分の被分離混合物中の質量パーセント濃度を示し、Fβは透過液において副成分となる成分の被分離混合物中の質量パーセント濃度を示す。]
パーミエンスの単位で表した場合、例えば、含水率10質量%の2-プロパノールと水の混合物を70℃において、1気圧(1.01×105Pa)の圧力差で透過させた場合の水のパーミエンスは、通常3×10-7mol/(m2・s・Pa)以上、好ましくは5×10-7mol/(m2・s・Pa)以上、より好ましくは1×10-6mol/(m2・s・Pa)以上、特に好ましくは2×10-6mol/(m2・s・Pa)以上である。水のパーミエンスの上限は特に限定されず、通常1×10-4mol/(m2・s・Pa)以下、好ましくは5×10-5mol/(m2・s・Pa)以下である。
本発明の分離方法では、ゼオライト膜を透過する物質は、通常水であるため、含水率が少なくなると処理量が低下するため効率的でない。また含水率が多すぎると濃縮に必要な膜が大面積となり(膜が管状に形成されている場合は数が多くなり)経済的な効果が小さくなる。
さらに、多孔質支持体-ゼオライト膜複合体によって水が分離された含水有機化合物から、さらに水を分離してもよい。これにより、より高度に水を分離し、含水有機化合物をさらに高度に濃縮することができる。
特に、水と、メタノールまたはエタノールの分離に好適であり、さらに水とエタノールの分離に好適である。
本発明の本発明のゼオライト膜複合体は、酸点と反応しやすい物質の分離にも好適に用いられる。酸点と反応しやすい物質としては二重結合を含む化合物が挙げられ、二重結合として具体的には、カルボニル基、アリル基、アミド基、イミン基、チオニル基等が挙げられる。
より具体的には、酢酸、アクリル酸、プロピオン酸、蟻酸、乳酸、シュウ酸、酒石酸、安息香酸、アセトン、メチルイソブチルケトン、アセトアルデヒド、ホルムアルデヒド、アリルアルコール、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレンイミン、グアニジンなどがあげられる。
本発明の分離方法は、本発明のゼオライト膜複合体を用いて、適当な分離膜モジュールや分離装置を作製し、それに気体または液体の混合物を導入することにより行えばよい。これら分離膜モジュールや分離装置は、それ自体既知の部材により作製することができる。
[空気透過量]
多孔質支持体-ゼオライト膜複合体の一端を封止し、他端を、密閉状態で5kPaの真空ラインに接続して、真空ラインと多孔質支持体-ゼオライト膜複合体の間に設置したマスフローメーターで空気の流量を測定し、空気透過量[L/(m2・h)]とした。マスフローメーターとしてはKOFLOC社製8300、N2ガス用、最大流量500ml/min(20℃、1気圧換算)を用いた。KOFLOC社製8300においてマスフローメーターの表示が10ml/min(20℃、1気圧換算)以下であるときはLintec社製MM-2100M、Airガス用、最大流量20ml/min(0℃、1気圧換算)を用いて測定した。
種結晶の粒度分布の測定を、以下の条件で行った。
・装置名:レーザー回折式粒度分布計測装置LA-500(堀場製作所社製)
・測定方式:フランホーファ回折理論とミー散乱理論の併用
・測定範囲:0.1~200μm
・光源:He-Neレーザー(632.8nm)
・検出器:リング状シリコンフォトダイオード
・分散溶媒:水
X線回折(XRD)測定は以下の条件に基づき行った。
・装置名:Bruker社製 New D8 ADVANCE
・光学系仕様 集中方光学系
入射側:封入式X線管球(CuKα)
Soller Slit (2.5°)
Divergence Slit (Valiable Slit)
試料台:XYZステージ
受光側:半導体アレイ検出器(Lynx Eye 1D mode)
Ni-filter
Soller Slit (2.5°)
ゴニオ半径:280mm
走査軸:θ/2θ
走査範囲(2θ):5.0-70.0°
測定モード:Continuous
読込幅:0.01°
計数時間:57.6秒
自動可変スリット(Automatic-DS):1mm(照射幅)
ゼオライト膜の膜表面側から測定するSiO2/Al2O3モル比は、次の条件で行ったSEM-EDX測定より算出した。
装置名:SEM:Hitachi:S-4800型FE-SEM
EDX:EDAX Genesis
X線強度の測定条件:
加速電圧:10kV、分析深さは表面から2μm程度。
WD:15mm
電子線照射方法:膜表面での倍率5000倍での視野全面(25μm×18μm)を走査し、SiKα線とAlKα線の強度比を測定。任意の5箇所でこの強度比を測定しておく。
定量方法:あらかじめ組成が既知のゼオライト粉末(L型とβ型、東ソー社製)から作製したブリケットを標準試料として使用して検量線を作成しておき、SiKα/AlKα強度比からSiO2/Al2O3モル比へと変換した。任意の5箇所の分析結果の平均値を採用した。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比YはSEM-EDX測定によるラインプロファイルから算出した。
ゼオライト膜複合体を適当な大きさに切断した後、クロスセクションポリッシャーを用いてArのイオンビームを照射し断面を平滑化した。作製した断面に対し、SEM-EDX測定を行い、倍率1000~5000倍で、ゼオライト膜表面側から支持体側に向かって垂直な直線上の0.1μmごとの各ポイントでのスペクトルを取得した。
装置名:SEM:Carl Zeiss:Ultra55
EDX:Bruker:Quantax200
加速電圧:6kV
WD:7mm
検出器:XFlash 4010
スペクトル強度をZAF補正してSi及びAlの半定量値を算出した。距離を横軸に取り、得られた半定量値をプロットすることにより、EDSラインプロファイルを得て、このEDSラインプロファイルからSiO2/Al2O3モル比を得た。
Xは、ゼオライト膜の支持体との界面からゼオライト膜表面方向へ向かって2μmまでのSiO2/Al2O3モル比の平均値とし、Yは、ゼオライト膜の支持体との界面からゼオライト膜表面方向へ向かって2μmから、ゼオライト膜表面までのSiO2/Al2O3モル比の平均値とした。
ゼオライト膜複合体を短冊状(15mm長、4mm幅)に裁断したもの5本を試料とし、この試料をステンレス製の測定セルに入れた。
尚、測定セルにはガスの流路となる配管(上流側、下流側)が接続されている。測定セルの下流側は差動排気ポンプに接続されている。測定セルと差動排気ポンプの流路の途中に質量分析計があり、測定セルから排出されたガスの一部が、差動排気ポンプへ流れず、質量分析計に導入される。
測定セルにヘリウムガスを導入して、セル内をヘリウム雰囲気とした。その後、ヘリウムガスをフローしながら差動排気することで80kPa程度に減圧し、140℃で試料の吸着水等の除去を行った。1時間保持後、試料にエタノールと水の混合液(水分濃度0.2重量%)の蒸気を1時間接触させた。1時間接触後、測定セル内をヘリウム雰囲気とした後、ヘリウムガスをフローしながら差動排気して80kPa程度まで減圧した。この際に、質量分析計(AGS-7000、キャノンアネルバ社製)に導入される水の挙動を観測することにより脱離水の検出強度を得た。
脱離水の検出強度が最大値の時を0分とし、脱離水の検出強度が前記最大値の1/20の値になるまでの時間をQ(分)とした。
水熱合成用の水性反応混合物として以下のものを調製した。
水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)2.15gに1mol/L-KOH水溶液63.0gと水61.8gを加えて混合撹拌し溶解させ溶液とした。
これにコロイダルシリカ(スノーテック-40、日産化学社製)13.5gを加えて2時間撹拌し、水性反応混合物とした。
この水性反応混合物の組成(モル比)は、SiO2/Al2O3/KOH/H2O=1/0.125/0.7/80、SiO2/Al2O3=8であった。
プロトン型のY型ゼオライト(HY(SAR=5)、触媒化成工業社製)10.0gにNaOH5.00gと水100gを混合したものを100℃で7日間加熱した後、ろ過、水洗、乾燥することによりFAU型ゼオライトを得た。このFAU型ゼオライトの粒度分布を測定したところD50は1.73μm、極大値は1.32μm、2.98μmであった(粒径:2μm程度)。このFAU型ゼオライトを種結晶として使用した。
種結晶を付着させた支持体を、上記水性反応混合物の入ったテフロン(登録商標)製内筒(200ml)に垂直方向に浸漬して、オートクレーブを密閉し、5時間かけて室温から180℃まで昇温した。昇温完了後、180℃で24時間、静置状態で、自生圧力下で加熱しすることにより、水熱合成を行った。所定時間経過後に放冷し、多孔質支持体-ゼオライト膜複合体を水性反応混合物から取り出し、洗浄後、100℃で4時間乾燥させた。
水性反応混合物、無機多孔質支持体及び種結晶は実施例1と同じものを用いた。
この種結晶を水に2質量%分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させたところ、付着した種結晶の質量は2g/m2であった。
乾燥後の多孔質支持体-ゼオライト膜複合体の空気透過量は0L/(m2・h)であった。SEM-EDX測定(膜表面側)により、ゼオライト膜の膜表面側からのSiO2/Al2O3モル比を測定したところ、6.4であった。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは0.90であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は16.7分であった。
水性反応混合物及び種結晶は実施例1と同じものを用いた。
無機多孔質支持体としては、多孔質アルミナチューブ(外径16mm、内径12mm)を80mmの長さに切断した後、超音波洗浄機で洗浄したのち乾燥させたものを用いた。
この種結晶を水に2質量%分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は0.3g/m2であった。
その後は、実施例1と同様にして多孔質支持体-ゼオライト膜複合体を得た。
SEM-EDX測定(膜表面側)により、ゼオライト膜の膜表面側からのSiO2/Al2O3モル比を測定したところ、6.0であった。多孔質支持体-ゼオライト膜複合体のXRD測定よりCHA型のゼオライト膜が生成していることを確認した。
SEMによりゼオライト膜の膜厚を確認したところ、約10μmの厚さの膜が生成していることを確認した。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは0.87であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は15.2分であった。
水熱合成用の反応混合物として以下のものを調製した。
水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)11.8gに1mol/L-KOH水溶液346gと水340gを混合したものを加えて撹拌し溶解させ溶液とした。これにコロイダルシリカ(スノーテック-40、日産化学社製)74.25gを加えて2時間撹拌し、水性反応混合物とした。
この反応混合物の組成(モル比)は、SiO2/Al2O3/KOH/H2O=1/0.125/0.7/80、SiO2/Al2O3=8であった。
この種結晶を水に0.5質量%分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は2g/m2であった。
乾燥後の多孔質支持体-ゼオライト膜複合体の空気透過量は10L/(m2・h)であった。
SEMによりゼオライト膜の膜厚を確認したところ、約20μmの厚さの膜が生成していることを確認した。
水性反応混合物、無機多孔質支持体及び種結晶は実施例1と同じものを用いた。
この種結晶を水に2質量%分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は2g/m2であった。
その後、実施例1と同様にして多孔質支持体-ゼオライト膜複合体を得た。
多孔質支持体-ゼオライト膜複合体のXRD測定よりCHA型のゼオライト膜が生成していることを確認した。
乾燥後の多孔質支持体-ゼオライト膜複合体にシリル化剤としてメチルシリケートオリゴマー(MKC(登録商標)シリケート、三菱化学社製)を塗布してシリル化処理し、水蒸気共存下で100℃6時間加熱した。
水性反応混合物、無機多孔質支持体及び種結晶は実施例1と同じものを用いた。
この種結晶を水に2質量%分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は2g/m2であった。
その後、実施例1と同様にして多孔質支持体-ゼオライト膜複合体を得た。
多孔質支持体-ゼオライト膜複合体のXRD測定よりCHA型のゼオライト膜が生成していることを確認した。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは1.04であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は14.1分であった。
実施例1と同様の水性反応混合物、無機多孔質支持体及び種結晶を用いて、多孔質支持体-ゼオライト膜複合体を得た。
種結晶は水に0.5質量%分散させて使用した。多孔質支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させたところ、付着した種結晶の質量は0.9g/m2であった。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは0.86であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は13.8分であった。
水性反応混合物と無機多孔質支持体は実施例1と同じものを用いた。
種結晶としてCHA型ゼオライトを用いた。CHA型ゼオライトは、プロトン型のY型ゼオライト(HY(SAR=5)、触媒化成工業社製)10.0gにKOH5.00gと水100gを混合したものを100℃、6日間加熱したものを、ろ過、水洗、乾燥して得た。
その後、実施例1と同様にして、種結晶を付着させた支持体を水性反応混合物に浸漬して、5時間かけて室温から180℃まで昇温した。昇温完了後、180℃で18時間、静置状態で、自生圧力下で加熱した以外は、実施例1と同様にして多孔質支持体-ゼオライト膜複合体を得た。
乾燥後のゼオライト膜複合体の空気透過量は0L/(m2・h)であった。
SEM-EDX測定(膜表面側)により、ゼオライト膜の膜表面側からのSiO2/Al2O3モル比を測定したところ、6.2であった。
水性反応混合物と無機多孔質支持体は実施例1と同じものを用いた。
SiO2/Al2O3/NaOH/H2O/TMADAOH=1/0.033/0.1/40/0.1のゲル組成(モル比)で、160℃、2日間水熱合成して結晶化させたものを、ろ過、水洗、乾燥して得られたCHA型ゼオライト(粒径:0.5μm程度)を種結晶として用いた。(TMADAOH:N,N,N-トリメチル-1-アダマンタンアンモニウム水酸化物)
種結晶を付着させた支持体を、上記水性反応混合物の入ったテフロン(登録商標)製内筒(200ml)に垂直方向に浸漬して、オートクレーブを密閉し、180℃で48時間、静置状態で、自生圧力下で加熱した。所定時間経過後に放冷し、多孔質支持体-ゼオライト膜複合体を反応混合物から取り出し、洗浄後、100℃で4時間乾燥させた。
実施例1と比較して合成時間を長く取っているにもかかわらず空気透過量が多く緻密ではない膜であった。
水熱合成用の反応混合物として以下のものを調製した。
水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)2.86gに1mol/L-KOH水溶液63.0gと水62.0gを混合したものに加えて撹拌し溶解させ溶液とした。これにコロイダルシリカ(スノーテック-40、日産化学社製)13.5gを加えて2時間撹拌し、水性反応混合物とした。
この反応混合物の組成(モル比)は、SiO2/Al2O3/KOH/H2O=1/0.167/0.7/80、SiO2/Al2O3=6である。
種結晶として、SiO2/Al2O3/NaOH/H2O/TMADAOH=1/0.033/0.1/40/0.1のゲル組成(モル比)で、160℃、2日間水熱合成して結晶化させたものを、ろ過、水洗、乾燥して得られたCHA型ゼオライトを用いた。種結晶の粒径は1μm程度であった。
この種結晶を1質量%水中に分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は2g/m2であった。
乾燥後の多孔質支持体-ゼオライト膜複合体の空気透過量は0L/(m2・h)であった。SEMによりゼオライト膜の膜厚を確認したところ、約5μmの厚さの膜が生成していることを確認した。SEM-EDX測定(膜表面側)により、ゼオライト膜の膜表面側からのSiO2/Al2O3モル比を測定したところ、6.0であった。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは1.42であった。
水熱合成用の反応混合物として以下のものを調製した。
水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)0.881gに1mol/L-NaOH水溶液10.5gと1mol/L-KOH水溶液7.00gと水100gを混合したものに加えて撹拌し溶解させ溶液とした。
この反応混合物の組成(モル比)は、SiO2/Al2O3/NaOH/KOH/TMADAOH/H2O=1/0.066/0.15/0.10/0.04/100、SiO2/Al2O3=15であった。
種結晶として、比較例3と同様にして得られたものを使用した(ただし、種結晶の粒径は0.5μm程度)。
この種結晶を0.3質量%水中に分散させたものに、上記支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は1g/m2であった。
水熱合成後のゼオライト膜複合体を、電気炉で、500℃、5時間焼成した。焼成後のゼオライト膜複合体の空気透過量は41L/(m2・h)であった。
焼成後のゼオライト膜に実施例5と同様にしてシリル化処理を施した。
水性反応混合物に種結晶を付着させた支持体を浸漬した後の、水熱合成時間を、140℃、168時間としたほかは比較例1と同様にして多孔質支持体-ゼオライト膜複合体を得た。
乾燥後のゼオライト膜複合体の空気透過量は0L/(m2・h)であった。
支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比Xと内部のゼオライト膜のSiO2/Al2O3モル比Yの比、X/Yは0.69であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は30.6分であった。
焼成後のゼオライト膜にシリル化処理を行わなかった他は比較例4と同様にして、ゼオライト膜複合体を得た。焼成後のゼオライト膜複合体の空気透過量は65L/(m2・h)であった。SEM-EDX測定(膜表面側)により、ゼオライト膜の膜表面側からのSiO2/Al2O3モル比を測定したところ、17であった。水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)は7.0分であった。
以上の実施例比較例をまとめた結果を表1及び表2にそれぞれ示す。
実施例1で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
実施例2で得られた多孔質支持体-ゼオライト膜複合体を用いて、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は5.8kg/(m2・h)、分離係数は1300、透過液中の水の濃度は99.32質量%であった。水のパーミエンスであらわすと、4.7×10-6mol/(m2・s・Pa)であった。
実施例3で得られた多孔質支持体-ゼオライト膜複合体を用いて、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は4.4kg/(m2・h)、分離係数は2200、透過液中の水の濃度は99.60質量%であった。水のパーミエンスであらわすと、3.6×10-6mol/(m2・s・Pa)であった。
実施例5で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、60℃の水/エタノール水溶液(5/95質量%)から水を選択的に透過させる分離を行った。
その結果、多孔質支持体-ゼオライト膜複合体の透過流束は0.72kg/(m2・h)、分離係数は10200、透過液中の水の濃度は99.81質量%であった。水のパーミエンスであらわすと、2.1×10-6mol/(m2・s・Pa)であった。
実施例5で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
その結果、多孔質支持体-ゼオライト膜複合体の透過流束は4.1kg/(m2・h)、分離係数は9700、透過液中の水の濃度は99.91質量%であった。水のパーミエンスであらわすと、3.3×10-6mol/(m2・s・Pa)であった。
実施例5で得られた多孔質支持体-ゼオライト膜複合体を用いて、80℃の水/アリルアルコール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は3.3kg/(m2・h)、分離係数は4100、透過液中の水の濃度は99.75質量%であった。
実施例5で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、50℃の水/メタノール水溶液(30/70質量%)から水を選択的に透過させる分離を行った。
その結果、多孔質支持体-ゼオライト膜複合体の透過流束は1.0kg/(m2・h)、分離係数は37、透過液中の水の濃度は94.28質量%であった。水のパーミエンスであらわすと、2.3×10-6mol/(m2・s・Pa)であった。
実施例4と同様の方法で製造された多孔質支持体-ゼオライト膜複合体を用いて、80℃の水/アリルアルコール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は3.6kg/(m2・h)、分離係数は7400、透過液中の水の濃度は99.85質量%であった。
実施例6で得られた多孔質支持体-ゼオライト膜複合体を用いて、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は5.4kg/(m2・h)、分離係数は5300、透過液中の水の濃度は99.83質量%であった。水のパーミエンスであらわすと、4.4×10-6mol/(m2・s・Pa)であった。
実施例7で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、60℃の水/エタノール水溶液(5/95質量%)から水を選択的に透過させる分離を行った。
その結果、多孔質支持体-ゼオライト膜複合体の透過流束は1.53kg/(m2・h)、分離係数は1200、透過液中の水の濃度は98.49質量%であった。水のパーミエンスであらわすと、4.6×10-6mol/(m2・s・Pa)であった。
比較例1で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は2.8kg/(m2・h)、分離係数は98、透過液中の水の濃度は92.45質量%であった。水のパーミエンスであらわすと、2.0×10-6mol/(m2・s・Pa)と透過流速、分離係数ともに低い結果であった。
比較例3で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、70℃の水/2-プロパノール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は2.0kg/(m2・h)、分離係数は1700、透過液中の水の濃度は99.54質量%であった。水のパーミエンスであらわすと、1.5×10-6mol/(m2・s・Pa)であった。比較例3で得られた膜は合成時間が長いにもかかわらず分離係数が低く、透過流束も低かった。
比較例4で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、50℃の水/メタノール水溶液(30/70質量%)から水を選択的に透過させる分離を行った。
透過流束は0.9kg/(m2・h)、分離係数は4、透過液中の水の濃度は63.19質量%であった。水のパーミエンスであらわすと、1.3×10-6mol/(m2・s・Pa)であった。透過流束、分離係数ともに非常に低い結果となった。
比較例4で得られた多孔質支持体-ゼオライト膜複合体を用いて、パーベーパレーション法により、上記試験例1と同様にして、80℃の水/アリルアルコール水溶液(10/90質量%)から水を選択的に透過させる分離を行った。
透過流束は1.6kg/(m2・h)、分離係数は4800、透過液中の水の濃度は99.79質量%であった。
試験例6と比較して透過量が低い結果となった。
上記試験例及び比較試験例をまとめた結果を表3~6に示す。
2.湯浴
3.撹拌子
4.被分離液
5.多孔質支持体-ゼオライト膜複合体
6.ピラニゲージ
7.透過液捕集用トラップ
8.コールドトラップ
9.真空ポンプ
Claims (13)
- 多孔質支持体上に、種結晶の存在下、水熱合成によりCHA型ゼオライト膜を形成して多孔質支持体-ゼオライト膜複合体を製造する方法であって、
前記種結晶としてFAU型ゼオライトを用いることを特徴とする、多孔質支持体-ゼオライト膜複合体の製造方法。 - 前記多孔質支持体に予め前記種結晶を付着させ、前記CHA型ゼオライト膜を形成することを特徴とする、請求項1に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
- 前記水熱合成をSi元素源及び水を含有する水性反応混合物中で行い、
前記Si元素源はアモルファス物質またはアルコキシシラン類である、請求項1または2に記載の多孔質支持体-ゼオライト膜複合体の製造方法。 - 前記種結晶のSiO2/Al2O3モル比が15未満である、請求項1~3のいずれか一項に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
- 形成される前記CHA型ゼオライト膜のSiO2/Al2O3モル比が15以下である、請求項1~4のいずれか一項に記載の多孔質支持体-ゼオライト膜複合体の製造方法。
- 請求項1~5のいずれか一項に記載の製造方法により製造された、多孔質支持体-ゼオライト膜複合体。
- 多孔質支持体界面近傍のゼオライト膜のSiO2/Al2O3モル比をX、内部のゼオライト膜のSiO2/Al2O3モル比をYとしたとき、X/Yが下記式(1)を満たすことを特徴とする、多孔質支持体-ゼオライト膜複合体。
0.70 < X/Y < 1.2 ・・・(1) - 多孔質支持体上に形成されたゼオライト膜を有する多孔質支持体-ゼオライト膜複合体であって、
前記多孔質支持体界面近傍のゼオライト膜と、内部のゼオライト膜の結晶性が実質的に同じであることを特徴とする、多孔質支持体-ゼオライト膜複合体。 - 多孔質支持体上に形成されたゼオライト膜を有する多孔質支持体-ゼオライト膜複合体であって、
水蒸気拡散測定において、脱離水の検出強度の最大値からその1/20の値になるまでの時間Q(分)が、下記式(2)を満たすことを特徴とする、多孔質支持体-ゼオライト膜複合体。
7.0 < Q < 30 ・・・(2) - 前記ゼオライト膜がCHA型ゼオライト膜である、請求項7~9の何れか一項に記載の多孔質支持体-ゼオライト膜複合体。
- 前記ゼオライト膜の膜表面側から測定したSiO2/Al2O3モル比が15以下である、請求項7~10の何れか一項に記載の多孔質支持体-ゼオライト膜複合体。
- 気体または液体の混合物を、請求項6~11の何れか一項に記載の多孔質支持体-ゼオライト膜複合体に接触させて、前記混合物から、透過性の高い物質を透過させて分離することを特徴とする、気体または液体の混合物の分離方法。
- 前記気体または液体の混合物が、二重結合を含む化合物を含む混合物である、請求項12に記載の分離方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016513846A JP6614138B2 (ja) | 2014-04-18 | 2015-04-17 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
EP15780170.5A EP3132842A4 (en) | 2014-04-18 | 2015-04-17 | (porous support)-(zeolite film) complex, and method for producing (porous support)-(zeolite film) complex |
CN201580020377.6A CN106255545B (zh) | 2014-04-18 | 2015-04-17 | 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法 |
US15/296,705 US10406486B2 (en) | 2014-04-18 | 2016-10-18 | Porous support-zeolite membrane composite |
US16/524,420 US11065586B2 (en) | 2014-04-18 | 2019-07-29 | Porous support-zeolite membrane composite and process for producing porous support-zeolite membrane composite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086677 | 2014-04-18 | ||
JP2014-086677 | 2014-04-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/296,705 Continuation US10406486B2 (en) | 2014-04-18 | 2016-10-18 | Porous support-zeolite membrane composite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159986A1 true WO2015159986A1 (ja) | 2015-10-22 |
Family
ID=54324187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061910 WO2015159986A1 (ja) | 2014-04-18 | 2015-04-17 | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10406486B2 (ja) |
EP (1) | EP3132842A4 (ja) |
JP (3) | JP6614138B2 (ja) |
CN (2) | CN106255545B (ja) |
WO (1) | WO2015159986A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106045872A (zh) * | 2016-06-06 | 2016-10-26 | 南京工业大学 | 一种二甲基甲酰胺废液的渗透汽化法回收系统及方法 |
JP2017165671A (ja) * | 2016-03-15 | 2017-09-21 | 三菱ケミカル株式会社 | 高濃度アルコールの製造方法 |
DE112018001707T5 (de) | 2017-03-31 | 2019-12-24 | Ngk Insulators, Ltd. | Zeolithmembranverbund und Verfahren zur Herstellung eines Zeolithmembranverbunds |
CN111111452A (zh) * | 2020-01-03 | 2020-05-08 | 天津碧水源膜材料有限公司 | 中空纤维帘式膜元件的处理方法和中空纤维帘式膜组件 |
JP2020099901A (ja) * | 2018-12-21 | 2020-07-02 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
JP2022132360A (ja) * | 2017-02-17 | 2022-09-08 | 三菱ケミカル株式会社 | Rho型ゼオライトの製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106255545B (zh) * | 2014-04-18 | 2019-08-27 | 三菱化学株式会社 | 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法 |
MY183277A (en) | 2014-07-10 | 2021-02-18 | Hitachi Zosen Corp | Zeolite membrane, production method therefor, and separation method using same |
US9943808B2 (en) * | 2016-02-19 | 2018-04-17 | King Fahd University Of Petroleum And Minerals | Aluminum oxide supported gas permeable membranes |
JP6757606B2 (ja) * | 2016-06-21 | 2020-09-23 | 日立造船株式会社 | Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法 |
CN106745026B (zh) * | 2016-12-16 | 2019-01-11 | 南京工业大学 | 一种无缺陷ddr分子筛膜的制备方法 |
KR102033300B1 (ko) * | 2017-11-16 | 2019-10-17 | 고려대학교 산학협력단 | 유기구조유도체를 배제한 cha 제올라이트 분리막의 제조방법 및 이로부터 제조된 분리막 |
KR102715371B1 (ko) | 2018-03-21 | 2024-10-14 | 바스프 모바일 에미션스 카탈리스츠 엘엘씨 | Cha 제올라이트 물질 및 관련 합성 방법 |
CN111867710B (zh) * | 2018-03-23 | 2022-11-04 | 日本碍子株式会社 | 沸石膜复合体及沸石膜复合体的制造方法 |
JP7367684B2 (ja) * | 2018-09-05 | 2023-10-24 | 日本ゼオン株式会社 | ピペリレンの製造方法 |
EP3950101B1 (en) * | 2019-03-26 | 2023-12-27 | Zeon Corporation | Separation method and production method for branched diolefin |
JP7257244B2 (ja) * | 2019-05-08 | 2023-04-13 | 日立造船株式会社 | ゼオライト膜複合体及びその製造方法 |
CN110523296B (zh) * | 2019-08-28 | 2021-12-21 | 四川林奥科技有限公司 | 一种应用于反渗透水处理的管式沸石膜的制备方法 |
CN112426891B (zh) * | 2020-10-09 | 2022-05-13 | 大连理工大学 | 一种cha型沸石分子筛膜的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011016123A (ja) * | 2009-06-08 | 2011-01-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜、分離膜モジュール及びその製造方法 |
JP2013126649A (ja) * | 2011-11-17 | 2013-06-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜およびその製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447552A (en) * | 1982-01-29 | 1984-05-08 | Uop Inc. | Passivation of metal contaminants on cracking catalyst |
US4544538A (en) * | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
JPH07501783A (ja) * | 1991-12-05 | 1995-02-23 | ザ・ダウ・ケミカル・カンパニー | フィルターまたは熱交換器に用いられる構造物、並びに該構造物の製造法 |
US5554286A (en) | 1993-12-27 | 1996-09-10 | Mitsui Engineering & Shipbuilding Co., Ltd. | Membrane for liquid mixture separation |
JP3431973B2 (ja) | 1993-12-27 | 2003-07-28 | 三井造船株式会社 | 液体混合物分離膜の製造方法 |
JP2000237561A (ja) | 1998-01-08 | 2000-09-05 | Tosoh Corp | Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法 |
JP2003144871A (ja) | 2001-08-24 | 2003-05-20 | Tosoh Corp | モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法 |
JP4548080B2 (ja) * | 2004-10-04 | 2010-09-22 | 三菱化学株式会社 | 成分分離方法および成分分離装置 |
WO2006059394A1 (en) * | 2004-12-01 | 2006-06-08 | Bussan Nanotech Research Institute Inc. | Method for manufacturing zeolite membrane |
EP1924334A4 (en) * | 2005-09-13 | 2009-11-11 | Rasirc | METHOD FOR PRODUCING A HIGH-PURITY FLOW |
JP4995484B2 (ja) | 2006-05-16 | 2012-08-08 | 日本オプネクスト株式会社 | 光半導体装置 |
JP5051816B2 (ja) * | 2006-05-23 | 2012-10-17 | 独立行政法人産業技術総合研究所 | フィリップサイト型ゼオライト複合膜及びその製造方法 |
JP5856479B2 (ja) * | 2008-04-15 | 2016-02-09 | ナノエイチツーオー・インコーポレーテッド | 複合ナノ粒子tfc膜 |
UA101663C2 (ru) * | 2008-05-28 | 2013-04-25 | Ашланд-Зюдхеми-Кернфест Гмбх | Покрытие для литейных форм и стержней для предотвращения образования раковин на поверхностях |
EP3305396B1 (en) | 2009-02-27 | 2022-03-30 | Mitsubishi Chemical Corporation | Inorganic porous support-zeolite membrane composite, production method therof, and separation method using the composite |
JP5428014B2 (ja) * | 2009-12-25 | 2014-02-26 | 日本碍子株式会社 | ゼオライト膜の製造方法 |
US9863314B2 (en) * | 2011-04-28 | 2018-01-09 | Hitachi Zosen Corporation | Carbon dioxide membrane separation system in coal gasification process, and integrated coal gasification combined cycle power generation facility using same |
JP6107809B2 (ja) | 2012-02-24 | 2017-04-05 | 三菱化学株式会社 | 多孔質支持体―ゼオライト膜複合体 |
WO2013129625A1 (ja) * | 2012-02-29 | 2013-09-06 | 日本碍子株式会社 | セラミック分離膜及び脱水方法 |
EP2832694B1 (en) * | 2012-03-30 | 2022-08-17 | NGK Insulators, Ltd. | Method for manufacturing a ddr zeolite type seed crystal |
JP6238899B2 (ja) * | 2012-09-28 | 2017-11-29 | 日本碍子株式会社 | モノリス型分離膜構造体の欠陥検出方法、補修方法、およびモノリス型分離膜構造体 |
CN104755155B (zh) * | 2012-11-01 | 2017-03-15 | 日本碍子株式会社 | 沸石膜的再生方法 |
WO2014069676A1 (ja) * | 2012-11-01 | 2014-05-08 | 日本碍子株式会社 | セラミック分離膜構造体、およびその補修方法 |
JP6446378B2 (ja) * | 2013-03-14 | 2018-12-26 | ヨーナス・ヘドルンド | 多孔性基板上にゼオライトおよび/またはゼオライト様結晶の結晶膜を製造するための方法 |
JP2014198308A (ja) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | セラミック分離フィルタ及び脱水方法 |
CN106255545B (zh) * | 2014-04-18 | 2019-08-27 | 三菱化学株式会社 | 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法 |
-
2015
- 2015-04-17 CN CN201580020377.6A patent/CN106255545B/zh active Active
- 2015-04-17 WO PCT/JP2015/061910 patent/WO2015159986A1/ja active Application Filing
- 2015-04-17 CN CN201910102615.8A patent/CN110052180B/zh active Active
- 2015-04-17 JP JP2016513846A patent/JP6614138B2/ja active Active
- 2015-04-17 EP EP15780170.5A patent/EP3132842A4/en not_active Withdrawn
-
2016
- 2016-10-18 US US15/296,705 patent/US10406486B2/en active Active
-
2019
- 2019-07-29 US US16/524,420 patent/US11065586B2/en active Active
- 2019-10-30 JP JP2019197613A patent/JP7107296B2/ja active Active
-
2022
- 2022-02-28 JP JP2022030050A patent/JP2022071056A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011016123A (ja) * | 2009-06-08 | 2011-01-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜、分離膜モジュール及びその製造方法 |
JP2013126649A (ja) * | 2011-11-17 | 2013-06-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜およびその製造方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017165671A (ja) * | 2016-03-15 | 2017-09-21 | 三菱ケミカル株式会社 | 高濃度アルコールの製造方法 |
CN106045872A (zh) * | 2016-06-06 | 2016-10-26 | 南京工业大学 | 一种二甲基甲酰胺废液的渗透汽化法回收系统及方法 |
CN106045872B (zh) * | 2016-06-06 | 2018-04-27 | 南京工业大学 | 一种二甲基甲酰胺废液的渗透汽化法回收系统及方法 |
JP2022132360A (ja) * | 2017-02-17 | 2022-09-08 | 三菱ケミカル株式会社 | Rho型ゼオライトの製造方法 |
JP7416135B2 (ja) | 2017-02-17 | 2024-01-17 | 三菱ケミカル株式会社 | Rho型ゼオライトの製造方法 |
DE112018001707T5 (de) | 2017-03-31 | 2019-12-24 | Ngk Insulators, Ltd. | Zeolithmembranverbund und Verfahren zur Herstellung eines Zeolithmembranverbunds |
US10994247B2 (en) | 2017-03-31 | 2021-05-04 | Ngk Insulators, Ltd. | Zeolite membrane composite and process for producing zeolite membrane composite |
JP2020099901A (ja) * | 2018-12-21 | 2020-07-02 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
JP7413763B2 (ja) | 2018-12-21 | 2024-01-16 | 三菱ケミカル株式会社 | 多孔質支持体-ゼオライト膜複合体の製造方法 |
CN111111452A (zh) * | 2020-01-03 | 2020-05-08 | 天津碧水源膜材料有限公司 | 中空纤维帘式膜元件的处理方法和中空纤维帘式膜组件 |
CN111111452B (zh) * | 2020-01-03 | 2022-08-30 | 天津碧水源膜材料有限公司 | 中空纤维帘式膜元件的处理方法和中空纤维帘式膜组件 |
Also Published As
Publication number | Publication date |
---|---|
US20170036175A1 (en) | 2017-02-09 |
CN110052180B (zh) | 2021-09-28 |
CN106255545B (zh) | 2019-08-27 |
CN106255545A (zh) | 2016-12-21 |
US10406486B2 (en) | 2019-09-10 |
EP3132842A1 (en) | 2017-02-22 |
JP2020032419A (ja) | 2020-03-05 |
US11065586B2 (en) | 2021-07-20 |
US20190344223A1 (en) | 2019-11-14 |
EP3132842A4 (en) | 2017-04-05 |
JP7107296B2 (ja) | 2022-07-27 |
JP2022071056A (ja) | 2022-05-13 |
JPWO2015159986A1 (ja) | 2017-04-13 |
JP6614138B2 (ja) | 2019-12-04 |
CN110052180A (zh) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7107296B2 (ja) | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 | |
JP6366568B2 (ja) | 多孔質支持体−ゼオライト膜複合体及び分離方法 | |
JP5761300B2 (ja) | 無機多孔質支持体−ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 | |
JP6551578B2 (ja) | 多孔質支持体−ゼオライト膜複合体の製造方法 | |
JP5903802B2 (ja) | 多孔質支持体―ゼオライト膜複合体の製造方法 | |
JP5445398B2 (ja) | 多孔質支持体―ゼオライト膜複合体の製造方法 | |
WO2016084845A1 (ja) | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 | |
JPWO2013125661A1 (ja) | 多孔質支持体―ゼオライト膜複合体 | |
JP2022132360A (ja) | Rho型ゼオライトの製造方法 | |
JP6414304B2 (ja) | 多孔質支持体―ゼオライト膜複合体およびそれを用いる分離方法 | |
JP6167484B2 (ja) | 多孔質支持体−ゼオライト膜複合体 | |
JP6163719B2 (ja) | 硫化水素の分離方法 | |
JP7167462B2 (ja) | アルカリ性含水有機化合物の水分離方法 | |
JP6217242B2 (ja) | 多孔質支持体−ゼオライト膜複合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780170 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016513846 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015780170 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015780170 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |