WO2015151484A1 - 内燃機関のegrシステム - Google Patents

内燃機関のegrシステム Download PDF

Info

Publication number
WO2015151484A1
WO2015151484A1 PCT/JP2015/001769 JP2015001769W WO2015151484A1 WO 2015151484 A1 WO2015151484 A1 WO 2015151484A1 JP 2015001769 W JP2015001769 W JP 2015001769W WO 2015151484 A1 WO2015151484 A1 WO 2015151484A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensed water
egr
intercooler
gas
engine
Prior art date
Application number
PCT/JP2015/001769
Other languages
English (en)
French (fr)
Inventor
敬太郎 南
英明 市原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP17175048.2A priority Critical patent/EP3244055B1/en
Priority to EP15772852.8A priority patent/EP3130790B1/en
Priority to CN201580017471.6A priority patent/CN106164460B/zh
Priority to US15/300,902 priority patent/US10107235B2/en
Publication of WO2015151484A1 publication Critical patent/WO2015151484A1/ja
Priority to US15/959,400 priority patent/US10473063B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1472Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a humidity or water content of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10393Sensors for intake systems for characterising a multi-component mixture, e.g. for the composition such as humidity, density or viscosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an EGR system for an internal combustion engine.
  • an external EGR device that recirculates a part of exhaust gas to the intake side is generally used, and it is known to provide an EGR cooler that cools EGR gas in an EGR pipe of the external EGR device. It is also generally known to provide an intercooler upstream of the intake port in an internal combustion engine with a supercharger. In this case, condensed water is generated in the gas path through which the EGR gas flows.
  • the cooling performance of the EGR cooler is controlled so that the EGR cooler outlet temperature is equal to or lower than the necessary temperature corresponding to the saturated water vapor partial pressure. I am doing so.
  • the EGR gas flows into the EGR cooler and then condensed water may be generated at a plurality of sites before being introduced into the cylinder.
  • the present disclosure aims to provide an EGR system for an internal combustion engine that can suppress the generation of condensed water in a gas path through which EGR gas flows.
  • an EGR system for an internal combustion engine is provided on a downstream side of a supercharging device that supercharges intake air sucked into the internal combustion engine, and an intake air compression portion of the supercharging device, and An intercooler to be cooled, an EGR pipe that recirculates a part of the exhaust discharged from the internal combustion engine as an EGR gas from the exhaust passage to the intake passage, an EGR valve provided in the EGR pipe, and an EGR provided in the EGR pipe And a cooler.
  • a first determination unit that determines whether or not condensed water is generated by cooling of the EGR gas in the EGR cooler, and whether or not condensed water is generated at a merged portion of fresh air and EGR gas in the intake passage.
  • a second determination unit that determines whether or not condensed water is generated by cooling the intake air in the intercooler, and a determination that condensed water is generated by any of the determination units.
  • a condensate water suppression unit that implements a corresponding condensate water suppression measure depending on which of the determination units determines the generation of condensed water.
  • the EGR gas that has flowed into the EGR pipe passes through the EGR cooler and then merges with fresh air at the merged portion of the intake passage. Then, after passing through the intercooler, it flows into the cylinder of the internal combustion engine.
  • the gas merging portion, and the intercooler there is a concern about generation of condensed water due to various factors for each part. Condensed water generation is confirmed for each of these parts, and the countermeasures for condensate water suppression are implemented appropriately.
  • the block diagram which shows the outline of the engine control system in embodiment of invention.
  • the flowchart which shows the process sequence of condensed water suppression control.
  • the flowchart which shows the process sequence of condensed water suppression control.
  • a multi-cylinder four-cycle gasoline engine (internal combustion engine) mounted on a vehicle is to be controlled, and electronic control of various actuators in the engine is performed.
  • the overall schematic configuration of the engine control system will be described with reference to FIG.
  • an air flow meter 12 for detecting the amount of intake air is provided upstream of the intake pipe 11.
  • a throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor is provided on the downstream side of the air flow meter 12.
  • the opening (throttle opening) of the throttle valve 14 is detected by a throttle opening sensor 15 built in the throttle actuator 13.
  • a surge tank 16 is provided on the downstream side of the throttle valve 14, and an intake manifold 17 that is connected to an intake port of each cylinder is attached to the surge tank 16.
  • An intake passage is formed by the intake pipe 11 and the intake manifold 17.
  • the intake port and the exhaust port of the engine 10 are provided with an intake valve and an exhaust valve (both not shown), respectively.
  • the engine 10 is provided with an intake side valve mechanism 21 that changes the opening / closing timing of the intake valve and an exhaust side valve mechanism 22 that changes the opening / closing timing of the exhaust valve. Further, the engine 10 is provided with a fuel injection valve 23 and a spark plug 24 for each cylinder.
  • An exhaust manifold 25 is connected to the exhaust port of the engine 10, and an exhaust pipe 26 is connected to a collective portion of the exhaust manifold 25.
  • the exhaust pipe 26 is provided with a catalyst 28 for purifying harmful components in the exhaust.
  • a three-way catalyst that purifies three components of CO, HC, and NOx is used as the catalyst 28.
  • An air-fuel ratio sensor 29 that detects the air-fuel ratio (oxygen concentration) of the air-fuel mixture is provided on the upstream side of the catalyst 28 as a detection target.
  • An exhaust passage is formed by the exhaust manifold 25 and the exhaust pipe 26.
  • the turbocharger 30 includes an intake compressor 31 disposed on the upstream side of the throttle valve 14 in the intake pipe 11, an exhaust turbine 32 disposed on the upstream side of the catalyst 28 in the exhaust pipe 26, and the intake compressor 31 and the exhaust turbine 32.
  • the rotating shaft 33 to be connected is provided.
  • the intake compressor 31 corresponds to an intake compression unit. In the turbocharger 30, when the exhaust turbine 32 is rotated by the exhaust gas flowing through the exhaust pipe 26, the intake compressor 31 is rotated with the rotation of the exhaust turbine 32, and the intake air is compressed and supercharged by the rotation of the intake compressor 31. .
  • the intake pipe 11 is provided with an intercooler 34 as a heat exchanger for cooling the supercharged intake air downstream of the throttle valve 14 (downstream of the intake compressor 31).
  • the intercooler 34 is a water-cooled heat exchanger, for example, and performs heat exchange between the cooling water and the intake air by circulating the cooling water.
  • the intercooler 34 is provided integrally with the surge tank 16, but the intercooler 34 may be provided upstream of the surge tank 16 or upstream of the throttle valve 14.
  • the engine 10 is provided with an external EGR device 35 that introduces a part of the exhaust gas as EGR gas to the intake side.
  • the EGR device 35 includes an EGR pipe 36 that connects the intake pipe 11 and the exhaust pipe 26, an electromagnetically driven EGR valve 37 that adjusts the amount of EGR gas flowing through the EGR pipe 36, and an EGR cooler 38 that cools the EGR gas. And have.
  • the EGR cooler 38 is a water-cooled heat exchanger, for example, and performs heat exchange between the cooling water and the EGR gas by circulating the cooling water.
  • the EGR pipe 36 is provided in the exhaust pipe 26 so as to connect the downstream side of the exhaust turbine 32 (for example, the downstream side of the catalyst 28) and the upstream side of the intake compressor 31 in the intake pipe 11, and thereby the LPL system. (Low-pressure loop system) EGR system is constructed.
  • the present system includes a crank angle sensor 41 that outputs a crank angle signal for each predetermined crank angle of the engine 10, a water temperature sensor 42 that detects the coolant temperature of the engine 10, and an accelerator sensor 43 that detects the amount of accelerator operation by the driver.
  • a crank angle sensor 41 that outputs a crank angle signal for each predetermined crank angle of the engine 10
  • a water temperature sensor 42 that detects the coolant temperature of the engine 10
  • an accelerator sensor 43 that detects the amount of accelerator operation by the driver.
  • Various sensors such as are provided.
  • the ECU 50 is configured mainly by a microcomputer 51 including a CPU, ROM, RAM, and the like as is well known, and executes various controls of the engine 10 by executing various control programs stored in the ROM.
  • the microcomputer 51 receives detection signals and the like from the various sensors described above, and based on the input detection signals and the like, the throttle valve 14, the valve operating mechanisms 21 and 22, the fuel injection valve 23, the ignition The drive of the plug 24, the EGR valve 37, etc. is controlled.
  • the ECU 50 calculates the target value of the EGR gas amount or EGR rate based on the operating state parameters such as the engine speed and load (for example, the required air amount), and the opening degree of the EGR valve 37 so that the target value can be reached. To control.
  • FIG. 2 is a diagram showing an outline of the cooling system.
  • an engine cooling water path L1 that is a cooling water path leading to the water jacket 10a of the engine 10 and an I / C cooling water path that is a cooling water path leading to the intercooler 34. L2 is provided. While the engine cooling water flowing through the engine cooling water path L1 has a role of suppressing the excessive temperature rise of the engine 10, it has a role of maintaining the warm-up state of the engine 10, so the temperature of the engine cooling water is The temperature is higher than that of the I / C cooling water flowing through the I / C cooling water path L2. Therefore, the engine cooling water path L1 is a high temperature path, and the I / C cooling water path L2 is a low temperature path.
  • the configuration on the engine coolant path L1 side will be described.
  • An electric water pump 61 is provided in the engine cooling water path L1, and the engine cooling water is circulated in the engine cooling water path L1 by driving the water pump 61.
  • the engine coolant path L1 has a path that passes through the EGR cooler 38, the heater core 62, and the oil cooler 63 that are arranged in parallel with each other, and a path that passes through the radiator 64. These paths (paths that do not pass through the radiator 64 / paths that pass through the radiator 64) are provided in parallel with each other, and the thermostud 65 can switch which of these paths passes through the engine coolant. By switching the path of the thermo stud 65, the temperature of the engine coolant circulating in the engine coolant path L1 is maintained at a predetermined high temperature value (about 80 ° C.).
  • the engine cooling water path L1 is provided with a flow rate control valve 66 at a branch portion that branches to the EGR cooler 38, the heater core 62, and the oil cooler 63, and the engine cooling water flowing into the EGR cooler 38 by the flow rate control valve 66. The amount of is adjusted.
  • an intake pipe heating device 67 is provided on the engine cooling water path L1 on the outlet side of the engine 10.
  • the intake pipe heating device 67 is provided in the intake pipe 11 on the upstream side of the joining part (gas joining part A) with the EGR pipe 36, and heats the pipe wall part of the intake pipe 11 with the heat of engine cooling water. It is supposed to raise the temperature of fresh air. Whether or not the engine coolant flowing through the engine coolant path L1 passes through the intake pipe heating device 67 is switched by a flow path switching valve 68.
  • an electric water pump 71 is provided in the I / C cooling water path L2, and the water pump 71 is driven to circulate the I / C cooling water in the I / C cooling water path L2.
  • the I / C cooling water path L2 has a path that passes through the radiator 72 and a path that does not pass through the radiator 72, and the thermo stud 73 switches which of these paths passes the I / C cooling water. It is supposed to be. By switching the path of the thermo stud 73, the temperature of the I / C cooling water circulating through the I / C cooling water path L2 is maintained at a predetermined low temperature (about 40 ° C.).
  • heat exchange is performed between the engine cooling water flowing through the engine cooling water path L1 and the I / C cooling water flowing through the I / C cooling water path L2.
  • a heat exchanger 75 for performing the above is provided.
  • relatively high-temperature engine cooling water flows in the engine cooling water path L1
  • relatively low-temperature I / C cooling water flows in the I / C cooling water path L2.
  • the I / C cooling water is heated by and the engine cooling water is radiated by the I / C cooling water.
  • a flow control valve 76 is provided at a branch portion that branches into a path that does not pass through the heat exchanger 75 and a path that does not pass through the heat exchanger 75. The flow rate of the I / C cooling water is adjusted.
  • condensed water may be generated at each part of the EGR gas path through which the EGR gas passes. This will be specifically described with reference to FIG. In FIG. 3, the structure relevant to the EGR gas path
  • the exhaust gas discharged from each cylinder of the engine 10 flows down through the exhaust manifold 25, the exhaust turbine 32, and the catalyst 28, and a part of the exhaust gas is introduced into the EGR pipe 36 as EGR gas.
  • the EGR gas introduced into the EGR pipe 36 flows into the intake pipe 11 via the EGR cooler 38 and the EGR valve 37 and merges with fresh air in the intake pipe 11. Thereafter, the mixed gas of EGR gas and fresh air is again taken into each cylinder of the engine 10 via the intake compressor 31, the intercooler 34, and the intake manifold 17.
  • the temperature of the EGR gas and the dew point temperature change due to a plurality of factors.
  • the dew point temperature is determined by the temperature and humidity of each part.
  • the state change of the EGR gas in the EGR gas path downstream of the EGR cooler 38 will be specifically described below.
  • the hot EGR gas is cooled by the engine coolant.
  • the degree of cooling of the EGR gas depends on the temperature of the engine cooling water. For example, since the engine cooling water is at a low temperature before the warm-up of the engine 10 is completed, the EGR gas is similarly at a low temperature.
  • the EGR gas is cooled with fresh air at the junction (the gas junction A in FIG. 3) with the EGR pipe 36.
  • the humidity rises with respect to the humidity in the upstream EGR pipe 36.
  • the temperature of the mixed gas of EGR gas and fresh air rises due to an increase in pressure accompanying supercharging.
  • the intercooler 34 the mixed gas of EGR gas and fresh air is cooled by I / C cooling water.
  • the dew point temperature is different due to the humidity difference between the portion from the EGR cooler 38 to the gas confluence portion A and the portion from the gas confluence portion A to the intercooler 34.
  • the height is different.
  • the portion from the EGR cooler 38 to the gas confluence portion A has a higher dew point temperature than the portion from the gas confluence portion A to the intercooler 34.
  • heat is radiated from the pipe wall surface of the pipe portion (that is, the EGR pipe 36 and the intake pipe 11). For this reason, the temperature of the EGR gas gradually decreases due to heat radiation from the pipe.
  • the generation of condensed water is predicted and determined for each of the above portions, and when it is determined that condensed water is generated, the processing for the condensed water measures determined for each of the generated portions is performed.
  • Condensed water generation is determined for each of the above parts.
  • the ECU 50 calculates the gas temperature and the dew point temperature at each part of the EGR cooler 38, the gas merging section A, and the intercooler 34, and the condensed water is generated based on the comparison of the gas temperature and the dew point temperature at each part. It is determined whether or not it occurs. If the gas temperature is lower than the dew point temperature, it is determined that condensed water is generated.
  • a temperature sensor is provided in each part of the EGR cooler 38, the gas merging portion A, and the intercooler 34, and the gas temperature of each part is calculated based on the detection result of the temperature sensor. Further, a humidity sensor is further provided in each of these parts, and the dew point temperature of each part is calculated based on the detected temperature value and the detected humidity value.
  • the gas temperature and dew point temperature of each part change depending on the engine operating state and also change due to pressure changes at each part.
  • the gas temperature or the dew point temperature may be estimated based on the state change parameter defined in (1).
  • parameters such as engine speed, engine load, EGR opening, and engine water temperature may be used.
  • the estimation of the temperature may be performed using a predetermined mathematical formula, a map, or the like.
  • the water vapor partial pressure and the saturated water vapor pressure in each part are calculated, respectively, and it is determined whether or not condensed water is generated based on a comparison between the water vapor partial pressure and the saturated water vapor pressure.
  • the water vapor amount and the saturated water vapor amount in each part are calculated, respectively, and it is determined whether or not condensed water is generated based on a comparison between the water vapor amount and the saturated water vapor amount.
  • These water vapor partial pressure and saturated water vapor pressure, water vapor amount and saturated water vapor amount may be calculated based on temperature and humidity.
  • the water vapor partial pressure and the saturated water vapor pressure, and the water vapor amount and the saturated water vapor amount vary depending on the engine operating state, these are estimated based on various parameters indicating the engine operating state. May be.
  • the EGR itself is stopped. Specifically, the EGR valve 37 is fully closed to stop the EGR itself.
  • the degree of gas cooling in the EGR cooler 38 is reduced in order to maintain the high temperature state of the EGR gas (that is, the EGR gas after passing through the EGR cooler) flowing into the gas junction A.
  • the flow rate control valve 66 in FIG. 2 reduces the amount of cooling water flowing into the EGR cooler 38 (cooling water inflow amount) to a predetermined small flow rate.
  • the amount of cooling water flowing into the EGR cooler 38 (cooling water inflow amount) may be reduced by reducing the driving amount of the water pump 61 (that is, the cooling water discharge amount).
  • the flow switching valve 68 causes the cooling water flowing through the engine cooling water path L1 to flow through the intake pipe heating device 67, and the fresh air is heated by the engine cooling water.
  • the temperature of the I / C cooling water flowing into the intercooler 34 is increased to reduce the degree of cooling of the intake air in the intercooler 34.
  • the flow rate control valve 76 causes both the engine cooling water and the I / C cooling water to flow into the heat exchanger 75, and the low temperature I / C Cooling water is heated.
  • the I / C cooling water is heated in a temperature range where the engine water temperature is the upper limit and the temperature is lower than that.
  • FIG. 4 is a flowchart showing a processing procedure of the condensed water suppression control, and this processing is repeatedly performed by the microcomputer 51 at a predetermined cycle.
  • step S11 various parameters used in this process are acquired.
  • step S12 the gas temperature Tg1 and the dew point temperature Td1 at the outlet of the EGR cooler 38 are calculated.
  • the gas temperature and dew point temperature at each part described later including the gas temperature Tg1 and the dew point temperature Td1 in step S12, are calculated based on the detection values of the temperature sensor and the humidity sensor.
  • step S13 it is determined whether or not “Tg1-Td1” is less than a predetermined determination value K1, that is, whether or not there is a possibility that condensed water may be generated in the EGR cooler 38.
  • the determination value K1 is a temperature value at or near 0 ° C. If Tg1 ⁇ Td1 ⁇ K1, the process proceeds to step S14.
  • step S14 the countermeasure against condensed water in the EGR cooler 38 is implemented. Specifically, EGR is stopped. For example, when the engine 10 is in a cold state, the engine cooling water is at a low temperature, so the EGR gas is at a low temperature, and the EGR cooler 38 takes measures against the condensed water under the circumstances. Thereafter, this process is terminated. If Tg1 ⁇ Td1 ⁇ K1 in step S13, the process proceeds to subsequent step S15.
  • step S15 the gas temperature Tg2 and the dew point temperature Td2 in the gas junction A are calculated.
  • step S16 it is determined whether or not “Tg2 ⁇ Td2” is less than a predetermined determination value K2, that is, whether or not there is a possibility that condensed water may be generated in the gas merging portion A.
  • the determination value K2 is a temperature value at or near 0 ° C., and may be the same value as the determination value K1. If Tg2 ⁇ Td2 ⁇ K2, the process proceeds to step S17. In step S17, countermeasures for condensed water in the gas confluence portion A are implemented.
  • the flow rate control valve 66 or the water pump 61 is controlled to limit the flow rate of the engine coolant to the EGR cooler 38.
  • the fresh air is heated by the engine cooling water in the intake pipe heating device 67 under the control of the flow path switching valve 68.
  • the intake air mixed gas
  • the condensate countermeasure at the gas confluence portion A is implemented in that situation.
  • step S18 the state of condensed water generation is re-determined under the state where the condensed water countermeasure (primary countermeasure) in step S17 is being implemented. That is, in step S18, the gas temperature and dew point temperature in the gas junction A are calculated again as Tg21 and Td21 under the state where the primary countermeasure is being implemented.
  • step S19 it is determined whether or not “Tg21 ⁇ Td21” is less than the determination value K2, that is, whether or not there is a possibility that condensed water may be generated in the gas merging portion A. If Tg21 ⁇ Td21 ⁇ K2, the process proceeds to step S20.
  • step S20 an EGR reduction process for reducing the EGR rate is performed as a secondary countermeasure for suppressing condensed water in the gas confluence portion A.
  • the EGR reduction amount is calculated based on the value of “Tg21 ⁇ Td21”, and the target EGR rate is decreased and corrected based on the EGR reduction amount.
  • a primary countermeasure and a secondary countermeasure are implemented simultaneously as a condensed water countermeasure in the gas confluence
  • step S19 is YES
  • EGR reduction may be performed by subtracting the target EGR rate by a predetermined value until step S19 becomes NO. It is also possible to calculate the EGR reduction amount based on a parameter indicating the operating state of the engine 10.
  • step S16 and S19 that is, the necessity determination of the primary countermeasure and the necessity determination of the secondary countermeasure
  • step S16 becomes NO during the implementation of the primary countermeasure
  • step S19 is YES during the implementation of the primary countermeasure
  • the secondary countermeasure is implemented in addition to the primary countermeasure. After that, when step S19 becomes NO, the secondary countermeasure is stopped, and when step S16 becomes NO, the primary countermeasure is stopped.
  • step S16 if Tg2-Td2 ⁇ K2, the process proceeds directly from step S16 to step S21 without performing steps S17 to S20. If Tg21 ⁇ Td21 ⁇ K2 in step S19, and after step S20 is performed, the process proceeds to step S21.
  • step S21 the gas temperature Tg3 and the dew point temperature Td3 at the outlet of the intercooler 34 are calculated.
  • step S22 it is determined whether or not “Tg3 ⁇ Td3” is less than a predetermined determination value K3, that is, whether or not condensed water may be generated in the intercooler 34. If Tg3 ⁇ Td3 ⁇ K3, the process proceeds to step S23.
  • step S23 countermeasures for condensed water in the intercooler 34 are implemented. Specifically, heat exchange in the heat exchanger 75 is performed under the control of the flow control valve 76, and the temperature of the I / C cooling water is increased. For example, the dew point temperature becomes high in a high humidity environment in the intercooler 34, and the countermeasure for condensed water in the intercooler 34 is implemented under the circumstances.
  • step S24 the state of condensed water generation is re-determined under the state where the condensed water countermeasure (primary countermeasure) in step S23 is being implemented. That is, in step S24, the gas temperature and dew point temperature at the outlet portion of the intercooler 34 are calculated again as Tg31 and Td31 under the state where the primary countermeasure is being implemented.
  • step S25 it is determined whether or not “Tg31 ⁇ Td31” is less than the determination value K3, that is, whether or not condensed water may be generated in the intercooler 34. If Tg31 ⁇ Td31 ⁇ K3, the process proceeds to step S26.
  • step S26 an EGR reduction process for reducing the EGR rate is performed as a secondary countermeasure for suppressing the condensed water in the intercooler 34.
  • the EGR reduction amount is calculated based on the value of “Tg31 ⁇ Td31”, and the target EGR rate is decreased and corrected based on the EGR reduction amount.
  • a primary countermeasure and a secondary countermeasure are implemented simultaneously as a countermeasure against the condensed water in the intercooler 34.
  • step S25 when step S25 is YES, you may make it implement EGR reduction by subtracting a target EGR rate for every predetermined value until the step S25 becomes NO. It is also possible to calculate the EGR reduction amount based on a parameter indicating the operating state of the engine 10. From the viewpoint of suppressing knocking in the engine 10 in the intercooler 34, it is not desirable to excessively raise the temperature of the I / C cooling water. When the limit of the gas temperature rise is exceeded, the EGR amount is limited.
  • each determination of steps S22 and S25 may be performed together.
  • step S22 becomes NO during the implementation of the primary countermeasure
  • step S25 is YES during the implementation of the primary countermeasure
  • the secondary countermeasure is implemented in addition to the primary countermeasure. After that, when step S25 becomes NO, the secondary countermeasure is stopped, and when step S22 becomes NO, the primary countermeasure is stopped.
  • step S22 if Tg3-Td3 ⁇ K3, the process is temporarily terminated as it is without performing steps S23 to S26. Further, in the case where Tg31 ⁇ Td31 ⁇ K3 in step S25, and after step S26 is executed, the process is once ended as it is.
  • EGR is stopped as a countermeasure for condensed water in the EGR cooler 38, while other countermeasures for condensed water (condensation in the gas merging section A and the intercooler 34 are performed). Water measures were not implemented. In addition, when it is not determined that condensed water is generated in the EGR cooler 38, one or both measures against condensed water are taken based on the determination result of condensed water generation in the gas confluence A and the intercooler 34. I tried to do it.
  • the EGR cooler 38 is the most upstream of the condensate generation factors in the EGR gas path.
  • the condensate is discharged over the entire path including the downstream side. It can be made difficult to occur.
  • the countermeasure against condensed water in other parts is not implemented, so that it is possible to suppress the influence on the operation of the engine 10 due to excessive implementation of the countermeasure against condensed water.
  • the degree of cooling of the intake air in the intercooler 34 is reduced.
  • the generation of condensed water can be appropriately suppressed by setting the temperature of the intake air (mixed gas) to be higher than the dew point temperature at the intercooler 34.
  • the I / C cooling water is heated in a range that does not become higher than the engine cooling water.
  • the I / C cooling water flowing through the I / C cooling water path L2 is at a lower temperature than the engine cooling water flowing through the engine cooling water path L1. Therefore, even if the temperature of the I / C cooling water is raised as a countermeasure against condensed water, the temperature is kept lower than that of the engine cooling water. Therefore, even when the intake air temperature is raised as a countermeasure against condensed water, the occurrence of knocking in the engine 10 can be suppressed.
  • a determination unit that determines the generation of condensed water in the EGR cooler 38 using the engine water temperature as one determination parameter, and a determination unit that determines the generation of condensed water in the gas merging unit A using the outside air temperature as one determination parameter.
  • a configuration including a determination unit that determines generation of condensed water in the intercooler 34 using humidity on the downstream side of the intake compressor 31 as one determination parameter will be described.
  • the gas temperature in the EGR cooler 38 depends on the engine water temperature. Therefore, the gas temperature in the EGR cooler 38 is relatively low before the warm-up of the engine 10 is completed, and is relatively high after the warm-up of the engine 10 is completed. Therefore, the possibility that condensed water is generated in the EGR cooler 38 is higher before the warm-up of the engine 10 is completed than after the warm-up is completed. Specifically, if the dew point of EGR gas is about 50 ° C., it is determined that there is a possibility of condensed water generation if the engine is cold and the engine water temperature is 50 ° C. or less. Accordingly, after the engine water temperature rises to a predetermined value of 50 ° C. + ⁇ , it is determined that there is no possibility of generation of condensed water.
  • the gas temperature at the gas junction A depends on the fresh air temperature (that is, the outside air temperature). Therefore, if the outside air temperature (for example, the detected value of the outside air temperature sensor or the intake air temperature sensor upstream of the intake passage) is equal to or less than a predetermined value, the gas temperature at the gas junction A is considered to be in a predetermined low temperature range, and the gas It is determined that there is a possibility that condensed water is generated at the junction A.
  • the outside air temperature for example, the detected value of the outside air temperature sensor or the intake air temperature sensor upstream of the intake passage
  • the dew point temperature at the intercooler 34 depends on the humidity on the downstream side of the intake compressor 31. Therefore, if the humidity on the downstream side of the compressor is equal to or higher than a predetermined value, it is considered that the dew point temperature in the intercooler 34 is in a predetermined high temperature range (a temperature range in which condensed water is likely to be generated), and condensed water can be generated in the intercooler 34. Judge that there is sex.
  • the humidity on the downstream side of the compressor may be obtained, for example, from the detection result of a humidity sensor provided in the upstream portion of the intake passage or in the vicinity of the intake compressor.
  • step S31 it is determined whether or not the engine water temperature is equal to or lower than a predetermined value K11 (for example, 50 ° C.). If YES, the process proceeds to step S32.
  • step S32 the countermeasure against condensed water in the EGR cooler 38 is implemented (similar to step S14 in FIG. 4).
  • step S31 determines whether or not the outside air temperature is equal to or lower than a predetermined value K12 (for example, 0 ° C.). If YES, the process proceeds to step S34. In step S34, measures against condensed water in the gas confluence portion A are implemented (similar to step S17 in FIG. 4).
  • step S34 it is determined whether or not the humidity on the downstream side of the intake compressor 31 is equal to or higher than a predetermined value K13. If YES, the process proceeds to step S36.
  • step S36 a countermeasure against condensed water in the intercooler 34 is implemented (similar to step S23 in FIG. 4).
  • the condensate determination in the EGR cooler 38, the condensate determination in the gas merging section A, and the condensate determination in the intercooler 34 are performed on different standards. Thereby, the determination of the condensed water generation in each part can be appropriately performed according to the circumstances of each part.
  • a bypass pipe 81 that bypasses the EGR cooler 38 is provided in the EGR pipe 36, and a control valve 82 is provided at a branch portion of the bypass pipe 81.
  • the control valve 82 controls the distribution of the EGR gas passing through the EGR cooler 38 and the EGR gas passing through the bypass pipe 81. That is, the distribution of the low temperature EGR gas and the high temperature EGR gas is controlled.
  • the temperature adjusting unit that raises the temperature of fresh air in the upstream portion of the gas confluence portion A may increase the fresh air temperature by exhaust heat.
  • a branch pipe 85 is provided by branching from the exhaust pipe 26, and a heating device 86 for heating fresh air by exhaust heat is provided in the branch pipe 85.
  • a control valve 87 that can be controlled by the ECU 50 may be provided at a branch point between the exhaust pipe 26 and the branch pipe 85.
  • an electric heater may be provided in the intake pipe 11 upstream of the gas merging portion A, and the temperature of fresh air may be raised by the electric heater.
  • the configuration for measures against condensed water in the intercooler 34 may be changed. That is, the following temperature adjusting means may be used to reduce the degree of intake air cooling in the intercooler 34.
  • the flow rate control valve for example, the thermo stud 73
  • the water pump 71 is controlled to reduce the flow rate of the cooling water flowing into the intercooler 34.
  • Reduce the degree of air intake cooling Further, the degree of cooling of the intake air in the intercooler 34 may be reduced by causing a part of the engine cooling water flowing through the engine cooling water path L1 to flow into the I / C cooling water path L2.
  • either one of the secondary measures for suppressing condensed water at the gas junction A and the secondary measures for suppressing condensed water at the intercooler 34 are performed, and the other is not performed. Alternatively, both may be omitted.
  • the generation factor of the condensed water in the EGR gas path includes heat dissipation through the pipe wall in the EGR pipe 36 and the intake pipe 11.
  • the EGR pipe 36 or the intake pipe 11 may be heated.
  • the intake pipe heating device 67 shown in FIG. 2 and the heating device 86 shown in FIG. 7 are appropriately provided at necessary portions of the EGR pipe 36 and the intake pipe 11, and the EGR pipe 36 is provided by these heating apparatuses 67 and 86. Or substantially the entire intake pipe 11 may be heated.
  • an HPL (high-pressure loop) EGR system may be used as the external EGR system.
  • an EGR pipe is provided so as to connect the upstream side of the exhaust turbine 32 in the exhaust pipe 26 and the downstream side of the intake compressor 31 in the intake pipe 11.
  • the determination of the generation of condensed water and the countermeasure for suppressing condensed water may be performed as described above.
  • a configuration other than the turbocharger may be used.
  • a so-called supercharger that operates by the power from the output shaft of the engine 10 or the power of the motor may be used.
  • the present disclosure can be applied to an internal combustion engine other than a gasoline engine, for example, a diesel engine.

Abstract

 エンジン(10)の吸気管(11)には吸気コンプレッサ(31)の下流側にインタークーラ(34)が設けられている。EGR配管(36)にはEGR弁(37)とEGRクーラ(38)とが設けられている。ECU(50)は、EGRクーラ(38)での凝縮水の発生、新気とEGRガスとの合流部分での凝縮水の発生、インタークーラ(34)での凝縮水の発生をそれぞれ判定する。そして、これらいずれかの部位で凝縮水が発生するとの判定がなされた場合に、各々対応する凝縮水抑制の対策を実施する。

Description

内燃機関のEGRシステム 関連出願の相互参照
 本開示は、2014年4月2日に出願された日本出願番号2014-75938号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関のEGRシステムに関するものである。
 内燃機関においては、排気の一部を吸気側に還流させる外部EGR装置が一般に用いられており、外部EGR装置のEGR配管においてEGRガスを冷却させるEGRクーラを設けることは知られている。また、過給機付きの内燃機関において吸気ポートの上流側にインタークーラを設けることも一般に知られている。この場合、EGRガスが流れるガス経路において凝縮水が発生する。
 例えば特許文献1に記載された技術では、インタークーラでの凝縮水の発生を抑制すべく、EGRクーラの冷却性能を制御してそのEGRクーラ出口温度を飽和水蒸気分圧に見合う必要温度以下にするようにしている。
 しかしながら、実際のEGRシステムでは、EGRガスがEGRクーラに流入し、その後、気筒内に導入されるまでには複数の部位でそれぞれ凝縮水が発生する可能性がある。
特開平8-135519号公報
 本開示は、EGRガスが流れるガス経路において凝縮水の発生を抑制することができる内燃機関のEGRシステムを提供することを目的とする。
 本開示の一態様によれば、内燃機関のEGRシステムは、内燃機関に吸入される吸気を過給する過給装置と、前記過給装置の吸気圧縮部よりも下流側に設けられ、吸気を冷却するインタークーラと、前記内燃機関から排出される排気の一部をEGRガスとして排気通路から吸気通路に還流させるEGR配管と、前記EGR配管に設けられるEGR弁と、前記EGR配管に設けられるEGRクーラと、を備えている。そして、前記EGRクーラ内においてEGRガスの冷却によって凝縮水が発生するか否かを判定する第1判定部と、前記吸気通路において新気とEGRガスの合流部分で凝縮水が発生するか否かを判定する第2判定部と、前記インタークーラ内において吸気の冷却によって凝縮水が発生するか否かを判定する第3判定部と、前記各判定部のいずれかにより凝縮水が発生するとの判定がなされた場合に、それら各判定部のいずれで凝縮水発生が判定されたかに応じて、各々対応する凝縮水抑制の対策を実施する凝縮水抑制部と、を備えることを特徴とする。
 インタークーラ付きの過給装置と、EGRクーラ付きの外部EGR装置とを有するEGRシステムでは、EGR配管に流入したEGRガスは、EGRクーラを通過した後、吸気通路の合流部分で新気と合流し、さらにインタークーラを通過した後に、内燃機関の気筒内に流入する。この場合、EGRクーラ、ガス合流部分、インタークーラの各部位では、部位ごとの諸要因からそれぞれに凝縮水の発生が懸念される。それらの部位ごとに凝縮水発生を確認し凝縮水抑制の対策を適宜実施する構成にしたため、EGRクーラ、ガス合流部分、インタークーラの各部位のいずれにおいても適正に凝縮水発生の抑制を実現できる。その結果、EGRガスが流れるガス経路において凝縮水発生を抑制することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
発明の実施の形態におけるエンジン制御システムの概略を示す構成図。 冷却システムの概要を示す図。 EGRガス経路に関連する構成を模式的に示す図。 凝縮水抑制制御の処理手順を示すフローチャート。 凝縮水抑制制御の処理手順を示すフローチャート。 EGRガス経路に関連する構成を模式的に示す図。 EGRガス経路に関連する構成を模式的に示す図。
 以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態は、車両に搭載される多気筒4サイクルガソリンエンジン(内燃機関)を制御対象とし、当該エンジンにおける各種アクチュエータの電子制御を実施するものとしている。図1によりエンジン制御システムの全体概略構成を説明する。
 図1に示すエンジン10において、吸気管11の上流部には吸入空気量を検出するためのエアフロメータ12が設けられている。エアフロメータ12の下流側には、DCモータ等のスロットルアクチュエータ13によって開度調節されるスロットル弁14が設けられている。スロットル弁14の開度(スロットル開度)はスロットルアクチュエータ13に内蔵されたスロットル開度センサ15により検出される。スロットル弁14の下流側にはサージタンク16が設けられ、サージタンク16には、各気筒の吸気ポートに通じる吸気マニホールド17が取り付けられている。吸気管11及び吸気マニホールド17により吸気通路が形成されている。
 エンジン10の吸気ポート及び排気ポートには、それぞれ吸気弁及び排気弁(共に図示略)が設けられている。エンジン10には、吸気弁の開閉タイミングを変化させる吸気側動弁機構21と、排気弁の開閉タイミングを変化させる排気側動弁機構22とが設けられている。また、エンジン10には気筒ごとに燃料噴射弁23と点火プラグ24とが設けられている。
 エンジン10の排気ポートには排気マニホールド25が接続され、その排気マニホールド25の集合部に排気管26が接続されている。排気管26には、排気中の有害成分を浄化するための触媒28が設けられている。本実施形態では、触媒28としてCO、HC、NOxの三成分を浄化する三元触媒が用いられている。触媒28の上流側には、排気を検出対象として混合気の空燃比(酸素濃度)を検出する空燃比センサ29が設けられている。排気マニホールド25及び排気管26により排気通路が形成されている。
 吸気管11と排気管26との間には、過給手段としてのターボチャージャ30が設けられている。ターボチャージャ30は、吸気管11においてスロットル弁14の上流側に配置された吸気コンプレッサ31と、排気管26において触媒28の上流側に配置された排気タービン32と、吸気コンプレッサ31及び排気タービン32を連結する回転軸33とを備えて構成されている。吸気コンプレッサ31が吸気圧縮部に相当する。ターボチャージャ30において、排気管26を流れる排気によって排気タービン32が回転されると、排気タービン32の回転に伴い吸気コンプレッサ31が回転され、吸気コンプレッサ31の回転により吸気が圧縮され、過給される。
 また、吸気管11には、スロットル弁14の下流側(吸気コンプレッサ31の下流側)に、過給された吸気を冷却する熱交換器としてのインタークーラ34が設けられており、このインタークーラ34により吸気が冷却されることで空気の充填効率の低下が抑制されるようになっている。インタークーラ34は例えば水冷式熱交換器であり、冷却水を流通させることでその冷却水と吸気と間で熱交換を実施する。本実施形態では、サージタンク16に一体にインタークーラ34が設けられる構成としているが、サージタンク16の上流側又はスロットル弁14の上流側にインタークーラ34が設けられる構成であってもよい。
 また、エンジン10には、排気の一部をEGRガスとして吸気側に導入する外部EGR装置35が設けられている。このEGR装置35は、吸気管11と排気管26とを接続するEGR配管36と、EGR配管36を流れるEGRガス量を調節する電磁駆動式のEGR弁37と、EGRガスを冷却するEGRクーラ38とを有する。EGRクーラ38は例えば水冷式熱交換器であり、冷却水を流通させることでその冷却水とEGRガスとの間で熱交換を実施する。EGR配管36は、排気管26において排気タービン32の下流側(例えば触媒28の下流側)と、吸気管11において吸気コンプレッサ31の上流側とを接続するように設けられており、これによりLPL方式(低圧ループ方式)のEGRシステムを構築するものとなっている。
 その他、本システムには、エンジン10の所定クランク角ごとにクランク角信号を出力するクランク角センサ41、エンジン10の冷却水温度を検出する水温センサ42、ドライバによるアクセル操作量を検出するアクセルセンサ43等の各種センサが設けられている。
 ECU50は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ51を主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、エンジン10の各種制御を実施する。具体的には、マイクロコンピュータ51は、前述した各種センサから検出信号等を入力し、その入力した検出信号等に基づいて、スロットル弁14や、動弁機構21,22、燃料噴射弁23、点火プラグ24、EGR弁37等の駆動を制御する。
 ECU50は、エンジン回転速度や負荷(例えば要求空気量)等の運転状態パラメータに基づいて、EGRガス量又はEGR率の目標値を算出し、その目標値が達せられるようにEGR弁37の開度を制御する。
 次に、本実施形態における冷却システムについて説明する。図2は、冷却システムの概要を示す図である。
 図2の冷却システムでは、冷却水の循環経路として、エンジン10のウォータジャケット10aに通じる冷却水経路であるエンジン冷却水経路L1と、インタークーラ34に通じる冷却水経路であるI/C冷却水経路L2とが設けられている。エンジン冷却水経路L1を流れるエンジン冷却水は、エンジン10の過昇温を抑制する役目を有する一方で、エンジン10の暖機状態を保持する役目を有することから、そのエンジン冷却水の温度は、I/C冷却水経路L2を流れるI/C冷却水に比べて高温である。ゆえに、エンジン冷却水経路L1は高温経路、I/C冷却水経路L2は低温経路である。
 エンジン冷却水経路L1側の構成を説明する。エンジン冷却水経路L1には電動式のウォータポンプ61が設けられており、このウォータポンプ61の駆動によりエンジン冷却水経路L1でのエンジン冷却水の循環が行われる。エンジン冷却水経路L1は、互いに並列に配置されたEGRクーラ38、ヒータコア62及びオイルクーラ63を通過する経路と、ラジエータ64を通過する経路とを有している。これら各経路(ラジエータ64を通過しない経路/通過する経路)は互いに並列に設けられており、これら各経路のいずれをエンジン冷却水が通過するかはサーモスタッド65により切り替えられるようになっている。サーモスタッド65の経路切替により、エンジン冷却水経路L1を循環するエンジン冷却水の温度が所定の高温値(約80℃程度)に保持される。
 エンジン冷却水経路L1には、EGRクーラ38、ヒータコア62及びオイルクーラ63に分岐する分岐部には流量制御弁66が設けられており、流量制御弁66によって、EGRクーラ38に流入するエンジン冷却水の量が調整されるようになっている。
 また、エンジン冷却水経路L1には、エンジン10の出口側には吸気管加熱装置67が設けられている。吸気管加熱装置67は、吸気管11においてEGR配管36との合流部(ガス合流部A)の上流側に設けられており、エンジン冷却水の熱により吸気管11の管壁部を加熱することで新気を昇温させるものとしている。エンジン冷却水経路L1を流れるエンジン冷却水が吸気管加熱装置67を通過するかしないかは流路切替弁68により切り替えられる。
 また、I/C冷却水経路L2には電動式のウォータポンプ71が設けられており、このウォータポンプ71の駆動によりI/C冷却水経路L2でのI/C冷却水の循環が行われる。I/C冷却水経路L2は、ラジエータ72を経由する経路と、ラジエータ72を経由しない経路とを有しており、これら各経路のいずれをI/C冷却水が通過するかはサーモスタッド73により切り替えられるようになっている。サーモスタッド73の経路切替により、I/C冷却水経路L2を循環するI/C冷却水の温度が所定の低温値(約40℃程度)に保持される。
 また、エンジン冷却水経路L1上においてEGRクーラ38よりも上流側には、エンジン冷却水経路L1を流れるエンジン冷却水とI/C冷却水経路L2を流れるI/C冷却水との間で熱交換を行わせる熱交換器75が設けられている。この場合、エンジン冷却水経路L1には比較的高温のエンジン冷却水が流れ、I/C冷却水経路L2には比較的低温のI/C冷却水が流れるため、熱交換器75ではエンジン冷却水によるI/C冷却水の加熱、及びI/C冷却水によるエンジン冷却水の放熱が行われる。I/C冷却水経路L2において、熱交換器75を通る経路と通らない経路に分岐する分岐部には流量制御弁76が設けられており、流量制御弁76によって、熱交換器75を通過するI/C冷却水の流量が調整されるようになっている。
 上記のように外部EGR装置35を備えるエンジンシステムでは、EGRガスが通過するEGRガス経路の各部位で凝縮水が発生する可能性がある。図3を用いて具体的に説明する。図3では、エンジン10のEGRガス経路に関連する構成を模式的に示している。
 図3において、エンジン10の各気筒から排出された排気は、排気マニホールド25と排気タービン32と触媒28とを経由して流下し、排気の一部がEGRガスとしてEGR配管36に導入される。そして、EGR配管36に導入されたEGRガスは、EGRクーラ38とEGR弁37とを経由して吸気管11に流れ込み、その吸気管11において新気と合流する。その後、EGRガスと新気との混合ガスは吸気コンプレッサ31とインタークーラ34と吸気マニホールド17とを経由してエンジン10の各気筒に再び吸入される。
 上記一連のEGRガス経路では、複数の要因によりEGRガスの温度や露点温度が変化する。そして、EGRガスの温度が、各部位で各々定まる露点温度を下回ると、凝縮水が発生する。なお、露点温度は、各部位の温度及び湿度により決定されるものとなっている。EGRクーラ38よりも下流側のEGRガス経路におけるEGRガスの状態変化を以下に具体的に説明する。EGRクーラ38では、高温のEGRガスがエンジン冷却水により冷却される。この場合、EGRガスの冷却の程度はエンジン冷却水の温度に依存し、例えばエンジン10の暖機完了前はエンジン冷却水が低温であるため、EGRガスも同様に低温の状態となる。吸気管11においてEGR配管36との合流部(図3のガス合流部A)では、EGRガスが新気で冷却される。なお、ガス合流部Aでは、その上流のEGR配管36内の湿度に対して湿度の上昇が生じることも考えられる。吸気コンプレッサ31の下流側では、過給に伴う圧力の上昇によりEGRガス及び新気の混合ガスの温度が上昇する。インタークーラ34では、EGRガス及び新気の混合ガスがI/C冷却水により冷却される。
 また、EGRクーラ38からインタークーラ34に至るまでの経路において、EGRクーラ38からガス合流部Aまでの部分と、ガス合流部Aからインタークーラ34までの部分とでは湿度の相違等により露点温度が高低相違している。例えば、EGRクーラ38からガス合流部Aまでの部分の方が、ガス合流部Aからインタークーラ34までの部分よりも露点温度が高いと考えられる。なお、EGRクーラ38からインタークーラ34までの経路においては、配管部分(すなわちEGR配管36、吸気管11)の配管壁面からの放熱が生じる。そのため、EGRガスの温度は配管放熱によっても次第に低下する。
 EGRクーラ38、ガス合流部A、インタークーラ34の各部位では、ガス温度が露点温度以下に低下することが想定され、その温度低下に伴う凝縮水の発生が懸念される。そこで本実施形態では、上記各部位ごとに凝縮水の発生を予測判定するとともに、凝縮水が発生すると判定された場合に、その発生部位ごとに定められた凝縮水対策の処理を実施する。
 凝縮水の発生判定は上記各々の部位ごとに行われる。この場合、ECU50では、EGRクーラ38、ガス合流部A、インタークーラ34の各部位においてガス温度及び露点温度を各々算出するとともに、これら各部位においてガス温度及び露点温度の比較に基づいて凝縮水が発生するか否かを判定する。そして、露点温度に対してガス温度が低温になっていれば、凝縮水が発生する旨判定する。
 具体的な構成としては、EGRクーラ38、ガス合流部A、インタークーラ34の各部位にそれぞれ温度センサを設けておき、その温度センサの検出結果に基づいて各部位のガス温度を算出する。また、これら各部位にさらに湿度センサを設けておき、温度の検出値と湿度の検出値とに基づいて各部位の露点温度を算出する。
 また、各部位のガス温度や露点温度は、エンジン運転状態に依存して変化するとともに、各部位での圧力変化等により変化するものであることから、エンジン運転状態を示す各種パラメータや、部位ごとに定められた状態変化パラメータに基づいてガス温度や露点温度を推定するようにしてもよい。この場合、エンジン回転速度、エンジン負荷、EGR開度、エンジン水温といったパラメータが用いられるとよい。温度の推定は、あらかじめ定められた数式やマップ等を用いて実施されるとよい。
 凝縮水の発生判定を、ガス温度及び露点温度の比較以外の手法にて実施することも可能である。例えば、各部位における水蒸気分圧及び飽和水蒸気圧を各々算出するとともに、その水蒸気分圧及び飽和水蒸気圧の比較に基づいて凝縮水が発生するか否かを判定する。又は、各部位における水蒸気量及び飽和水蒸気量を各々算出するとともに、その水蒸気量及び飽和水蒸気量の比較に基づいて凝縮水が発生するか否かを判定する。これら水蒸気分圧及び飽和水蒸気圧や、水蒸気量及び飽和水蒸気量は、温度及び湿度に基づいて算出されればよい。また、これら水蒸気分圧及び飽和水蒸気圧や、水蒸気量及び飽和水蒸気量がエンジン運転状態に依存して変化することを勘案して、エンジン運転状態を示す各種パラメータに基づいてこれらを推定するようにしてもよい。
 次に、各部位における凝縮水対策について説明する。
 まずEGRクーラ38での凝縮水対策としては、EGR自体を停止する。具体的には、EGR弁37を全閉としてEGR自体を停止する。
 ガス合流部Aでの凝縮水対策としては、ガス合流部Aでの合流前にEGRガス又は新気の温度調節を行うことが考えられる。この場合、ガス合流部Aに流れ込むEGRガス(すなわちEGRクーラ通過後のEGRガス)について高温状態を維持させるべく、EGRクーラ38でのガス冷却の度合いを小さくする。具体的には、図2の流量制御弁66により、EGRクーラ38に流入する冷却水の量(冷却水流入量)を減らして所定の少流量にする。ウォータポンプ61の駆動量(すなわち冷却水の吐出量)を小さくすることにより、EGRクーラ38に流入する冷却水の量(冷却水流入量)を減らすようにしてもよい。
 又は、ガス合流部Aでの凝縮水対策として、ガス合流部Aに流れ込む新気の温度を上昇させるべく新気を加熱する。具体的には、図2の構成において、流路切替弁68により、エンジン冷却水経路L1を流れる冷却水が吸気管加熱装置67を通過して流れる状態とし、エンジン冷却水により新気を昇温させる。
 インタークーラ34での凝縮水対策としては、インタークーラ34での吸気の冷却の度合いを減らすべく、インタークーラ34に流入するI/C冷却水の温度を上昇させる。具体的には、図2の構成において、流量制御弁76により、熱交換器75に対してエンジン冷却水とI/C冷却水とが共に流入する状態とし、高温のエンジン冷却水により低温のI/C冷却水を加熱する。この場合、I/C冷却水は、エンジン水温を上限として、それよりも低温となる温度範囲で昇温される。
 次に、ECU50のマイクロコンピュータ51により実施される凝縮水抑制制御について説明する。図4は、凝縮水抑制制御の処理手順を示すフローチャートであり、本処理はマイクロコンピュータ51により所定周期で繰り返し実施される。
 図4において、ステップS11では、本処理で用いる各種パラメータを取得する。続くステップS12では、EGRクーラ38の出口部分におけるガス温度Tg1及び露点温度Td1を算出する。なお本実施形態では、ステップS12でのガス温度Tg1及び露点温度Td1をはじめ、後述する各部位でのガス温度及び露点温度を、温度センサや湿度センサの検出値に基づいて算出するものとしている。
 その後、ステップS13では、「Tg1-Td1」が所定の判定値K1未満であるか否か、すなわちEGRクーラ38において凝縮水が発生するおそれがあるか否かを判定する。判定値K1は0℃又は0℃付近の温度値である。そして、Tg1-Td1<K1であれば、ステップS14に進む。ステップS14では、EGRクーラ38での凝縮水対策を実施する。具体的には、EGRを停止する。例えば、エンジン10の冷間状態ではエンジン冷却水が低温であるためにEGRガスが低温となり、その状況下においてEGRクーラ38での凝縮水対策が実施される。そしてその後、本処理を終了する。また、ステップS13において、Tg1-Td1≧K1であれば、後続のステップS15に進む。
 ステップS15では、ガス合流部Aにおけるガス温度Tg2及び露点温度Td2を算出する。続くステップS16では、「Tg2-Td2」が所定の判定値K2未満であるか否か、すなわちガス合流部Aにおいて凝縮水が発生するおそれがあるか否かを判定する。判定値K2は0℃又は0℃付近の温度値であり、判定値K1と同じ値であってもよい。そして、Tg2-Td2<K2であれば、ステップS17に進む。ステップS17では、ガス合流部Aでの凝縮水対策を実施する。具体的には、流量制御弁66又はウォータポンプ61の制御により、EGRクーラ38に対するエンジン冷却水の流量制限を実施する。又は、流路切替弁68の制御により、吸気管加熱装置67においてエンジン冷却水により新気を昇温させる。例えば、低外気温の環境下では低温の新気が流入することで吸気(混合ガス)が低温となり、その状況下においてガス合流部Aでの凝縮水対策が実施される。
 その後、ステップS18~S20では、ステップS17の凝縮水対策(一次対策)を実施している状態下において凝縮水発生の状態の再判定を実施する。すなわち、ステップS18では、一次対策を実施している状態下で、ガス合流部Aにおけるガス温度及び露点温度を、Tg21,Td21として再び算出する。続くステップS19では、「Tg21-Td21」が判定値K2未満であるか否か、すなわちガス合流部Aにおいて凝縮水が発生するおそれがあるか否かを判定する。そして、Tg21-Td21<K2であれば、ステップS20に進む。ステップS20では、ガス合流部Aでの凝縮水抑制の二次対策として、EGR率を低減させるEGR低減処理を実施する。具体的には、例えば「Tg21-Td21」の値に基づいてEGR低減量を算出するとともに、そのEGR低減量に基づいて目標EGR率を減少補正する。これにより、ガス合流部Aでの凝縮水対策として一次対策及び二次対策が同時に実施される。
 なお、ステップS19がYESの場合には、同ステップS19がNOになるまで、目標EGR率を所定値ずつ減算していくことによりEGR低減を実施するようにしてもよい。エンジン10の運転状態を示すパラメータに基づいてEGR低減量を算出することも可能である。
 ガス合流部Aでの一次対策が実施されている状態下では、ステップS16,S19の各判定(すなわち一次対策の要否判定、及び二次対策の要否判定)が共に実施されるとよい。この場合、一次対策の実施中にステップS16がNOになると、その時点で一次対策が停止される。また、一次対策の実施中にステップS19がYESになると、一次対策に加えて二次対策が実施される。そしてその後、ステップS19がNOになると、二次対策が停止され、次いでステップS16がNOになると、一次対策が停止される。
 ステップS16において、Tg2-Td2≧K2であれば、ステップS17~S20を実施せずに、ステップS16から直接ステップS21に進む。また、ステップS19においてTg21-Td21≧K2であった場合、及びステップS20を実施した後も同様にステップS21に進む。
 ステップS21では、インタークーラ34の出口部分におけるガス温度Tg3及び露点温度Td3を算出する。続くステップS22では、「Tg3-Td3」が所定の判定値K3未満であるか否か、すなわちインタークーラ34において凝縮水が発生するおそれがあるか否かを判定する。そして、Tg3-Td3<K3であれば、ステップS23に進む。ステップS23では、インタークーラ34での凝縮水対策を実施する。具体的には、流量制御弁76の制御により熱交換器75での熱交換を行わせ、I/C冷却水の昇温化を実施する。例えば、インタークーラ34での高湿環境下では露点温度が高くなり、その状況下においてインタークーラ34での凝縮水対策が実施される。
 その後、ステップS24~S26では、ステップS23の凝縮水対策(一次対策)を実施している状態下において凝縮水発生の状態の再判定を実施する。すなわち、ステップS24では、一次対策を実施している状態下で、インタークーラ34の出口部分におけるガス温度及び露点温度を、Tg31,Td31として再び算出する。続くステップS25では、「Tg31-Td31」が判定値K3未満であるか否か、すなわちインタークーラ34において凝縮水が発生するおそれがあるか否かを判定する。そして、Tg31-Td31<K3であれば、ステップS26に進む。ステップS26では、インタークーラ34での凝縮水抑制の二次対策として、EGR率を低減させるEGR低減処理を実施する。具体的には、例えば「Tg31-Td31」の値に基づいてEGR低減量を算出するとともに、そのEGR低減量に基づいて目標EGR率を減少補正する。これにより、インタークーラ34での凝縮水対策として一次対策及び二次対策が同時に実施される。
 なお、ステップS25がYESの場合には、同ステップS25がNOになるまで、目標EGR率を所定値ずつ減算していくことによりEGR低減を実施するようにしてもよい。エンジン10の運転状態を示すパラメータに基づいてEGR低減量を算出することも可能である。インタークーラ34においてエンジン10でのノック抑制の観点からすると、I/C冷却水を過剰に昇温させることは望ましくない。ガス昇温の限界を超えた場合にEGR量の制限が実施される。
 インタークーラ34での一次対策が実施されている状態下では、ステップS22,S25の各判定(すなわち一次対策の要否判定、及び二次対策の要否判定)が共に実施されるとよい。この場合、一次対策の実施中にステップS22がNOになると、その時点で一次対策が停止される。また、一次対策の実施中にステップS25がYESになると、一次対策に加えて二次対策が実施される。そしてその後、ステップS25がNOになると、二次対策が停止され、次いでステップS22がNOになると、一次対策が停止される。
 ステップS22において、Tg3-Td3≧K3であれば、ステップS23~S26を実施せずに、そのまま本処理を一旦終了する。また、ステップS25においてTg31-Td31≧K3であった場合、及びステップS26を実施した後も同様に、そのまま本処理を一旦終了する。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 EGRクーラ38、ガス合流部A、インタークーラ34の各部位において凝縮水が発生するか否かを各々判定し、そのいずれかで凝縮水が発生するとの判定がなされた場合に、各々対応する凝縮水抑制の対策を実施する構成とした。そのため、EGRクーラ38、ガス合流部A、インタークーラ34の各部位のいずれにおいても適正に凝縮水発生の抑制を実現できる。その結果、EGRガスが流れるガス経路において凝縮水発生のおそれのある各部位での凝縮水の発生を抑制し、ひいてはエンジン10及びその他製品において腐食等が生じさせないようにすることができる。
 EGRクーラ38での凝縮水発生の旨が判定された場合には、EGRクーラ38での凝縮水対策としてEGRを停止する一方、その他の凝縮水対策(ガス合流部A、インタークーラ34での凝縮水対策)を実施しないようにした。また、EGRクーラ38での凝縮水発生の旨が判定されていない場合には、ガス合流部A及びインタークーラ34での凝縮水発生の判定結果に基づいて、一方又は両方での凝縮水対策を実施するようにした。EGRガス経路において凝縮水発生要因の最上流になるのはEGRクーラ38であり、そのEGRクーラ38での凝縮水対策としてEGRを停止することにより、その下流側も含めて経路全域で凝縮水を発生しにくくすることができる。この場合、EGRクーラ38での凝縮水対策を実施した状態では、他の部位の凝縮水対策を実施しないため、凝縮水対策の過剰な実施によりエンジン10の運転に影響が及ぶことを抑制できる。
 ガス合流部Aやインタークーラ34において凝縮水対策(一次対策)を実施しても凝縮水発生を回避できないと判断した場合に、EGRガス量(EGR率)を減らす処理を実施するようにした。これにより、凝縮水の抑制をより一層適正に実施できる。
 ガス合流部Aでの凝縮水対策として、EGRクーラ38でのEGRガスの冷却の度合いを低下させる処理と、新気の温度を上昇させる処理とのいずれかを実施する構成とした。この場合、新気とEGRガスとの混合ガスについて、ガス合流部Aの露点温度よりもガス温度を高くすることで凝縮水の発生を適正に抑制できる。
 インタークーラ34での凝縮水対策として、インタークーラ34での吸気の冷却の度合いを低下させるようにした。この場合、吸気(混合ガス)の温度をインタークーラ34での露点温度よりも高くすることで凝縮水の発生を適正に抑制できる。
 具体的には、I/C冷却水を、エンジン冷却水よりも高温とならない範囲で昇温させる構成とした。この場合、I/C冷却水経路L2を流れるI/C冷却水は、エンジン冷却水経路L1を流れるエンジン冷却水に比べて低温である。そのため、凝縮水対策としてI/C冷却水が昇温されても、エンジン冷却水よりも低温のままとされる。したがって、凝縮水対策として吸気温度を上昇させた状態でも、エンジン10でのノックの発生を抑制できる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 凝縮水抑制制御処理について別の構成を以下に説明する。ここでは、エンジン水温を一判定パラメータとして用いてEGRクーラ38での凝縮水発生を判定する判定部と、外気温を一判定パラメータとして用いてガス合流部Aにおける凝縮水発生を判定する判定部と、吸気コンプレッサ31の下流側における湿度を一判定パラメータとしてインタークーラ34での凝縮水発生を判定する判定部とを有する構成を説明する。
 水冷式のEGRクーラ38では、EGRクーラ38でのガス温度がエンジン水温に依存するものになる。そのため、EGRクーラ38でのガス温度は、エンジン10の暖機完了前は比較的低温となり、エンジン10の暖機完了後は比較的高温となる。ゆえに、エンジン10の暖機完了前の方が、暖機完了後よりもEGRクーラ38での凝縮水発生の可能性が高いものとなっている。具体的には、EGRガスの露点が50℃程度であるとする場合、エンジン冷間状態であってエンジン水温が50℃以下であれば凝縮水発生の可能性が有ると判定し、暖機に伴いエンジン水温が50℃+αの所定値まで上昇した後は凝縮水発生の可能性が無いと判定する。
 また、ガス合流部Aでのガス温度は、新気の温度(すなわち外気温)に依存するものになる。そのため、外気温(例えば外気温センサ、又は吸気通路上流部の吸気温センサの検出値)が所定値以下であれば、ガス合流部Aでのガス温度が所定の低温域にあるとみなし、ガス合流部Aで凝縮水発生の可能性があると判定する。
 インタークーラ34での露点温度は、吸気コンプレッサ31の下流側の湿度に依存するものになる。そのため、コンプレッサ下流側の湿度が所定値以上であれば、インタークーラ34での露点温度が所定の高温域(凝縮水の生じやすい温度域)にあるとみなし、インタークーラ34で凝縮水発生の可能性があると判定する。コンプレッサ下流側の湿度は、例えば吸気通路上流部、又は吸気コンプレッサ付近に設けた湿度センサの検出結果から求められるとよい。
 本実施形態における凝縮水抑制制御処理を図5のフローチャートにより説明する。図5の処理は図4の処理の代わりにマイクロコンピュータ51により実施されるものである。図5において、ステップS31では、エンジン水温が所定値K11(例えば50℃)以下であるか否かを判定し、YESであればステップS32に進む。ステップS32では、EGRクーラ38での凝縮水対策を実施する(図4のステップS14と同様)。
 また、ステップS31がNOであれば、ステップS33に進む。ステップS33では、外気温が所定値K12(例えば0℃)以下であるか否かを判定し、YESであればステップS34に進む。ステップS34では、ガス合流部Aでの凝縮水対策を実施する(図4のステップS17と同様)。
 また、ステップS34の実施後、又はステップS33がNOである場合には、ステップS35に進む。ステップS35では、吸気コンプレッサ31の下流側の湿度が所定値K13以上であるか否かを判定し、YESであればステップS36に進む。ステップS36では、インタークーラ34での凝縮水対策を実施する(図4のステップS23と同様)。
 上記構成では、EGRクーラ38での凝縮水判定と、ガス合流部Aでの凝縮水判定と、インタークーラ34での凝縮水判定とを各々異なる基準で実施するようにした。これにより、各部位における凝縮水発生の判定を、各部位の事情に合わせて適正に実施できる。
 ガス合流部Aでの凝縮水対策のための構成を変更してもよい。つまり、ガス合流部Aに流れ込むEGRガスについて高温状態を維持させるための手段として、以下の構成を用いる。図6に示すように、EGR配管36に、EGRクーラ38を迂回するバイパス配管81を設けるとともに、そのバイパス配管81の分岐部に制御弁82を設ける。この場合、EGRクーラ38を通過するEGRガスと、バイパス配管81を通過するEGRガスとの配分を制御弁82により制御する。つまり、低温EGRガスと高温EGRガスとの配分を制御する。
 ガス合流部Aの上流部において新気の温度を上昇させる温度調節部は、排気熱により新気温度を上昇させるものであってもよい。この場合、図7に示すように、排気管26から分岐させて分岐配管85を設けるとともに、その分岐配管85に、排気熱により新気を加熱する加熱装置86を設ける構成とする。加熱装置86よれば、ガス合流部Aの上流側において排気熱により新気が加熱される。排気管26と分岐配管85との分岐点には、ECU50により制御可能な制御弁87が設けられているとよい。その他、吸気管11においてガス合流部Aよりも上流部に電気ヒータを設け、その電気ヒータにより新気を昇温させる構成であってもよい。
 インタークーラ34での凝縮水対策のための構成を変更してもよい。つまり、インタークーラ34での吸気の冷却の度合いを減らすべく以下の温度調節手段を用いてもよい。例えば、I/C冷却水経路L2に設けた流量制御弁(例えばサーモスタッド73)、又はウォータポンプ71を制御することで、インタークーラ34に流入する冷却水流量を減量し、それによりインタークーラ34での吸気の冷却の度合いを減らす。また、エンジン冷却水経路L1を流れるエンジン冷却水の一部をI/C冷却水経路L2に流入させることで、インタークーラ34での吸気の冷却の度合いを減らすようにしてもよい。
 図4において、ガス合流部Aでの凝縮水抑制のための二次対策と、インタークーラ34での凝縮水抑制のための二次対策とは、いずれか一方を実施し、他方を実施しないようにしてもよく、また、両方を実施しないようにしてもよい。
 EGRガス経路において凝縮水の発生要因としては、EGR配管36や吸気管11で配管壁を介して放熱が生じることも含まれると考えられる。その対策として、EGR配管36や吸気管11での放熱による凝縮水発生が懸念される場合に、これらEGR配管36や吸気管11の加熱を実施するとよい。具体的には、図2に示した吸気管加熱装置67や図7に示した加熱装置86をEGR配管36や吸気管11の必要箇所に適宜設け、これらの加熱装置67,86によりEGR配管36や吸気管11の略全体を加熱するとよい。
 外部EGRシステムとして、HPL方式(高圧ループ方式)のEGRシステムを用いてもよい。このEGRシステムでは、排気管26において排気タービン32の上流側と、吸気管11において吸気コンプレッサ31の下流側とを接続するようにEGR配管が設けられる。この場合にも、上記同様、凝縮水発生の判定、及び凝縮水抑制対策が実施されるとよい。
 過給装置として、ターボチャージャ以外の構成を用いてもよい。例えばエンジン10の出力軸からの動力やモータの動力によって作動する、いわゆるスーパーチャージャを用いてもよい。
 本開示は、ガソリンエンジン以外の内燃機関にも適用可能であり、例えばディーゼルエンジンにも適用できる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  内燃機関(10)に吸入される吸気を過給する過給装置(30)と、
     前記内燃機関の吸気通路において前記過給装置の吸気圧縮部(31)よりも下流側に設けられ、吸気を冷却するインタークーラ(34)と、
     前記内燃機関から排出される排気の一部をEGRガスとして排気通路から吸気通路に還流させるEGR配管(36)と、
     前記EGR配管に設けられるEGR弁(37)と、
     前記EGR配管に設けられるEGRクーラ(38)と、を備える内燃機関のEGRシステムであって、
     前記EGRクーラ内においてEGRガスの冷却によって凝縮水が発生するか否かを判定する第1判定部(51)と、
     前記吸気通路において新気とEGRガスの合流部分で凝縮水が発生するか否かを判定する第2判定部(51)と、
     前記インタークーラ内において吸気の冷却によって凝縮水が発生するか否かを判定する第3判定部(51)と、
     前記各判定部のいずれかにより凝縮水が発生するとの判定がなされた場合に、それら各判定部のいずれで凝縮水発生が判定されたかに応じて、各々対応する凝縮水抑制の対策を実施する凝縮水抑制部(51)と、を備えることを特徴とする内燃機関のEGRシステム。
  2.  前記凝縮水抑制部は、
     前記第1判定部により前記EGRクーラでの凝縮水発生の旨が判定された場合に、前記EGRクーラでの凝縮水対策としてEGRを停止するとともに、前記第2判定手段及び前記第3判定手段の各判定結果にかかわらず、前記合流部分での凝縮水対策及び前記インタークーラでの凝縮水対策を実施せず、
     前記第1判定手段により前記EGRクーラでの凝縮水発生の旨が判定されていない場合に、前記第2判定手段及び前記第3判定手段の各判定結果に基づいて、前記合流部分での凝縮水対策及び前記インタークーラでの凝縮水対策の一方又は両方を実施する請求項1に記載の内燃機関のEGRシステム。
  3.  前記凝縮水抑制手段により前記合流部分での凝縮水対策が実施されている状態下で、当該合流部分での凝縮水発生を再判定する手段と、前記凝縮水抑制手段により前記インタークーラでの凝縮水対策が実施されている状態下で、当該インタークーラでの凝縮水発生を再判定する手段との少なくともいずれかを有する再判定部(51)と、
     前記再判定部により凝縮水が発生するとの判定がなされた場合に、前記EGR弁を通過するEGRガス量を減らすEGR低減処理を実施する二次対策部(51)と、を備える請求項2に記載の内燃機関のEGRシステム。
  4.  前記EGRクーラは、前記内燃機関を冷却するエンジン冷却水を流通させて、該エンジン冷却水との熱交換によりEGRガスを冷却するものであり、
     前記第1判定部は、前記エンジン冷却水の温度を一判定パラメータとして用いて前記EGRクーラでの凝縮水発生を判定し、
     前記第2判定部は、外気温を一判定パラメータとして用いて前記合流部分における凝縮水発生を判定し、
     前記第3判定部は、前記吸気圧縮部の下流側における湿度を一判定パラメータとして前記インタークーラでの凝縮水発生を判定する請求項1乃至3のいずれか1項に記載の内燃機関のEGRシステム。
  5.  前記凝縮水抑制部は、前記合流部分での凝縮水対策として、前記EGRクーラでのEGRガスの冷却の度合いを低下させる装置、または新気の温度を上昇させる装置の少なくともいずれかを有している請求項1乃至4のいずれか1項に記載の内燃機関のEGRシステム。
  6.  前記凝縮水抑制部は、前記インタークーラでの凝縮水対策として、前記インタークーラでの前記吸気の冷却の度合いを低下させる装置を有している請求項1乃至5のいずれか1項に記載の内燃機関のEGRシステム。
  7.  前記インタークーラは、当該インタークーラにI/C冷却水を流通させて、該I/C冷却水との熱交換により吸気を冷却するものであり、
     前記I/C冷却水は、前記内燃機関を冷却するエンジン冷却水の循環経路とは別の循環経路を流れ、かつエンジン冷却水よりも低温の状態で保持されるものであり、
     前記凝縮水抑制部は、前記インタークーラでの凝縮水対策として、前記インタークーラに流入する前記I/C冷却水を、前記エンジン冷却水よりも高温とならない範囲で昇温させる請求項6に記載の内燃機関のEGRシステム。
PCT/JP2015/001769 2014-04-02 2015-03-27 内燃機関のegrシステム WO2015151484A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17175048.2A EP3244055B1 (en) 2014-04-02 2015-03-27 Egr system for internal-combustion engine
EP15772852.8A EP3130790B1 (en) 2014-04-02 2015-03-27 Egr system of internal-combustion engine
CN201580017471.6A CN106164460B (zh) 2014-04-02 2015-03-27 内燃机的egr系统
US15/300,902 US10107235B2 (en) 2014-04-02 2015-03-27 EGR system for internal-combustion engine
US15/959,400 US10473063B2 (en) 2014-04-02 2018-04-23 EGR system for internal-combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014075938A JP6364895B2 (ja) 2014-04-02 2014-04-02 内燃機関のegrシステム
JP2014-075938 2014-04-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/300,902 A-371-Of-International US10107235B2 (en) 2014-04-02 2015-03-27 EGR system for internal-combustion engine
US15/959,400 Division US10473063B2 (en) 2014-04-02 2018-04-23 EGR system for internal-combustion engine

Publications (1)

Publication Number Publication Date
WO2015151484A1 true WO2015151484A1 (ja) 2015-10-08

Family

ID=54239830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001769 WO2015151484A1 (ja) 2014-04-02 2015-03-27 内燃機関のegrシステム

Country Status (5)

Country Link
US (2) US10107235B2 (ja)
EP (2) EP3244055B1 (ja)
JP (1) JP6364895B2 (ja)
CN (2) CN106164460B (ja)
WO (1) WO2015151484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143592A (ja) * 2019-03-05 2020-09-10 三菱自動車工業株式会社 凝縮水処理装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364895B2 (ja) 2014-04-02 2018-08-01 株式会社デンソー 内燃機関のegrシステム
JP2016006310A (ja) * 2014-06-20 2016-01-14 トヨタ自動車株式会社 内燃機関の制御システム
JP6633944B2 (ja) * 2016-03-07 2020-01-22 川崎重工業株式会社 エンジンシステム及び制御方法
JP6399023B2 (ja) 2016-03-22 2018-10-03 トヨタ自動車株式会社 内燃機関の制御装置
JP6743648B2 (ja) * 2016-10-26 2020-08-19 いすゞ自動車株式会社 内燃機関及び内燃機関の制御方法
JP6691498B2 (ja) * 2017-03-17 2020-04-28 本田技研工業株式会社 内燃機関の制御装置
FR3064678B1 (fr) * 2017-03-29 2021-03-05 Renault Sas Procede et systeme d'estimation de la condensation d'un refroidisseur d'air de suralimentation dans un moteur a combustion interne de vehicule automobile
KR101989180B1 (ko) * 2017-12-08 2019-06-13 현대오트론 주식회사 배기가스 환류시스템용 흡기 다기관의 온도 제어 장치 및 방법
JP6943200B2 (ja) * 2018-02-13 2021-09-29 トヨタ自動車株式会社 ハイブリッド車両
JP7110786B2 (ja) * 2018-07-20 2022-08-02 三菱自動車工業株式会社 排気還流ガスの還流機構
CN111102060B (zh) * 2018-10-25 2021-06-01 广州汽车集团股份有限公司 增压发动机系统及其冷凝控制方法
DE102018218883A1 (de) 2018-11-06 2020-05-07 Ford Global Technologies, Llc Verfahren zum Betrieb eines Kraftfahrzeugs mit einer Brennkraftmaschine mit einer Abgasrückführung
KR20200071930A (ko) * 2018-12-11 2020-06-22 현대자동차주식회사 응축수 방지를 위한 습도 센서가 적용된 eGR 제어 방법
DE102019206448B4 (de) 2019-05-06 2021-03-18 Ford Global Technologies, Llc Motorsystem
JP7308102B2 (ja) * 2019-08-28 2023-07-13 日産自動車株式会社 エンジンシステムの制御方法及びエンジンシステムの制御装置
CN110566382B (zh) * 2019-09-27 2020-11-27 李骁勇 一种汽车进气加热控制系统及方法
WO2022133072A1 (en) * 2020-12-16 2022-06-23 Econtrols, Llc Low-pressure egr system with condensate management
CN113653575B (zh) * 2021-08-25 2022-06-21 中国第一汽车股份有限公司 一种具有低压egr系统的发动机总成及冷凝水控制策略

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200956A (ja) * 1998-01-09 1999-07-27 Mitsubishi Motors Corp 排ガス再循環装置
JP2012087779A (ja) * 2010-10-18 2012-05-10 Hyundai Motor Co Ltd 低圧egrシステム制御装置および方法
JP2013144934A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 冷却システムの制御装置
JP2013160180A (ja) * 2012-02-07 2013-08-19 Mazda Motor Corp 車両用エンジンの吸気装置
JP2013238201A (ja) * 2012-05-17 2013-11-28 Toyota Motor Corp Egr導入装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935978A (en) * 1958-05-07 1960-05-10 Nordberg Manufacturing Co Moisture control for engines
JPS5382368A (en) 1976-12-27 1978-07-20 Ee Jiee Binguree Ltd Optical system
GB2069058A (en) * 1980-02-09 1981-08-19 Pierce J E Use of liquid gases to produce power in internal combustion engines
DE4101708C2 (de) * 1991-01-22 1994-12-08 Man Nutzfahrzeuge Ag Brennkraftmaschine mit zweistufiger Ladeluftkühlung
JP3393630B2 (ja) 1994-11-14 2003-04-07 財団法人石油産業活性化センター エンジンの排気ガス還流装置の制御方法及び制御装置
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
EP1270895A1 (de) * 2001-06-29 2003-01-02 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Ladelufttemperaturkontrolle für Motoren mit Ladeluftkühler
KR20030048788A (ko) * 2001-12-13 2003-06-25 현대자동차주식회사 배기가스 재순환 밸브의 소음 저감 시스템
EP1716325B1 (de) * 2004-02-01 2010-01-06 Behr GmbH & Co. KG Anordnung zur kühlung von abgas und ladeluft
JP2007224877A (ja) * 2006-02-27 2007-09-06 Denso Corp 内燃機関の排気管への排気センサ取付け構造
JP4539586B2 (ja) * 2006-03-09 2010-09-08 株式会社デンソー 内燃機関の制御装置
JP4631886B2 (ja) 2007-08-28 2011-02-16 トヨタ自動車株式会社 内燃機関の排気還流システム
JP2009174444A (ja) * 2008-01-25 2009-08-06 Honda Motor Co Ltd Egr装置
CN101349220A (zh) * 2008-08-28 2009-01-21 中国第一汽车集团公司无锡柴油机厂 一种柴油机热端布置egr阀的控制机构
DE102009006966A1 (de) * 2009-01-31 2010-08-05 Volkswagen Ag Verfahren zum Regeln eines Ladeluftkühlers
JP2010223179A (ja) * 2009-03-25 2010-10-07 Toyota Industries Corp 低圧egr装置を備えた内燃機関
US8286616B2 (en) * 2009-06-29 2012-10-16 GM Global Technology Operations LLC Condensation control systems and methods
FI124096B (fi) * 2009-12-17 2014-03-14 Wärtsilä Finland Oy Menetelmä mäntämoottorin käyttämiseksi
US20110225955A1 (en) * 2010-02-17 2011-09-22 Toyota Jidosha Kabushiki Kaisha Exhaust apparatus for internal combustion engine
JP5445284B2 (ja) * 2010-04-01 2014-03-19 株式会社デンソー 内燃機関の吸気温度制御装置
US20120009058A1 (en) * 2010-07-09 2012-01-12 General Electric Company Compressible supports for turbine engines
KR20120008202A (ko) * 2010-07-16 2012-01-30 현대자동차주식회사 저압 egr시스템 제어장치 및 방법
DE102010034131A1 (de) * 2010-08-12 2012-02-16 Volkswagen Aktiengesellschaft Verfahren zur Regelung der Temperatur des Gassystems einer Brennkraftmaschine
JP5382368B2 (ja) * 2010-12-21 2014-01-08 三菱自動車工業株式会社 エンジンの制御装置
US20130319382A1 (en) * 2011-02-08 2013-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of internal combustion engine
JP2013256936A (ja) * 2012-05-16 2013-12-26 Denso Corp 排気還流装置
DE102012104724A1 (de) * 2012-05-31 2013-12-05 Fev Gmbh Abgasrückführvorrichtung für einen Verbrennungsmotor
DE102012011991A1 (de) 2012-06-16 2013-12-19 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Dosierventils und zum Betreiben eines Verbrennungsmotors
US9222447B2 (en) * 2012-07-26 2015-12-29 Ford Global Technologies, Llc Charge air cooler control system and method
US20140046511A1 (en) 2012-08-08 2014-02-13 Electro-Motive Diesel, Inc. System for controlling engine inlet air temperature
JP5962534B2 (ja) * 2013-02-15 2016-08-03 トヨタ自動車株式会社 インタークーラの温度制御装置
JP2014181607A (ja) * 2013-03-19 2014-09-29 Denso Corp 排気循環装置
JP6075271B2 (ja) 2013-11-12 2017-02-08 トヨタ自動車株式会社 内燃機関の制御装置
JP6364895B2 (ja) 2014-04-02 2018-08-01 株式会社デンソー 内燃機関のegrシステム
JP6072752B2 (ja) * 2014-11-12 2017-02-01 本田技研工業株式会社 内燃機関の冷却制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200956A (ja) * 1998-01-09 1999-07-27 Mitsubishi Motors Corp 排ガス再循環装置
JP2012087779A (ja) * 2010-10-18 2012-05-10 Hyundai Motor Co Ltd 低圧egrシステム制御装置および方法
JP2013144934A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 冷却システムの制御装置
JP2013160180A (ja) * 2012-02-07 2013-08-19 Mazda Motor Corp 車両用エンジンの吸気装置
JP2013238201A (ja) * 2012-05-17 2013-11-28 Toyota Motor Corp Egr導入装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143592A (ja) * 2019-03-05 2020-09-10 三菱自動車工業株式会社 凝縮水処理装置
JP7268404B2 (ja) 2019-03-05 2023-05-08 三菱自動車工業株式会社 凝縮水処理装置

Also Published As

Publication number Publication date
US10473063B2 (en) 2019-11-12
US10107235B2 (en) 2018-10-23
US20170022940A1 (en) 2017-01-26
EP3130790A1 (en) 2017-02-15
EP3244055B1 (en) 2020-09-16
CN106164460B (zh) 2019-06-21
CN108979840B (zh) 2020-09-22
JP2015197078A (ja) 2015-11-09
EP3130790A4 (en) 2017-04-12
JP6364895B2 (ja) 2018-08-01
EP3130790B1 (en) 2019-09-04
CN108979840A (zh) 2018-12-11
CN106164460A (zh) 2016-11-23
EP3244055A1 (en) 2017-11-15
US20180238275A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6364895B2 (ja) 内燃機関のegrシステム
JP6348654B2 (ja) 内燃機関の制御装置
WO2016178302A1 (ja) 内燃機関の低水温冷却装置
JP6536708B2 (ja) 内燃機関のegrシステム
JP5799963B2 (ja) 内燃機関の排気循環装置
JP5288046B2 (ja) 内燃機関の制御装置
JP6350552B2 (ja) 過給機付き内燃機関の制御装置
JP6072752B2 (ja) 内燃機関の冷却制御装置
RU2607098C1 (ru) УСТРОЙСТВО УПРАВЛЕНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ (варианты)
JP5579023B2 (ja) 内燃機関
JP2015178775A (ja) 内燃機関
US9957877B2 (en) Control apparatus for internal combustion engine
JP6860313B2 (ja) エンジンの制御方法、及び、エンジン
JP2014148957A (ja) Egrガス冷却装置
JP2009264335A (ja) 内燃機関用多段過給システム
JP5830868B2 (ja) 内燃機関の排気循環装置
WO2019065308A1 (ja) 冷却システム
JP2016176439A (ja) 内燃機関の冷却装置及び制御装置
JP2009085034A (ja) 内燃機関の制御装置
JP2009270476A (ja) Egr流量制御装置及びegr流量制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772852

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015772852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015772852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE