WO2015129877A1 - 熱電変換材料および熱電変換素子 - Google Patents

熱電変換材料および熱電変換素子 Download PDF

Info

Publication number
WO2015129877A1
WO2015129877A1 PCT/JP2015/055913 JP2015055913W WO2015129877A1 WO 2015129877 A1 WO2015129877 A1 WO 2015129877A1 JP 2015055913 W JP2015055913 W JP 2015055913W WO 2015129877 A1 WO2015129877 A1 WO 2015129877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoelectric conversion
alkyl group
polycyclic aromatic
conversion material
Prior art date
Application number
PCT/JP2015/055913
Other languages
English (en)
French (fr)
Inventor
中村 雅一
広孝 小島
竜 阿部
容子 山田
大軌 葛原
功太郎 高橋
山本 達也
秀典 薬師寺
池田 征明
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学, 日本化薬株式会社 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to CN201580010890.7A priority Critical patent/CN106165132A/zh
Priority to KR1020167023400A priority patent/KR20160127740A/ko
Priority to JP2016505333A priority patent/JP6474110B2/ja
Publication of WO2015129877A1 publication Critical patent/WO2015129877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to an organic thermoelectric conversion material and a thermoelectric conversion element manufactured using the material.
  • thermoelectric conversion elements As a means for recovering unused thermal energy in the environment as electrical energy.
  • thermoelectric conversion material an inorganic semiconductor material such as CoSb 3 has been mainly used and studied because of its relatively high thermoelectric conversion efficiency.
  • an inorganic semiconductor material contains a rare element and is expensive.
  • workability of the material is poor. For this reason, in recent years, research on organic thermoelectric conversion materials that are inexpensive and excellent in workability of materials has been actively conducted.
  • thermoelectric conversion materials include conductive materials such as polyaniline (Patent Documents 1, 3, 4, 5 and 7), polyphenylene vinylene (Patent Document 2), polythienylene vinylene (Patent Document 2), and polypyrrole (Patent Document 4).
  • conductive materials such as polyaniline (Patent Documents 1, 3, 4, 5 and 7), polyphenylene vinylene (Patent Document 2), polythienylene vinylene (Patent Document 2), and polypyrrole (Patent Document 4).
  • Patent Document 4 A material composed of a functional polymer has been proposed.
  • thermoelectric conversion material do not have sufficient thermoelectric conversion performance, and higher thermoelectric conversion performance is required for practical use.
  • a dopant is introduced (Patent Documents 2, 3, 4, 5 and 6), or a layer made of a doped conductive polymer.
  • a layer made of an undoped conductive polymer Patent Document 4
  • dispersed metal particles Patent Document 1
  • the dimensionless figure of merit (ZT) expressed by As can be understood from the above formula, the dimensionless figure of merit (ZT) means that the higher the Seebeck coefficient and the electrical conductivity, the higher the thermal conductivity, the higher the thermoelectric conversion performance. Among materials that can obtain a high ZT, especially those with a large Seebeck coefficient are flexible thermoelectric conversion elements that use organic thermoelectric conversion materials. Operation by disconnection by reducing the thickness of the element or reducing the number of cells connected in series It is possible to reduce defects.
  • the introduction of the dopant and the dispersion of the metal particles described above are intended to improve the thermoelectric conversion efficiency mainly by increasing the conductivity.
  • the Seebeck coefficient and conductivity are in a certain trade-off relationship, and the Seebeck coefficient shows a maximum value when the carrier density is small, and becomes smaller as the carrier density increases.
  • Non-Patent Document 2 In the conventional conductive polymer, the Seebeck coefficient was about several mV / K even at the maximum value.
  • thermoelectric conversion efficiency by increasing the thermoelectromotive force (Seebeck coefficient).
  • thermoelectric conversion efficiency by increasing the thermoelectromotive force (Seebeck coefficient).
  • electromotive polymer itself to increase the thermoelectromotive force (Seebeck coefficient).
  • An object of the present invention is to provide an organic thermoelectric conversion material exhibiting a significantly larger Seebeck coefficient than conventional organic thermoelectric conversion materials.
  • the present inventors examined the molecular design of a conductive compound that achieves excellent thermoelectric conversion efficiency without being bound by the thermoelectric theory in conventional semiconductors.
  • it has a structure derived from a polycyclic aromatic compound having a high carrier transport ability, and on the other hand, it is a compound having a side chain that thermally moves at a predetermined temperature, which is not expected from conventional thermoelectric theory. It has been found that it has a high Seebeck coefficient.
  • the present invention is based on such knowledge.
  • this invention provides the following organic thermoelectric conversion materials and organic thermoelectric conversion elements.
  • An alkyl group or a substituent having an alkyl group is bonded to a basic skeleton composed of a polycyclic aromatic ring having carrier transport properties, and a structural phase transition (specified by DSC) at a temperature in the range of ⁇ 50 ° C. to 200 ° C.
  • X represents a polycyclic aromatic ring having carrier transport properties
  • n represents an integer of 1 or more. When n is 2 or more, each X may be a different polycyclic aromatic ring.
  • R represents each independently an alkyl group or a substituent having an alkyl group, and m represents a number equal to or less than the maximum number that R can be bonded to X, and generally represents an integer of 1 to 8.
  • the organic thermoelectric conversion material according to any one of [1] to [3], wherein the conductive compound is represented by the following general formula (2).
  • X represents a polycyclic aromatic ring having carrier transport properties
  • R represents an alkyl group or a substituent having an alkyl group
  • m represents a maximum number of R or less that can be bonded to X.
  • each Y independently represents S, Se, SO 2 , O, N (R 51 ) or Si (R 1 ) (R 52 ), and R 51 and R 52 each independently represent a hydrogen atom, An aryl group, a monocyclic aromatic heterocyclic residue; an amino group, an alkyloxy group, an alkylthioxy group, an ester group, a carbamoyl group, an acetamide, a thio group or an acyl group substituted with an alkyl group or an aromatic ring residue; Y may be different from each other, Z 1 and Z 2 each independently represent a hydrogen atom, an aromatic hydrocarbon or an aromatic heterocyclic ring, and Z 1 and Z 2 may be the same or different.
  • W independently represents N or C—, at least one is C—, and an alkyl group or a substituent containing an alkyl group is bonded thereto, and Z is Each independently represents a hydrogen atom, an aromatic hydrocarbon or an aromatic heterocycle, which may be the same or different, and M represents a metal atom.
  • the conductive compound is a compound represented by formula (6), (7), (10), (11), (12) or (13) Organic thermoelectric conversion material according to crab.
  • X 1 and X 2 are the same as Y in the formula (3), and the formulas (6), (7), (10), (11), (12) and ( 13) wherein at least one of R 1 and R 2 , typically both, at least one of R 3 to R 14 , and R 47 to R 50 are the same as R in formula (1) above, m 1 to m 4 are the same as m in the above formula (1), R 47 to R 49 are bonded to one or more W, and R 50 can be bonded to a bondable position of the basic skeleton. , Preferably bound to one or more W.
  • An organic thermoelectric conversion element having a thermoelectric conversion layer containing the thermoelectric conversion material according to any one of [1] to [11].
  • a horizontal or vertical organic thermoelectric conversion element having a thermoelectric conversion layer containing the thermoelectric conversion material according to any one of [1] to [11].
  • the present invention can provide an organic thermoelectric conversion element having an Seebeck coefficient much higher than that of a conventional organic thermoelectric conversion material and an organic thermoelectric conversion element having a thermoelectric conversion layer including the organic thermoelectric conversion material.
  • FIG. 1 is a graph showing van der Waals volume ratios of C8BTBT, C10DNTT and C12BP.
  • FIG. 2 shows analytical data of differential scanning calorimetry (DSC) of C12H25-H2BP.
  • FIG. 3 shows analysis data of differential scanning calorimetry (DSC) of H2BP.
  • FIG. 4 is analysis data of differential scanning calorimetry (DSC) of C10DNTT. It is a figure which shows an example of the horizontal type thermoelectric conversion element of this invention. The arrows in the figure indicate the direction in which the temperature difference applied when the element is used. It is a figure which shows an example of the vertical thermoelectric conversion element of this invention. The arrows in the figure indicate the direction in which the temperature difference applied when the element is used.
  • the analytical data of differential scanning calorimetry (DSC) of C12BP of Example 5 and the relative value of a power factor are shown.
  • the organic thermoelectric conversion material of the present invention has a basic skeleton composed of a polycyclic aromatic ring having carrier transport properties and an alkyl group or a substituent having an alkyl group bonded thereto, and undergoes a structural phase transition at a predetermined temperature.
  • the resulting conductive compound is contained as a thermoelectric conversion substance.
  • the conductive compound used in the present invention has a basic skeleton derived from a polycyclic aromatic compound having a planar ⁇ -conjugated structure and generally having a high carrier transport ability. In such a structure, ⁇ - ⁇ stacking is expected between adjacent molecules, and the transfer integral between adjacent molecules is so large that band conduction can be expected at room temperature.
  • a substituent that causes a change in the intermolecular distance of the basic skeleton or the molecular packing structure is bonded to the polycyclic aromatic ring by thermal motion at a predetermined temperature.
  • Such a substituent has a rotation-free bond like an alkyl group or a substituent having an alkyl group, and changes the distance between adjacent molecules or the molecular packing structure by thermal movement at a predetermined temperature. , Causing volume change and structural phase transition of the conductive compound. As a result, it is understood that the thermoelectromotive force (Seebeck coefficient) can be increased by sensitively detecting the temperature change.
  • Polycyclic aromatic compound means a compound having a polycyclic aromatic ring
  • basic skeleton composed of a polycyclic aromatic compound means a substituent moiety in the entire structure of such a compound. It means the structure excluded.
  • Van der Waals volume means the volume of a molecule or its component when the atoms constituting the molecule are approximated by a sphere having a van der Waals radius.
  • the “van der Waals volume ratio” is the ratio of the van der Waals volume of a plurality of components constituting a molecule.
  • Length of side chain means the atom of the atom that is the most distant from the center position of the atom that constitutes the main skeleton and the center position of the atom that is chemically bonded to the side chain in the stable structure. It means the distance to the center position.
  • ⁇ -conjugated structure represents a structure in which multiple bonds are alternately connected to single bonds
  • plane ⁇ -conjugated structure means a structure in which atoms forming a ⁇ -conjugated structure exist in the same plane.
  • Conductivity means a value obtained by multiplying the electrical conductance obtained from the current-voltage characteristics of the material measured by a source meter or the like by the length of the current path and dividing the result by the cross-sectional area.
  • Thermal conductivity means a value obtained by multiplying the thermal diffusivity measured by the thermoreflectance method, the temperature wave analysis method, the steady heat flow method, etc., with the specific heat and density of the material.
  • structural phase transition means that a structure (which may be an ordered structure or a disordered structure) that can be regarded as spatially uniform in a substance is transformed into a structure in a different state depending on external conditions such as temperature.
  • Structure phase transition temperature means the temperature at which the change appears.
  • DSC differential scanning calorimetry
  • an endothermic or exothermic peak appears, and the temperature dependence of specific heat changes (the gradient obtained by differentiating specific heat with temperature changes suddenly).
  • DSC differential scanning calorimetry
  • Arrhenius type thermal activity it is also measured as the temperature at which the activation energy changes suddenly.
  • the conductive compound contained in the organic thermoelectric conversion material of the present invention typically includes a compound represented by the following general formula (1) or (2).
  • X represents a polycyclic aromatic ring having carrier transport properties
  • R independently represents an alkyl group or a substituent having an alkyl group.
  • m is a number equal to or less than the maximum number of R that can be bonded to X, and varies depending on the basic skeleton, for example, an integer of 1 to 8, typically an integer of 1 to 2.
  • n is an integer of 1 or more, and when n is 2 or more, X may be a different polycyclic aromatic ring.
  • the polycyclic aromatic ring represented by X constituting the basic skeleton of the conductive compound contained as the thermoelectric conversion substance in the organic thermoelectric conversion material of the present invention has a structure in which two or more aromatic rings are condensed. And has a planar ⁇ -conjugated structure. For this reason, the molecules are aligned and are likely to cause a stacking effect between adjacent molecules, and movement of electrons or holes between the molecules is facilitated, so that high carrier mobility is easily obtained.
  • the polycyclic aromatic ring represented by X can be composed of one or both of an aromatic hydrocarbon and an aromatic heterocyclic ring, and it is preferable to select a polycyclic structure having high carrier mobility. .
  • polycyclic aromatic ring represented by X include, for example, Naphthalene, anthracene, tetracene, pentacene, hexacene, heptacene, acenaphthene, naphthacene, azulene, phenalene, benzoanthracene, phenanthrene, chrysene, anthanthrene, pyranthrene, indenoindene, picene, triphenylene, perylene, naphthoperylene, coronene, obalene, pyrene, Benzopyrene, hexahelicene, heptahelicene, octahelicene, nonahelicene, decahelicene, undecahelicene, dodecahelicene, etc .; polycyclic aromatics such as tetraphen, pentaphen, hexaphene, h
  • acene hydrocarbons such as naphthalene, anthracene, naphthacene, and pentacene
  • heteroacenes such as benzodithiophene, benzothienobenzothiophene, and dinaphthodithiophene, or porphyrin, phthalocyanine, porphyrazine, etc. Is preferred.
  • the basic skeleton of the polycyclic aromatic compound may form a ⁇ -conjugated structure by connecting two or more polycyclic aromatic rings with a single bond.
  • the number of polycyclic aromatic rings is generally 2 to 2000, preferably 2 to 1000, It is more preferably 2 to 100, and further preferably 2 to 5.
  • the basic skeleton may be composed of a single polycyclic aromatic ring.
  • the molecular weight (Mw) of the basic skeleton constituted by one or a plurality of polycyclic aromatic rings may be 50 to 200,000, preferably 100 to 100,000, more preferably 200 to 50,000 Mw, particularly preferably. 200 to 30000.
  • the conductive compound contained in the organic thermoelectric conversion material of the present invention has a ⁇ -conjugated structure developed by the polycyclic aromatic ring and an alkyl group represented by R on the polycyclic aromatic ring.
  • a substituent having an alkyl group is bonded.
  • Such a substituent has a rotation-free bond and causes thermal motion at a predetermined temperature, preferably any temperature in the range of ⁇ 50 ° C. to 200 ° C.
  • Such a substituent moves in response to heat sensitively, and causes a volume change or a structural phase transition of the conductive compound.
  • the carrier transport ability of the basic skeleton of the polycyclic aromatic compound is modulated to enable highly efficient thermoelectric conversion.
  • Such a structural phase transition of the conductive compound due to the thermal motion of the substituent can be confirmed by an endothermic peak of differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the substituent is bonded to the polycyclic aromatic skeleton by a free covalent bond.
  • the substituent itself preferably has a large number of covalent bonds that are free to rotate. From such a point, the substituent is preferably a substituent having an alkyl group, and a chain-like alkyl group has a main chain. More preferably a linear alkyl group.
  • the structural phase transition is performed in response to heat sensitively by the thermal motion of substituents while maintaining the ⁇ -conjugated structure developed by the polycyclic aromatic ring.
  • the van der Waals volume ratio of the side chain to the polycyclic aromatic skeleton is considered to be one of the indicators.
  • the cohesive strength depending on the crystallinity and crystal form differs depending on the difference in the polycyclic aromatic skeleton, and the bonding strength between the molecules is different.
  • the same compound The van der Waals volume ratio occupied by the substituents in it is preferably 5% to 80%, more preferably 25 to 60%, and even more preferably 30 to 60%. Further, it is more preferably 10 to 50%, and particularly preferably 15 to 50%.
  • By designing the van der Waals volume ratio of the side chain to this polycyclic aromatic skeleton it is possible to control the temperature and thermal motion of the structural phase transition. Although the required temperature (temperature difference) differs depending on the environment in which the element is used, a suitable element can be designed by utilizing this ability.
  • the alkyl group portion of the alkyl group or the substituent having an alkyl group is a chain or cyclic, preferably linear, group having 1 to 20 carbon atoms, more preferably 2 to 2 carbon atoms. 18 groups, and more preferably a group having 4 to 15 carbon atoms.
  • linear alkyl group methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group , Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group Group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, oc
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, isoamyl group, s-butyl group, t-butyl group, 2-methylbutyl group, 2-methylhexyl group, 2-ethylhexyl group, 2-methyloctyl group, 2-ethyloctyl group can be mentioned, such as isobutyl group, isoamyl group, s-butyl group, t-butyl group, 2-methylbutyl group, 2-methylhexyl group, 2-ethylhexyl group, 2-methyloctyl group, 2 -Ethyloctyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • substituents which have an alkyl group the group by which the alkyl group was substituted by the following substituents is mentioned, for example.
  • Aryl group such as phenyl group, biphenyl group, naphthyl group 2) Furyl group, thienyl group, thienylene group, tenenyl group, pyridyl group, piperidyl group, quinolyl group, isoquinolyl group, imidazolyl group, morpholino group, benzothienyl group, Monocyclic aromatic heterocyclic residues such as benzophenyl groups 3) amino groups, alkyloxy groups, alkylthioxy groups, ester groups, carbamoyl groups, acetamides, thio groups substituted with alkyl groups or aromatic ring residues Acyl group 4) Halogen atom such as fluorine atom, chlorine atom, bromine atom, nitro group, cyano group These substituents may have one or more.
  • bonded with the polycyclic aromatic skeleton through the following chemical structures is mentioned.
  • Hetero atoms such as oxygen atom, nitrogen atom, sulfur atom, silicon atom and phosphorus atom
  • Aryl group such as phenyl group, biphenyl group and naphthyl group 3) Furyl group, thiophene group, thienyl group, thienylene group and tenenyl group , Pyridyl group, imidazolyl group, morpholino group, benzothienyl group, benzophenyl group, etc. 4) carbonyl group, thiocarbonyl group
  • Examples of the substituent having an alkyl group include an alkyl group substituted with a silylethynyl group, an alkyl group substituted with an aryl group (for example, a phenyl group, a biphenyl group, a naphthyl group, etc.), an aromatic heterocyclic group (for example, , Furyl group, thienyl group, pyridyl group, imidazolyl group, etc.) substituted alkyl group, alkoxyl group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group) Group), a cycloalkoxyl group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), an alkyl group substituted with an aryloxy group (eg, phenoxy group, naphthyloxy group, etc.
  • the conductive compound contained in the conductive material of the present invention may have a plurality of substituents for one of the above-described polycyclic aromatic rings, and usually 1 to 1 per polycyclic aromatic ring. 8 substituents, preferably 1 to 4 substituents, more preferably 1 to 3 substituents, and particularly preferably 2 substituents.
  • the molecular weight of the alkyl group moiety of the above-described substituent is 5 to 80 with respect to the molecular weight of the entire conductive compound.
  • the ratio is more preferably 25 to 60%. It is preferable that the width of the skeleton part is a compound having a width wider than about two benzene rings, and the ratio thereof occupies 10 to 50%.
  • the structure other than the alkyl group may form a ⁇ -conjugated structure together with the polycyclic aromatic ring.
  • the temperature causing the structural phase transition of the conductive compound varies depending on the combination of the basic skeleton of the polycyclic aromatic compound and the substituent. Accordingly, it is preferable to appropriately design a molecular according to the temperature at which the conductive compound is expected to be used.
  • the temperature of the phase transition of the thermoelectric conversion material and the thermal motion can be controlled by controlling the length of the alkyl group of the conductive compound. Therefore, it is considered that an effective thermoelectric conversion element can be obtained by appropriately selecting the combination of the basic skeleton and the substituent, particularly the length of the alkyl group or the van der Waals volume ratio, according to the environment in which the element is used. .
  • thermoelectric conversion elements From the normal use of thermoelectric conversion elements, it is preferable to use a molecular design that causes a structural phase transition at a temperature in the range of ⁇ 50 ° C. to 200 ° C. More preferably, the molecular design causes a structural phase transition at a temperature in the range of 10 to 150 ° C. Therefore, it is preferable to select the combination of the basic skeleton and the substituent, particularly the length of the alkyl group or the van der Waals volume ratio so that the structural phase transition occurs in such a temperature range.
  • the temperature (structural phase transition point) at which the structural phase transition of the conductive compound occurs can be confirmed by the endothermic peak of differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a thermoelectric conversion element showing a relative value of a large power factor in the vicinity of the temperature at which the structural phase transition of the conductive compound is observed can be confirmed to be an optimal thermoelectric conversion material for setting the vicinity of the temperature as the use temperature.
  • M represents a metal atom.
  • each Z is independently a hydrogen atom, or an aromatic hydrocarbon or aromatic heterocyclic ring substituted with an unsubstituted or substituted group having an alkyl group or an alkyl group. Substituted aromatic hydrocarbons or aromatic heterocycles are preferred.
  • a plurality of Z may be the same or different.
  • Each W independently represents N or CR 3 , at least one W represents CR 3 , R 3 represents a hydrogen atom, an alkyl group or a substituent having an alkyl group, and at least one R 3 represents an alkyl group or A substituent having an alkyl group is represented.
  • the opposing set of W represents CR 3 and R 3 is an alkyl group or a substituent having an alkyl group
  • the other opposing set of W represents N or CR 3 and R 3 is It is a hydrogen atom, more preferably represents CR 3
  • R 3 is a hydrogen atom.
  • Examples of the aromatic hydrocarbon ring constituting Z include phenyl, biphenyl, naphthalene, anthracene, tetracene, pentacene, hexacene, heptacene, acenaphthene, naphthacene, azulene, phenalene, benzoanthracene, phenanthrene, chrysene, anthanthrene, pyranthrene, Indenoindene, picene, triphenylene, perylene, naphthoperylene, coronene, ovarene, pyrene, benzopyrene, hexahelicene, heptahelicene, octahelicene, nonahelicene, decahelicene, undecahelicene, dodecahelicene, etc .; tetraphen, pentaphen, hexaphen, heptaphene
  • Biphenyl, naphthalene is preferable.
  • the aromatic heterocycle include furyl, thiophene, thienyl, thienylene, tenenyl, pyridyl, imidazolyl, morpholino, benzothienyl, benzophenyl, and the like.
  • the substituent having an alkyl group or an alkyl group that optionally substitutes these aromatic hydrocarbon rings or aromatic heterocycles include the groups described for R in the formulas (1) and (2), and A linear alkyl group having a number of 1 to 15 is preferred.
  • substituents having an alkyl group or an alkyl group representing R 3 can also be a group described by R in formula (1) and (2).
  • R 3 at a pair of opposing positions is preferably a linear alkyl group having 1 to 30 carbon atoms or a group having a linear alkyl group having 1 to 30 carbon atoms, and a straight chain having 5 to 20 carbon atoms. It is more preferably a chain alkyl group or a group having a linear alkyl group having 5 to 20 carbon atoms, and a group having a linear alkyl group having 8 to 15 carbon atoms or a linear alkyl group having 8 to 15 carbon atoms. It is more preferable.
  • the van der Waals volume ratio of the alkyl group or alkyl portion to the whole conductive compound is preferably 5 to 60%, more preferably 10 to 50%, and further preferably 15 to 50%. preferable.
  • R 47 to R 50 are the same as R in formula (1), and R 47 to R 49 are bonded to at least one W.
  • R 50 can be bonded to a bondable position of the basic skeleton, but is preferably bonded to at least one W, and m 1 to m 4 are the same as m in the above formula (1).
  • m 1 , m 2 , m 3 or m 4 is 2 or more, a plurality of R 47 , R 48 , R 49 or R 50 may be different or the same.
  • R 47 to R 50 or the substituent having an alkyl group examples include the groups described for R in formulas (1) and (2).
  • R 47 , R 48 , R 49 or R 50 in a pair of opposing positions is a linear alkyl group having 1 to 20 carbon atoms or a group having a linear alkyl group having 1 to 20 carbon atoms.
  • a linear alkyl group having 4 to 15 carbon atoms or a group having a linear alkyl group having 4 to 15 carbon atoms is more preferable, and a linear alkyl group having 8 to 13 carbon atoms or a group having 8 to 13 carbon atoms is more preferable.
  • a group having a linear alkyl group is more preferable.
  • the van der Waals volume ratio of the alkyl group or alkyl portion to the whole conductive compound is preferably 5 to 60%, more preferably 10 to 50%. In particular, it is preferably 15 to 50%.
  • Such a conductive compound having a porphyrin structure as a basic skeleton for example, when the alkyl group or the alkyl portion is a group having a linear alkyl group having 4 to 15 carbon atoms or a linear alkyl group having 4 to 15 carbon atoms,
  • the structural phase transition occurs in the temperature range of 30 to 120 ° C. Therefore, for example, when use at 30 to 150 ° C. is envisaged, the alkyl group or alkyl portion may be a linear alkyl group having 4 to 15 carbon atoms or a group having a linear alkyl group having 4 to 15 carbon atoms. preferable.
  • Y each independently represents S, Se, SO 2, O , N (R 51), Si a (R 51) (R 52)
  • R 51 and R 52 are each independently Represents a hydrogen atom, a substituent, and preferred substituents include an aryl group, a monocyclic aromatic heterocyclic residue; an amino group substituted with an alkyl group or an aromatic ring residue, an alkyloxy group, an alkylthioxy group, An ester group, a carbamoyl group, an acetamide, a thio group or an acyl group; a halogen atom, a nitro group, or a cyano group.
  • Examples of the aryl group include a phenyl group, a biphenyl group, and a naphthyl group.
  • Examples of the monocyclic aromatic heterocyclic residue include a furyl group, a thienyl group, a thienylene group, a tenyl group, a pyridyl group, a piperidyl group, and a quinolyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Y is preferably S or Se, particularly preferably S.
  • Z 1 and Z 2 each independently represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring substituted with an alkyl group or a substituent having an alkyl group, or an alkyl group or a substituent having an alkyl group, and Z 1 And Z 2 may be the same or different.
  • the aromatic hydrocarbon ring include a monocyclic ring or an aromatic hydrocarbon ring in which a plurality of rings are connected or condensed.
  • monocyclic aromatic hydrocarbon rings include aromatic hydrocarbon rings having 3 to 7 carbon atoms, preferably 4 to 6 carbon atoms.
  • the aromatic hydrocarbon ring in which a plurality of rings are connected or condensed has 2 or more aromatic hydrocarbon rings having 3 to 7, preferably 4 to 6 carbon atoms (for example, 2 to 7, 2 to 5, (Or 2 to 3) or linked or condensed structures.
  • Specific examples of the aromatic hydrocarbon ring include phenyl, biphenyl, naphthyl, anthracene, tetracene, pentacene, phenanthrene, chrysene, triphenylene, tetraphen, pyrene, picene, pentaphen, perylene, helicene, coronene, and the like. Can do.
  • Examples of the aromatic heterocycle include furyl, thiophene, thienyl, thienylene, tenenyl, pyridyl, imidazolyl, morpholino, benzothienyl, benzophenyl, and the like.
  • Examples of the alkyl group or the substituent having an alkyl group include the groups described for R in the formulas (1) and (2). A group having a linear alkyl group having 1 to 30 carbon atoms or a linear alkyl group having 1 to 30 carbon atoms is preferable, and a linear alkyl group having 1 to 20 carbon atoms or a group having 1 to 20 carbon atoms is preferable.
  • a group having a linear alkyl group is more preferable, and a group having a linear alkyl group having 5 to 15 carbon atoms or a linear alkyl group having 5 to 15 carbon atoms is more preferable.
  • the van der Waals volume ratio of the alkyl group or alkyl part to the whole conductive compound is preferably 5 to 80%, more preferably 25 to 60%, and further preferably 30 to 60%. .
  • X 1 and X 2 are the same as Y in Formula (3), preferably S or Se, and particularly preferably S. At least one of R 1 and R 2 , preferably both, may be the same as the alkyl group or the substituent having an alkyl group described for R in the above formulas (1) and (2).
  • the compound of formula (6) is preferably a linear alkyl group having 1 to 15 carbon atoms or a linear alkyl group having 1 to 15 carbon atoms, and a linear alkyl group having 6 to 12 carbon atoms.
  • a group having a linear alkyl group having 6 to 12 carbon atoms is more preferable.
  • the van der Waals volume ratio of the alkyl group or alkyl part to the whole conductive compound is preferably 5 to 80%, more preferably 25 to 60%, and further preferably 30 to 60%. .
  • a conductive compound having such a structure as a basic skeleton includes, for example, a structural phase transition when an alkyl group or an alkyl part is a linear alkyl group having 5 to 12 carbon atoms or a linear alkyl part having 5 to 12 carbon atoms. Occurs in the temperature range of 70-120 ° C. Therefore, for example, when use at 50 ° C. to 150 ° C. is envisaged, the alkyl group or alkyl portion may be a linear alkyl group having 5 to 12 carbon atoms or a linear alkyl portion having 5 to 12 carbon atoms. preferable.
  • the compound of Formula (6) can be manufactured, for example by the method of WO2008 / 047896, The content is integrated in this-application specification by reference.
  • X 1 and X 2 are the same as Y in the above formula (3), preferably S or Se, particularly preferably S.
  • R 3 to R 14 are hydrogen or an alkyl group or a substituent having an alkyl group described in R in the above formulas (1) and (2), and at least one of R 3 to R 14 is the above formula ( It is the substituent which has the alkyl group demonstrated by R of 1) and (2), or an alkyl group.
  • any one of R 4 to R 7 and R 10 to R 13 is preferably an alkyl group or a substituent having an alkyl group, particularly R 6 and R 12 , or More preferably, it is located at R 5 and R 11 .
  • the alkyl group or the substituent having an alkyl group is preferably a linear alkyl group having 1 to 20 carbon atoms or a group having a linear alkyl group having 1 to 20 carbon atoms, and has 4 to 16 carbon atoms.
  • the van der Waals volume ratio of the alkyl group or alkyl part to the whole conductive compound is preferably 5 to 80%, more preferably 25 to 60%, and further preferably 30 to 60%. .
  • a conductive compound having such a structure as a basic skeleton includes, for example, a structural phase transition when an alkyl group or an alkyl portion is a linear alkyl group having 6 to 12 carbon atoms or a linear alkyl portion having 6 to 12 carbon atoms. Occurs in the temperature range of 100-140 ° C. Therefore, for example, when use at 80 ° C. to 150 ° C. is assumed, the alkyl group or the alkyl portion may be a straight alkyl group having 6 to 12 carbon atoms or a straight alkyl portion having 6 to 12 carbon atoms. preferable.
  • the compound of formula (7) can be produced, for example, by the method described in WO / 2010/098372, the contents of which are incorporated herein by reference.
  • X 1 and X 2 are the same as Y in the formula (3), preferably S or Se, and particularly preferably S.
  • R 15 to R 30 are hydrogen or an alkyl group or a substituent having an alkyl group described for R in the above formulas (1) and (2), and at least one of R 15 to R 30 is described for R. Or a substituent having an alkyl group.
  • R 18 and R 26 are substituents having an alkyl group or an alkyl group described in R of the above formulas (1) and (2), The other is preferably hydrogen.
  • the alkyl group or the substituent having an alkyl group is preferably a linear alkyl group having 1 to 25 carbon atoms or a group having a linear alkyl group having 1 to 25 carbon atoms, and has 5 to 20 carbon atoms. It is more preferably a linear alkyl group or a group having a linear alkyl group having 5 to 20 carbon atoms, and a group having a linear alkyl group having 6 to 15 carbon atoms or a linear alkyl group having 6 to 15 carbon atoms. More preferably.
  • the van der Waals volume ratio of the alkyl group or alkyl part to the whole conductive compound is preferably 5 to 80%, more preferably 25 to 60%, and further preferably 30 to 60%. .
  • a conductive compound having such a structure as a basic skeleton includes, for example, a structural phase transition when an alkyl group or an alkyl portion is a straight-chain alkyl group having 6 to 15 carbon atoms or a straight-chain alkyl portion having 6 to 15 carbon atoms. Occurs in the temperature range of 100-140 ° C. Therefore, for example, when use at 80 ° C. to 150 ° C. is assumed, the alkyl group or the alkyl portion may be a straight alkyl group having 6 to 15 carbon atoms or a straight alkyl portion having 6 to 15 carbon atoms. preferable.
  • the compound of Formula (8) can be manufactured, for example by the method of WO2008 / 050726, The content is integrated in this-application specification by reference.
  • X 1 and X 2 are the same as Y in the above formula (3), preferably S or Se, particularly preferably S.
  • R 31 to R 46 are hydrogen or an alkyl group or a substituent having an alkyl group described in R in the above formulas (1) and (2), and at least one of R 31 to R 46 is described as R. Or a substituent having an alkyl group.
  • R 34 and R 41 are the substituents having the alkyl group or the alkyl group described in R of the above formulas (1) and (2), The other is preferably hydrogen.
  • the alkyl group or the substituent having an alkyl group is preferably a linear alkyl group having 1 to 25 carbon atoms or a group having a linear alkyl group having 1 to 25 carbon atoms, and has 5 to 20 carbon atoms. It is more preferably a linear alkyl group or a group having a linear alkyl group having 5 to 20 carbon atoms, and a group having a linear alkyl group having 6 to 15 carbon atoms or a linear alkyl group having 6 to 15 carbon atoms. More preferably.
  • the van der Waals volume ratio of the alkyl group or alkyl portion to the whole conductive compound is preferably 5 to 60%, more preferably 10 to 50%. In particular, it is preferably 15 to 50%.
  • the conductive compound having such a structure as a basic skeleton can control the temperature of the structural transition of the thermoelectric conversion material and the thermal motion by adjusting the length of the alkyl group or the alkyl portion.
  • the alkyl group or alkyl portion should be a straight chain alkyl group having 6 to 15 carbon atoms or a straight chain alkyl portion having 6 to 15 carbon atoms. Is preferred.
  • the compound of Formula (9) can be manufactured by the method of WO2008 / 050726, for example, The content is integrated in this-application specification by reference.
  • the organic thermoelectric conversion material of the present invention may optionally contain a dopant.
  • the dopant include onium salt compounds such as sulfonium salts, iodonium salts, ammonium salts, carbonium salts, and phosphonium salts; camphorsulfonic acid, dodecylbenzenesulfonic acid, 2-naphthalenesulfonic acid, toluenesulfonic acid, and 2-naphthalenesulfone.
  • Organic acids such as acids; halogens such as Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr and IF; Lewis such as PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 and SO 3 Acid; Protonic acid such as HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , phosphoric acid; FeCl 3 , FeOCl, TiCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , NbCl 5 , TaCl 5 , MoF 5 , WF Transition metal compounds such as 6 ; alkali metals such as Li, Na, K, Rb, and Cs; and alloys such as Ca, Sr, and Ba Examples thereof include lucan earth metal, lanthanoids such as Eu, R 4 N + , R 4 P + , R 4 As + , R 3 S + (R: al
  • the dopant is not an essential component but is preferably contained in the organic thermoelectric conversion material in an amount of 0 to 60% by weight, and more preferably 0 to 20% by weight.
  • thermoelectric conversion material of the present invention has a high thermoelectromotive force and is useful as a thermoelectric conversion material for organic thermoelectric conversion elements. For this reason, the thermoelectric conversion material of this invention can be used effectively in order to form the thermoelectric conversion layer of an organic thermoelectric conversion element. Therefore, according to another embodiment of the present invention, the use of the thermoelectric conversion material of the present invention for forming a thermoelectric conversion layer, a thermoelectric conversion element having a thermoelectric conversion layer including a thermoelectric conversion material, and a thermoelectric conversion material are included. A method for thermoelectric conversion by the thermoelectric conversion layer is also provided.
  • thermoelectric conversion element of the present invention has a first electrode, a thermoelectric conversion layer, and a second electrode on a substrate, and the thermoelectric conversion layer contains the thermoelectric conversion material of the present invention.
  • the thermoelectric conversion element of this invention should just have a 1st electrode, a thermoelectric conversion layer, and a 2nd electrode on a base material, The position of a 1st electrode, a 2nd electrode, and a thermoelectric conversion layer There are no particular limitations on other configurations such as relationships.
  • the thermoelectric conversion layer may be disposed on at least one surface thereof so as to be in contact with the first electrode and the second electrode.
  • thermoelectric conversion element The case where there is a temperature difference in the horizontal direction with respect to the base material is a horizontal thermoelectric conversion element (FIG. 5), and the case where there is a temperature difference in the vertical direction with respect to the base material is a vertical thermoelectric conversion element (FIG. 6) .
  • the thermoelectric conversion layer in the thermoelectric conversion element of this invention should just be arrange
  • thermoelectric conversion materials glass, metal, plastic film, non-woven fabric, paper and other electrodes and materials that can hold thermoelectric conversion materials can be used.
  • a flexible plastic film or the like it is preferable to use a flexible plastic film or the like.
  • electrode materials include transparent electrodes such as ITO, metal electrodes such as gold, silver, copper, and aluminum, carbon electrodes such as carbon nanotubes and graphene, and organic conductive materials such as PEDOT: PSS.
  • transparent electrodes such as ITO
  • metal electrodes such as gold, silver, copper, and aluminum
  • carbon electrodes such as carbon nanotubes and graphene
  • organic conductive materials such as PEDOT: PSS.
  • a material with low contact resistance is preferred. Further, in order to reduce the contact resistance with the thermoelectric conversion material, it is possible to perform a treatment such as contact doping.
  • thermoelectric conversion layer of the present invention is used for the thermoelectric conversion layer of the thermoelectric conversion element of the present invention.
  • the thermoelectric conversion layer may be a single layer or a plurality of layers.
  • the thermoelectric conversion element of the present invention may be an element having only a plurality of thermoelectric conversion layers formed using the thermoelectric conversion material of the present invention, or the thermoelectric conversion material of the present invention.
  • An element having a thermoelectric conversion layer formed using a thermoelectric conversion layer formed using a thermoelectric conversion material other than the thermoelectric conversion material of the present invention may be used. Since the thermoelectric conversion material of the present invention can be designed so as to exhibit the highest thermoelectromotive force according to the temperature at which the element is used as described above, the molecular design of the substituent is appropriately determined according to the operating temperature. Can be changed.
  • thermoelectric conversion layer or the like in the thermoelectric conversion element of the present invention is not particularly limited, and examples thereof include a solution process such as printing and a vacuum process.
  • solution processes are preferable, and coating methods such as casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, and printing methods such as inkjet printing, screen printing, offset printing, letterpress printing, Examples thereof include a soft lithography method and a method in which a plurality of these methods are combined.
  • thermoelectric conversion element of the present invention can achieve high thermoelectric conversion efficiency through high thermoelectromotive force of the conductive compound itself, and provides a new approach for providing a high-performance organic thermoelectric conversion element. .
  • thermoelectric conversion efficiency through high thermoelectromotive force of the conductive compound itself, and provides a new approach for providing a high-performance organic thermoelectric conversion element.
  • it since it has a very high Seebeck coefficient, it becomes easy to design a high-voltage device, and it is possible to provide a characteristic thermoelectric conversion element.
  • Benzoporphyrin was obtained as a green solid by heating the porphyrin obtained above at 200 ° C. for 30 minutes under vacuum in a glass tube oven.
  • DSC (170-570K) showed a sharp peak and a broad peak at 320-360K, and a peak around 440K, indicating that a structural phase transition occurred.
  • thermoelectric property evaluation device for homemade ultra-high resistance samples was used.
  • the characteristic evaluation apparatus includes (1) precise deposition of sublimable material using a Knudsen cell, (2) sample resistance measurement using a Keithley 6430 source meter up to about 10 14 ⁇ , and (3) It has a function of performing high-precision Seebeck coefficient measurement using a home-made high input impedance differential amplifier circuit with a sample resistance of about 10 13 ⁇ as an upper limit. (See Non-Patent Literature: Nakamura, Applied Physics 82 (2013) 954)
  • Example 1 Production / Evaluation of Thermoelectric Conversion Element Using Compound (C12BP)
  • an organic thermoelectric conversion element using the compound synthesized in Synthesis Example 1 was produced, and the characteristics were evaluated.
  • White plate glass to which a shadow mask for electrode preparation was attached was placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 1.0 ⁇ 10 ⁇ 4 Pa or less.
  • gold was vapor-deposited to a thickness of 30 nm at a vapor deposition rate of 0.1 kg / sec to obtain a substrate with electrodes.
  • thermoelectric conversion element of the present invention (distance between electrodes: 10 mm, electrode width: 7.6 mm).
  • the obtained thermoelectric conversion element determined the temperature under the condition that the degree of vacuum in the apparatus was 1.0 ⁇ 10 ⁇ 5 Pa or less, applied a voltage, read the current value, and measured the conductivity. Further, a Seebeck coefficient was measured by providing a temperature gradient between the electrodes and reading the thermoelectromotive force value.
  • the conductivity at 340 K was 3.0 ⁇ 10 ⁇ 8 Scm ⁇ 1 and the Seebeck coefficient was 123 mV / K.
  • the van der Waals volume ratio of the side chain of C12BP was 50% (using Winmostar software).
  • Example 2 Production and Evaluation of Thermoelectric Conversion Element Using Compound (C8-BTBT) Organic thermoelectric conversion element using Compound (C8-BTBT) synthesized in Synthesis Example 2 instead of the compound used in Example 1
  • a 0.5 wt% C8-BTBT heptane solution was dropped onto a white glass substrate, a spin coat (1000 rpm ⁇ 1 min) was formed, and dried to obtain an organic thin film (30 nm) substrate.
  • a shadow mask for electrode formation was attached to the organic thin film substrate, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 1.0 ⁇ 10 ⁇ 4 Pa or less.
  • thermoelectric conversion element (distance between electrodes: 5 mm, electrode width: 7.6 mm).
  • This element is wired to the thermocouple and electrode, installed in the evaluation device, the voltage is applied under the condition that the degree of vacuum in the device is 1.0 ⁇ 10-5 Pa or less, the voltage is applied, and the current value is read.
  • the conductivity was measured.
  • a Seebeck coefficient was measured by providing a temperature gradient between the electrodes and reading the thermoelectromotive force value. As a result, the conductivity at 340 K was 2.1 ⁇ 10 ⁇ 8 Scm ⁇ 1, and the Seebeck coefficient was 190 mV / K.
  • Example 3 Production and Evaluation of Thermoelectric Conversion Element Using Compound (C10DNTT) An organic thermoelectric conversion element was produced and evaluated using the compound (C10DNTT) instead of the compound used in Example 1.
  • White plate glass to which a shadow mask for electrode preparation was attached was placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 1.0 ⁇ 10 ⁇ 4 Pa or less.
  • gold was vapor-deposited to a thickness of 30 nm at a vapor deposition rate of 0.1 kg / sec to obtain a substrate with electrodes.
  • a shadow mask is attached to the substrate, wiring is made to the thermocouple and the electrode, and is installed in the evaluation apparatus.
  • thermoelectric conversion element determined the temperature under the condition that the degree of vacuum in the apparatus was 1.0 ⁇ 10 ⁇ 5 Pa or less, applied a voltage, read the current value, and measured the conductivity. Further, a Seebeck coefficient was measured by providing a temperature gradient between the electrodes and reading the thermoelectromotive force value.
  • the conductivity at 315K was 1.1 ⁇ 10 ⁇ 7 Scm ⁇ 1 and the Seebeck coefficient was 128 mV / K.
  • the van der Waals volume ratio of the side chain of C10DNTT was 57%.
  • DSC (170-620K) showed sharp peaks at 390K, 500K, 570K and 580K, respectively, indicating that structural phase transition occurred. It was done.
  • Example 4 Production and Evaluation of Vertical Thermoelectric Conversion Element Using Compound (C8-BTBT)
  • a vertical organic thermoelectric conversion element was produced and evaluated using the compound (C8-BTBT) synthesized in Synthesis Example 2.
  • a PEDOT / PSS film was formed on an ITO glass substrate (Asahi Glass) by spin coating (7000 rpm ⁇ 20 sec) and dried to prepare a substrate.
  • a pair of substrates having a gap of 25 ⁇ m was produced by sandwiching high Milan (50 ⁇ m, made by Mitsui DuPont Polychemical) between the two produced substrates and heating at 150 ° C.
  • a compound (C8BTBT) melted at 130 ° C.
  • thermoelectric conversion element distance between electrodes: 25 ⁇ m, electrode size 100 mm 2. It was confirmed that thermoelectromotive force was generated by wiring the ITO surface of the obtained thermoelectric conversion element and providing a temperature gradient between the electrodes.
  • thermoelectric conversion element (C12BP) produced in Example 1 In the thermoelectric conversion element (C12BP) produced in Example 1, the electrical conductivity and Seebeck coefficient were measured at different temperatures (27 to 127 ° C.), and the power factor was calculated.
  • FIG. 7 shows DSC analysis data of bulk C12BP up to 27-227 ° C. and relative power factor values (27-127 ° C.) based on 27 ° C. According to this result, it can be confirmed that a large power factor is shown in the vicinity of the temperature (80 to 90 ° C.) at which the structural phase transition of the material is observed.
  • the thermoelectric conversion element can perform efficient thermoelectric conversion when used at 70 to 100 ° C., more preferably 80 to 90 ° C. Therefore, in the thermoelectric conversion element of the present invention, it was shown that very efficient thermoelectric conversion can be performed by selecting an optimum use temperature according to each thermoelectric conversion material.
  • Comparative Example 1 Similar to Example 3, a similar device was prepared using DNTT instead of C10DNTT. As a result, the conductivity at 360 K was 8.3 ⁇ 10 ⁇ 9 Scm ⁇ 1 and the Seebeck coefficient was 35 mV / K. In DNTT obtained in Comparative Example 1, no peak was observed by DSC (170-570K).
  • Example 2 Similar to Example 3, a similar device was produced using pentacene instead of C10DNTT as the compound. As a result, the conductivity at 300 K was 1.3 ⁇ 10 ⁇ 6 Scm ⁇ 1 and the Seebeck coefficient was 2.4 mV / K.
  • thermoelectric conversion materials As a distributed power source and energy harvesting element to form a sensor matrix for smart houses and smart buildings, it is useful in the reuse of exhaust heat energy in homes, offices and automobiles.
  • it can be used as a power source for sticker-type biological information measuring instruments (body temperature, pulse, electrocardiogram monitor, etc.) by taking advantage of the flexibility characteristic of organic thermoelectric conversion materials.
  • it since it has a very high Seebeck coefficient, it becomes easy to design a high-voltage device, and it is possible to provide a characteristic thermoelectric conversion element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 キャリア輸送特性を有する多環芳香族環からなる基本骨格と、この基本骨に結合し、格熱運動により基本骨格の分子間距離や分子パッキング構造の変化を引き起こすアルキル基を有する導電性化合物を含む、有機熱電変換材料

Description

熱電変換材料および熱電変換素子
 本発明は、有機熱電変換材料及び当該材料を用いて作製される熱電変換素子に関する。
 近年、環境中の未利用熱エネルギーを電気エネルギーとして回収するための手段として熱電変換素子に対する注目が高まっている。
 従来、熱電変換材料としては、熱電変換効率が比較的高いことから、主にCoSb等の無機半導体材料が使用、研究されていたが、このような無機半導体材料は、希少元素を含み高価であると共に、材料の加工性に乏しいという問題がある。このため、近年においては、安価であって材料の加工性に優れる有機熱電変換材料の研究が盛んに行われている。
 従来の有機熱電変換材料としては、ポリアニリン(特許文献1、3、4、5及び7)、ポリフェニレンビニレン(特許文献2)、ポリチエニレンビニレン(特許文献2)、ポリピロール(特許文献4)といった導電性高分子からなるものが提案されている。
 しかしながら、これら導電性高分子は、熱電変換性能が十分ではなく、実用化のためにより高い熱電変換性能が求められている。このような熱電変換材料の熱電変換効率を高めるといった要求に対しては、従来、ドーパントを導入したり(特許文献2、3、4、5及び6)、ドーピングされた導電性高分子からなる層とドーピングされていない導電性高分子からなる層とを積層したり(特許文献4)、金属粒子を分散したり(特許文献1)、導電性高分子の分子軌道のエネルギー準位に対して特定のエネルギー準位差の分子軌道を持った熱励起アシスト剤を含有させる(特許文献7)ことが提案されている。
 ところで、熱電変換材料の熱電変換効率は、一般に下記式
[数1]無次元性能指数ZT=S・σ・T/κ   (A)
[式中、S(V/K)は熱起電力(ゼーベック係数)を表し、σ(S/m)は導電率を表し、κ(W/mK)は熱伝導率を表し、T(K)は絶対温度を表し、S・σはパワーファクターを表す。]
で表される無次元性能指数(ZT)を指標とする。上記式から理解できる通り、無次元性能指数(ZT)は、ゼーベック係数及び導電率が大きく、熱伝導率が低い程高くなり、熱電変換性能が高いことを意味する。高いZTを得られる材料のうち、特にゼーベック係数が大きな材料は、有機熱電変換材料を用いるフレキシブル熱電変換素子において、素子の厚みを薄くすることや、多数セルの直列接続数を減らして断線による動作不良を低減することを可能にする。
 この点、上述のドーパントの導入や金属粒子の分散は、主に導電率の増大によって熱電変換効率を向上しようとするものである。従来の非縮退半導体に対する熱電理論によれば、ゼーベック係数と導電率は一定のトレードオフ関係にあり、ゼーベック係数は、キャリア密度が小さいときに最大値を示し、キャリア密度が増大するにつれ小さくなるとされ(非特許文献2)、従来の導電性高分子では、最大値でもゼーベック係数は数mV/K程度であった。
 これに対して、上述の熱励起アシスト剤を含有させる試みは、熱起電力(ゼーベック係数)を高めることで、熱電変換効率を向上するものである。しかし、導電性高分子自体を改良して熱起電力(ゼーベック係数)を高めるものではない。
 また、shimadaらは、有機半導体で低温において深いトラップが突然生じることに着目し、低分子半導体であるペンタセンについて点欠陥によって低温においてゼーベック係数が大きくなることを予想している(非特許文献4)。しかし、shimadaらの示したゼーベック係数は、1mV/K程度であり、しかも分子の熱運動による直接的なゼーベック係数の向上とそのための分子設計に対する何らの教示を与えるものでもない。
特開2010-95688号公報 特開2009-71131号公報 特開2001-326393号公報 特開2000-323758号公報 特開2002-100815号公報 特開2003-332639号公報 国際公開2013/047730号公報
Harada他, Appl. Phys. Lett. 96, (2010) 253304 中村, 応用物理 82 (2013) 954 Kim他, Nat. Mater. 12 (2013) 719 Shimada他, Appl. Phys. Exp. 4 (2011) 061601 Roichman他, Appl. Phys. Lett. 80 (2002) 1948
 本発明は、従来の有機熱電変換材料に比べ格段に大きなゼーベック係数を示す有機熱電変換材料を提供することを課題とする。
 本発明者らは、上記課題に鑑み、従来の半導体における熱電理論に囚われずに優れた熱電変換効率を達成する導電性化合物の分子設計を検討したところ、基本骨格については、平面π共役構造を有し一般にキャリア輸送能の高い多環芳香族化合物に由来する構造とし、その一方で、所定の温度で熱運動する側鎖を有する化合物としたところ、従来の熱電理論からは想定し得ない格段に高いゼーベック係数を奏することを見出した。本発明はこのような知見に基づくものである。
 すなわち、本発明は、以下の有機熱電変換材料及び有機熱電変換素子を提供する。
[1] キャリア輸送特性を有する多環芳香族環からなる基本骨格に、熱運動により基本骨格の分子間距離や分子パッキング構造の変化を引き起こすアルキル基を含む置換基が結合した導電性化合物を含む、有機熱電変換材料。
[2] キャリア輸送特性を有する多環芳香族環からなる基本骨格に、アルキル基またはアルキル基を有する置換基が結合し、-50℃~200℃の範囲の温度で構造相転移(DSCにより特定される)する導電性化合物を含む、[1]に記載の有機熱電変換材料。
[3] 前記導電性化合物が下記一般式(1)で表されることを特徴とする、[1]又は[2]に記載の有機熱電変換材料。
Figure JPOXMLDOC01-appb-C000005

(式中、Xはキャリア輸送特性を有する多環芳香族環を表し、nは1以上の整数を表す。nが2以上の場合には、各Xは異なる多環芳香族環であってもよい。Rはそれぞれ独立してアルキル基又はアルキル基を有する置換基を表す。mはRがXに結合可能な最大数以下の数を表わし、通常1~8の整数を表す。)
[4] 前記導電性化合物が下記一般式(2)で表されることを特徴とする、[1]~[3]のいずれかに記載の有機熱電変換材料。
Figure JPOXMLDOC01-appb-C000006

(式中、Xはキャリア輸送特性を有する多環芳香族環を表し、Rはそれぞれ独立してアルキル基又はアルキル基を有する置換基を表す。mはRがXに結合可能な最大数以下の数を表わし、通常1~8の整数を表す。)
[5] 前記導電性化合物中における前記置換基が占めるファンデルワールス体積比が5~80%である、[1]~[4]のいずれかに記載の有機熱電変換材料。
[6] 前記導電性化合物のDSCによる構造相転移点が、0~180℃の範囲の温度で認められる、[1]~[5]のいずれかに記載の有機熱電変換材料。
[7] 前記多環芳香族環は、多環芳香族芳香族炭化水素又は多環芳香族複素環である[1]~[6]のいずれかに記載の有機熱電変換材料。
[8] 前記多環芳香族複素環が、ヘテロアセン又はポリへテロアセンである、[1]~[7]のいずれかに記載の有機熱電変換材料。
[9] 前記多環芳香族複素環が、ポルフィリン又はポルフィラジンである、[1]~[7]に記載の有機熱電変換材料。
[10] 前記多環芳香族複素環が、式(3)、(4)又は(5)で表される化合物である、[1]~[9]のいずれかに記載の有機熱電変換材料。
Figure JPOXMLDOC01-appb-C000007

(式中Yは、それぞれ独立してS、Se、SO、O、N(R51)又はSi(R)(R52)を表し、R51及びR52はそれぞれ独立して水素原子、アリール基、単環式芳香族複素環残基;アルキル基又は芳香族環残基で置換されたアミノ基、アルキルオキシ基、アルキルチオキシ基、エステル基、カルバモイル基、アセトアミド、チオ基又はアシル基を表し、Yはそれぞれ異なっていてもよい。Z及びZはそれぞれ独立して水素原子、芳香族炭化水素又は芳香族複素環を表す。Z及びZは同じでも異なっても良い。)
Figure JPOXMLDOC01-appb-C000008

(式(4)及び(5)中、Wはそれぞれ独立してN又はC-を表し、少なくとも1つはC-であり、アルキル基又はアルキル基を含む置換基が結合しており、Zはそれぞれ独立して水素原子、芳香族炭化水素又は芳香族複素環を表し、同じでも異なっても良い。Mは金属原子を表す。)
[11] 前記導電性化合物が、式(6)、(7)、(10)、(11)、(12)又は(13)で表される化合物である、[1]~[10]のいずれかに記載の有機熱電変換材料。
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

式(6)及び(7)中、X及びXは上記式(3)のYと同じであり、式(6)、(7)、(10)、(11)、(12)及び(13)中、R及びRの少なくとも1つ、典型的には両方、R乃至R14の少なくとも1つ、並びにR47乃至R50は上記式(1)のRと同じであり、m乃至mは上記式(1)のmと同じであり、R47乃至R49は、1つ以上のWに結合しており、R50は、基本骨格の結合可能な位置に結合できるが、好ましくは1つ以上のWに結合している。
[12] [1]~[11]のいずれかに記載の熱電変換材料を含む熱電変換層を有する有機熱電変換素子。
[13] [1]~[11]のいずれかに記載の熱電変換材料を含む熱電変換層を有する横型または縦型の有機熱電変換素子。
 本発明は、従来の有機熱電変換材料に比べ格段に大きなゼーベック係数を示す有機熱電変換材料及びそれを含む熱電変換層を有する有機熱電変換素子を提供することができる。
図1は、C8BTBT、C10DNTT及びC12BPのファンデルワールス体積比を示すグラフである。 図2は、C12H25-H2BPの示差走査熱量測定(DSC)の分析データである。 図3は、H2BPの示差走査熱量測定(DSC)の分析データである。 図4は、C10DNTTの示差走査熱量測定(DSC)の分析データである。 本発明の横型の熱電変換素子の一例を示す図である。図中の矢印は素子の使用時に付与される温度差の生じる方向を示す。 本発明の縦型の熱電変換素子の一例を示す図である。図中の矢印は素子の使用時に付与される温度差の生じる方向を示す。 実施例5のC12BPの示差走査熱量測定(DSC)の分析データ及びパワーファクターの相対値を示す。
 以下、本発明の実施形態について詳細に説明する。
 本発明の有機熱電変換材料は、キャリア輸送特性を有する多環芳香族環からなる基本骨格と、これに結合するアルキル基またはアルキル基を有する置換基とを有し、所定温度で構造相転移を生じる導電性化合物を熱電変換物質として含有するものである。
 本発明で用いる導電性化合物は、平面π共役構造を有し一般にキャリア輸送能の高い多環芳香族化合物に由来する基本骨格を有する。このような構造では、隣接分子間でπ‐πスタッキングが期待され、隣接分子間のトランスファー積分が室温でバンド伝導が期待できるほど大きい。一方、本発明で用いる導電性化合物は、所定の温度で熱運動により基本骨格の分子間距離や分子パッキング構造の変化を引き起こす置換基が多環式芳香族環に結合している。このような置換基は、アルキル基またはアルキル基を有する置換基のように回転自由な結合を有しており、所定の温度で熱運動して、隣接する分子間距離や分子パッキング構造を変化させ、導電性化合物の体積変化や構造相転移を生じさせる。この結果、温度変化を敏感に捉え熱起電力(ゼーベック係数)が高められるものと解される。
 ここで、本願明細書中で用いる幾つかの用語について定義を記載する。
 「多環芳香族化合物」とは、多環芳香属環を有する化合物を意味し、「多環芳香族化合物からなる基本骨格」とは、このような化合物の全構造のうち、置換基部分を除いた構造を意味する。
 「ファンデルワールス体積」とは、分子を構成する原子をファンデルワールス半径を有する球体で近似した場合の、分子あるいはその構成要素の体積を意味する。「ファンデルワールス体積比」とは、分子の構成する複数の構成要素のファンデルワールス体積の比である。
 「側鎖の長さ」とは、主骨格を構成する原子のうち側鎖が化学結合している原子の中心位置から、側鎖を構成する原子のうち安定構造において最も距離が離れた原子の中心位置までの距離を意味する。
 「π共役構造」とは、多重結合が単結合と交互に連なった構造を表わし、「平面π共役構造」とは、π共役構造を形成する原子が同一平面状に存在する構造を意味する。
 「熱起電力(ゼーベック係数)」とは、電気伝導性を有する物質上の異なる2カ所に生じる定常的な電位差の温度依存性を測定し、その勾配からS=-ΔV/ΔT(ΔVは電位差、ΔTは温度差)で計算される値を意味する。
 「導電率」とは、ソース・メーター等によって測定された材料の電流-電圧特性から求められる電気コンダクタンスに対し、電流経路の長さを乗じ、断面積で除した値を意味する。
 「熱伝導率」とは、サーモリフレクタンス法、温度波分析法、定常熱流法などによって測定した熱拡散率に、材料の比熱と密度を乗じることによって求めた値を意味する。
 本願明細書において「構造相転移」とは、物質の空間的に均一とみなすことのできる構造(秩序構造でも無秩序構造でもよい)が、温度などの外的条件によって異なる状態の構造へと転移することを意味し、「構造相転移温度」とは、その変化が現れる温度を意味する。構造相転移温度は、例えば、示差走査熱量測定(DSC)によって測定した際において吸熱あるいは発熱ピークが現れることや、比熱の温度依存性が変化する(比熱を温度で微分した勾配が急変する)ことで測定される。また、半導体材料における導電率の温度依存性がアレニウス型の熱活性を示すのに対し、その活性化エネルギーが急変する温度としても測定される。
 本発明の有機熱電変換材料に含有される導電性化合物としては、典型的には下記一般式(1)又は(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

 式(1)および(2)中、Xはキャリア輸送特性を有する多環芳香族環を表し、Rはそれぞれ独立してアルキル基またはアルキル基を有する置換基を表す。mはRがXに結合可能な最大数以下の数であり、基本骨格により異なるが例えば1~8の整数、典型的には、1~2の整数を表す。式(1)中のnは1以上の整数であり、nが2以上の場合には、Xはそれぞれ異なる多環式芳香族環であってもよい。
 上述の通り、本発明の有機熱電変換材料に熱電変換物質として含有される導電性化合物の基本骨格を構成する上記Xで表される多環芳香族環は、芳香族環が2以上縮合した構造であり、平面π共役構造を有している。このため、分子が配向して並び隣接分子間のスタッキング効果を生じ易くなり、分子間の電子又は正孔の移動が容易になるため高いキャリア移動度を得られ易い。
 上記Xで表される多環芳香族環は、芳香族炭化水素、及び芳香族複素環の何れか一方又は両方で構成することができ、キャリア移動度が高い多環構造を選択することが好ましい。
 上記Xで表される多環芳香族環の具体例としては、例えば、
 ナフタレン、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、アセナフテン、ナフタセン、アズレン、フェナレン、ベンゾアントラセン、フェナントレン、クリセン、アンタントレン、ピラントレン、インデノインデン、ピセン、トリフェニレン、ペリレン、ナフトペリレン、コロネン、オバレン、ピレン、ベンゾピレン、ヘキサヘリセン、ヘプタヘリセン、オクタヘリセン、ノナヘリセン、デカヘリセン、ウンデカヘリセン、ドデカヘリセン等;テトラフェン、ペンタフェン、ヘキサフェン、ヘプタフェン、オクタフェン、ノナフェン、デカフェン、ウンデカフェン、ドデカフェン、C60フラーレン、C70フラーレンなどの多環芳香族炭化水素;並びに
 インドール、イソインドール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、ベンゾピラン、アクリジン、キサンテン、ベンゾイミダゾール、インダゾール、フェナジン、ナフチリジン、ベンゾチアジアゾール、ベンゾチアゾール、ジチエノシロール、フルオレン、チエノチオフェン、カルバゾール、フェノチアジン、フェノオキサジン、ベンゾチエノベンゾチオフェン、ジチエノチオフェン、ベンゾジチオフェン、ベンゾジセレノフェン、ジナフトチエノチオフェン、ジアンスラチエノチオフェン、ベンゾビスオキサゾールなどのヘテロアセン系及びこれらが複数結合したポリヘテロアセン類、フェナントレン、フェナントリジン、シクロペンタジチオフェン、ベンゾ-C-シンノリン、ペリレンジカルボキシイミド、ベンゾトリフラン、ベンゾトリチオフェン、ポルフィリン、クロリン、コリン、フタロシアニン、ポルフィラジンなどの多環芳香族複素環が挙げられる。
 中でも、キャリア輸送能が高い点で、ナフタレン、アンスラセン、ナフタセン、ペンタセン等のアセン系炭化水素や、ベンゾジチオフェン、ベンゾチエノベンゾチオフェン、ジナフトジチオフェン等のヘテロアセン類、或いはポルフィリン、フタロシアニン、ポルフィラジン等が好ましい。
 多環芳香族化合物の基本骨格の非限定的な具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018


Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

 上述の通り、導電性化合物の基本骨格は、2以上の多環芳香族環が単結合で連結してπ共役構造を形成してもよい。基本骨格が複数の多環芳香族環が連結して構成される場合、多環芳香族環の数は、一般的には2~2000とすることができ、2~1000とすることが好ましく、2~100とすることがより好ましく、2~5とすることが更に好ましい。勿論、単一の多環芳香族環で基本骨格を構成してもよい。また、単数又は複数の多環芳香族環によって構成される基本骨格の分子量(Mw)は、50~200000でもよく、好ましくは100~100000であり、より好ましくは200~50000Mwであり、特に好ましくは200~30000である。
 本発明の有機熱電変換材料に含まれる導電性化合物は、上記の多環芳香族環によって発達したπ共役構造が形成されていると共に、当該多環芳香族環に上記Rで表されるアルキル基又はアルキル基を有する置換基が結合している。
 このような置換基は、回転自由な結合を有しており、所定の温度、好ましくは-50℃~200℃の範囲の何れかの温度で熱運動を生じる。このような置換基は、熱に敏感に応答して運動し、導電性化合物の体積変化や構造相転移を生じさせる。この結果、多環芳香族化合物の基本骨格等によるキャリア輸送能を変調させ、高効率の熱電変換を可能にする。このような置換基の熱運動による導電性化合物の構造相転移は、示差走査熱量測定(DSC)の吸発熱ピークにより確認することができる。
 熱に敏感に応答して熱運動を生じるには、置換基は、多環芳香族骨格に回転自由な共有結合で結合することが好ましい。また、置換基自体も多数の回転自由な共有結合を有することが好ましく、このような点から、置換基は、アルキル基を有する置換基であることが好ましく、鎖状のアルキル基を主鎖とする置換基であることがより好ましく、直鎖のアルキル基が更に好ましい。
 また、高い熱起電力(ゼーベック係数)を達成するためには、多環芳香族環による発達したπ共役構造を維持しながら、置換基の熱運動により熱に敏感に応答して構造相転移をもたらすことが重要と考えられ、この観点から、多環芳香族骨格に対する側鎖のファンデルワールス体積比は指標の1つと考えられる。多環芳香族骨格の違いにより結晶性や結晶形による凝集力が異なり、その分子間の結合力は異なるが、一般的に本発明の熱電変換材料に含有される導電性化合物においては、同化合物中における置換基が占めるファンデルワールス体積比が、5%~80%であることが好ましく、25~60%であることが好ましく、30~60%がより好ましい。また10~50%であることが更に好ましく、15~50%であることが特に好ましい。この多環芳香族骨格に対する側鎖のファンデルワールス体積比を設計することにより構造相転移の温度や熱運動をコントロールすることが可能となる。素子を使用する環境により、求められる温度(温度差)が異なるが、この能力を活用することにより、適した素子を設計することが出来る。
 同様の点から、アルキル基またはアルキル基を有する置換基のアルキル基部分は、鎖状又は環状の、好ましくは直鎖状の炭素原子数1~20の基であり、より好ましくは炭素数2~18の基であり、更に好ましくは炭素数4~15の基である。
 具体的には、直鎖アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基が挙げられ、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基が好ましく、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基がより好ましい。
 また分岐鎖アルキル基としては、例えばイソプロピル基、イソブチル基、イソアミル基、s-ブチル基、t-ブチル基、2-メチルブチル基、2-メチルヘキシル基、2-エチルヘキシル基、2-メチルオクチル基、2-エチルオクチル基を挙げることができ、イソブチル基、イソアミル基、s-ブチル基、t-ブチル基、2-メチルブチル基、2-メチルヘキシル基、2-エチルヘキシル基、2-メチルオクチル基、2-エチルオクチル基が挙げられる。また環状のアルキル基としてシクロペンチル基、シクロヘキシル基などが挙げられる。
 アルキル基を有する置換基としては、例えば、アルキル基が以下の置換基で置換された基が挙げられる。
1)フェニル基、ビフェニル基、ナフチル基等のアリール基
2)フリル基、チエニル基、チエニレン基、テニル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、イミダゾリル基、モルホリノ基、ベンゾチエニル基、ベンゾフェニル基等の単環式芳香族複素環残基
3)アルキル基又は芳香族環残基で置換されたアミノ基、アルキルオキシ基、アルキルチオキシ基、エステル基、カルバモイル基、アセトアミド、チオ基又はアシル基
4)フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基
 これらの置換基は1つ又は複数有しても良い。
 また、アルキル基が、以下の化学構造を介して多環芳香族骨格に結合している基が挙げられる。
1)酸素原子、窒素原子、硫黄原子、ケイ素原子、リン原子などのヘテロ原子
2)フェニル基、ビフェニル基、ナフチル基等のアリール基
3)フリル基、チオフェン基、チエニル基、チエニレン基、テニル基、ピリジル基、イミダゾリル基、モルホリノ基、ベンゾチエニル基、ベンゾフェニル基等の芳香族複素環残基
4)カルボニル基、チオカルボニル基
 アルキル基を有する置換基としては、例えば、シリルエチニル基で置換されたアルキル基、アリール基(例えば、フェニル基、ビフェニル基、ナフチル基等)で置換されたアルキル基、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、イミダゾリル基等)で置換されたアルキル基、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)で置換されたアルキル基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)で置換されたアルキル基、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)で置換されたアルキル基、アルキルスルファモイル基、アルキルカルボニル基、アルキルチオカルボニル基、アルキルカルボニルオキシ基、アルキルカルボニルアミノ基、アルキルカルバモイル基、アルキルウレイド基、アルキルスルフィニル基、アルキルスルホニル基、アルキル基が置換したアリールスルホニル基、アルキルアミノ基、フルオロアルキル基、パーフルオロアルキル基、アルキルシリル基等が挙げられる。
 本発明の導電性材料に含まれる導電性化合物では、上述した多環芳香族環の1つに対して複数の置換基を有してもよく、通常多環芳香族環の1つ当たり1~8の置換基を有することができ、1~4の置換基を有することが好ましく、1~3の置換基を有することがより好ましく、2の置換基を有することが特に好ましい。
 また、本発明を構成する導電性化合物では、上述した置換基のアルキル基部分(置換基がアルキル基である場合にはアルキル基自体)の分子量が導電性化合物全体の分子量に対して5~80%を占めることが好ましい。例えば、多環芳香族骨格部分の一方の幅がベンゼン環一個程度に狭くもう一方の幅がそれより長い棒状の化合物では、その割合は25~60%を占めることがより好ましく、多環芳香族骨格部分の幅がベンゼン環二個程度以上に幅広い化合物で、その割合は10~50%を占めることが好ましい。また、置換基全体で回転自由な結合が複数存在することが好ましい。一方、アルキル基以外の構造は、多環芳香族環と共にπ共役構造を形成してもよい。適宜、アルキル基の数、置換位置、分鎖数、長さを調整することで最適な特性を得ることが可能となる。
 導電性化合物の構造相転移を生じる温度は、上記の多環芳香族化合物の基本骨格と、上記の置換基との組合せによって変動する。したがって、導電性化合物が使用されることが予想される温度に応じて、適宜好ましい分子設計をすることが好ましい。特に、本発明の導電性化合物では、導電性化合物のアルキル基の長さをコントロールすることで、熱電変換材料の相転移の温度の制御や熱運動の制御が可能と考えられる。従って、素子を用いる環境に応じて、基本骨格と置換基との組合せ、特にアルキル基の長さ又はファンデルワールス体積比を適宜選択し、効果的な熱電変換素子を得ることができると考えられる。
 熱電変換素子の通常の用途からすると、-50℃~200℃の範囲の温度で構造相転移を生じる分子設計とすることが好ましく、0~180℃の範囲の温度で構造相転移を生じる分子設計とすることがより好ましく、10~150℃の範囲の温度で構造相転移を生じる分子設計とすることが更に好ましい。従って、このような温度範囲で構造相転移を生じるように、基本骨格と置換基との組合せ、特にアルキル基の長さ又はファンデルワールス体積比を選択することが好ましい。
 導電性化合物の構造相転移を生じる温度(構造相転移点)は、示差走査熱量測定(DSC)の吸発熱ピークにより確認することができる。導電性化合物の構造相転移がみられる温度の近傍に大きなパワーファクターの相対値を示す熱電変換素子は、当該温度付近を使用温度とするのに最適な熱電変換材料であると確認できる。
 このような観点から、好ましい導電性化合物の代表的な例を以下に示す。
(1)ポルフィリン骨格を有する導電性化合物
Figure JPOXMLDOC01-appb-C000022

 式(5)中、Mは金属原子を表す。式(4)及び(5)中、Zはそれぞれ独立して水素原子、或いは無置換、又はアルキル基若しくはアルキル基を有する置換基で置換された芳香族炭化水素又は芳香族複素環であり、無置換の芳香族炭化水素又は芳香族複素環が好ましい。複数のZは同じでも異なってもよい。
 Wはそれぞれ独立してN又はCRを表し、少なくとも1つのWはCRを表し、Rは水素原子、アルキル基又はアルキル基を有する置換基を表し、少なくとも1つのRはアルキル基又はアルキル基を有する置換基を表す。好ましくは対向する1組のWは、CRを表し、Rがアルキル基若しくはアルキル基を有する置換基であり、他の対抗する1組のWは、N又はCRを表し、Rは水素原子であり、より好ましくはCRを表し、Rは水素原子である。
 Zを構成する芳香族炭化水素環としては、例えば、フェニル、ビフェニル、ナフタレン、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、アセナフテン、ナフタセン、アズレン、フェナレン、ベンゾアントラセン、フェナントレン、クリセン、アンタントレン、ピラントレン、インデノインデン、ピセン、トリフェニレン、ペリレン、ナフトペリレン、コロネン、オバレン、ピレン、ベンゾピレン、ヘキサヘリセン、ヘプタヘリセン、オクタヘリセン、ノナヘリセン、デカヘリセン、ウンデカヘリセン、ドデカヘリセン等;テトラフェン、ペンタフェン、ヘキサフェン、ヘプタフェン、オクタフェン、ノナフェン、デカフェン、ウンデカフェン、ドデカフェン、C60フラーレン、C70フラーレン等を挙げることができ、フェニル、ビフェニル、ナフタレンが好ましい。芳香族複素環としては、例えばフリル、チオフェン、チエニル、チエニレン、テニル、ピリジル、イミダゾリル、モルホリノ、ベンゾチエニル、ベンゾフェニル等を挙げることができる。これら芳香族炭化水素環又は芳香族複素環を任意選択で置換するアルキル基又はアルキル基を有する置換基としては、式(1)及び(2)のRで説明した基を挙げることができ、炭素数1~15の直鎖アルキル基が好ましい。また、Rを構成するアルキル基又はアルキル基を有する置換基も、式(1)及び(2)のRで説明した基を挙げることができる。好ましくは、1組の対向する位置のRが炭素数1~30の直鎖アルキル基又は炭素数1~30の直鎖アルキル基を有する基であることが好ましく、炭素数5~20の直鎖アルキル基又は炭素数5~20の直鎖アルキル基を有する基であることがより好ましく、炭素数8~15の直鎖アルキル基又は炭素数8~15の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は、5~60%であることが好ましく、10~50%であることがより好ましく、15~50%であることが更に好ましい。
 このようなポルフィリンを基本骨格とする導電性化合物としては、以下の一般式(10)~(13)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023

式(10)、(11)、(12)又は(13)中、R47乃至R50は上記式(1)のRと同じであり、R47乃至R49は少なくとも1つのWに結合しており、R50は基本骨格の結合可能な位置に結合できるが、好ましくは少なくとも1つのWに結合しており、m乃至mは上記式(1)のmと同じである。m、m、m又はmが2以上の場合、複数のR47、R48、R49又はR50は異なっていても同じでもよい。R47乃至R50を構成するアルキル基又はアルキル基を有する置換基も、式(1)及び(2)のRで説明した基を挙げることができる。好ましくは、1組の対向する位置のR47、R48、R49又はR50が炭素数1~20の直鎖アルキル基又は炭素数1~20の直鎖アルキル基を有する基であることが好ましく、炭素数4~15の直鎖アルキル基又は炭素数4~15の直鎖アルキル基を有する基であることがより好ましく、炭素数8~13の直鎖アルキル基又は炭素数8~13の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は、5~60%であることが好ましく、10~50%であることがより好ましい。特に15~50%であることが好ましい。
 このようなポルフィリン構造を基本骨格とする導電性化合物は、例えば、アルキル基又はアルキル部分を炭素数4~15の直鎖アルキル基又は炭素数4~15の直鎖アルキル基を有する基とした場合の構造相転移は30~120℃の温度領域において生じる。そのため、例えば30~150℃での使用が想定される場合、アルキル基又はアルキル部分を炭素数4~15の直鎖アルキル基又は炭素数4~15の直鎖アルキル基を有する基とすることが好ましい。
(2)へテロアセンを基本骨格とする導電性化合物
Figure JPOXMLDOC01-appb-C000024

 式(3)中、Yはそれぞれ独立して、S、Se、SO、O、N(R51)、Si(R51)(R52)を表し、R51及びR52はそれぞれ独立して、水素原子、置換基を表し、好ましい置換基としてはアリール基、単環式芳香族複素環残基;アルキル基又は芳香族環残基で置換されたアミノ基、アルキルオキシ基、アルキルチオキシ基、エステル基、カルバモイル基、アセトアミド、チオ基又はアシル基;ハロゲン原子、ニトロ基、又はシアノ基である。アリール基としては、フェニル基、ビフェニル基、ナフチル基等が挙げられ、単環式芳香族複素環残基としては、フリル基、チエニル基、チエニレン基、テニル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、イミダゾリル基、モルホリノ基、ベンゾチエニル基、ベンゾフェニル基等が挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。Yは、好ましくはS又はSeであり、特に好ましくはSである。
 Z及びZはそれぞれ独立して、アルキル基又はアルキル基を有する置換基、或いはアルキル基又はアルキル基を有する置換基で置換された芳香族炭化水素環又は芳香族複素環を表し、Z及びZは同じでも異なっても良い。
 芳香族炭化水素環としては、例えば、単環式、又は複数の環が連結又は縮合した芳香族炭化水素環を挙げることができる。単環式芳香族炭化水素環としては、例えば炭素数3~7、好ましくは4~6の芳香族炭化水素環を挙げることができる。また、複数の環が連結又は縮合した芳香族炭化水素環としては、炭素数3~7、好ましくは4~6の芳香族炭化水素環が2以上(例えば2~7個、2~5個、又は2~3個)連結又は縮合した構造を挙げることができる。具体的な芳香族炭化水素環の例としては、例えばフェニル、ビフェニル、ナフチル、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、トリフェニレン、テトラフェン、ピレン、ピセン、ペンタフェン、ペリレン、ヘリセン、コロネン等を挙げることができる。芳香族複素環としては、例えばフリル、チオフェン、チエニル、チエニレン、テニル、ピリジル、イミダゾリル、モルホリノ、ベンゾチエニル、ベンゾフェニル等を挙げることができる。
 アルキル基又はアルキル基を有する置換基としては、式(1)及び(2)のRで説明した基を挙げることができる。好ましくは、炭素数1~30の直鎖アルキル基又は炭素数1~30の直鎖アルキル基を有する基であることが好ましく、炭素数1~20の直鎖アルキル基又は炭素数1~20の直鎖アルキル基を有する基であることがより好ましく、炭素数5~15の直鎖アルキル基又は炭素数5~15の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は5~80%であることが好ましく、25~60%であることがより好ましく、30~60%であることが更に好ましい。
 このようなヘテロアセンを基本骨格とする導電性化合物としては、以下の化合物が好ましい
(2-1)BTBT又はそれに類似する構造を基本骨格とする導電性化合物
Figure JPOXMLDOC01-appb-C000025

 式(6)中、X及びXは式(3)のYと同じであり、好ましくはS又はSeであり、特に好ましくはSである。R及びRの少なくとも1つ、好ましくは両方、上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基と同じでよい。もっとも、式(6)の化合物では、炭素数1~15の直鎖アルキル基又は炭素数1~15の直鎖アルキル基を有する基であることが好ましく、炭素数6~12の直鎖アルキル基又は炭素数6~12の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は5~80%であることが好ましく、25~60%であることがより好ましく、30~60%であることが更に好ましい。
 このような構造を基本骨格とする導電性化合物は、例えば、アルキル基又はアルキル部分を炭素数5~12の直鎖アルキル基又は炭素数5~12の直鎖アルキル部分とした場合の構造相転移は70~120℃の温度領域において生じる。そのため、例えば50℃~150℃での使用が想定される場合には、アルキル基又はアルキル部分を炭素数5~12の直鎖アルキル基又は炭素数5~12の直鎖アルキル部分とすることが好ましい。
 なお、式(6)の化合物は、例えばWO2008/047896に記載の方法で製造することができ、その内容を参照により本願明細書に組み込む。
(2-2)DNTT又はそれに類似する構造を基本骨格とする導電性化合物
Figure JPOXMLDOC01-appb-C000026

 式(7)中、X及びXは上記式(3)のYと同じであり、好ましくはS又はSeであり、特に好ましくはSである。R乃至R14は、水素、又は上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基であり、R乃至R14の少なくとも1つは、上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基である。もっとも、式(7)の化合物では、R及至R、及びR10及至R13の何れかは、アルキル基又はアルキル基を有する置換基であることが好ましく、特にR及びR12、又はR及びR11に位置することがより好ましい。また、アルキル基又はアルキル基を有する置換基としては、炭素数1~20の直鎖アルキル基又は炭素数1~20の直鎖アルキル基を有する基であることが好ましく、炭素数4~16の直鎖アルキル基又は炭素数4~16の直鎖アルキル基を有する基であることがより好ましく、炭素数6~12の直鎖アルキル基又は炭素数6~12の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は5~80%であることが好ましく、25~60%であることがより好ましく、30~60%であることが更に好ましい。
 このような構造を基本骨格とする導電性化合物は、例えば、アルキル基又はアルキル部分を炭素数6~12の直鎖アルキル基又は炭素数6~12の直鎖アルキル部分とした場合の構造相転移は100~140℃の温度領域において生じる。そのため、例えば80℃~150℃での使用が想定される場合には、アルキル基又はアルキル部分を炭素数6~12の直鎖アルキル基又は炭素数6~12の直鎖アルキル部分とすることが好ましい。
 なお、式(7)の化合物は、例えばWO/2010/098372に記載の方法で製造することができ、その内容を参照により本願明細書に組み込む。
(4)DATT又はそれに類似する構造を基本骨格とする導電性化合物
Figure JPOXMLDOC01-appb-C000027

 式(8)中、X及びXは上記式(3)のYと同じであり、好ましくはS又はSeであり、特に好ましくはSである。R15乃至R30は、水素、又は上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基であり、R15乃至R30の少なくとも1つは、Rで説明したアルキル基又はアルキル基を有する置換基である。もっとも、式(8)の化合物では、R15乃至R30中、R18及びR26は、上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基であり、他は、水素であることが好ましい。また、アルキル基又はアルキル基を有する置換基としては、炭素数1~25の直鎖アルキル基又は炭素数1~25の直鎖アルキル基を有する基であることが好ましく、炭素数5~20の直鎖アルキル基又は炭素数5~20の直鎖アルキル基を有する基であることがより好ましく、炭素数6~15の直鎖アルキル基又は炭素数6~15の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は5~80%であることが好ましく、25~60%であることがより好ましく、30~60%であることが更に好ましい。
 このような構造を基本骨格とする導電性化合物は、例えば、アルキル基又はアルキル部分を炭素数6~15の直鎖アルキル基又は炭素数6~15の直鎖アルキル部分とした場合の構造相転移は100~140℃の温度領域に生じる。そのため、例えば80℃~150℃での使用が想定される場合には、アルキル基又はアルキル部分を炭素数6~15の直鎖アルキル基又は炭素数6~15の直鎖アルキル部分とすることが好ましい。
 なお、式(8)の化合物は、例えばWO2008/050726に記載の方法で製造することができ、その内容を参照により本願明細書に組み込む。
(4)DCTT又はそれに類似する構造を基本骨格とする導電性化合物
Figure JPOXMLDOC01-appb-C000028

 式(9)中、X及びXは上記式(3)のYと同じであり、好ましくはS又はSeであり、特に好ましくはSである。R31乃至R46は、水素、又は上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基であり、R31乃至R46の少なくとも1つは、Rで説明したアルキル基又はアルキル基を有する置換基である。もっとも、式(9)の化合物では、R31乃至R46中、R34及びR41は、上記式(1)及び(2)のRで説明したアルキル基又はアルキル基を有する置換基であり、他は水素であることが好ましい。また、アルキル基又はアルキル基を有する置換基としては、炭素数1~25の直鎖アルキル基又は炭素数1~25の直鎖アルキル基を有する基であることが好ましく、炭素数5~20の直鎖アルキル基又は炭素数5~20の直鎖アルキル基を有する基であることがより好ましく、炭素数6~15の直鎖アルキル基又は炭素数6~15の直鎖アルキル基を有する基であることがより好ましい。
 また、アルキル基又はアルキル部分の導電性化合物全体に対するファンデルワールス体積比は、5~60%であることが好ましく、10~50%であることがより好ましい。特に15~50%であることが好ましい。
 このような構造を基本骨格とする導電性化合物は、上述の通り、アルキル基又はアルキル部分の長さを調整することで、熱電変換材料の構造転移の温度の制御や熱運動の制御が可能と考えられ、例えば70℃~150℃での使用が想定される場合には、アルキル基又はアルキル部分を炭素数6~15の直鎖アルキル基又は炭素数6~15の直鎖アルキル部分とすることが好ましい。
 なお、式(9)の化合物は、例えばWO2008/050726に記載の方法で製造することができ、その内容を参照により本願明細書に組み込む。
 本発明の有機熱電変換材料は、任意選択で、ドーパントを含んでもよい。ドーパントとしては、例えば、スルホニウム塩、ヨードニウム塩、アンモニウム塩、カルボニウム塩、ホスホニウム塩等のオニウム塩化合物;カンファースルホン酸、ドデシルベンゼンスルホン酸、2-ナフタレンスルホン酸、トルエンスルホン酸や、2-ナフタレンスルホン酸等の有機酸;Cl2、Br2、I2、ICl、ICl3、IBr、IF等のハロゲン;PF5、AsF5、SbF5、BF3、BCl3、BBr3、SO3等のルイス酸;HF、HCl、HNO3、H2SO4、HClO4、燐酸等のプロトン酸;FeCl3、FeOCl、TiCl4、ZrCl4、HfCl4、NbF5、NbCl5、TaCl5、MoF5、WF6等の遷移金属化合物、Li、Na、K、Rb、Cs等のアルカリ金属、Ca、Sr、Ba等のアルカリ土類金属、Eu等のランタノイド、その他R4+、R4+、R4As+、R3+(R:アルキル基)、アセチルコリンなどを挙げることができる。
 本発明においては、ドーパントは必須成分ではなく、有機熱電変換材料中、0~60重量%含有することが好ましく、0~20重量%含有することがより好ましい。
 本発明の熱電変換材料は、高い熱起電力を備えており、有機熱電変換素子の熱電変換材料として有用である。このため、本発明の熱電変換材料は、有機熱電変換素子の熱電変換層を形成するために効果的に用いることができる。従って、本発明の他の実施形態によれば、本発明の熱電変換材料の熱電変換層を形成するための使用、熱電変換材料を含む熱電変換層を有する熱電変換素子、及び熱電変換材料を含む熱電変換層によって熱電変換させる方法も提供される。
 本発明の熱電変換素子は、基材上に、第1の電極、熱電変換層および第2の電極を有し、熱電変換層は本発明の熱電変換材料を含有している。
 本発明の熱電変換素子は、基材上に、第1の電極、熱電変換層および第2の電極を有するものであればよく、第1の電極および第2の電極と熱電変換層との位置関係等、その他の構成について特に限定されない。本発明の熱電変換素子において、熱電変換層は、その少なくとも一方の面に第1の電極および第2の電極に接するように配置されていればよい。基材に対して横方向に温度差がある場合が横型の熱電変換素子(図5)、基材に対して縦方向に温度差がある場合が縦型の熱電変換素子(図6)である。本発明の熱電変換素子における熱電変換層は、2つの電極に接するように配置されていればよく、この電極間に温度差を設けることにより起電力を発生する。
 基材としては、ガラス、金属、プラスチックフィルム、不織布、紙等の電極及び熱電変換材料を保持できるものが用いることができる。デバイスにフレキシビリティーを与えるため、フレキシブルなプラスチックフィルムなどを用いることが好ましい。
 電極材料としてはITO等の透明電極、金、銀、銅、アルミニウム等の金属電極、カーボンナノチューブ、グラフェン等の炭素電極、PEDOT:PSS等の有機導電性材料などが挙げられ、熱電変換材料との接触抵抗の低い材料が好ましい。また熱電変換材料との接触抵抗を下げるためコンタクトドーピング等の処理をすることが可能である。
 本発明の熱電変換素子の熱電変換層は本発明の熱電変換材料を用いる。熱電変換層は1層でもよく、複数の層であってもよい。本発明の熱電変換素子が複数の熱電変換層を有する場合、本発明の熱電変換材料を用いて形成された熱電変換層のみを複数層有する素子であっても良いし、本発明の熱電変換材料を用いて形成された熱電変換層と、本発明の熱電変換材料以外の熱電変換材料を用いて形成された熱電変換層を有する素子であっても良い。本発明の熱電変換材料は、上述の通り、素子を使用する温度に応じて最も高い熱起電力を発揮するように設計することができるので、使用温度に応じて、置換基の分子設計を適宜変更することができる。
本発明の熱電変換素子における熱電変換層等の製膜方法は特に限定されず、例えば、印刷などの溶液プロセスや真空プロセスなどの方法が挙げられる。デバイス製造コストを考慮すると溶液プロセスが好ましく、キャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、ソフトリソグラフィー法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
 上述の通り、本発明の熱電変換素子は、導電性化合物自体の高い熱起電力を通じて、高い熱電変換効率を達成することができ、高性能な有機熱電変換素子を提供する新たなアプローチを提供する。特に非常に高いゼーベック係数を有することから高電圧のデバイス設計が容易となり、特徴のある熱電変換素子を提供することが可能となる。
 以下、実施例に基づき本発明をより詳しく説明する。しかし、以下の実施例は本発明の技術的範囲を何ら限定するものではない。
(合成例1)(6,20-Didodecyl-29H,3H-tetrabenzo[b,g,l,q] porphyrin)
Figure JPOXMLDOC01-appb-C000029
 アルゴン置換した反応容器にジピロメタン(0.30g,1.0mmol)を加え、ジクロロメタン(200ml)に溶解させた。ここにアルゴンガスを10分間バブリングした。ついでトリデカナール(0.3ml,1.1nnol)とトリフルオロ酢酸(TFA)(2滴)を順に加え、遮光下17時間撹拌した。ここに2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)(0.35g)を加え、さらに2時間撹拌した。反応終了後、溶液が半量になるまで溶媒を除去し、アルミナカラムクロマトグラフィー(クロロホルム)を行った。さらにシリカゲルクロマトグラフィー(ジクロロメタン)及びGPCを用いて精製し、最後に再結晶(クロロホルム/メタノール)を行うことで、目的物を赤褐色個体として得た。収率:80%(389mg、0.405mmol)
Figure JPOXMLDOC01-appb-I000030
(合成例2) C12H25-H2BP
Figure JPOXMLDOC01-appb-C000031

 
 上記で得られたポルフィリンをガラスチューブオーブン中真空下、200℃で30分間加熱することによりベンゾポルフィリンが緑色個体として得られた。
Figure JPOXMLDOC01-appb-I000032
 図2に示す通り、DSC(170-570K)により、320-360Kにシャープなピークとブロードなピークが認められ、440K付近にピークが認められ、構造相転移を生じていることが示された。
(合成例3)29H,3H-tetrabenzo[b,g,l,q] porphine(BP、LUMO:-2.26eV、HOMO:-4.69eV ALDRICH社製)。
 図3に示す通り、DSC(170-570K)には、明確なピークが認められなかった。
(合成例4)C8BTBTの合成
(1)2,7-Di(1-octynyl1)[1]benzothieno[3,2-b][1]benzothiopheneの合成
Figure JPOXMLDOC01-appb-C000033
 窒素雰囲気下、2,7-ジヨードベンゾチエノベンゾチオフェン(1.0g,2.0mmol)を無水ジイソプロピルアミン(15ml)と無水ベンゼン(15ml)に溶解後、脱気を30分行った。10mol% PdCl2(PPh3)2(140mg)、20mol% CuI(76mg)、1-octyne(0.81ml,5.5mmol)を加え8時間室温で攪拌した。攪拌終了後、水(30ml)を加え、クロロホルム(30ml×3)で抽出した。抽出液を水(100ml×3)で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、カラムクロマトグラフィー(シリカゲル、塩化メチレン:へキサン=1:3、Rf=0.6)により精製し、ヘキサンから再結晶することで上記式で表される目的化合物の無色板状晶を得た(収量710mg、収率77%)。
Figure JPOXMLDOC01-appb-I000034
(2) 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiopheneの合成
Figure JPOXMLDOC01-appb-C000035
 得られた化合物(300mg,0.66mmol)、Pd/C(70mg)を無水トルエン(10mL)に加え、アスピレーターによる減圧-水素パージを数回繰り返した後、8時間攪拌した。反応終了後溶媒を留去し、カラムクロマトグラフィー(シリカゲル、へキサン、Rf=0.6)により精製し(収量286mg、収率94%)、ヘキサンから再結晶することで、目的化合物の無色粉末固体を得た(収量250mg、収率82%)。
Figure JPOXMLDOC01-appb-I000036
(実施例)
 各実施例において、各化合物を用いた有機熱電変換素子を作製し、特性を評価した。評価装置として、自家製超高抵抗試料対応熱電特性評価装置を用いた。前記特性評価装置は、超高真空チャンバー中において、(1)クヌーセンセルによる昇華性材料の精密蒸着、(2)ケースレー6430ソースメーターを利用した1014Ω程度を上限とする試料抵抗測定、および、(3)自家製高入力インピーダンス差動増幅回路を利用した1013Ω程度の試料抵抗を上限とする高精度ゼーベック係数測定、を行う機能を有する。(非特許文献:中村, 応用物理 82 (2013) 954を参照)
(実施例1) 化合物(C12BP)を用いた熱電変換素子の作製・評価
 本実施例において、合成例1で合成した化合物を用いた有機熱電変換素子を作製して、特性を評価した。
 電極作製用シャドウマスクを取り付けた白板ガラスを真空蒸着装置内に設置し、装置内の真空度が1.0×10-4Pa以下になるまで排気した。抵抗加熱蒸着法によって、金を0.1Å/secの蒸着速度で30nmの厚さに蒸着し、電極付き基板を得た。
 本基板にシャドウマスクを取り付けたうえで熱電対及び電極への配線を行い、前記特性評価装置内に設置し、装置内の真空度が1.0×10-4Pa以下になるまで排気し、抵抗加熱蒸着法によって、化合物(C12BP)の薄膜(160nm)を形成し、本発明の熱電変換素子(電極間の距離:10mm、電極の幅:7.6mm)を得た。
 得られた熱電変換素子は、装置内の真空度が1.0×10-5Pa以下の条件で温度を定めて電圧を印加、電流値を読み取り、導電率を計測した。また電極間に温度勾配を設け、熱起電力値を読み取ることでゼーベック係数を測定した。
 その結果、340Kでの導電率は3.0×10-8Scm-1であり、ゼーベック係数は123mV/Kであった。また、図1に示す通り、C12BPの側鎖のファンデルワールス体積比は50%(Winmostarソフトを使用した)であった。
(実施例2) 化合物(C8-BTBT)を用いた熱電変換素子の作製・評価
 実施例1で用いた化合物の代わりに合成例2で合成した化合物(C8-BTBT)を用いて有機熱電変換素子を作製し、評価した。
 白板ガラス基板に0.5wt%C8-BTBTのヘプタン溶液を滴下、スピンコート(1000rpm×1min)製膜し、乾燥して有機薄膜(30nm)基板を得た。この有機薄膜基板に電極形成用シャドウマスクを取り付け、真空蒸着装置内に設置し、装置内の真空度が1.0×10-4Pa以下になるまで排気した。抵抗加熱蒸着法によって、金を0.1Å/secの蒸着速度で30nmの厚さに蒸着し、熱電変換素子(電極間の距離:5mm、電極の幅:7.6mm)を得た。
 本素子に熱電対及び電極への配線を行い、前記評価装置内に設置し、装置内の真空度が1.0×10-5Pa以下の条件で温度を定めて電圧を印加、電流値を読み取り、導電率を計測した。また電極間に温度勾配を設け、熱起電力値を読み取ることでゼーベック係数を測定した。
 その結果、340Kでの導電率は2.1×10-8Scm-1であり、ゼーベック係数は190mV/Kであった。
 実施例2で得られた(C8-BTBT)では、DSC(170-570K)により、380K付近に2本と400Kにシャープなピークが認められ構造相転移を生じていることが示された。
 また、図1に示す通り、C8BTBTの側鎖のファンデルワールス体積比は60%であった。
(実施例3) 化合物(C10DNTT)を用いた熱電変換素子の作製・評価
 実施例1にて用いた化合物の代わりに化合物(C10DNTT)を用いて有機熱電変換素子を作製し、評価した。
 電極作製用シャドウマスクを取り付けた白板ガラスを真空蒸着装置内に設置し、装置内の真空度が1.0×10-4Pa以下になるまで排気した。抵抗加熱蒸着法によって、金を0.1Å/secの蒸着速度で30nmの厚さに蒸着し、電極付き基板を得た。
 本基板にシャドウマスクを取り付けたうえで熱電対及び電極へ配線を行い、前記評価装置内に設置し、装置内の真空度が1.0×10-4Pa以下になるまで排気し、抵抗加熱蒸着法によって、0.5Å/secの蒸着速度で化合物(C10DNTT)の薄膜(20nm)を形成し、本発明の熱電変換素子(電極間の距離:5mm、電極の幅:7.6mm)を得た。
得られた熱電変換素子は、装置内の真空度が1.0×10-5Pa以下の条件で温度を定めて電圧を印加、電流値を読み取り、導電率を計測した。また電極間に温度勾配を設け、熱起電力値を読み取ることでゼーベック係数を測定した。
 その結果、315Kでの導電率は1.1×10-7Scm-1であり、ゼーベック係数は128mV/Kであった。
 また、図1に示す通り、C10DNTTの側鎖のファンデルワールス体積比は57%であった。図4に示す通り、実施例1で得られたC10DNTTでは、DSC(170-620K)により、390K、500K、570K及び580Kにそれぞれシャープなピークが認められ、構造相転移を生じていることが示された。
(実施例4) 化合物(C8-BTBT)を用いた縦型熱電変換素子の作製・評価
 合成例2で合成した化合物 (C8-BTBT)を用いて縦型有機熱電変換素子を作製し、評価した。
 ITOガラス基板(旭硝子製)にPEDOT/PSSをスピンコート(7000rpm×20sec)製膜、乾燥し基板を作製した。
 作製した基板2枚でハイミラン(50μm 三井デュポンポリケミカル製)を挟み、150℃で加熱することにより25μmの隙間を持つ基板対を作製した。
作製した基板対に130℃で溶融した化合物 (C8BTBT)を注入し、熱電変換素子(電極間距離:25μm,電極サイズ100mm2)を得た。
 得られた熱電変換素子のITO面に配線を行い、電極間に温度勾配を設けることにより、熱起電力が生じたことを確認した。
(実施例5)
 実施例1で作製した熱電変換素子(C12BP)において、温度(27~127℃)を変えて導電率とゼーベック係数を測定し、パワーファクターを算出した。図7に27~227℃までのバルクのC12BPのDSCの分析データと27℃を基準としたパワーファクターの相対値(27~127℃)を示した。
 この結果よると、材料の構造相転移がみられる温度(80~90℃)の近傍に大きなパワーファクターを示していることが確認できる。このことによりこの熱電変換素子では、70℃~100℃、より好ましくは80~90℃で使用することで、効率的な熱電変換を実施できることがわかる。従って、本発明熱電変換素子では、各熱電変換材料に応じて、最適な使用温度を選択することで非常に効率的な熱電変換が可能となることが示された。
(比較例1)
 実施例3と同様に、化合物をC10DNTTではなく、DNTTを用いて、同様な素子を作製した。その結果、360Kでの導電率は8.3×10-9Scm-1であり、ゼーベック係数は35mV/Kであった。
 比較例1で得られたDNTTでは、DSC(170-570K)によりピークは認められなかった。
(比較例2)
 実施例3と同様に、化合物をC10DNTTではなく、ペンタセンを用いて、同様な素子を作製した。その結果、300Kでの導電率は1.3×10-6Scm-1であり、ゼーベック係数は2.4mV/Kであった。
 スマートハウスやスマートビルディングのためのセンサマトリックスを形成するための分散電源及びエナジー・ハーベスティング素子として、住宅、オフィス、自動車における排出熱エネルギーの再利用において有用である。また、有機熱電変換材料の特徴である柔軟性を活かしてステッカー型の生体情報計測器(体温、脈拍、心電モニターなど)の電源として利用することもできる。特に非常に高いゼーベック係数を有することから高電圧のデバイス設計が容易となり、特徴のある熱電変換素子を提供することが可能となる。
 

Claims (11)

  1.  キャリア輸送特性を有する多環芳香族環からなる基本骨格と、熱運動により基本骨格の分子間距離や分子パッキング構造の変化を引き起こすアルキル基を含む置換基が結合したことを特徴とする導電性化合物を含む、有機熱電変換材料。
  2.  キャリア輸送特性を有する多環芳香族環からなる基本骨格と、アルキル基又はアルキル基を有する置換基が結合し、-50℃~200℃の範囲の温度で構造相転移(DSCにより特定される)することを特徴とする導電性化合物を含む、請求項1に記載の有機熱電変換材料。
  3.  前記導電性化合物が下記一般式(1)で表されることを特徴とする、請求項1又は2に記載の有機熱電変換材料。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xはキャリア輸送特性を有する多環芳香族環を表す。但し、nが2以上の場合には、それぞれ異なる多環芳香族環であってもよい。Rはそれぞれ独立してアルキル基又はアルキル基を有する置換基を表す。mは1~8の整数を表し、nは整数を表す。)
  4.  前記導電性化合物が下記一般式(2)で表されることを特徴とする、請求項1~3のいずれかに記載の有機熱電変換材料。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Xはキャリア輸送特性を有する多環芳香族環を表す。Rはそれぞれ独立してアルキル基又はアルキル基を有する置換基を表す。mは1~8の整数を表す。)
  5.  前記導電性化合物中における前記置換基が占めるファンデルワールス体積比が10~80%である、請求項1~4のいずれかに記載の有機熱電変換材料。
  6.  前記導電性化合物のDSCによる構造相転移点が、0~180℃の範囲の温度で認められる、請求項1~5のいずれかに記載の有機熱電変換材料。
  7.  前記多環芳香族環は、多環芳香族炭化水素又は多環芳香族複素環である、請求項1~6のいずれかに記載の有機熱電変換材料。
  8.  前記多環芳香族複素環が、ヘテロアセン又はポリへテロアセンである、請求項1~7のいずれかに記載の有機熱電変換材料。
  9.  前記多環芳香族複素環が、ポルフィリン又はポルフィラジンである、請求項1~7に記載の有機熱電変換材料。
  10.  前記多環芳香族複素環が、式(3)、(4)または(5)で表される化合物である、請求項1~9のいずれかに記載の有機熱電変換材料。
    Figure JPOXMLDOC01-appb-C000003

    (式中Yは、それぞれ独立してS、Se、SO、O、N(R)又はSi(R)(R)を表し、R及びRはそれぞれ独立して水素原子、アリール基、単環式芳香族複素環残基;或いは芳香族環残基で置換されたアミノ基、アルキルオキシ基、アルキルチオキシ基、エステル基、カルバモイル基、アセトアミド、チオ基又はアシル基を表し、Yはそれぞれ異なっていても良い。Zはそれぞれ独立して水素原子、芳香族炭化水素又は芳香族複素環を表し、lは0~10の整数を表す。Zが複数の場合、Zは同じでも異なっても良い。)
    Figure JPOXMLDOC01-appb-C000004

    (式(4)及び(5)中、Wはそれぞれ独立してN又はCRを表し、Rは水素原子又は、アリール基、単環式芳香族複素環残基;或いは芳香族環残基で置換されたアミノ基、アルキルオキシ基、アルキルチオキシ基、エステル基、カルバモイル基、アセトアミド、チオ基又はアシル基を表し、Zはそれぞれ独立して水素原子、芳香族炭化水素又は芳香族複素環を表し、複数のZは同じでも異なっても良い。Mは金属原子を表す。)
  11.  請求項1~10のいずれかに記載の熱電変換材料を用いて作製された有機熱電変換素子。
     
PCT/JP2015/055913 2014-02-28 2015-02-27 熱電変換材料および熱電変換素子 WO2015129877A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580010890.7A CN106165132A (zh) 2014-02-28 2015-02-27 热电转换材料和热电转换元件
KR1020167023400A KR20160127740A (ko) 2014-02-28 2015-02-27 열전 변환 재료 및 열전 변환 소자
JP2016505333A JP6474110B2 (ja) 2014-02-28 2015-02-27 熱電変換材料および熱電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-039712 2014-02-28
JP2014039712 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129877A1 true WO2015129877A1 (ja) 2015-09-03

Family

ID=54009190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055913 WO2015129877A1 (ja) 2014-02-28 2015-02-27 熱電変換材料および熱電変換素子

Country Status (4)

Country Link
JP (2) JP6474110B2 (ja)
KR (1) KR20160127740A (ja)
CN (1) CN106165132A (ja)
WO (1) WO2015129877A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190181319A1 (en) * 2017-12-08 2019-06-13 Kabushiki Kaisha Toshiba Thermoelectric conversion element, and method for manufacturing a thermoelectric conversion element
JP2019517128A (ja) * 2016-03-30 2019-06-20 クアルコム,インコーポレイテッド モバイル電子機器のための面内能動冷却デバイス
JP2020009943A (ja) * 2018-07-10 2020-01-16 国立大学法人神戸大学 熱電変換材料
WO2020129836A1 (ja) 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP2020098899A (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP2021019176A (ja) * 2019-07-19 2021-02-15 東洋インキScホールディングス株式会社 熱電変換材料及び熱電変換素子
JP2021064766A (ja) * 2019-10-17 2021-04-22 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP2021100064A (ja) * 2019-12-23 2021-07-01 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
WO2023162627A1 (ja) * 2022-02-24 2023-08-31 三菱マテリアル株式会社 熱流スイッチング素子
JP7540244B2 (ja) 2019-11-26 2024-08-27 artience株式会社 熱電変換材料および熱電変換素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786542B (zh) * 2019-01-23 2020-08-18 深圳大学 一种卟啉/碳纳米管复合热电材料及其制备方法
CN111793065B (zh) * 2020-07-31 2021-10-15 深圳大学 一种螺环芳烃类有机共轭小分子热电材料及其制备与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033170A (ja) * 2011-10-31 2014-02-20 Fujifilm Corp 熱電変換材料及び熱電変換素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231470A (ja) * 1994-12-28 1996-09-10 Fuji Photo Film Co Ltd 新規化合物および円盤状化合物からなる薄膜
JP3694855B2 (ja) 1999-05-06 2005-09-14 学校法人東京理科大学 有機熱電材料およびその製造方法
JP2001326393A (ja) 2000-05-12 2001-11-22 Chemiprokasei Kaisha Ltd ポリアニリン類、それを用いた熱電材料およびその製造方法
JP4766735B2 (ja) 2000-09-25 2011-09-07 ケミプロ化成株式会社 ポリアニリン類製膜状物、それを用いた熱電材料
JP4282948B2 (ja) 2002-05-13 2009-06-24 大日本印刷株式会社 熱電変換材料及び熱電変換素子
EP2077590B1 (en) * 2006-10-20 2013-06-19 Nippon Kayaku Kabushiki Kaisha Field-effect transistor
WO2008050726A1 (fr) * 2006-10-25 2008-05-02 Hiroshima University Nouveau composé aromatique à cycle fusionne, son procédé de production et son utilisation
JP2009071131A (ja) 2007-09-14 2009-04-02 Three M Innovative Properties Co ポリチエニレンビニレン熱電変換材料を含む熱電変換素子及び該熱電変換材料の製造方法
JP2009286781A (ja) * 2008-04-29 2009-12-10 Ushio Chemix Kk 有機半導体化合物
JP5243181B2 (ja) 2008-10-20 2013-07-24 スリーエム イノベイティブ プロパティズ カンパニー 導電性高分子複合体及び導電性高分子材料を用いた熱電素子
CN102333780B (zh) * 2009-02-27 2014-10-29 日本化药株式会社 场效应晶体管
KR20140079437A (ko) 2011-09-28 2014-06-26 후지필름 가부시키가이샤 열전 변환 재료 및 열전 변환 소자
JP6151618B2 (ja) * 2013-06-24 2017-06-21 富士フイルム株式会社 熱電変換層形成用組成物、熱電変換層素子および熱電発電物品
JP6085236B2 (ja) * 2013-08-30 2017-02-22 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜
JP6047468B2 (ja) * 2013-09-04 2016-12-21 富士フイルム株式会社 熱電変換材料、熱電変換素子、熱電発電用物品およびセンサー用電源

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033170A (ja) * 2011-10-31 2014-02-20 Fujifilm Corp 熱電変換材料及び熱電変換素子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517128A (ja) * 2016-03-30 2019-06-20 クアルコム,インコーポレイテッド モバイル電子機器のための面内能動冷却デバイス
US20190181319A1 (en) * 2017-12-08 2019-06-13 Kabushiki Kaisha Toshiba Thermoelectric conversion element, and method for manufacturing a thermoelectric conversion element
JP2019106410A (ja) * 2017-12-08 2019-06-27 株式会社東芝 熱電変換素子、及び熱電変換素子の製造方法
JP2020009943A (ja) * 2018-07-10 2020-01-16 国立大学法人神戸大学 熱電変換材料
EP3902021A4 (en) * 2018-12-18 2022-03-02 Toyo Ink SC Holdings Co., Ltd. THERMOELECTRIC TRANSFORMATION MATERIAL AND THERMOELECTRIC TRANSFORMATION ELEMENT MADE THEREOF
JP2020098899A (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
WO2020129836A1 (ja) 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP2021019176A (ja) * 2019-07-19 2021-02-15 東洋インキScホールディングス株式会社 熱電変換材料及び熱電変換素子
JP7404807B2 (ja) 2019-07-19 2023-12-26 東洋インキScホールディングス株式会社 熱電変換材料及び熱電変換素子
JP2021064766A (ja) * 2019-10-17 2021-04-22 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP7451932B2 (ja) 2019-10-17 2024-03-19 artience株式会社 熱電変換材料及びそれを用いた熱電変換素子
JP7540244B2 (ja) 2019-11-26 2024-08-27 artience株式会社 熱電変換材料および熱電変換素子
JP2021100064A (ja) * 2019-12-23 2021-07-01 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
JP7400442B2 (ja) 2019-12-23 2023-12-19 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
WO2023162627A1 (ja) * 2022-02-24 2023-08-31 三菱マテリアル株式会社 熱流スイッチング素子

Also Published As

Publication number Publication date
JPWO2015129877A1 (ja) 2017-03-30
JP2019096892A (ja) 2019-06-20
JP6699039B2 (ja) 2020-05-27
CN106165132A (zh) 2016-11-23
JP6474110B2 (ja) 2019-02-27
KR20160127740A (ko) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6699039B2 (ja) 熱電変換材料および熱電変換素子
CN106233466B (zh) 用于摄像元件用光电转换元件的材料和包含该材料的光电转换元件
US9536633B2 (en) Metallic composite and composition thereof
JP5976604B2 (ja) 熱電変換材料、熱電変換素子、熱電発電用物品及びセンサー用電源
JP5511250B2 (ja) メタノフラーレン誘導体及びそれを用いた光電変換素子
EP2814817B1 (en) Electronic devices using organic small molecule semiconducting compounds
Tan et al. A Densely and Uniformly Packed Organic Semiconductor Based on Annelated β‐Trithiophenes for High‐Performance Thin Film Transistors
EP2418033B1 (en) Metal complex and composition containing same
JP5951539B2 (ja) 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源
JP6170488B2 (ja) 新規縮合多環芳香族化合物及びその用途
JP6208133B2 (ja) 複素環化合物及びその利用
KR20160065885A (ko) 광전자 부품들을 위한 광활성 유기 재료
WO2016027675A1 (ja) 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
JP5292857B2 (ja) 有機半導体コンポジット、有機トランジスタ材料ならびに有機電界効果型トランジスタ
CN115397803A (zh) 掺杂剂及导体材料
JPWO2014133100A1 (ja) 新規縮合多環芳香族化合物及びその用途
WO2016187326A1 (en) Thermoelectric polymer composites
Wu et al. Synthesis of planar dibenzo [de, op] bistetracene derivatives for organic field-effect transistor applications: substituent effect on crystal packing and charge transport property
JP5600267B2 (ja) 新規な化合物及びその利用
Nazim et al. Novel liquid crystalline oligomer with thiazolothiazole-acceptor for efficient BHJ small molecule organic solar cells
KR101495152B1 (ko) 유기 반도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
JP2004099874A (ja) デンドリマー及びこれを用いた電子デバイス素子
JP6497560B2 (ja) 新規縮合多環芳香族化合物及びその用途
Schwartz et al. Impact of the arrangement of functional moieties within small molecular systems for solution processable bulk heterojunction solar cells
Kao et al. Peripheral group effects on the photophysical and photovoltaic properties of bulk-heterojunction type solar cells based on star-shaped conjugate molecules with triphenylamine core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505333

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023400

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755554

Country of ref document: EP

Kind code of ref document: A1