WO2015141661A1 - 熱可塑性樹脂組成物及び樹脂成形品 - Google Patents

熱可塑性樹脂組成物及び樹脂成形品 Download PDF

Info

Publication number
WO2015141661A1
WO2015141661A1 PCT/JP2015/057843 JP2015057843W WO2015141661A1 WO 2015141661 A1 WO2015141661 A1 WO 2015141661A1 JP 2015057843 W JP2015057843 W JP 2015057843W WO 2015141661 A1 WO2015141661 A1 WO 2015141661A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
copolymer
monomer
polymer
Prior art date
Application number
PCT/JP2015/057843
Other languages
English (en)
French (fr)
Inventor
谷川 寛
茂樹 浜本
平田 浩二
弘俊 斎藤
Original Assignee
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーエムジー・エービーエス株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to AU2015232499A priority Critical patent/AU2015232499B2/en
Priority to PL15765315T priority patent/PL3121226T3/pl
Priority to BR112016020681-9A priority patent/BR112016020681B1/pt
Priority to US15/123,743 priority patent/US10233320B2/en
Priority to MYPI2016703381A priority patent/MY182050A/en
Priority to ES15765315T priority patent/ES2755190T3/es
Priority to KR1020167013989A priority patent/KR101695621B1/ko
Priority to CA2941557A priority patent/CA2941557C/en
Priority to EP15765315.5A priority patent/EP3121226B1/en
Priority to CN201580003102.1A priority patent/CN105829440B/zh
Priority to MX2016011952A priority patent/MX2016011952A/es
Publication of WO2015141661A1 publication Critical patent/WO2015141661A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a thermoplastic resin composition.
  • it is related with the thermoplastic resin composition excellent in continuous moldability and the improvement property of a molded article appearance.
  • the present invention also relates to a resin molded product obtained by molding this thermoplastic resin composition.
  • ABS resins and high-impact polystyrene resins in which a rubber component is blended in the resin composition are provided.
  • the diene polymer used as a rubber component for imparting impact resistance has many chemically unstable double bonds in its main chain. It is easy to deteriorate and generally has poor weather resistance.
  • an ASA resin As an improvement in the weather resistance of ABS resin, an ASA resin has been proposed by graft copolymerization of an acrylonitrile compound and a styrene compound in the presence of an acrylic rubber having no double bond.
  • ASA resin uses acrylic rubber as rubber, and has excellent weather resistance, but has a disadvantage of poor impact resistance.
  • a method for increasing the degree of swelling of acrylic rubber may be taken as a method for improving the impact resistance of ASA resin.
  • ASA resin a method for improving the impact resistance of acrylic rubber.
  • the surface gloss of the resin molded product is remarkably lowered.
  • the impact resistance is improved by increasing the molecular weight of the resin, the excellent moldability characteristic of the ASA resin is impaired.
  • Japanese Examined Patent Publication No. 3-66329 discloses a compound of an inferior amount of conjugated diene rubber and a dominant amount of acrylate rubber.
  • a special ASA resin using rubber is proposed.
  • the gas generated during the molding process is deposited in a greasy manner on the mold, and this deposit moves to the molded product side, thereby deteriorating the appearance of the molded product. For this reason, it is necessary to periodically remove the greasy deposit adhering to the mold, which is inferior in continuous formability. Even when the amount of gas generated is small, there is a problem that appearance defects such as flow marks and silver streaks occur in the molded product.
  • the present invention provides a thermoplastic resin composition excellent in continuous moldability and improved appearance of a molded product, and a resin molded product formed by molding this thermoplastic resin composition.
  • the present inventor has obtained a graft copolymer obtained by polymerizing a monomer mixture containing an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a specific composite rubber-like polymer, A predetermined amount of an alkaline earth metal oxide and a copolymer obtained by polymerizing a monomer mixture containing an aromatic vinyl monomer and a vinyl cyanide monomer are blended at a predetermined ratio. It has been found that a thermoplastic resin composition to which is added can solve the above problems.
  • the gist of the present invention is as follows.
  • the composite rubber-like polymer (I) is a single polymer containing an acrylate ester constituting the crosslinked acrylate ester polymer (ii) in the presence of the diene rubber (i).
  • a thermoplastic resin composition obtained by polymerizing a monomer.
  • thermoplastic resin composition according to [1] or [2], wherein the diene rubber (i) has a polystyrene-converted weight average molecular weight of 100,000 or more in terms of toluene-soluble content.
  • thermoplastic resin composition excellent in continuous moldability and improved appearance of a molded product and a resin molded product thereof are provided.
  • thermoplastic resin composition of the present invention containing a graft copolymer (A) obtained by graft copolymerization of a monomer mixture (II) containing a monomer and a copolymer (B) Excellent impact and weather resistance, conventional applications that require impact resistance and weather resistance, such as vehicle interiors, vehicle exteriors, building materials, and mobile devices that have many opportunities to be taken outdoors (notebook and tablet personal computers) , Mobile phones including smart phones, digital cameras, digital video cameras, and the like).
  • excellent continuous moldability can be obtained.
  • the molded article of the thermoplastic resin composition of the present invention has an excellent appearance.
  • thermoplastic resin composition comprises 18 to 44 parts by mass of the following graft copolymer (A) and 56 to 82 parts by mass of the following copolymer (B) so that the total amount is 100 parts by mass, 0.1 to 0.3 parts by mass of an alkaline earth metal oxide (M) is contained with respect to 100 parts by mass in total of the graft copolymer (A) and the copolymer (B).
  • the graft copolymer (A) is an aromatic vinyl-based polymer in the presence of a composite rubber-like polymer (I) comprising a diene rubber (i) and a crosslinked acrylate polymer (ii). It is obtained by graft copolymerization of a monomer mixture (II) consisting of a monomer, a vinyl cyanide monomer, and other monomers copolymerizable with these as required.
  • a monomer mixture (II) consisting of a monomer, a vinyl cyanide monomer, and other monomers copolymerizable with these as required.
  • the diene rubber (i) constituting the composite rubber-like polymer (I) is a polybutadiene; a conjugated diene polymer such as a copolymer of a vinyl monomer copolymerizable with butadiene; Butadiene-aromatic vinyl copolymer such as vinyl toluene copolymer; Butadiene-vinyl cyanide copolymer such as butadiene-acrylonitrile copolymer, butadiene-methacrylonitrile copolymer; Butadiene-methyl acrylate copolymer Butadiene-ethyl acrylate copolymer, butadiene-ethyl acrylate copolymer, butadiene-ethyl acrylate copolymer, butadiene-methyl methacrylate copolymer, butadiene-ethyl methacrylate copolymer, etc. Butadiene-methacrylic acid alkyl ester copoly
  • the catalyst and emulsifier used for the production of the diene rubber (i) are not particularly limited, and any conventionally known one can be suitably used.
  • the mass average particle diameter of the diene rubber (i) is preferably adjusted to 150 nm to 1 ⁇ m, particularly 200 to 500 nm, particularly 240 to 390 nm, from the viewpoint of the impact resistance and the appearance of the molded product.
  • the distribution of the dispersed particle size of the diene rubber (i) is not particularly limited, and two or more types having different dispersed particle sizes may be used in combination.
  • the mass average particle diameter of the diene rubber (i) and the acid group-containing copolymer described later is measured and calculated by the method shown in the section of the examples described later.
  • a known method can be applied to adjust the particle size of the diene rubber (i). For example, a method of enlargement by agglomeration during polymerization of a diene rubber; a relatively small diene rubber (small particle diene rubber) having a mass average particle diameter of less than 150 nm, for example, 65 to 85 nm, is produced in advance, and A group-containing copolymer (acid group-containing copolymer) can be used, for example, a method of adding latex, acid, salt, or the like to enlarge, and a method of increasing by shearing stress by stirring.
  • the diene rubber (i) is produced using the latex of the small particle diene rubber and the acid group-containing copolymer latex.
  • the acid group-containing copolymer latex can be copolymerized in water with an acid group-containing monomer of 5 to 30% by mass, an unsaturated carboxylic acid ester monomer of 95 to 70% by mass, and if necessary, with these. It is a latex of an acid group-containing copolymer obtained by polymerizing a monomer mixture containing 0 to 25% by mass of other monomers (total of 100% by mass of monomers).
  • an unsaturated compound having a carboxy group is preferable.
  • the unsaturated compound having a carboxy group include (meth) acrylic acid, itaconic acid, crotonic acid and the like, and (meth) acrylic acid is particularly preferable.
  • An acid group containing monomer may be used individually by 1 type, and may use 2 or more types together.
  • the unsaturated carboxylic acid ester monomer is preferably a (meth) acrylic acid alkyl ester, more preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms.
  • Examples of the (meth) acrylic acid alkyl ester include esters of acrylic acid or methacrylic acid with an alcohol having a linear or branched alkyl group having 1 to 12 carbon atoms.
  • Examples of the (meth) acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, Examples thereof include ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • the (meth) acrylic acid alkyl ester preferably has an alkyl group having 1 to 8 carbon atoms.
  • An unsaturated carboxylic acid ester monomer may
  • the other monomer is a monomer copolymerizable with the acid group-containing monomer and the unsaturated carboxylic acid ester monomer, and the acid group-containing monomer and the unsaturated carboxylic acid ester monomer It is a monomer excluding the body.
  • Other monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and p-methylstyrene, unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile, allyl methacrylate, and dimethacrylate. Examples thereof include compounds having two or more polymerizable functional groups such as acid polyethylene glycol ester, triallyl cyanurate, triallyl isocyanurate, and triallyl trimellitic acid. Another monomer may be used individually by 1 type and may use 2 or more types together.
  • the ratio of the acid group-containing monomer is usually 5 to 30% by mass and preferably 8 to 25% by mass in the monomer mixture (100% by mass) used in the production of the acid group-containing copolymer.
  • the ratio of the acid group-containing monomer is 5% by mass or more, the small particle diene rubber can be sufficiently enlarged.
  • the ratio of the acid group-containing monomer is 30% by mass or less, the formation of agglomerates can be suppressed during the production of the acid group-containing copolymer latex.
  • the ratio of the unsaturated carboxylic acid ester monomer is usually 70 to 95% by mass and preferably 75 to 92% by mass in the monomer mixture (100% by mass).
  • the ratio of the other monomer is usually 0 to 25% by mass and preferably 0 to 20% by mass in the monomer mixture (100% by mass).
  • the acid group-containing copolymer latex is preferably produced by emulsion polymerization.
  • emulsifier used in the emulsion polymerization include an anionic emulsifier.
  • anionic emulsifier examples include carboxylates such as alkali metal salts of fatty acids such as oleic acid, palmitic acid, stearic acid, and rosin acid, alkali metal salts of alkenyl succinic acid, alkyl sulfate esters, sodium alkylbenzene sulfonate, Examples include sodium alkylsulfosuccinate and sodium polyoxyethylene nonylphenyl ether sulfate.
  • An emulsifier may be used individually by 1 type and may use 2 or more types together.
  • the entire amount of the emulsifier may be charged all at once in the initial stage of polymerization, a part thereof may be charged in the initial stage of polymerization, and the rest may be added intermittently or continuously during the polymerization.
  • the mass average particle diameter of the acid group-containing copolymer and the mass average particle diameter of the enlarged diene rubber (i) can be adjusted by the amount of the emulsifier and the charging method.
  • Examples of the polymerization initiator used in emulsion polymerization include a thermal decomposition type initiator and a redox type initiator.
  • Examples of the thermal decomposition type initiator include potassium persulfate, sodium persulfate, and ammonium persulfate.
  • Examples of the redox type initiator include a combination of an organic peroxide such as cumene hydroperoxide, sodium formaldehyde sulfoxylate, and an iron salt.
  • a polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • a chain transfer agent for adjusting the molecular weight, an alkali or acid for adjusting the pH, and an electrolyte that is a viscosity reducing agent may be used.
  • the chain transfer agent mercaptans such as t-dodecyl mercaptan and n-octyl mercaptan, terpinolene, ⁇ -methylstyrene dimer and the like can be used.
  • the mass average particle diameter of the acid group-containing copolymer contained in the acid group-containing copolymer latex is preferably 200 nm or less, and more preferably 150 nm or less.
  • the mass average particle diameter of the acid group-containing copolymer is large, the stability of the acid group-containing copolymer latex tends to decrease, but if the mass average particle diameter of the acid group-containing copolymer is 200 nm or less, An acid group-containing copolymer can be produced while suppressing the generation of agglomerates.
  • the amount of the acid group-containing copolymer latex when the small particle diene rubber latex and the acid group-containing copolymer latex are mixed and enlarged is based on 100 parts by mass of the solid content of the small particle diene rubber latex.
  • the amount of the acid group-containing copolymer latex is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass in terms of solid content. If the acid group-containing copolymer latex is 0.1 parts by mass or more in terms of solid content, the enlargement of the small particle diene rubber is sufficiently advanced, and an enlarged diene rubber having a desired mass average particle diameter ( i) is easily obtained, and the generation of coagulum is suppressed. When the acid group-containing copolymer latex is 10 parts by mass or less in terms of the solid content, a decrease in the pH of the latex is suppressed and the latex is stabilized.
  • the temperature at the time of enlargement is preferably 10 to 90 ° C, more preferably 20 to 80 ° C.
  • the temperature is 10 to 90 ° C., the enlargement of the small particle diene rubber sufficiently proceeds, and it becomes easy to obtain the enlarged diene rubber (i) having a desired mass average particle diameter.
  • the crosslinked acrylic ester polymer (ii) constituting the composite rubber-like polymer (I) is mainly composed of an acrylic ester and, if necessary, is composed of a monomer copolymerizable with the acrylic ester.
  • the acrylic ester include alkyl esters having 1 to 12 carbon atoms such as methyl, ethyl, n-propyl, n-butyl, 2-ethylhexyl, n-lauryl, etc .; haloalkyl esters such as acrylic chloride Aryl esters such as benzyl acrylate and phenethyl acrylate, arylalkyl esters and the like are used.
  • Examples of the monomer copolymerizable with acrylic ester include methacrylic ester such as methyl methacrylate and butyl methacrylate, acrylonitrile, and styrene.
  • the monomer copolymerizable with the acrylate ester is optionally used in the range of 50% by mass or less in the crosslinked acrylate ester polymer (ii).
  • polymerization is performed by adding a graft crossing agent or a crosslinking agent to the monomer or monomer mixture mainly composed of the above acrylate ester. Is done.
  • a graft crossing agent and a crosslinking agent in combination.
  • graft crossing agent examples include allyl esters such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, cyanuric acid and isocyanuric acid.
  • crosslinking agent examples include those containing two or more unsaturated aliphatic groups such as diacrylate or dimethacrylate of alkylene glycol or divinylbenzene in one molecule.
  • the total usage of the graft crossing agent and the crosslinking agent is preferably 0.1% by mass to 5% by mass, more preferably 0.2% by mass to 3% by mass in the acrylate monomer (100% by mass). More preferably, it is 0.5 to 2% by mass.
  • the composite rubber-like polymer (I) is a monomer constituting the crosslinked acrylate polymer (ii) in the presence of, for example, 5 to 90% by mass, preferably 10 to 50% by mass of a diene rubber (i). It can be obtained by emulsion polymerization of 95 to 10% by mass, preferably 90 to 50% by mass of the body or monomer mixture.
  • the proportion of the diene rubber (i) is less than the above range, and the proportion of the monomer or monomer mixture constituting the crosslinked acrylate polymer (ii) Is more than the above range, the impact resistance is lowered, and conversely, the proportion of the diene rubber (i) is more than the above range and the monomer or monomer constituting the crosslinked acrylate polymer (ii).
  • the proportion of the monomer mixture is less than the above range, the weather resistance is lowered.
  • the mass average particle diameter of the composite rubber-like polymer (I) is preferably in the range of 180 to 500 nm, particularly 260 to 330 nm, from the viewpoint of impact resistance and appearance of the obtained molded product.
  • the graft copolymer (A) comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and other monomers copolymerizable therewith in the presence of the composite rubber-like polymer (I). It can be obtained by graft copolymerization of monomer mixture (II) comprising a monomer.
  • the composite rubber-like polymer (I) may be used alone, or two or more of the diene rubber (i) and the crosslinked acrylate polymer (ii) having different constituent components and composition ratios are mixed. May be used.
  • aromatic vinyl monomers examples include methylstyrenes such as styrene and ⁇ -methylstyrene, dimethylstyrenes, ethylstyrenes, t-butylstyrenes, halogenated styrenes, and the like. They may be used alone or in combination of two or more. Of these, styrene or ⁇ -methylstyrene is preferably used.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, maleonitrile, fumaronitrile, etc., and these may be used alone or in combination of two or more. Good. Of these, acrylonitrile is preferred.
  • the aromatic vinyl monomer is used in the range of 60 to 95% by mass, preferably 70 to 85% by mass, and the vinyl cyanide monomer is 5 to 40% by mass. It is preferably used in the range of 15 to 30% by mass. If it is in this range, the compatibility of the graft copolymer (A) and the copolymer (B) will be good, and the appearance defect of the resulting molded product will hardly occur.
  • the monomer mixture (II) another monomer that can be copolymerized with the above monomer in the range of 0 to 40% by mass, preferably 0 to 30% by mass is used as desired.
  • monomers include unsaturated carboxylic acid compounds such as acrylic acid and methacrylic acid, unsaturated methacrylates such as methyl methacrylate, butyl acrylate, 2-ethylhexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, and vinyl acetate.
  • Ester compounds unsaturated acid anhydrides such as maleic anhydride, maleimide compounds such as N-phenylmaleimide and N-cyclohexylmaleimide, unsaturated amide compounds such as acrylamide and methacrylamide, unsaturated nitrogen bases such as vinylpyridine and vinylcarbazole Compounds and the like. These may be used alone or in combination of two or more.
  • the graft copolymer (A) is produced by adding the monomer mixture (II) to the composite rubber-like polymer (I) in the presence of a polymerization initiator and performing graft copolymerization.
  • a polymerization initiator for graft copolymerization
  • graft copolymerization can be performed by adding an emulsifier, using a polymerization degree adjusting agent, and adjusting the pH of the polymerization system in order to stabilize the polymerization system.
  • the powdered graft copolymer (A) can be obtained from the latex by coagulation by a known method, followed by washing, dehydration and drying steps.
  • the graft copolymer (A) is 35 to 65 parts by mass of the composite rubber-like polymer (I), preferably 35 to 65 parts by mass of the monomer mixture (II) in the presence of 45 to 55 parts by mass, Preferably, it is obtained by graft copolymerization of 55 to 45 parts by mass (however, the total of the composite rubber-like polymer (I) and the monomer mixture (II) is 100 parts by mass).
  • the composite rubber-like polymer (I) is out of the above range, the molded appearance is inferior due to silver streak or the like.
  • the copolymer (B) is an aromatic vinyl monomer of 60 to 95% by mass, preferably 70 to 85% by mass, a vinyl cyanide monomer of 5 to 40% by mass, preferably 15 to 30% by mass, and It is a copolymer obtained by polymerizing a monomer mixture composed of 0 to 40% by mass, preferably 0 to 30% by mass of another monomer copolymerizable with these.
  • the aromatic vinyl monomer, vinyl cyanide monomer and other monomers are within the above range, the compatibility of the graft copolymer (A) and the copolymer (B) becomes good, Appearance defects of the resulting molded product are unlikely to occur.
  • Aromatic vinyl monomers, vinyl cyanide monomers and other monomers copolymerizable with these used to obtain the copolymer (B) give the graft copolymer (A). The thing similar to what is used for this can be used.
  • the method for producing the copolymer (B) is not particularly limited, and methods such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization can be used.
  • the weight average molecular weight (Mw) of the copolymer (B) is preferably in the range of 50,000 to 200,000, more preferably in the range of 75,000 to 150,000. When the weight average molecular weight of the copolymer (B) is lower than this range, the resulting molded article has insufficient impact resistance, and when it exceeds this range, the molding processability is lowered.
  • the weight average molecular weight of the copolymer (B) is measured by the method described in the Examples section below.
  • the content ratio of the graft copolymer (A) and the copolymer (B) is 18 to 44 parts by mass of the graft copolymer (A). 56 to 82 parts by weight, preferably 65 to 75 parts by weight of the copolymer (B) with respect to 25 to 35 parts by weight of the graft copolymer (A) (provided that the graft copolymer (A) And 100 parts by mass in total of the copolymer (B).
  • a graft copolymer (A) and a copolymer (B) may each be used individually by 1 type, and 2 or more types from which a structural component etc. differ may be mixed and used.
  • Alkaline earth metal oxide (M) examples include beryllium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide. These may be used alone or in combination of two or more. Of these, magnesium oxide and calcium oxide are preferred from the viewpoints of safety and economy. Magnesium oxide and calcium oxide can also be obtained from magnesium hydroxide, calcium hydroxide, magnesium carbonate and the like.
  • the blending amount of the alkaline earth metal oxide (M) is 0.1 to 100 parts by mass with respect to 100 parts by mass in total of the graft copolymer (A) and the copolymer (B). 0.3 parts by mass, preferably 0.2 to 0.3 parts by mass. If the blending amount of the alkaline earth metal oxide (M) is less than 0.01 parts by mass, the gas generated during the molding process is deposited in a greasy manner on the mold, and the appearance of the molded product is deteriorated. That is, the continuous formability is inferior. When the blending amount of the alkaline earth metal oxide (M) exceeds 0.3 parts by mass, flow marks, silver streaks, etc. are generated in the molded product and the molded product appearance is impaired.
  • the thermoplastic resin composition of the present invention includes polycarbonate, polyethylene terephthalate, Thermoplastic resins such as butylene terephthalate, polyamide, various known stabilizers and plasticizers, lubricants, metal soaps, antistatic agents, dyes, inorganic or organic granular, powdery or fibrous fillers, foaming agents, etc. Can be added.
  • the thermoplastic resin composition of the present invention comprises the graft copolymer (A), the copolymer (B), and the alkaline earth metal oxide (M), which are essential components, and various optional materials used as necessary.
  • the ingredients are mixed and kneaded and used as a molding material for resin molded products.
  • the method for mixing and kneading these components is not particularly limited, and any general mixing and kneading method can be employed. For example, a method of kneading with an extruder, a Banbury mixer, a heating kneading roll or the like and then cutting with a pelletizer or the like to pelletize may be mentioned.
  • the resin molded article of the present invention is molded using the above-described thermoplastic resin composition of the present invention.
  • the molding method is not limited at all. Examples of the molding method include an injection molding method, an extrusion molding method, a compression molding method, an insert molding method, a vacuum molding method, and a blow molding method.
  • the weight average molecular weight (Mw) of the copolymer (B) is determined by GPC (gel permeation chromatography) (manufactured by Tosoh Corporation) using a solution obtained by dissolving the copolymer (B) in tetrahydrofuran as a measurement sample.
  • Mw weight average molecular weight
  • the mass average particle diameter of the diene rubber (i), the acid group-containing copolymer, and the composite rubber-like polymer (I) is obtained by counting the size of 300 to 400 rubber particles using a transmission electron microscope. It calculated
  • polymerization was started by press-fitting an aqueous solution in which 0.3 part of potassium persulfate was dissolved in 5 parts of water.
  • the polymerization temperature was adjusted to 65 ° C., and unreacted 1,3-butadiene was recovered when the internal pressure reached 4.5 kg / cm 2 (gauge pressure) after 12 hours.
  • the internal temperature was maintained at 80 ° C. for 1 hour, the mass average particle diameter was 80 nm, the solid content was 41% by mass, the polymerization conversion was 81%, and the polystyrene-equivalent weight average molecular weight of toluene was 121,000.
  • a small particle diene rubber (a-1) latex was obtained.
  • the internal temperature was raised to 80 ° C. and held for 1 hour, and the mass average particle diameter composed of the enlarged diene rubber (ia) and the crosslinked acrylate copolymer (ii) was 270 nm.
  • a composite rubber-like polymer (I-1) latex was obtained.
  • a graft copolymer (A-1) was obtained in the form of latex.
  • the temperature was raised to 70 ° C. while stirring a double amount of 0.4% sulfuric acid aqueous solution with respect to this latex, and then the above latex was added. Then, after the addition was completed, the temperature was raised to 95 ° C. and held for 5 minutes to obtain a slurry containing a coagulated product. Thereafter, the slurry was dehydrated, washed and dried to obtain a milky white powder graft copolymer (A-1).
  • thermoplastic resin composition of the present invention is excellent in continuous moldability and improved appearance of the molded product.
  • Comparative Example 2 in which no magnesium oxide is blended or Comparative Example 1 in which the blending amount of magnesium oxide is too small is inferior in continuous moldability, and in Comparative Example 3 in which the blending amount of magnesium oxide is too large, the appearance of the molded product is poor. Inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 連続成形性、成形品外観の改良性に優れた熱可塑性樹脂組成物を提供する。下記グラフト共重合体(A)18~44部と、下記共重合体(B)56~82部との合計100部に対して、アルカリ土類金属の酸化物(M)を0.1~0.3部含有する熱可塑性樹脂組成物。 グラフト共重合体(A):小粒子ジエン系ゴム及び酸基含有共重合体とから得られたジエン系ゴム(i)5~90%と架橋アクリル酸エステル系重合体(ii)95~10%とで構成される、粒径が180~500nmの複合ゴム状重合体(I)35~65部に、芳香族ビニル系単量体60~95%とシアン化ビニル系単量体5~40%とを含む単量体混合物(II)35~65部をグラフト共重合させて得られるグラフト共重合体 共重合体(B):芳香族ビニル系単量体60~95%とシアン化ビニル系単量体5~40%とを含む単量体混合物を重合させて得られる共重合体

Description

熱可塑性樹脂組成物及び樹脂成形品
 本発明は、熱可塑性樹脂組成物に関する。詳しくは、連続成形性、成形品外観の改良性に優れた熱可塑性樹脂組成物に関する。本発明はまた、この熱可塑性樹脂組成物を成形してなる樹脂成形品に関する。
 耐衝撃性樹脂として、樹脂組成中にゴム成分を配合したABS樹脂やハイインパクトポリスチレン樹脂が提供されている。これらの樹脂は、耐衝撃性付与のためのゴム成分として用いられているジエン系重合体が、その主鎖中に化学的に不安定な二重結合を多く有しているため、紫外線等によって劣化し易く、一般的に耐候性に劣るものである。
 ABS樹脂の耐候性を改良したものとして、二重結合を持たないアクリルゴムの存在下にアクリロニトリル化合物とスチレン化合物とをグラフト共重合してASA樹脂が提案されている。ASA樹脂は、ゴムとしてアクリルゴムを用いており、耐候性には優れているものの、耐衝撃性に劣るという欠点を有している。
 ASA樹脂の耐衝撃性を改良する方法としてアクリルゴムの膨潤度を上げる手法が取られる場合がある。この場合、樹脂成形品の表面光沢が著しく低下するという問題が発生する。樹脂の分子量を上げて耐衝撃性を改良した場合には、ASA樹脂の特徴である優れた成形加工性は損なわれてしまう。
 耐候性、更には表面平滑性と成形性を高い次元でバランスさせるために、例えば特公平3-66329号公報には、劣位量の共役ジエンゴムと優位量のアクリル酸エステル系ゴムとを複合化させたゴムを使用した特殊ASA樹脂が提案されている。この特殊ASA樹脂を用いて連続成形を行うと、成形加工時に発生するガスが金型に脂状に堆積し、この堆積物が成形品側に移行して、成形品の外観を悪化させる。このため、定期的に金型に付着した脂状の堆積物をクリーニング除去する必要があり、連続成形性に劣る。ガス発生量が少ない場合でも、成形品にフローマーク、シルバーストリーク等の外観不良が発生する問題もある。
特公平3-66329号公報
 本発明は、連続成形性、成形品外観の改良性に優れた熱可塑性樹脂組成物と、この熱可塑性樹脂組成物を成形してなる樹脂成形品を提供するものである。
 本発明者は、特定の複合ゴム状重合体の存在下に、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体混合物を重合して得られるグラフト共重合体と、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体混合物を重合して得られる共重合体とを所定の割合で配合すると共に、所定量のアルカリ土類金属の酸化物を添加した熱可塑性樹脂組成物が、上記の課題を解決し得ることを見出した。
 本発明は、以下を要旨とする。
[1] 下記グラフト共重合体(A)18~44質量部と、下記共重合体(B)56~82質量部とを合計で100質量部となるように含み、該グラフト共重合体(A)と共重合体(B)との合計100質量部に対して、アルカリ土類金属の酸化物(M)を0.1~0.3質量部含有することを特徴とする熱可塑性樹脂組成物。
 グラフト共重合体(A):小粒子ジエン系ゴム及び酸基含有共重合体を使用して得られたジエン系ゴム(i)5~90質量%と架橋アクリル酸エステル系重合体(ii)95~10質量%とで構成される、質量平均粒子径が180~500nmの複合ゴム状重合体(I)35~65質量部の存在下に、芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物(II)35~65質量部をグラフト共重合させて得られるグラフト共重合体(ただし、複合ゴム状重合体(I)と単量体混合物(II)との合計で100質量部)
 共重合体(B):芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物を重合させて得られる共重合体
[2] [1]において、前記複合ゴム状重合体(I)は、前記ジエン系ゴム(i)の存在下に、架橋アクリル酸エステル系重合体(ii)を構成するアクリル酸エステルを含む単量体を重合させてなることを特徴とする熱可塑性樹脂組成物。
[3] [1]又は[2]において、前記のジエン系ゴム(i)のトルエン可溶分のポリスチレン換算重量平均分子量が100,000以上であることを特徴とする熱可塑性樹脂組成物。
[4] [1]ないし[3]のいずれかに記載の熱可塑性樹脂組成物を成形してなる樹脂成形品。
 本発明によれば、連続成形を行っても発生ガスによる金型汚染や、成形品のフローマークやシルバーストリーク等の外観不良の問題が低減され、良好な外観を呈する樹脂成形品を製造することが可能となり、連続成形性、成形品外観の改良性に優れた熱可塑性樹脂組成物及びその樹脂成形品が提供される。
 所定量のジエン系ゴム(i)と架橋アクリル酸エステル系重合体(ii)とで構成される複合ゴム状重合体(I)の存在下に、芳香族ビニル系単量体とシアン化ビニル系単量体とを含む単量体混合物(II)をグラフト共重合させてなるグラフト共重合体(A)と、共重合体(B)とを含有する本発明の熱可塑性樹脂組成物は、耐衝撃性、耐候性に優れ、従来の耐衝撃性、耐候性が求められる用途、例えば、車両内装、車両外装、建材用途や、屋外へ持ち出す機会が多いモバイル機器(ノート型やタブレット型のパーソナルコンピュータ、スマートフォンを含む携帯電話、デジタルカメラ、デジタルビデオカメラ等)等の用途に好適に適用することができる。本発明の熱可塑性樹脂組成物の成形時には優れた連続成形性を得ることができる。本発明の熱可塑性樹脂組成物の成形品は優れた外観を有する。
実施例におけるガス発生・付着試験に用いた金型を示す模式図である。
 以下に本発明の実施の形態を詳細に説明する。
[熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂組成物は、下記グラフト共重合体(A)18~44質量部と、下記共重合体(B)56~82質量部とを合計で100質量部となるように含み、該グラフト共重合体(A)と共重合体(B)との合計100質量部に対して、アルカリ土類金属の酸化物(M)を0.1~0.3質量部含有することを特徴とする。
 グラフト共重合体(A):小粒子ジエン系ゴム及び酸基含有共重合体を使用して得られたジエン系ゴム(i)5~90質量%と架橋アクリル酸エステル系重合体(ii)95~10質量%とで構成される、質量平均粒子径が180~500nmの複合ゴム状重合体(I)35~65質量部の存在下に、芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物(II)35~65質量部をグラフト共重合させて得られるグラフト共重合体(ただし、複合ゴム状重合体(I)と単量体混合物(II)との合計で100質量部)
 共重合体(B):芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物を重合させて得られる共重合体
<グラフト共重合体(A)>
 本発明におけるグラフト共重合体(A)は、ジエン系ゴム(i)と架橋アクリル酸エステル系重合体(ii)とからなる複合ゴム状重合体(I)の存在下に、芳香族ビニル系単量体、シアン化ビニル系単量体及び必要に応じて用いられるこれらと共重合可能な他の単量体からなる単量体混合物(II)をグラフト共重合して得られるものである。
 複合ゴム状重合体(I)を構成するジエン系ゴム(i)は、ポリブタジエン;ブタジエンと共重合可能なビニル系単量体との共重合体のような共役ジエン系重合体;例えば、ブタジエン-ビニルトルエン共重合体等のブタジエン-芳香族ビニル共重合体;ブタジエン-アクリロニトリル共重合体、ブタジエン-メタクリロニトリル共重合体等のブタジエン-シアン化ビニル共重合体;ブタジエン-アクリル酸メチル共重合体、ブタジエン-アクリル酸エチル共重合体、ブタジエン-アクリル酸2-エチルヘキシル共重合体等のブタジエン-アクリル酸アルキルエステル共重合体;ブタジエン-メタクリル酸メチル共重合体、ブタジエン-メタクリル酸エチル共重合体等のブタジエン-メタクリル酸アルキルエステル共重合体などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ジエン系ゴム(i)の製造に使用する触媒、乳化剤としては特に制限がなく、従来公知のものをいずれも好適に用いることができる。
 ジエン系ゴム(i)の質量平均粒子径は、150nm~1μm、特に200~500nm、とりわけ240~390nmに調整されることが、得られる成形品の耐衝撃性や成形品外観の点から好ましい。ジエン系ゴム(i)の分散粒子径の分布には特に制限はなく、分散粒子径の異なるものを2種以上併用してもよい。なお、ジエン系ゴム(i)や後述の酸基含有共重合体の質量平均粒子径は後述の実施例の項に示される方法で測定、算出される。
 ジエン系ゴム(i)の粒子径の調節には、公知の方法を適用することができる。例えばジエン系ゴムの重合中のアグロメーションにより肥大化する方法;質量平均粒子径が150nm未満、例えば65~85nmの比較的小さなジエン系ゴム(小粒子ジエン系ゴム)を予め製造し、これに酸基を含有する共重合体(酸基含有共重合体)ラテックスや酸、塩等を添加して肥大化する方法;撹拌による剪断応力によって肥大化する方法等が使用できる。
 本発明においては、上記の小粒子ジエン系ゴムのラテックスと酸基含有共重合体ラテックスを用いてジエン系ゴム(i)を製造する。
 酸基含有共重合体ラテックスは、水中にて、酸基含有単量体5~30質量%、不飽和カルボン酸エステル系単量体95~70質量%、および必要に応じてこれらと共重合可能な他の単量体0~25質量%を含む単量体混合物(単量体の合計100質量%)を重合して得られた酸基含有共重合体のラテックスである。
 酸基含有単量体としては、カルボキシ基を有する不飽和化合物が好ましい。カルボキシ基を有する不飽和化合物としては、(メタ)アクリル酸、イタコン酸、クロトン酸等が挙げられ、(メタ)アクリル酸が特に好ましい。酸基含有単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 不飽和カルボン酸エステル系単量体としては、(メタ)アクリル酸アルキルエステルが好ましく、炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルがより好ましい。
 (メタ)アクリル酸アルキルエステルとしては、アクリル酸またはメタクリル酸と、炭素数1~12の直鎖または分岐のアルキル基を有するアルコールとのエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル等が挙げられる。(メタ)アクリル酸アルキルエステルは炭素数1~8のアルキル基を有することが好ましい。
 不飽和カルボン酸エステル系単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 他の単量体は、酸基含有単量体および不飽和カルボン酸エステル系単量体と共重合可能な単量体であり、かつ酸基含有単量体および不飽和カルボン酸エステル系単量体を除く単量体である。
 他の単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン等の芳香族ビニル系単量体、アクリロニトリル、メタクリロニトリル等の不飽和ニトリル系単量体、メタクリル酸アリル、ジメタクリル酸ポリエチレングリコールエステル、シアヌル酸トリアリル、イソシアヌル酸トリアリル、トリメリット酸トリアリル等の2つ以上の重合性官能基を有する化合物等が挙げられる。他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 酸基含有単量体の割合は、酸基含有共重合体の製造に用いる単量体混合物(100質量%)中、通常5~30質量%であり、8~25質量%が好ましい。酸基含有単量体の割合が5質量%以上であれば、小粒子ジエン系ゴムを十分に肥大化できる。酸基含有単量体の割合が30質量%以下であれば、酸基含有共重合体ラテックスの製造の際、凝塊物の発生が抑えられる。
 不飽和カルボン酸エステル系単量体の割合は、単量体混合物(100質量%)中、通常70~95質量%であり、75~92質量%が好ましい。
 他の単量体の割合は、単量体混合物(100質量%)中、通常0~25質量%であり、0~20質量%が好ましい。
 酸基含有共重合体ラテックスは、乳化重合により製造することが好ましい。
 乳化重合で用いる乳化剤としては、アニオン系乳化剤等が挙げられる。
 アニオン系乳化剤としては、カルボン酸塩、例えば、オレイン酸、パルミチン酸、ステアリン酸、ロジン酸等の脂肪酸のアルカリ金属塩や、アルケニルコハク酸のアルカリ金属塩等、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等が挙げられる。
 乳化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 乳化剤は、重合初期に全量を一括で仕込んでもよく、一部を重合初期に仕込み、残りを重合中に間欠的または連続的に追加してもよい。
 乳化剤の量および仕込み方によって、酸基含有共重合体の質量平均粒子径、さらには肥大化ジエン系ゴム(i)の質量平均粒子径を調整できる。
 乳化重合で用いる重合開始剤としては、熱分解型開始剤、レドックス型開始剤等が挙げられる。熱分解型開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。レドックス型開始剤としては、クメンヒドロパーオキシド等の有機過酸化物とナトリウムホルムアルデヒドスルホキシレートと鉄塩との組み合わせなどが挙げられる。
 重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 乳化重合の際には、分子量を調整する連鎖移動剤、pHを調節するアルカリまたは酸、減粘剤である電解質を用いてもよい。連鎖移動剤としては、t-ドデシルメルカプタン、n-オクチルメルカプタン等のメルカプタン類、テルピノレン、α-メチルスチレンダイマー等を用いることができる。
 酸基含有共重合体ラテックスに含まれる酸基含有共重合体の質量平均粒子径は、200nm以下が好ましく、150nm以下がより好ましい。酸基含有共重合体の質量平均粒子径が大きいと酸基含有共重合体ラテックスの安定性が低下する傾向にあるが、酸基含有共重合体の質量平均粒子径が200nm以下であれば、凝塊物の発生を抑えて酸基含有共重合体の製造を行うことができる。
 小粒子ジエン系ゴムラテックスと酸基含有共重合体ラテックスを混合して肥大化する際の酸基含有共重合体ラテックスの量は、小粒子ジエン系ゴムラテックスの固形分100質量部に対して、酸基含有共重合体ラテックスが固形分で0.1~10質量部となる量が好ましく、0.3~7質量部となる量がより好ましい。酸基含有共重合体ラテックスが固形分の量で0.1質量部以上であれば、小粒子ジエン系ゴムの肥大化が十分に進行し、所望の質量平均粒子径の肥大化ジエン系ゴム(i)を得やすくなり、また、凝塊物の発生が抑えられる。酸基含有共重合体ラテックスが固形分の量で10質量部以下であれば、ラテックスのpHの低下が抑えられ、ラテックスが安定化する。
 肥大化を行う際の撹拌は適度に制御する必要がある。撹拌が十分であれば、肥大化が均一に進行することにより、未肥大のゴム状重合体の残留が抑えられ、所望の質量平均粒子径の肥大化ジエン系ゴム(i)を得やすくなる。なお、過度に撹拌を行うと、ラテックスが不安定になり、凝塊物が多量に発生することがある。
 肥大化を行う際の温度は、10~90℃が好ましく、20~80℃がより好ましい。温度が10~90℃であれば、小粒子ジエン系ゴムの肥大化が十分に進行し、所望の質量平均粒子径の肥大化ジエン系ゴム(i)を得やすくなる。
 複合ゴム状重合体(I)を構成する架橋アクリル酸エステル系重合体(ii)は、アクリル酸エステルを主成分とし、必要に応じて、アクリル酸エステルと共重合可能な単量体より構成されるものである。このアクリル酸エステルとしては、例えばエステル部分がメチル、エチル、n-プロピル、n-ブチル、2-エチルヘキシル、n-ラウリル等の炭素数1~12のアルキルエステル;アクリル酸クロルエステルのようなハロアルキルエステル;アクリル酸ベンジル、アクリル酸フェネチル等のアリールエステル、アリールアルキルエステルなどが用いられる。
 アクリル酸エステルと共重合可能な単量体として、例えばメタクリル酸メチル、メタクリル酸ブチルのようなメタクリル酸エステル、アクリロニトリル、スチレン等が挙げられる。アクリル酸エステルと共重合可能な単量体は、架橋アクリル酸エステル系重合体(ii)中50質量%以下の範囲で所望により用いられる。
 アクリル酸エステル系重合体に架橋構造を形成するためには、通常、上記したアクリル酸エステルを主成分とする単量体又は単量体混合物にグラフト交叉剤もしくは架橋剤を添加して重合することが行われる。アクリル酸エステル系重合体に架橋構造を形成させる際には、グラフト交叉剤と架橋剤とを組み合わせて併用することが好ましい。
 グラフト交叉剤としては、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、シアヌル酸、イソシアヌル酸等のアリルエステル等が挙げられる。架橋剤としてはアルキレングリコールのジアクリレートもしくはジメタクリレート、ジビニルベンゼン等の不飽和脂肪族基部分を1分子中に2個以上含有するものが挙げられる。グラフト交叉剤および架橋剤の合計使用料はアクリル酸エステル系単量体(100質量%)中、0.1質量%~5質量%が好ましく、0.2質量%~3質量%がより好ましく、0.5質量%~2質量%がさらに好ましい。
 複合ゴム状重合体(I)は、例えばジエン系ゴム(i)5~90質量%、好ましくは10~50質量%の存在下で、架橋アクリル酸エステル系重合体(ii)を構成する単量体又は単量体混合物95~10質量%、好ましくは90~50質量%を乳化重合させることで得ることができる。
 複合ゴム状重合体(I)の製造に当たり、ジエン系ゴム(i)の割合が上記範囲よりも少なく、架橋アクリル酸エステル系重合体(ii)を構成する単量体又は単量体混合物の割合が上記範囲よりも多いと耐衝撃性が低下し、逆に、ジエン系ゴム(i)の割合が上記範囲よりも多く、架橋アクリル酸エステル系重合体(ii)を構成する単量体又は単量体混合物の割合が上記範囲よりも少ないと耐候性が低下する。
 複合ゴム状重合体(I)の質量平均粒子径は、得られる成形品の耐衝撃性や外観の点から180~500nm、特に260~330nmの範囲であることが好ましい。
 本発明におけるグラフト共重合体(A)は、複合ゴム状重合体(I)の存在下に、芳香族ビニル系単量体、シアン化ビニル系単量体及びこれらと共重合可能な他の単量体からなる単量体混合物(II)をグラフト共重合させることにより得られる。
 複合ゴム状重合体(I)は1種を単独で用いてもよく、ジエン系ゴム(i)や架橋アクリル酸エステル系重合体(ii)の構成成分や組成比の異なるものの2種以上を混合して用いてもよい。
 芳香族ビニル系単量体としては、スチレン、α-メチルスチレン等のメチルスチレン類、ジメチルスチレン類、エチルスチレン類、t-ブチルスチレン類、ハロゲン化スチレン類等が例示され、これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのうち、スチレンあるいはα-メチルスチレンを用いることが好ましい。
 シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、マレオニトリル、フマロニトリル等が例示され、これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのうち、アクリロニトリルが好適である。
 単量体混合物(II)中において、芳香族ビニル系単量体は60~95質量%、好ましくは70~85質量%の範囲で使用され、シアン化ビニル系単量体は5~40質量%、好ましくは15~30質量%の範囲で使用される。この範囲内であればグラフト共重合体(A)と共重合体(B)の相溶性が良好となり、得られる成形品の外観不良が生じにくい。
 単量体混合物(II)には、さらに所望に応じて、0~40質量%、好ましくは0~30質量%の範囲で上記単量体と共重合可能な他の単量体を使用することも可能である。そのような単量体としては、アクリル酸、メタクリル酸等の不飽和カルボン酸化合物、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、酢酸ビニル等の不飽和エステル化合物、無水マレイン酸等の不飽和酸無水物、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド化合物、アクリルアミド、メタクリルアミド等の不飽和アミド化合物、ビニルピリジン、ビニルカルバゾール等の不飽和窒素塩基化合物等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 グラフト共重合体(A)は、重合開始剤の存在下で複合ゴム状重合体(I)に、上記の単量体混合物(II)を添加してグラフト共重合することによって製造される。単量体混合物(II)の添加方法については特に制限はなく、全量を一括又は分割して一時に仕込む方法、一部を一時に仕込み残部を連続添加する方法、全量を連続添加する方法等が用いられる。必要に応じて、重合系を安定化させる目的で乳化剤の追加、重合度調節剤の使用、及び重合系のpHの調節等の処置を施してグラフト共重合することもできる。
 重合時に乳化剤を使用した際は公知の方法で凝固し、洗浄、脱水、乾燥工程を経ることにより、ラテックスから粉体のグラフト共重合体(A)を得ることができる。
 グラフト共重合体(A)は、複合ゴム状重合体(I)の35~65質量部、好ましくは45~55質量部の存在下に、単量体混合物(II)の35~65質量部、好ましくは55~45質量部(ただし、複合ゴム状重合体(I)と単量体混合物(II)との合計で100質量部)をグラフト共重合して得られる。ここで複合ゴム状重合体(I)が上記範囲外であるとシルバーストリークなどで成形外観が劣るものとなる。
<共重合体(B)>
 共重合体(B)は、芳香族ビニル系単量体60~95質量%、好ましくは70~85質量%、シアン化ビニル系単量体5~40質量%、好ましくは15~30質量%及びこれらと共重合可能な他の単量体0~40質量%、好ましくは0~30質量%からなる単量体混合物を重合して得られる共重合体である。芳香族ビニル系単量体、シアン化ビニル系単量体及び他の単量体が上記範囲内であると、グラフト共重合体(A)と共重合体(B)の相溶性が良好となり、得られる成形品の外観不良が生じにくい。
 共重合体(B)を得るのに用いられる芳香族ビニル系単量体、シアン化ビニル系単量体及びこれらと共重合可能な他の単量体は、グラフト共重合体(A)を得るのに用いられるものと同様のものを用いることができる。
 共重合体(B)の製造方法としては、特に限定されず、乳化重合、懸濁重合、溶液重合、塊状重合等の方法が使用できる。
 共重合体(B)の重量平均分子量(Mw)は、50000~200000の範囲が好ましく、さらに好ましくは75000~150000の範囲である。共重合体(B)の重量平均分子量がこの範囲よりも低い場合には、得られる成形品の耐衝撃性が不足し、この範囲を超えた場合には、成形加工性が低下する。共重合体(B)の重量平均分子量は、後掲の実施例の項に記載される方法で測定される。
<グラフト共重合体(A)と共重合体(B)の含有割合>
 本発明の熱可塑性樹脂組成物において、グラフト共重合体(A)と共重合体(B)との含有割合は、グラフト共重合体(A)18~44質量部に対し、共重合体(B)が56~82質量部、好ましくはグラフト共重合体(A)25~35質量部に対し、共重合体(B)65~75質量部の範囲である(ただし、グラフト共重合体(A)と共重合体(B)との合計で100質量部)。グラフト共重合体(A)と共重合体(B)との含有割合がこの範囲から外れると、成形時の流動性の低下、得られる成形品の耐衝撃性の低下などの問題が生じる。
 なお、グラフト共重合体(A)、共重合体(B)はそれぞれ1種を単独で用いてもよく、構成成分等の異なるものの2種以上を混合して用いてもよい。
<アルカリ土類金属の酸化物(M)>
 アルカリ土類金属の酸化物(M)としては、酸化ベリリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのうち、安全性及び経済性の点から、酸化マグネシウム、酸化カルシウムが好ましい。酸化マグネシウム、酸化カルシウムは、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウムなどから得ることもできる。
 本発明の熱可塑性樹脂組成物において、アルカリ土類金属の酸化物(M)の配合量はグラフト共重合体(A)と共重合体(B)の合計100質量部に対して0.1~0.3質量部、好ましくは0.2~0.3質量部である。アルカリ土類金属の酸化物(M)の配合量が0.01質量部未満であると成形加工時に発生するガスが金型に脂状に堆積し、成形品外観が悪化する。即ち、連続成形性に劣るものとなる。アルカリ土類金属の酸化物(M)の配合量が0.3質量部を超えると成形品にフローマーク、シルバーストリーク等が発生して成形品外観を損ねる。
<その他の成分>
 本発明の熱可塑性樹脂組成物には、グラフト共重合体(A)、共重合体(B)及びアルカリ土類金属の酸化物(M)の他に、必要に応じてポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド等の熱可塑性樹脂、公知の各種安定剤や可塑剤、滑剤、金属石鹸、帯電防止剤、染料、無機又は有機の、粒状、粉状又は繊維状の充填剤、発泡剤等を添加することができる。
<熱可塑性樹脂組成物の製造及び成形>
 本発明の熱可塑性樹脂組成物は、必須成分であるグラフト共重合体(A)、共重合体(B)、及びアルカリ土類金属の酸化物(M)と、必要に応じて用いられる各種任意成分とを混合・混練して、樹脂成形品の成形材料として使用される。これらの各成分を混合・混練する方法は特に制限はなく、一般的な混合・混練方法を何れも採用することができる。例えば、押出機、バンバリーミキサー、加熱混練ロール等にて混練した後ペレタイザー等で切断しペレット化する方法などが挙げられる。
[樹脂成形品]
 本発明の樹脂成形品は、上述の本発明の熱可塑性樹脂組成物を用いて成形されたものである。その成形方法は、何等限定されるものではない。成形方法としては、例えば、射出成形法、押出成形法、圧縮成形法、インサート成形法、真空成形法、ブロー成形法などが挙げられる。
 以下、実施例及び比較例により本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の例に限定されるものではない。以下の例中の「%」及び「部」数は明記しない限りは質量基準とする。
 以下の実施例及び比較例での、各種物性の測定は以下の方法により行った。
 共重合体(B)の重量平均分子量(Mw)は、共重合体(B)をテトラヒドロフランに溶解して得られた溶液を測定試料として、GPC(ゲル浸透クロマトグラフィー)(東ソー(株)製)を用いて測定し、標準ポリスチレン換算法にて算出した。
 ジエン系ゴム(i)、酸基含有共重合体及び複合ゴム状重合体(I)の質量平均粒子径は、透過型電子顕微鏡を用いて、300~400個のゴム粒子のサイズをカウントし、質量平均粒子径を算出することにより求めた。
[合成例]
<合成例1:グラフト共重合体(A-1)の製造>
(a)小粒子ジエン系ゴム(a-1)ラテックスの製造
 10リットルのステンレススチール製のオートクレーブ(以下、SUS製オートクレーブと略記)中に、脱イオン水(以下、単に水と略記)145部、ロジン酸カリウム1.0部、オレイン酸カリウム1.0部、水酸化ナトリウム0.06部、硫酸ナトリウム0.4部、t-ドデシルメルカプタン0.3部を仕込み、窒素置換した後、1,3-ブタジエン125部を仕込み、60℃に昇温した。
 次いで、過硫酸カリウム0.3部を水5部に溶解した水溶液を圧入して重合を開始した。重合中は重合温度を65℃に調節し、12時間後内圧が4.5kg/cm(ゲージ圧)となった時点で未反応の1,3-ブタジエンを回収した。その後、内温を80℃にして1時間保持し、質量平均粒子径が80nmで、固形分が41質量%、重合転化率が81%、トルエン可溶分のポリスチレン換算重量平均分子量が121,000である小粒子ジエン系ゴム(a-1)ラテックスを得た。
(b)ゴム肥大化用の酸基含有共重合体(b-1)の製造
 5リットルのガラス製反応器中に、水200部、オレイン酸カリウム2.0部、ジオクチルスルホコハク酸ナトリウム2.5部、ナトリウムホルムアルデヒド・スルホキシレート0.3部を仕込み、60℃に昇温し、その時点から、アクリル酸n-ブチル85部、メタクリル酸15部、クメンハイドロパーオキシド0.4部からなる混合物を120分かけて連続的に滴下した。さらに2時間熟成を行い、重合転化率が98%、質量平均粒子径が80nmである酸基含有共重合体(b-1)ラテックスを得た。
(c)肥大化ジエン系ゴム(i-a)ラテックスの製造
 小粒子ジエン系ゴム(a-1)ラテックスの固形分換算で100部に、酸基含有共重合体(b-1)ラテックスの固形分換算で2質量部を撹拌しながら添加し、さらに30分間撹拌して平均粒子径が250nmの肥大化ジエン系ゴム(i-a)ラテックスを得た。
(d)複合ゴム状重合体(I-1)の製造複合
 肥大化ジエン系ゴム(i-a)ラテックスの固形分換算で20質量部を5リットルのガラス製反応器に仕込み、次いで、ロジン酸カリウム1.0部と水150部とを加えて窒素置換を行い、内温を70℃に昇温した。これに10部の水に過硫酸カリウム0.12部を溶解した水溶液を加え、引き続き予め窒素置換しておいたアクリル酸n-ブチル79.5質量部、メタクリル酸アリル0.33質量部、エチレングリコールジメタクリレート0.17質量部からなる単量体混合物を2時間かけて連続的に滴下した。滴下終了後、内温を80℃に昇温し、1時間保持して肥大化ジエン系ゴム(i-a)と架橋アクリル酸エステル系共重合体(ii)とからなる質量平均粒子径が270nmである複合ゴム状重合体(I-1)ラテックスを得た。
(e)グラフト共重合体(A-1)の製造
 複合ゴム状重合体(I-1)ラテックスの固形分換算で50部をガラス製反応器に仕込み、水140部を加え70℃に昇温した。次いで、予めアクリロニトリル25%及びスチレン75%からなる単量体混合物50部に、ベンゾイルパーオキシド0.3部を溶解したものを撹拌しながら1時間窒素置換しておき、これを70℃に昇温した上記複合ゴム状重合体(I-1)に3時間かけて滴下し重合させた。
 次いで滴下終了後内温を80℃に昇温し、1時間撹拌した後、グラフト共重合体(A-1)をラテックス状で得た。このラテックスに対して2倍量の0.4%硫酸水溶液を撹拌しながら70℃まで昇温した後、上記のラテックスを投入した。次いで投入終了後95℃に昇温して5分間保持して凝固物を含むスラリーを得た。その後、スラリーを脱水、洗浄、乾燥して乳白色粉末状のグラフト共重合体(A-1)を得た。
<合成例2:共重合体(B-1)の製造>
 10リットルのSUS製オートクレーブに、水150部、アクリロニトリル25部、スチレン75部、アゾビスイソブチロニトリル0.15部、t-ドデシルメルカプタン0.3部、ポリビニルアルコール0.5部を仕込み、アジテーターで撹拌し、系内の分散状態を確認した後、75℃に昇温し2時間重合を行った。その後、内温を110℃まで昇温し、25分間保持して反応を完結させた。冷却後、脱水、洗浄、乾燥して白色粒状の共重合体(B-1)を得た。
[実施例1~3及び比較例1~3]
<樹脂組成物の調製>
 グラフト共重合体(A-1)40部、共重合体(B-1)60部、エチレンビスステアリン酸アマイド0.2部(日油株式会社製「アルフローH50S」)、アルカリ土類金属の酸化物(M)として酸化マグネシウム(協和化学工業製MgO「キョーワマグ150」)を表1に示す量配合し、ヘンシェルミキサーでブレンドした。
 この混合物を40mmφの単軸スクリュー押出機を用い、シリンダー温度210℃にて溶融混練し、押出してペレット化した。
 得られた樹脂組成物のペレットを用い、以下の試験を行って、結果を表1に示した。
<ガス発生・付着量試験>
 各実施例及び比較例の樹脂組成物のペレットを用いて、図1のように、射出された溶融樹脂が、スプルー11からランナー12,13を2方向に流動した後、サイドゲート14,15から射出され、型内で会合してウエルド面を形成する金型10に射出成形を行った。その際、金型10内の中央部で、溶融樹脂20がウエルド面を形成せずに未融合の状態になるように、ショートショットとし、金型10内にガス溜りを形成するようにして、100ショット射出成形した。射出成形後、その未融合部の露出した金型10a部分に付着した脂状の堆積物をガス付着量として計量した。ガス付着量が0.3mg未満であると連続成形に支障がないことから、ガス付着量が0.3mg未満である場合に連続成形性「○」、0.3mg以上の場合に連続成形性「×」とした。
<高温シルバー試験>
 各実施例及び比較例の樹脂組成物のペレットを用い、ISO 178試験で用いるダンベル試験片を、成形機(JSW社製 J85AD-110H)のシリンダー温度を310℃又は320℃として成形し、得られた試験片にシルバーストリークが発生するか否かを目視で判定した。
 ○:シルバーストリーク発生なし
 ×:シルバーストリーク発生あり
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、本発明の熱可塑性樹脂組成物は、連続成形性、成形品外観の改良性に優れる。
 これに対し、酸化マグネシウムを配合していない比較例2や、酸化マグネシウムの配合量が少なすぎる比較例1では連続成形性に劣り、酸化マグネシウムの配合量が多過ぎる比較例3では成形品外観が劣る。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年3月19日付で出願された日本特許出願2014-056706に基づいており、その全体が引用により援用される。
 10 金型
 11 スプルー
 12,13 ランナー
 14,15 サイドゲート
 20 溶融樹脂

Claims (4)

  1.  下記グラフト共重合体(A)18~44質量部と、下記共重合体(B)56~82質量部とを合計で100質量部となるように含み、該グラフト共重合体(A)と共重合体(B)との合計100質量部に対して、アルカリ土類金属の酸化物(M)を0.1~0.3質量部含有することを特徴とする熱可塑性樹脂組成物。
     グラフト共重合体(A):小粒子ジエン系ゴム及び酸基含有共重合体を使用して得られたジエン系ゴム(i)5~90質量%と架橋アクリル酸エステル系重合体(ii)95~10質量%とで構成される、質量平均粒子径が180~500nmの複合ゴム状重合体(I)35~65質量部の存在下に、芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物(II)35~65質量部をグラフト共重合させて得られるグラフト共重合体(ただし、複合ゴム状重合体(I)と単量体混合物(II)との合計で100質量部)
     共重合体(B):芳香族ビニル系単量体60~95質量%とシアン化ビニル系単量体5~40質量%とを含む単量体混合物を重合させて得られる共重合体
  2.  請求項1において、前記複合ゴム状重合体(I)は、前記ジエン系ゴム(i)の存在下に、架橋アクリル酸エステル系重合体(ii)を構成するアクリル酸エステルを含む単量体を重合させてなることを特徴とする熱可塑性樹脂組成物。
  3.  請求項1又は2において、前記のジエン系ゴム(i)のトルエン可溶分のポリスチレン換算質量平均分子量が100,000以上であることを特徴とする熱可塑性樹脂組成物。
  4.  請求項1ないし3のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる樹脂成形品。
PCT/JP2015/057843 2014-03-19 2015-03-17 熱可塑性樹脂組成物及び樹脂成形品 WO2015141661A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2015232499A AU2015232499B2 (en) 2014-03-19 2015-03-17 Thermoplastic resin composition and resin molded article
PL15765315T PL3121226T3 (pl) 2014-03-19 2015-03-17 Kompozycja żywicy termoplastycznej i wyrób formowany z żywicy
BR112016020681-9A BR112016020681B1 (pt) 2014-03-19 2015-03-17 composição de resina termoplástica e artigo moldado em resina
US15/123,743 US10233320B2 (en) 2014-03-19 2015-03-17 Thermoplastic resin composition and resin molded article
MYPI2016703381A MY182050A (en) 2014-03-19 2015-03-17 Thermoplastic resin composition and resin molded article
ES15765315T ES2755190T3 (es) 2014-03-19 2015-03-17 Composición de resina termoplástica y artículo moldeado de resina
KR1020167013989A KR101695621B1 (ko) 2014-03-19 2015-03-17 열가소성 수지 조성물 및 수지 성형품
CA2941557A CA2941557C (en) 2014-03-19 2015-03-17 Thermoplastic resin composition and resin molded article
EP15765315.5A EP3121226B1 (en) 2014-03-19 2015-03-17 Thermoplastic resin composition and resin molded article
CN201580003102.1A CN105829440B (zh) 2014-03-19 2015-03-17 热塑性树脂组合物和树脂成型品
MX2016011952A MX2016011952A (es) 2014-03-19 2015-03-17 Composicion de resina termoplastica y articulo de resina moldeado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-056706 2014-03-19
JP2014056706A JP5742994B1 (ja) 2014-03-19 2014-03-19 熱可塑性樹脂組成物及び樹脂成形品

Publications (1)

Publication Number Publication Date
WO2015141661A1 true WO2015141661A1 (ja) 2015-09-24

Family

ID=53537051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057843 WO2015141661A1 (ja) 2014-03-19 2015-03-17 熱可塑性樹脂組成物及び樹脂成形品

Country Status (14)

Country Link
US (1) US10233320B2 (ja)
EP (1) EP3121226B1 (ja)
JP (1) JP5742994B1 (ja)
KR (1) KR101695621B1 (ja)
CN (1) CN105829440B (ja)
AU (1) AU2015232499B2 (ja)
BR (1) BR112016020681B1 (ja)
CA (1) CA2941557C (ja)
ES (1) ES2755190T3 (ja)
HU (1) HUE046325T2 (ja)
MX (1) MX2016011952A (ja)
MY (1) MY182050A (ja)
PL (1) PL3121226T3 (ja)
WO (1) WO2015141661A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208548B2 (en) 2016-03-10 2021-12-28 Techno-Umg Co., Ltd. Thermoplastic resin composition and resin molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201609505XA (en) * 2014-06-13 2016-12-29 Umg Abs Ltd Thermoplastic resin composition and molded product thereof
CN112714783B (zh) * 2019-03-28 2022-11-11 日本A&L株式会社 热塑性树脂组合物
WO2023095826A1 (ja) * 2021-11-26 2023-06-01 日本エイアンドエル株式会社 グラフト共重合体及び熱可塑性樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040170A (ja) * 1999-07-27 2001-02-13 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2001207011A (ja) * 2000-01-24 2001-07-31 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物及びそれを用いた自動車部品
JP2002069308A (ja) * 2000-08-29 2002-03-08 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその製造方法、並びにその成形品
JP2006016468A (ja) * 2004-06-30 2006-01-19 Nippon A & L Kk 耐熱性透明樹脂組成物および該組成物を用いて成形された各種成形部品
WO2009084640A1 (ja) * 2007-12-27 2009-07-09 Umg Abs, Ltd. めっき基材用強化樹脂組成物および成形品、ならびに電気めっき部品
JP2013209624A (ja) * 2012-03-02 2013-10-10 Nippon A&L Inc 難燃性熱可塑性樹脂組成物及び樹脂成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181312A (ja) * 1986-02-06 1987-08-08 Mitsubishi Rayon Co Ltd 耐衝撃性、耐候性および成形性に優れるグラフト共重合体樹脂の製造方法
JP2726918B2 (ja) * 1989-07-03 1998-03-11 三菱レイヨン株式会社 耐衝撃性熱可塑性樹脂組成物
JPH0366329A (ja) 1989-08-05 1991-03-22 Matsushita Electric Ind Co Ltd 両面焼グリル
JP3118409B2 (ja) * 1995-03-17 2000-12-18 三菱レイヨン株式会社 ゴム状重合体およびそれを用いたabs系樹脂
JP4282779B2 (ja) * 1997-08-18 2009-06-24 テクノポリマー株式会社 ブロー成形用スチレン系樹脂組成物及びそのブロー成形品
JP3682229B2 (ja) * 1998-05-19 2005-08-10 三菱レイヨン株式会社 共重合体、熱可塑性樹脂組成物およびその製造方法
CN1307257C (zh) * 2000-12-25 2007-03-28 三菱丽阳株式会社 接枝共聚物和热塑性树脂组合物
BR112013025003B1 (pt) * 2011-03-29 2020-12-01 Techno-Umg Co., Ltd. copolímero enxertado à base de borracha acrílica, composição de resina termoplástica, e artigo
US9556302B2 (en) 2011-07-12 2017-01-31 Nippon A&L Inc. Graft copolymer, thermoplastic resin composition, molded article, and method for producing graft copolymer
JP5547793B2 (ja) * 2011-12-27 2014-07-16 日本エイアンドエル株式会社 熱可塑性樹脂組成物及び成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040170A (ja) * 1999-07-27 2001-02-13 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2001207011A (ja) * 2000-01-24 2001-07-31 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物及びそれを用いた自動車部品
JP2002069308A (ja) * 2000-08-29 2002-03-08 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその製造方法、並びにその成形品
JP2006016468A (ja) * 2004-06-30 2006-01-19 Nippon A & L Kk 耐熱性透明樹脂組成物および該組成物を用いて成形された各種成形部品
WO2009084640A1 (ja) * 2007-12-27 2009-07-09 Umg Abs, Ltd. めっき基材用強化樹脂組成物および成形品、ならびに電気めっき部品
JP2013209624A (ja) * 2012-03-02 2013-10-10 Nippon A&L Inc 難燃性熱可塑性樹脂組成物及び樹脂成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208548B2 (en) 2016-03-10 2021-12-28 Techno-Umg Co., Ltd. Thermoplastic resin composition and resin molded article

Also Published As

Publication number Publication date
MY182050A (en) 2021-01-18
AU2015232499B2 (en) 2018-03-01
PL3121226T3 (pl) 2020-04-30
CN105829440B (zh) 2017-11-17
BR112016020681B1 (pt) 2021-05-25
CA2941557C (en) 2020-01-21
CA2941557A1 (en) 2015-09-24
EP3121226A4 (en) 2017-11-15
AU2015232499A1 (en) 2016-09-15
HUE046325T2 (hu) 2020-02-28
US10233320B2 (en) 2019-03-19
JP5742994B1 (ja) 2015-07-01
CN105829440A (zh) 2016-08-03
EP3121226B1 (en) 2019-09-11
MX2016011952A (es) 2016-12-05
ES2755190T3 (es) 2020-04-21
KR101695621B1 (ko) 2017-01-13
JP2015178567A (ja) 2015-10-08
KR20160066556A (ko) 2016-06-10
US20170015823A1 (en) 2017-01-19
EP3121226A1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015141661A1 (ja) 熱可塑性樹脂組成物及び樹脂成形品
JP5453511B2 (ja) グラフト共重合体、熱可塑性樹脂組成物及びグラフト共重合体の製造方法
JP4166331B2 (ja) 熱可塑性樹脂組成物
JP2021520438A (ja) グラフト共重合体粉末の製造方法
JP2003327639A (ja) ゴム強化樹脂ならびにその樹脂組成物
JP7010710B2 (ja) 自動車用樹脂成形品
JP7267679B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP6246304B2 (ja) 熱可塑性樹脂組成物
JP5547795B2 (ja) 熱可塑性樹脂組成物及び成形品
JPS6346781B2 (ja)
JP2022153289A (ja) 熱可塑性樹脂組成物
JP2016175971A (ja) 熱可塑性樹脂組成物
JPH1030047A (ja) ゴム変性スチレン系樹脂組成物
JPH08157502A (ja) 肥大ゴムラテックス、グラフト共重合体及び熱可塑性樹脂組成物
JP2009091420A (ja) グラフト共重合体、熱可塑性樹脂組成物および成形品
JP5547794B2 (ja) 熱可塑性樹脂組成物及び押出成形体
JP2013227503A (ja) 熱可塑性樹脂組成物及び押出成形体
JPH08193106A (ja) ゴム変性熱可塑性樹脂およびその組成物
JPH09208772A (ja) 熱可塑性樹脂組成物の製造方法
KR20180065097A (ko) 투명 열가소성 수지 조성물 및 이의 제조방법
JPH08143742A (ja) 熱可塑性樹脂組成物
JPH1180496A (ja) 熱可塑性樹脂組成物及びその製造方法
JP2006160782A (ja) 熱可塑性樹脂組成物および成形品
JPH07166021A (ja) 艶消し熱可塑性樹脂組成物
JPH09296092A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013989

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2941557

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15123743

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/011952

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015232499

Country of ref document: AU

Date of ref document: 20150317

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015765315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765315

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016020681

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016020681

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160908