WO2016027675A1 - 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ - Google Patents

光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ Download PDF

Info

Publication number
WO2016027675A1
WO2016027675A1 PCT/JP2015/072229 JP2015072229W WO2016027675A1 WO 2016027675 A1 WO2016027675 A1 WO 2016027675A1 JP 2015072229 W JP2015072229 W JP 2015072229W WO 2016027675 A1 WO2016027675 A1 WO 2016027675A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
general formula
conversion element
compound
Prior art date
Application number
PCT/JP2015/072229
Other languages
English (en)
French (fr)
Inventor
梅原正明
富永剛
權▲じん▼友
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167034372A priority Critical patent/KR102325535B1/ko
Priority to US15/317,856 priority patent/US20170141320A1/en
Priority to JP2015539987A priority patent/JP6610257B2/ja
Priority to CN201580043505.9A priority patent/CN106575708B/zh
Publication of WO2016027675A1 publication Critical patent/WO2016027675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/44Naphthacenes; Hydrogenated naphthacenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element that can convert fluorescent light into electrical energy. More specifically, the present invention relates to a photoelectric conversion element that can be used in fields such as solar cells and image sensors.
  • a photoelectric conversion element that can convert light into electrical energy can be used for solar cells, image sensors, and the like.
  • image sensors that read current generated from incident light by a photoelectric conversion element using a CCD or a CMOS circuit are widely used.
  • an image sensor using a photoelectric conversion element has used an inorganic substance as a material constituting the photoelectric conversion film.
  • inorganic materials have low color selectivity (absorption of specific wavelengths)
  • each color (red, green and blue) in the incident light is selectively transmitted using a color filter, and each photoelectric conversion film is used to transmit each color. It was necessary to absorb the color light.
  • a color filter when a fine target is photographed, the pitch of the target interferes with the pitch of the image sensor, and an image (moire defect) different from the original image is generated.
  • an optical lens or the like is required, but there is a disadvantage that the light use efficiency and the aperture ratio are lowered by the color filter and the optical lens.
  • Patent Document 1 discloses an organic photoelectric material including a compound having a thiophene-containing aromatic group in which an aromatic ring is condensed.
  • Patent Document 1 a thiophene compound having a large absorption coefficient (hereinafter, a compound of Patent Document 1) is used. Although the photoelectric conversion element using the compound of this patent document 1 shows a comparatively high photoelectric conversion efficiency, the further improvement of the photoelectric conversion efficiency was calculated
  • an object of the present invention is to solve the problems of the prior art and provide a photoelectric conversion element having higher photoelectric conversion efficiency.
  • the inventors of the present application paid attention to the charge mobility of the photoelectric conversion element in order to solve the above problems. That is, while the photoelectric conversion element using the compound of Patent Document 1 showed relatively high photoelectric conversion efficiency, the photoelectric conversion element using the other light-absorbing compound did not show sufficient photoelectric conversion efficiency. This is considered because the compound of Patent Document 1 has sufficient charge mobility, and the other light-absorbing compound did not have sufficient charge mobility. Therefore, an attempt was made to increase the charge mobility of the other light-absorbing compound, but it was difficult to design and synthesize a molecule that would increase the charge mobility while maintaining a large absorption coefficient. Thus, the inventors have conceived of improving the photoelectric conversion efficiency of a photoelectric conversion element using the other light-absorbing compound by combining the other light-absorbing compound with a compound having sufficient charge mobility.
  • the inventors of the present application first examined naphthacene as a compound having charge mobility. However, with naphthacene, even when combined with the other light-absorbing compounds, high photoelectric conversion efficiency was not obtained.
  • the inventors of the present application have further studied and found that a high photoelectric conversion efficiency can be obtained by combining a condensed ring aromatic compound having a specific structure with the other light-absorbing compound. That is, the present invention is as follows.
  • a photoelectric conversion element having at least one organic layer between a first electrode and a second electrode, wherein the organic compound has a first compound represented by the following general formula (1) and a wavelength of 400 to 700 nm.
  • a photoelectric conversion element comprising a second compound having a maximum absorption coefficient of 5 ⁇ 10 4 cm ⁇ 1 or more.
  • R 13 is a group selected from the group consisting of R 14.
  • R 13 and R 14 are an aryl group or a heteroaryl group, and adjacent substituents may be bonded to each other to form a ring structure.
  • R 5 and R 12 in the general formula (1) are groups represented by the following general formula (2) or the following general formula (3).
  • R 15 to R 24 may be the same or different from each other, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group , Alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, cyano group, silyl group and- It is a group selected from the group consisting of P ( ⁇ O) R 13 R 14 .
  • R 13 and R 14 are an aryl group or a heteroaryl group.
  • R 16 to R 19 and R 21 to R 24 may form a ring with adjacent substituents.
  • X is an oxygen atom, a sulfur atom or —NR 25 .
  • R 25 is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group or a heteroaryl group.
  • a photoelectric conversion element having high photoelectric conversion efficiency can be provided.
  • the schematic cross section which shows an example of the photoelectric conversion element of this invention The schematic cross section which shows an example of the photoelectric conversion element of this invention.
  • the schematic cross section which shows an example of the photoelectric conversion element of this invention The schematic cross section which shows an example of the photoelectric conversion element of this invention.
  • the schematic cross section which shows an example of the photoelectric conversion element of this invention The schematic cross section which shows an example of the laminated structure of the photoelectric conversion element in the image sensor of this invention.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element in which at least one organic layer exists between the first electrode and the second electrode, and the first organic layer is represented by the following general formula (1).
  • R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group.
  • Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, cyano group, silyl group and -P ( O)
  • R It is a group selected from the group consisting of 13 R 14 .
  • R 13 and R 14 are an aryl group or a heteroaryl group. Adjacent substituents may be bonded to each other to form a ring structure.
  • R 5 and R 12 in the general formula (1) are groups represented by the following general formula (2) or the following general formula (3).
  • R 15 to R 24 may be the same or different from each other, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group , Alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, cyano group, silyl group and- It is a group selected from the group consisting of P ( ⁇ O) R 13 R 14 .
  • R 13 and R 14 are an aryl group or a heteroaryl group.
  • R 16 to R 19 and R 21 to R 24 may form a ring with adjacent substituents.
  • X is an oxygen atom, a sulfur atom or —NR 25 .
  • R 25 is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group or a heteroaryl group.
  • first compound represented by the general formula (1)
  • second compound having a maximum absorption coefficient at a wavelength of 400 to 700 nm of 5 ⁇ 10 4 cm ⁇ 1 or more
  • 1 to 4 show examples of the photoelectric conversion element of the present invention.
  • FIG. 1 is an example of a photoelectric conversion element having a first electrode 10, a second electrode 20, and one organic layer 11 interposed therebetween.
  • the organic layer 11 in FIG. 1 is a photoelectric conversion layer 15 that converts light into electrical energy.
  • the organic layer in this invention represents the layer containing an organic compound, for example, a photoelectric converting layer, a charge blocking layer, etc. are mentioned.
  • a charge blocking layer may be inserted between the cathode and the anode as shown in FIGS.
  • This charge blocking layer is a layer having a function of blocking electrons or holes, and is inserted between the electron blocking layer 13 and the anode and the photoelectric conversion layer 15 when inserted between the cathode and the photoelectric conversion layer. When inserted, it functions as a hole blocking layer 17.
  • the photoelectric conversion element may include only one of these charge blocking layers (FIGS. 2 and 3) or both (FIG. 4).
  • the photoelectric conversion layer when the photoelectric conversion layer is composed of two or more types of photoelectric conversion materials, the photoelectric conversion layer may be a single layer in which two or more types of photoelectric conversion materials are mixed, or each one of one or more types of photoelectric conversion materials. A plurality of layers may be laminated. Furthermore, the structure by which the mixed layer and each single layer were mixed may be sufficient.
  • R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group.
  • Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, cyano group, silyl group and -P ( O)
  • R It is a group selected from the group consisting of 13 R 14 .
  • R 13 and R 14 are an aryl group or a heteroaryl group. Adjacent substituents may be bonded to each other to form a ring structure.
  • hydrogen may contain deuterium.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have.
  • the additional substituent when it is substituted and examples thereof include an alkyl group, an aryl group, a heteroaryl group, and the like. This point includes the following cycloalkyl groups and heterocyclic groups. The same applies to additional substituents when each substituent is substituted.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 from the viewpoint of availability and cost.
  • the carbon number of the additional substituent shall be included in the carbon number of the alkyl group.
  • the carbon number of each substituent when each substituent such as the following cycloalkyl group and heterocyclic group is substituted shall also include the carbon number of the additional substituent.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent.
  • carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to. Although carbon number of a cycloalkenyl group is not specifically limited, Usually, it is the range of 2-20.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • An aryl group refers to an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group.
  • the aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Usually, it is the range of 6-40.
  • a heteroaryl group is one or more atoms other than carbon such as furanyl, thiophenyl, pyridyl, quinolinyl, pyrazinyl, pyrimidinyl, triazinyl, naphthyridyl, benzofuranyl, benzothiophenyl, indolyl, etc.
  • a cyclic aromatic group contained in an individual ring is shown, which may or may not have a substituent.
  • carbon number of heteroaryl group is not specifically limited, Usually, it is the range of 2-30.
  • Halogen means fluorine, chlorine, bromine and iodine.
  • the amino group may or may not have a substituent.
  • substituents include an aryl group and a heteroaryl group, and these substituents may be further substituted.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20.
  • the number of silicon is usually in the range of 1 to 6.
  • —P ( ⁇ O) R 11 R 12 may or may not have a substituent.
  • substituents include an aryl group and a heteroaryl group, and these substituents may be further substituted.
  • arbitrary adjacent 2 substituents may be bonded to each other to form a conjugated or non-conjugated condensed ring.
  • R 1 and R 2 may form a ring to form a total of five condensed rings because charge mobility is improved.
  • Benzo [a] naphthacene is particularly preferable as a structure in which five condensed rings are formed in total.
  • an element selected from nitrogen, oxygen, sulfur, phosphorus, and silicon may be included in addition to carbon.
  • the condensed ring may be further condensed with another ring.
  • R 5 and R 12 in the general formula (1) are groups represented by the general formula (2) or the general formula (3).
  • R 15 to R 24 may be the same or different from each other, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group , Alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, cyano group, silyl group and- It is a group selected from the group consisting of P ( ⁇ O) R 13 R 14 .
  • R 13 and R 14 are an aryl group or a heteroaryl group.
  • R 16 to R 19 and R 21 to R 24 may form a ring with adjacent substituents.
  • X is an oxygen atom, a sulfur atom or —NR 25 .
  • R 25 is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group or a heteroaryl group.
  • the compound having the group represented by the general formula (2) has an aryl group, the charge transfer between molecules by ⁇ electrons is smoothly performed and has high charge mobility. Therefore, it greatly contributes to the improvement of external quantum efficiency.
  • R 15 is an alkyl group, an alkoxy group, an aryl group or a heteroaryl group in the group represented by the general formula (2), molecular interaction between naphthacene skeletons is suppressed, and high photoelectric conversion efficiency is possible. At the same time, a stable thin film can be formed, which is preferable.
  • R 15 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an aryl group having 4 to 14 carbon atoms, or a heteroaryl group
  • R 17 and R 18 it becomes easy to obtain raw materials and a synthesis process, and the cost can be reduced. Therefore, it is more preferable.
  • the compound having a group represented by the general formula (3) has a bicyclic benzoheterocycle, and therefore, a high glass transition temperature (Tg) can be secured, which is preferable in terms of high heat resistance.
  • Tg glass transition temperature
  • R 20 is an alkyl group, an alkoxy group, an aryl group or a heteroaryl group in the group represented by the general formula (3), molecular interaction between naphthacene skeletons is suppressed, and high photoelectric conversion efficiency is possible. At the same time, a stable thin film can be formed, which is preferable.
  • R 20 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an aryl group having 4 to 14 carbon atoms, or a heteroaryl group
  • the raw materials can be easily obtained and the synthesis process can be facilitated, and the cost can be reduced. Therefore, it is more preferable.
  • alkyl group and alkoxy group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, and cyclopentyl.
  • n-hexyl group, cyclohexyl group, adamantyl group, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, cyclo Examples include a pentoxy group, an n-hexyloxy group, and a cyclohexyloxy group. Among them, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl groups, high photoelectric conversion efficiency, thin film stability, and availability of raw materials and ease of synthesis process A methoxy group is preferred.
  • Examples of the aryl group and heteroaryl group having 4 to 14 carbon atoms include phenyl group, naphthyl group, phenanthryl group, anthracenyl group, fluorenyl group, furanyl group, thiophenyl group, pyrrolyl group, benzofuranyl group, benzothiophenyl group, indolyl group Benzoxazolyl group, benzothiazolyl group, benzimidazolyl group, pyridyl group, quinolinyl group, quinoxanyl group, cavazolyl group, and venatrolyl group.
  • phenyl group is preferred.
  • naphthyl group is preferred.
  • phenanthryl group is preferred.
  • fluorenyl group is preferred.
  • benzofuranyl group is preferred.
  • benzothiophenyl group is preferred.
  • pyridyl group is preferred.
  • the aryl group and heteroaryl group may further have a substituent.
  • substituents in this case include alkyl groups such as methyl, ethyl, propyl, and tert-butyl groups, alkoxy groups such as methoxy and ethoxy groups, aryl ether groups such as phenoxy groups, phenyl groups, and naphthyl groups.
  • An aryl group such as biphenyl group, and a heteroaryl group such as pyridyl group, quinolinyl group, benzofuranyl group, and benzothiophenyl group are preferable.
  • a methyl group, a tert-butyl group, and a phenyl group are particularly preferable from the viewpoint of availability of raw materials and a synthesis process.
  • X in the general formula (3) is an oxygen atom because higher photoelectric conversion efficiency can be obtained.
  • R 1 to R 4 , R 6 to R 11 , R 16 to R 19 , and R 21 to R 24 are hydrogen or deuterium from the viewpoint that vapor deposition becomes easier as the molecular weight of the first compound is lower. It is preferable.
  • a known method can be used for the synthesis of the first compound represented by the general formula (1).
  • the method for introducing the group represented by the general formula (2) or the general formula (3) into the naphthacene skeleton of the first compound is, for example, a method using a coupling reaction between a naphthoquinone derivative and an organometallic reagent, or a halogenated naphthacene derivative.
  • a method using a coupling reaction between a boronic acid reagent and a boronic acid reagent under a palladium or nickel catalyst but are not limited thereto.
  • Specific examples of the first compound represented by the general formula (1) include the following.
  • the second compound having a maximum absorption coefficient at a wavelength of 400 to 700 nm in the present invention of 5 ⁇ 10 4 cm ⁇ 1 or more will be described.
  • the maximum absorption coefficient maximum value is determined.
  • the first compound represented by the general formula (1) Since the first compound represented by the general formula (1) has a high charge mobility, it is excellent in the ability to efficiently transport the generated charges to the electrode. There is a small nature. Specifically, the absorption coefficient of the first compound represented by the general formula (1) depends on the type of substituent introduced into the naphthacene skeleton, but is 1 ⁇ 10 4 cm ⁇ 1 to 5 ⁇ 10 4 cm. -1 . This value is almost the same as the absorption coefficient (about 10 4 cm ⁇ 1 ) of an inorganic thin film such as silicon crystal. Therefore, the first compound represented by the general formula (1) alone cannot sufficiently absorb incident light, and most of the light is transmitted to cause optical loss, resulting in a decrease in photoelectric conversion efficiency. .
  • the organic layer includes both the first compound represented by the general formula (1) and the second compound having a maximum absorption coefficient of 5 ⁇ 10 4 cm ⁇ 1 or more at a wavelength of 400 to 700 nm.
  • the second compound with a large absorption coefficient has a role of light absorption, and both the first compound and the second compound have the role of charge transport, so that both light absorption and charge mobility are compatible. Therefore, photoelectric conversion performance can be expressed.
  • these compounds are particularly preferably contained in the photoelectric conversion layer among the organic layers.
  • it is not restricted to the structure which contains these compounds only in a photoelectric converting layer.
  • these layers may include a first compound and a second compound.
  • the electron blocking layer or the hole blocking layer may contain a second compound.
  • it is preferably 5 ⁇ 10 4 cm ⁇ 1 or more, more preferably It is 8 ⁇ 10 4 cm ⁇ 1 or more, more preferably 1 ⁇ 10 5 cm ⁇ 1 or more.
  • a pigment-based material is preferably mentioned in terms of good light absorption.
  • Specific examples include derivatives such as merocyanine, coumarin, nile red, rhodamine, oxazine, acridine, squalium, diketopyrrolopyrrole, pyromethene, pyrene, perylene, thiophene, and phthalocyanine.
  • a material having a single peak absorption at a wavelength of 400 to 700 nm is preferably used.
  • Specific examples of the material having such a large absorption coefficient of 1 ⁇ 10 5 cm ⁇ 1 or more include thiophene derivatives, pyrene derivatives, and perylene derivatives.
  • the thiophene derivative is preferably a compound represented by the general formula (4).
  • R 25 to R 28 may be the same or different and are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group.
  • R 29 and R 30 are an aryl group or a heteroaryl group.
  • m is an integer of 1-6.
  • at least one of R 25 to R 28 is a group represented by the following general formula (5).
  • n is 1 or 2.
  • L is an alkenediyl group, an arenediyl group or a heteroarenediyl group.
  • L is an alkenetriyl group, an arenetriyl group or a heteroarenetriyl group.
  • the compound represented by the general formula (4) is a compound having a high light absorption coefficient and a good color selectivity having a single peak absorption.
  • m an integer from 1 to 6, an absorption region is provided in the wavelength range of 400 to 700 nm.
  • m is preferably 2 to 4, and m is particularly preferably 3.
  • the absorption wavelength can be controlled by appropriately selecting the type of substituents R 25 to R 28 .
  • the compound represented by the general formula (4) as the second compound is at least one of R 25 to R 28 represented by the general formula (5). By using the group represented, it functions as an n-type semiconductor material having good electron transport properties.
  • the pyrene derivative is preferably a compound represented by the general formula (6).
  • R 35 and R 36 are an aryl group or a heteroaryl group.
  • at least one of R 31 to R 34 is a group represented by the following general formula (5).
  • n is 1 or 2.
  • L is an alkenediyl group, an arenediyl group or a heteroarenediyl group.
  • L is an alkenetriyl group, an arenetriyl group or a heteroarenetriyl group.
  • the compound represented by the general formula (6) is a compound having a single peak absorption and good color selectivity.
  • the absorption wavelength can be controlled by appropriately selecting the type of substituent of R 31 to R 34 .
  • n has an absorption region in the wavelength range of 400 to 700 nm and has good electron transport properties. This is preferable because it functions as a type semiconductor material.
  • the perylene derivative is preferably a compound represented by the general formula (7).
  • R 37 and R 38 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, an amino group, a cyano group, a silyl group, and —P ( ⁇ O) R 39 R 40 .
  • R 39 and R 40 are an aryl group or a heteroaryl group.
  • the compound represented by the general formula (7) is a compound having a high light absorption coefficient and good color selectivity.
  • the absorption wavelength can be controlled by appropriately setting the type of substituent of R 37 and R 38 . Since the compound represented by the general formula (7) has good electron transport properties, it is preferably used as an n-type semiconductor.
  • the absorption coefficient in this specification is a ratio of light absorbed per unit length when traveling through the thin film, and is calculated by substituting into the formula (absorbance) / (film thickness). It is the value.
  • an organic compound is deposited on a transparent quartz glass having a thickness of 0.7 mm by a vacuum deposition method at a deposition rate of 1 kg / second to a film thickness of 50 nm, and an ultraviolet / visible spectrophotometer. After measuring the absorbance in the visible region of 400 nm to 700 nm, the absorption coefficient is calculated by dividing the maximum absorbance value by the film thickness (unit: cm) of the organic compound.
  • the first compound represented by the general formula (1) can be used as a p-type semiconductor material or an n-type semiconductor material depending on the relative ionization potential and the electron affinity of the second compound. It is preferable to use it as a semiconductor material. In particular, since the first compound represented by the general formula (1) includes a group represented by the general formula (2) or the general formula (3), the hole-transporting property is excellent. It is preferable to use it as a semiconductor material.
  • the second compound is preferably an n-type semiconductor material.
  • the p-type semiconductor material refers to a hole-transporting semiconductor material that has an electron-donating property and easily emits electrons (low ionization potential).
  • the n-type semiconductor material refers to an electron-transporting semiconductor material that has an electron-accepting property and a property of easily receiving electrons (high electron affinity).
  • the cathode and the anode have a role for allowing electrons and holes made in the photoelectric conversion element to flow and sufficient current to flow.
  • the cathode formed on the substrate is a transparent electrode.
  • the cathode may be transparent so that holes can be efficiently extracted from the photoelectric conversion layer and light can enter.
  • the cathode material may be a conductive metal oxide such as tin oxide, indium oxide or indium tin oxide (ITO), or a metal such as gold, silver or chromium, copper iodide or copper sulfide.
  • Inorganic conductive materials, conductive polymers such as polythiophene, polypyrrole, and polyaniline are preferable.
  • ITO glass having ITO on the glass substrate surface or nesa glass having tin oxide on the glass substrate surface is used. It is particularly preferred.
  • the resistance of the transparent electrode only needs to allow a current generated by the photoelectric conversion element to flow sufficiently.
  • the resistance of the transparent electrode is preferably low.
  • an ITO substrate having a resistance of 300 ⁇ / ⁇ or less functions as an element electrode, so that it is particularly preferable to use a low resistance product.
  • the thickness of ITO or tin oxide can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm. Further, soda lime glass, non-alkali glass, or the like is used for the glass substrate of ITO glass or Nesa glass. Since the thickness of the glass substrate only needs to be sufficient to maintain the mechanical strength, 0.5 mm or more is sufficient.
  • the material of the glass substrate is preferably alkali-free glass because it is better that there are fewer ions eluted from the glass substrate, and soda lime glass with a barrier coating such as SiO 2 can also be used.
  • the cathode functions stably, the substrate does not have to be glass.
  • the cathode may be formed on a plastic substrate.
  • the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, or a chemical reaction method.
  • the anode is preferably a substance that can efficiently extract electrons from the photoelectric conversion layer.
  • Lithium, sodium, potassium, calcium, magnesium, cesium or alloys containing these low work function metals are effective for improving the device characteristics by increasing the electron extraction efficiency.
  • these low work function metals are generally unstable in the atmosphere.
  • the hole blocking layer is doped with a small amount of lithium, magnesium, or cesium (1 nm or less as indicated by a vacuum deposition thickness gauge).
  • a method using a highly stable electrode can be given as a preferred example.
  • An inorganic salt such as lithium fluoride can also be used.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, indium, or alloys using these metals, and inorganic substances such as silica, titania, silicon nitride, polyvinyl alcohol, vinyl chloride, It is preferable to laminate a hydrocarbon polymer or the like. These electrodes are preferably produced by resistance heating, electron beam, sputtering, ion plating, coating or the like.
  • the photoelectric conversion element of the present invention When the photoelectric conversion element of the present invention is used as an image sensor, when an electric field is applied between the anode and the cathode, electrons generated in the photoelectric conversion layer are guided to the anode side and holes are guided to the cathode side. As a result, the photoelectric conversion efficiency is improved.
  • the applied voltage is preferably 10 5 V / m or more and 10 9 V / m or less.
  • the applied voltage is 10 5 V / m or more, the generated charges are easily carried to the electrode efficiently, so that the photoelectric conversion efficiency is hardly lowered. Further, by setting it to 10 9 V / m or less, since the dark current is reduced, the S / N ratio is improved and the probability of occurrence of current leakage is reduced.
  • a photoelectric conversion layer is a layer in which photoelectric conversion that absorbs incident light and generates charges occurs. This may be composed of a single photoelectric conversion material, but is preferably composed of a p-type semiconductor material and an n-type semiconductor material. At this time, each of the p-type semiconductor material and the n-type semiconductor material may be single or plural.
  • the photoelectric conversion layer after the photoelectric conversion material absorbs light and forms excitons, electrons and holes are separated by an n-type semiconductor material and a p-type semiconductor material, respectively. The separated electrons and holes flow to the both poles through the conduction level and the valence level, respectively, and generate electric energy.
  • the configuration of the photoelectric conversion layer is preferably a bulk heterojunction in which the above-described first compound and second compound are mixed in the same layer by a method such as co-evaporation.
  • a bulk heterojunction is a structure in which two or more compounds are randomly mixed in one layer and the compounds are joined at the nano level. As a result, it is possible to efficiently separate the charge generated from one of the materials into holes and electrons.
  • the absorption coefficient of the mixed film of the first compound and the second compound is preferably 5 ⁇ 10 4 cm ⁇ 1 or more, more preferably 8 ⁇ 10 4 in order to develop high light absorption. cm ⁇ 1 or more, more preferably 1 ⁇ 10 5 cm ⁇ 1 or more.
  • the charge mobility of the first compound and the second compound is preferably 1 ⁇ 10 ⁇ 9 cm 2 / Vs or more, more preferably 1 ⁇ 10 ⁇ 8 cm 2 / Vs or more, Preferably, it is 1 ⁇ 10 ⁇ 7 cm 2 / Vs or more.
  • the charge mobility is a mobility measured by a space charge limited current method (SCLC method). Funct. Mater, Vol. 16 (2006), page 701, and the like.
  • the film thickness of the organic layer is preferably 20 nm or more and 200 nm or less.
  • the photoelectric conversion material composing the photoelectric conversion layer may be a material previously known as a photoelectric conversion material in addition to the first compound and the second compound described above. Moreover, when the above-mentioned 1st compound and 2nd compound are used for organic layers other than a photoelectric converting layer, the material conventionally known as a photoelectric converting material can be used individually or as a mixture.
  • the absorption wavelength of the photoelectric conversion layer is determined by the light absorption wavelength region of the photoelectric conversion material, it is preferable to use a material having light absorption characteristics corresponding to the color to be used.
  • the photoelectric conversion layer is made of a material that absorbs light at 490 nm to 570 nm.
  • the photoelectric conversion layer is composed of two or more kinds of materials, if a p-type semiconductor material and an n-type semiconductor material are included, among the carriers generated in the photoelectric conversion layer, holes easily flow through the p-type semiconductor material. Thus, since electrons easily flow through the n-type semiconductor material, holes and electrons can be efficiently separated.
  • the photoelectric conversion layer is composed of materials having different energy levels of the p-type semiconductor material and the n-type semiconductor material, and the holes and electrons generated in the photoelectric conversion layer are further reduced.
  • the photoelectric conversion layer is made of a material having high charge mobility so that it can move to the electrode side.
  • the p-type semiconductor material may be any organic compound as long as it has a relatively small ionization potential, an electron donating property, and a hole transporting compound.
  • p-type organic semiconductor materials include compounds having derivatives such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, derivatives thereof, cyclopentadiene derivatives, furan Derivatives, thiophene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, pyrazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, N, N'-dinaphthyl-N, N'-diphenyl- Aromatic amine derivatives such as 4,4′-
  • polystyrene resin examples include, but are not limited to, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polythiophene derivatives.
  • the n-type semiconductor material may be any material as long as it has a high electron affinity and is an electron transporting compound.
  • n-type semiconductor materials include condensed polycyclic aromatic derivatives such as naphthalene, anthracene, naphthacene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, tetraphenylbutadiene derivatives, coumarins Derivative, oxadiazole derivative, pyrrolopyridine derivative, perinone derivative, pyrrolopyrrole derivative, thiadiazolopyridine derivative, aromatic acetylene derivative, aldazine derivative, pyromethene derivative, diketopyrrolo [3,4-c] pyrrole derivative, imidazole, thiazole, Azole derivatives such as thiadiazole, oxazole, oxadiazole, triazole and metal complexes thereof, quinone derivatives
  • organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule include fullerene derivatives.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocyclic ring containing electron-accepting nitrogen has high electron affinity and is preferable as an n-type semiconductor material.
  • heteroaryl ring containing an electron-accepting nitrogen examples include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, Examples thereof include an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoins.
  • Preferred compounds include quinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives.
  • imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
  • a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
  • the above-mentioned material group can be used, but is not particularly limited.
  • the charge blocking layer is a layer used to efficiently and stably take out electrons and holes photoelectrically converted in the photoelectric conversion layer from the electrode, and an electron blocking layer that blocks electrons and a hole that blocks holes. And a blocking layer. These may be comprised from the inorganic substance and may be comprised from the organic compound. Furthermore, you may consist of a mixed layer of an inorganic substance and an organic compound.
  • the hole blocking layer is a layer for preventing holes generated in the photoelectric conversion layer from flowing to the anode side and recombining with electrons. Depending on the type of material constituting each layer, this layer may be By inserting, recombination of holes and electrons is suppressed, and the photoelectric conversion efficiency is improved. Therefore, the hole blocking material preferably has a HOMO level lower in energy than the photoelectric conversion material. A compound that can efficiently block the movement of holes from the photoelectric conversion layer is preferable.
  • quinolinol derivative metal complexes represented by 8-hydroxyquinoline aluminum, tropolone metal complexes, flavonol metal complexes, perylene derivatives, perinone derivatives, Examples include naphthalene derivatives, coumarin derivatives, oxadiazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, oligopyridine derivatives such as bipyridine and terpyridine, phenanthroline derivatives, quinoline derivatives, and aromatic phosphorus oxide compounds.
  • These hole blocking materials are used alone, but may be used by being laminated or mixed with different hole blocking materials.
  • the electron blocking layer is a layer for blocking electrons generated in the photoelectric conversion layer from flowing to the cathode side and recombining with holes. Depending on the type of material constituting each layer, this layer may be inserted. By doing so, recombination of holes and electrons is suppressed, and the photoelectric conversion efficiency is improved. Therefore, the electron blocking material preferably has an LUMO level higher in energy than the photoelectric conversion material. A compound that can efficiently block the movement of electrons from the photoelectric conversion layer is preferable.
  • the above hole-blocking layer and electron-blocking layer may be used alone or in combination of two or more materials, or polyvinyl chloride, polycarbonate, polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate as a polymer binder.
  • Solvent soluble resins such as polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, phenol resin, xylene
  • the resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, curable resin such as silicone resin, and the like can also be used by being dispersed.
  • the method for forming the organic layer is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, and coating method, but resistance heating vapor deposition and electron beam vapor deposition are usually preferred in terms of characteristics.
  • An image sensor is a semiconductor element that converts an optical image into an electrical signal.
  • an image sensor includes the photoelectric conversion element that converts light into electric energy and a circuit that reads the electric energy into an electric signal.
  • a plurality of photoelectric conversion elements can be arranged in a one-dimensional straight line or a two-dimensional plane.
  • a monocolor image sensor it may be composed of one type of photoelectric conversion element, but in the case of a color image sensor, it is composed of two or more types of photoelectric conversion elements, for example, photoelectric conversion that detects red light.
  • the photoelectric conversion elements of the respective colors have a stacked structure, that is, may be stacked in one pixel, or may be configured in a matrix structure side by side.
  • a photoelectric conversion element 32 that detects green light, a photoelectric conversion element 33 that detects blue light, and a red light are detected.
  • a three-layer structure in which the photoelectric conversion elements 31 are sequentially stacked may be used.
  • a photoelectric conversion element 32 for detecting green light is arranged on the entire upper surface, and the photoelectric conversion element 31 for detecting red light and the blue light are detected.
  • the photoelectric conversion element 33 to be formed may have a two-layer structure formed in a matrix structure. In this structure, the photoelectric conversion element 32 that detects green light is arranged in a layer closest to the incident light 34.
  • the order of stacking the colors is not limited to this, and may be different from that shown in FIG. 5, but the uppermost photoelectric conversion element absorbs a specific color and transmits long-wavelength light and short-wavelength light other than the specific color. From the viewpoint of having a function as a color filter, a configuration in which a green photoelectric conversion element is arranged in the uppermost layer is preferable. When the color selectivity of the blue photoelectric conversion element is excellent, the blue photoelectric conversion element may be arranged in the uppermost layer from the viewpoint of easy detection of a short wavelength.
  • a matrix structure In the case of a matrix structure, it can be selected from an array such as a Bayer array, a honeycomb array, a stripe array, or a delta array.
  • an organic photoelectric conversion material is used for the photoelectric conversion element that detects green light, and the photoelectric conversion element that detects red light and the photoelectric conversion element that detects blue light are conventionally used inorganic photoelectric conversion materials. Or organic photoelectric conversion materials may be used in appropriate combination.
  • the photoelectric conversion element of this invention can be utilized for a solar cell.
  • a solar cell is an energy conversion element that absorbs sunlight energy and converts it directly into electricity.
  • the principle is the same as that of an image sensor in that it absorbs light and generates electrical energy, the image sensor usually takes out the electric charge generated in the photoelectric conversion layer by applying an electric field from the outside.
  • the solar cell is different in that the photoelectric conversion element itself generates a photovoltaic force, and the charge generated in the photoelectric conversion layer is taken out to the outside.
  • the photoelectric conversion element of the present invention contains a compound that absorbs light at a wavelength of 400 to 700 nm, it is mainly suitable for converting light in the visible region into electric energy. In order to improve the conversion efficiency of the solar cell, it is preferable to absorb light in a wide wavelength range as much as possible. Therefore, in the second compound having a particularly high light absorption coefficient, light absorption is performed in all regions having a wavelength of 400 to 700 nm. It is preferable to use a compound having properties. Further, even if the light absorption wavelength region is narrow in the photoelectric conversion device of the present invention, photoelectric conversion devices having different light absorption wavelength regions (for example, photoelectric conversion devices that absorb red, green, and blue light) are vertically stacked. A tandem solar cell may be manufactured.
  • the photoelectric conversion element of this invention can be utilized for a monochromatic detection sensor.
  • it can be suitably used when the photoelectric conversion element has color selectivity and color discrimination and has a high light absorption coefficient.
  • the present invention can be applied to a remote controller such as a television or an electric appliance, a light receiving element of a compact disc player, an illuminance sensor, a fluorescent probe sensor, a CCD, a photo register, etc.
  • the photoelectric conversion element of this invention can be utilized for a flexible sensor.
  • a photoelectric conversion element using an organic compound has lightness and flexibility not found in a photoelectric conversion element using an existing inorganic semiconductor. Taking advantage of this feature, it can be mounted on a curved structure or for imaging of the surface of a living body. Further, since it can be manufactured by a printing process, a sensor with a large area can be manufactured.
  • the absorption spectrum was measured using a U-3200 spectrophotometer (manufactured by Hitachi, Ltd.) by vapor deposition on a quartz substrate with a film thickness of 50 nm.
  • the absorption coefficient was calculated by Lambert-Beer Law.
  • the spectral sensitivity characteristics (external quantum efficiency and maximum sensitivity wavelength) of the photoelectric conversion element were measured using an SM-250 type spectral sensitivity measuring device (manufactured by Spectrometer Co., Ltd.).
  • Synthesis example 1 Synthesis Method of Compound [10] A mixed solution of phenylacetylene (10.0 g) and dehydrated tetrahydrofuran (200 ml) was stirred at 0 ° C. under a nitrogen stream. N-Butyllithium (1.6M hexane solution, 62 ml) was added dropwise to the mixed solution, and the mixture was stirred at 0 ° C. for 2 hours. Thereafter, a mixed solution of phenylacetaldehyde (6.0 g) and dehydrated tetrahydrofuran (20 ml) was added dropwise, and the mixture was returned to room temperature and stirred for 4 hours.
  • N-Butyllithium 1.6M hexane solution, 62 ml
  • the obtained solution was dried over magnesium sulfate, and after filtration, the solvent was distilled off.
  • the obtained solid was dissolved in a small amount of dichloromethane, methanol was added, and the mixture was precipitated and filtered.
  • the obtained solid was vacuum-dried to obtain 2.8 g of a yellow powder.
  • the light absorption property of the compound [10] was as follows. Maximum absorption wavelength: 504 nm (thin film: 50 nm) Half width at maximum absorption wavelength: 23 nm Absorption coefficient at maximum absorption wavelength: 4.72 ⁇ 10 4 cm ⁇ 1 .
  • Synthesis example 2 Synthesis Method of Compound [43] A mixed solution of 2-bromoacetophenone (35.0 g), phenol (18.2 g), potassium carbonate (26.7 g), and acetone (700 ml) was refluxed for 5 hours under a nitrogen stream. The reaction solution was returned to room temperature, evaporated to remove the solvent, and extracted with toluene. The resulting solution was dried over magnesium sulfate and then evaporated to remove the solvent. The obtained solid was recrystallized with methanol to obtain 23.0 g of a white powder.
  • Synthesis example 3 Synthesis Method of Compound [108] Mixing of 1-bromomethyl-2-dibromomethylnaphthalene (10.0 g), 1,4-naphthoquinone (5.2 g), sodium iodide (25.5 g), dehydrated dimethylformamide (85 ml) The solution was stirred at 70 ° C. for 6 hours under a nitrogen stream. The reaction solution was returned to room temperature and then filtered. The obtained solid was washed with pure water and methanol and then filtered. The obtained solid was vacuum-dried to obtain 4.32 g of a yellow powder.
  • Synthesis example 4 Synthesis Method of Compound [7] Under an argon atmosphere, 300 mL of 3N hydrochloric acid was added to 24.5 g of 2,4-diphenylamine, heated to 60 ° C. in an oil bath, stirred for 4 hours, and then hydrochloride (white suspension) I made it. The white suspension was cooled to 5 ° C. or lower with a salt-ice bath, and 60 mL of an aqueous solution containing 8.27 g of sodium nitrite was added dropwise over 30 minutes with stirring. At this time, the liquid temperature was not allowed to exceed 10 ° C. The resulting reddish brown solution was further stirred at 5 ° C. for 1 hour to prepare a diazonium salt solution.
  • the 2 L beaker was shielded from light with aluminum foil, 1 L of distilled water was added, and deaerated by flowing an argon stream. The reaction solution was added to this and stirred for 30 minutes. The precipitated yellow powder was filtered off, put into 1 L of distilled water again, and stirred and washed. It was filtered, washed thoroughly with methanol and then vacuum dried. This was heated and washed with 250 mL of acetone deaerated by blowing argon, filtered and vacuum dried to obtain 12.70 g (yield 92.7%) of the target compound [7] orange-yellow powder. .
  • the optical properties of the compound [7] were as follows. Maximum absorption wavelength: 506 nm (thin film: 50 nm) Half width at maximum absorption wavelength: 23 nm Absorption coefficient at maximum absorption wavelength: 4.65 ⁇ 10 4 cm ⁇ 1 .
  • Example 1 A photoelectric conversion element using the compound [10] was produced as follows.
  • the obtained substrate was ultrasonically washed with acetone and “Semicoclean (registered trademark) 56” (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes and dried.
  • “Semicoclean (registered trademark) 56” manufactured by Furuuchi Chemical Co., Ltd.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the photoelectric conversion element, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 5 Pa or less.
  • Molybdenum oxide was deposited to 30 nm as an electron blocking layer by a resistance heating method.
  • compound [10] which is a p-type semiconductor material
  • compound A-1 which is an n-type semiconductor material
  • 60 nm of aluminum was vapor-deposited to make a cathode, and a 2 ⁇ 2 mm square photoelectric conversion element was produced.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • a quartz substrate was placed in the same chamber simultaneously with the deposition of the photoelectric conversion layer to produce a 70 nm thin film.
  • the spectral sensitivity characteristics when a bias voltage (-3V) was applied to the photoelectric conversion element were as follows.
  • the photoelectric conversion efficiency is evaluated by the external quantum efficiency at the maximum sensitivity.
  • Examples 2 to 9 A photoelectric conversion element was produced in the same manner as in Example 1 except that the types of the p-type semiconductor material and the n-type semiconductor material and the deposition rate ratio were as shown in Table 1. Table 1 shows the light absorption characteristics and spectral sensitivity characteristics.
  • Examples 10-30 Instead of depositing 30 nm of molybdenum oxide as an electron blocking layer, PEDOT / PSS (CleviosTM PVP AI4083) was applied to 30 nm, and the types of p-type semiconductor material, n-type semiconductor material, and deposition rate ratio are as shown in Table 2.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that. Table 2 shows the light absorption characteristics and spectral sensitivity characteristics.
  • Comparative Examples 1-7 A photoelectric conversion element was produced in the same manner as in Example 1 except that only one of a p-type semiconductor material and an n-type semiconductor material was used for the photoelectric conversion layer.
  • Table 3 shows the light absorption characteristics and spectral sensitivity characteristics.
  • Comparative Example 8 A photoelectric conversion element was produced in the same manner as in Example 1 except that Compound A-4 was used as the n-type semiconductor material. Table 3 shows the light absorption characteristics and spectral sensitivity characteristics. Comparative Examples 9 and 10 A photoelectric conversion element was produced in the same manner as in Comparative Example 7 except that the p-type semiconductor material was changed as shown in Table 3. Table 3 shows the light absorption characteristics and spectral sensitivity characteristics.
  • the photoelectric conversion element of the present invention can be applied to fields such as image sensors and solar cells. Specifically, it can be used in fields such as image sensors mounted on mobile phones, smartphones, tablet computers, digital still cameras, and sensing devices such as photovoltaic generators and visible light sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 高い電荷移動度を示し、光電変換効率の高い光電変換素子を提供するため、本発明は以下の構成を有する。 すなわち、第一電極と第二電極の間に少なくとも一層の有機層が存在する光電変換素子であって、前記有機層に一般式(1)で表される第一の化合物と、波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物とを含有することを特徴とする光電変換素子である。

Description

光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
 本発明は、 光を電気エネルギーに変換できる光電変換素子に関する。より詳しくは、太陽電池、イメージセンサなどの分野に利用可能な光電変換素子に関するものである。
 光を電気エネルギーに変換できる光電変換素子は太陽電池、イメージセンサなどに利用できる。特に、光電変換素子で入射光より発生した電流をCCDやCMOS回路で読み出すイメージセンサが広く用いられている。
 従来、光電変換素子を用いたイメージセンサでは光電変換膜を構成する材料として無機物を利用していた。しかし、無機物は色の選択性(特定波長の吸収)が低いため、カラーフィルターを用いて入射光中のそれぞれの色(赤、緑および青)を選択的に透過させ、光電変換膜でそれぞれの色の光を吸収する必要があった。しかし、カラーフィルターを用いると、きめ細かい対象物を撮影した時に対象物のピッチが撮像素子のピッチと干渉し、本来の画像とは異なる画像(モアレ欠陥)が発生する。それを抑制するために光学レンズなどが必要となるが、カラーフィルターと光学レンズにより光利用効率および開口率が低くなる短所がある。
 一方、近年、イメージセンサの高解像度要求が高まってきており、画素の微細化が進んでいる。そのため、画素のサイズはより小さくなるが、小さくなることで各画素の光電変換素子に到達する光量が減少するため、感度の低下が問題になる。
 これを解決するために、有機化合物を用いた光電変換素子の研究がなされている。有機化合物は分子構造により入射する光のうち特定波長領域の光を選択的に吸収できることからカラーフィルターが不要となり、更に吸収係数が大きいことから、光利用効率を高くすることが可能である。この有機化合物を用いた光電変換素子としては、具体的には両極に挟まれた光電変換膜にpn接合構造やバルクへテロジャンクション構造を導入した素子構成が知られている。例えば、特許文献1には、芳香環が縮合されているチオフェン含有芳香族基を有する化合物を含む有機光電材料が開示されている。
特開2014-17484号公報
 しかしながら、有機化合物を用いた光電変換素子は、特にイメージセンサ用途については、原理的にその優位性は確認できているものの、実用化に向けた技術的な課題が多い。
 例えば、特許文献1では、大きい吸収係数を有するチオフェン系化合物(以下、特許文献1の化合物)が用いられている。この特許文献1の化合物を用いた光電変換素子は比較的高い光電変換効率を示すが、更なる光電変換効率の向上が求められていた。
 一方、光電変換素子に用いられる有機化合物においては、特許文献1の化合物の他にも、大きい吸収係数を有する化合物(以下、他の光吸収性化合物)が多く知られている。しかしながら、これらの他の光吸収性化合物を用いた光電変換素子では十分な光電変換効率が得られず、光電変換効率の向上が求められていた。
 そこで本発明は、従来技術の問題を解決し、より高い光電変換効率を有する光電変換素子を提供することを目的とする。
 本願の発明者らは上記課題の解決のため、光電変換素子の電荷移動度に着目した。すなわち、特許文献1の化合物を用いた光電変換素子が比較的高い光電変換効率を示したのに対して、前記他の光吸収性化合物を用いた光電変換素子が十分な光電変換効率を示さなかったのは、特許文献1の化合物が十分な電荷移動度を有し、前記他の光吸収性化合物が十分な電荷移動度を有さなかったためと考えた。そこで、前記他の光吸収性化合物の電荷移動度を高めることを試みたが、大きい吸収係数を維持したまま電荷移動度を高めるような分子を設計し、合成することは困難であった。そこで、前記他の光吸収性化合物を、十分な電荷移動度を有する化合物と組み合わせることにより、前記他の光吸収性化合物を用いた光電変換素子の光電変換効率を向上させることを着想した。
 本願の発明者らは、電荷移動度を有する化合物として、まず、ナフタセンを検討した。しかしながら、ナフタセンでは、前記他の光吸収性化合物と組み合わせても、高い光電変換効率が得られなかった。そこで、本願の発明者らはさらに検討を重ね、特定の構造を有する縮合環芳香族化合物を、前記他の光吸収性化合物と組み合わせることにより高い光電変換効率が得られることを見出した。すなわち、本発明は以下のとおりである。
 第一電極と第二電極の間に少なくとも一層の有機層が存在する光電変換素子であって、前記有機層に下記一般式(1)で表される第一の化合物と、波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物とを含有する光電変換素子。
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、R~R12はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。隣接する置換基が互いに結合して環構造を形成していても良い。
 但し、前記一般式(1)のRおよびR12は、下記一般式(2)または下記一般式(3)で表される基である。
Figure JPOXMLDOC01-appb-C000009
一般式(2)または一般式(3)中、R15~R24はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。R16~R19およびR21~R24は隣接する置換基同士で環を形成してもよい。Xは酸素原子、硫黄原子または-NR25である。R25は水素、アルキル基、シクロアルキル基、複素環基、アリール基またはヘテロアリール基である。)
 本発明により、高光電変換効率を有する光電変換素子を提供することができる。
本発明の光電変換素子の一例を示す模式断面図。 本発明の光電変換素子の一例を示す模式断面図。 本発明の光電変換素子の一例を示す模式断面図。 本発明の光電変換素子の一例を示す模式断面図。 本発明のイメージセンサにおける光電変換素子の積層構造の一例を示す模式断面図。 本発明のイメージセンサにおける光電変換素子の積層構造の一例を示す模式断面図。
 <光電変換素子>
 本発明の光電変換素子は、第一電極と第二電極の間に少なくとも一層の有機層が存在する光電変換素子であって、前記有機層に下記一般式(1)で表される第一の化合物と、波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物とを含有するものである。
Figure JPOXMLDOC01-appb-C000010
一般式(1)中、R~R12はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。隣接する置換基が互いに結合して環構造を形成していても良い。
 但し、前記一般式(1)のRおよびR12は、下記一般式(2)または下記一般式(3)で表される基である。
Figure JPOXMLDOC01-appb-C000011
一般式(2)または一般式(3)中、R15~R24はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。R16~R19およびR21~R24は隣接する置換基同士で環を形成してもよい。Xは酸素原子、硫黄原子または-NR25である。R25は水素、アルキル基、シクロアルキル基、複素環基、アリール基またはヘテロアリール基である。
 なお、以下、「一般式(1)で表される第一の化合物」を「第一の化合物」と称する場合がある。また、本発明において、以下、「波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物」を「第二の化合物」と称する場合がある。
 図1~図4に本発明の光電変換素子の例を示す。
 図1は、第一電極10と第二電極20、およびそれらの間に介在する1層の有機層11を有する光電変換素子の例である。図1の有機層11は、光を電気エネルギーに変換する光電変換層15である。なお、本発明における有機層とは、有機化合物を含む層を表し、例えば、光電変換層、電荷阻止層などが挙げられる。
 以下、第一電極10が陰極、第二電極20が陽極である場合を例に図2~図4について説明する。陰極と陽極の間には、光電変換層1層のみからなる構成の他に、図2~図4のように電荷阻止層を挿入してもよい。この電荷阻止層とは、電子または正孔をブロックする機能を有する層であり、陰極と光電変換層との間に挿入される場合は電子阻止層13、陽極と光電変換層15との間に挿入される場合は正孔阻止層17として機能する。光電変換素子はこれらの電荷阻止層のいずれか一種のみを含んでいても良いし(図2、図3)、両方含んでいても良い(図4)。
 さらに、光電変換層が2種以上の光電変換材料から構成される場合、該光電変換層は2種以上の光電変換材料が混合された1層でもよいし、それぞれ1種以上の光電変換材料からなる層が積層された複数層でもよい。更には、混合層と各々の単独層が混合された構成でも良い。
 (第一の化合物)
 本発明における一般式(1)で表される第一の化合物について詳細を説明する。
Figure JPOXMLDOC01-appb-C000012
一般式(1)中、R~R12はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。隣接する置換基が互いに結合して環構造を形成していても良い。
 本発明において、水素には、重水素を含んでもよい。
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下のシクロアルキル基や複素環基などの各置換基が置換されている場合の追加の置換基にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。なお、アルキル基が置換されている場合は、追加の置換基の炭素数もアルキル基の炭素数に含むものとする。以下のシクロアルキル基や複素環基などの各置換基が置換されている場合の各置換基の炭素数も、追加の置換基の炭素数を含むものとする。
 シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。シクロアルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基、ターフェニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
 ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、ピラジニル基、ピリミニジニル基、トリアジニル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
 アミノ基は置換基を有していても有していなくてもよい。置換基としては例えばアリール基、ヘテロアリール基などが挙げられ、これらの置換基はさらに置換されていてもよい。
 シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また、ケイ素数は、通常、1以上6以下の範囲である。
 -P(=O)R1112は置換基を有していても有していなくてもよい。置換基としては例えばアリール基、ヘテロアリール基などが挙げられ、これらの置換基はさらに置換されていてもよい。
 また、任意の隣接する2置換基(例えば一般式(1)のRとR)が互いに結合して、共役または非共役の縮合環を形成していてもよい。特にRとRで環を形成し、全体で5つの縮合環を形成した構造を形成すると、電荷移動度が向上するため好ましい。全体で5つの縮合環を形成した構造としては、ベンゾ[a]ナフタセンが特に好ましい。縮合環の構成元素としては、炭素以外にも窒素、酸素、硫黄、リンおよびケイ素から選ばれる元素を含んでいてもよい。また、縮合環がさらに別の環と縮合してもよい。
 一般式(1)のRおよびR12は一般式(2)または一般式(3)で表される基である。
Figure JPOXMLDOC01-appb-C000013
一般式(2)または一般式(3)中、R15~R24はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。R16~R19およびR21~R24は隣接する置換基同士で環を形成してもよい。Xは酸素原子、硫黄原子または-NR25である。R25は水素、アルキル基、シクロアルキル基、複素環基、アリール基またはヘテロアリール基である。
 このように、ナフタセン骨格の特定の結合位置(5位と12位)に、一般式(2)または一般式(3)で表される基を合計2個有していると、高い電荷移動度と耐熱性を両立することが可能となり、光電変換素子の光電変換効率を向上させると共に耐久性を向上させることができるためより好ましい。
 一般式(2)で表される基を有する化合物は、アリール基を有しているため、π電子による分子間の電荷移動がスムーズに行われ、高い電荷移動度を有する。そのため、外部量子効率向上に大きく寄与する。一般式(2)で表される基の中でR15がアルキル基、アルコキシ基、アリール基またはヘテロアリール基であると、ナフタセン骨格同士の分子相互作用が抑制され、高い光電変換効率が可能となると同時に、安定な薄膜が形成できるため好ましい。中でも、R15が炭素数1~20のアルキル基、アルコキシ基または炭素数4~14のアリール基、ヘテロアリール基であると、原料の入手や合成プロセスが容易になり、コストダウンが可能となるため、さらに好ましい。さらにR17とR18で環を形成し、全体でナフタレン環を形成すると、極めて電荷移動度が優れ、外部量子効率向上に寄与するので特に好ましい。
 一般式(3)で表される基を有する化合物は、二環式ベンゾヘテロ環を有しているため、高いガラス転移温度(Tg)を確保できることから、耐熱性が高くなる点で好ましい。一般式(3)で表される基の中でR20がアルキル基、アルコキシ基、アリール基またはヘテロアリール基であると、ナフタセン骨格同士の分子相互作用が抑制され、高い光電変換効率が可能となると同時に、安定な薄膜が形成できるため好ましい。中でも、R20が炭素数1~20のアルキル基、アルコキシ基または炭素数4~14のアリール基、ヘテロアリール基であると、原料の入手や合成プロセスが容易になり、コストダウンが可能となるため、さらに好ましい。
 炭素数1~20のアルキル基、アルコキシ基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、アダマンチル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、シクロペントキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基が挙げられる。中でも、高光電変換効率や薄膜安定性と原料の入手や合成プロセスの容易性の両立の点で、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、メトキシ基が好ましい。
 炭素数4~14のアリール基、ヘテロアリール基としては、例えばフェニル基、ナフチル基、フェナントリル基、アントラセニル基、フルオレニル基、フラニル基、チオフェニル基、ピロリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、ピリジル基、キノリニル基、キノキサニル基、カバゾリル基、ヴェナトロリル基が挙げられる。中でも、高光電変換効率や薄膜安定性と原料の入手や合成プロセスの容易性の両立の点で、フェニル基、ナフチル基、フェナントリル基、フルオレニル基、ベンゾフラニル基、ベンゾチオフェニル基、ピリジル基、キノリニル基、キノキサニル基が好ましい。
 なお、上記アリール基およびヘテロアリール基はさらに置換基を有していてもよい。この場合の置換基の例としてはメチル基、エチル基、プロピル基、tert-ブチル基などのアルキル基、メトキシ基、エトキシ基などのアルコキシ基、フェノキシ基などのアリールエーテル基、フェニル基、ナフチル基、ビフェニル基などのアリール基、ピリジル基、キノリニル基、ベンゾフラニル基、ベンゾチオフェニル基などのヘテロアリール基が好ましい。中でも、原料の入手や合成プロセスの容易性の点で、メチル基、tert-ブチル基、フェニル基が特に好ましい。
 また、一般式(3)のXが酸素原子であると、より高い光電変換効率が得られるため好ましい。
 R~R、R~R11、R16~R19、R21~R24については、第一の化合物の分子量が低いほど蒸着が容易になるという観点から、水素または重水素であることが好ましい。
 一般式(1)で表される第一の化合物の合成には、公知の方法を使用することができる。第一の化合物のナフタセン骨格に一般式(2)または一般式(3)で表される基を導入する方法は、例えば、ナフトキノン誘導体と有機金属試薬によるカップリング反応を用いる方法やハロゲン化ナフタセン誘導体とボロン酸試薬とのパラジウムやニッケル触媒下でのカップリング反応を用いる方法などが挙げられるが、これらに限定されるものではない。
 上記一般式(1)で表される第一の化合物としては、具体的に以下を例示することができる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 (第二の化合物)
 本発明における、波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物について説明する。なお、波長400~700nmにおいて2つ以上の吸収係数の極大値が存在する場合は、それらのうち最大の吸収係数の極大値で判断する。
 一般式(1)で表される第一の化合物は、高い電荷移動度を有しているため、発生させた電荷を電極まで効率良く輸送する能力に優れているが、その一方で吸収係数が小さい性質がある。具体的には、一般式(1)で表される第一の化合物の吸収係数は、ナフタセン骨格に導入する置換基の種類にもよるが、1×10cm-1~5×10cm-1である。これはシリコン結晶などの無機薄膜の吸収係数(10cm-1程度)と比べても殆ど変わらない値である。そのため、一般式(1)で表される第一の化合物単独では入射光を十分に吸収できず、その光の多くが透過して光損失となるため、結果的に光電変換効率の低下に繋がる。
 一方で、光電変換層に用いられる有機化合物においては、10~10cm-1程度の大きい吸収係数を有する化合物が多く知られており、例えば以下に例示する化合物A-1は、1.16×10cm-1の吸収係数を有している。
Figure JPOXMLDOC01-appb-C000025
 そこで、一般式(1)で表される第一の化合物と波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物の両方を有機層に含む構成にすることにより、高い光電変換性能を実現できる。すなわち、吸収係数の大きい第二の化合物に光吸収の役割を持たせ、電荷輸送の役割を第一の化合物と第二の化合物の両方に持たせることにより、光吸収性と電荷移動度を両立することができるので、光電変換性能を発現することができる。
 これらの化合物は、有機層の中でも特に光電変換層に含まれることが好ましい。なお、光電変換層のみにこれらの化合物を含む構成には限られない。例えば電子阻止層や正孔阻止層の電荷移動度を向上させたりキャリア発生数を増やしたりするために、これらの層に第一の化合物および第二の化合物を含む構成にしても良いし、光電変換素子全体の光吸収性を向上させる目的で電子阻止層や正孔阻止層に第二の化合物を含む構成にしても良い。
 第二の化合物の吸収係数は大きい程好ましい。有機光電変換素子ならではの特徴である高い光吸収性を生かし、無機光電変換素子にはない光利用効率を実現するためには、5×10cm-1以上であることが好ましく、より好ましくは8×10cm-1以上、さらに好ましくは1×10cm-1以上である。
 このような材料としては、光吸収性が良好な点で顔料系の材料が好適に挙げられる。具体的には、メロシアニン、クマリン、ナイルレッド、ローダミン、オキサジン、アクリジン、スクアリウム、ジケトピロロピロール、ピロメテン、ピレン、ペリレン、チオフェン、フタロシアニンなどの誘導体が挙げられる。さらに、本発明の光電変換素子をイメージセンサ用途として用いる場合には、波長400~700nmに単一ピークの吸収を持つ材料が好適に用いられる。そのような吸収を持つ材料において、1×10cm-1以上の大きな吸収係数を持つ材料としては具体的にはチオフェン誘導体、ピレン誘導体、ペリレン誘導体などが挙げられる。
 チオフェン誘導体としては、一般式(4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
一般式(4)中、R25~R28はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シリル基および-P(=O)R2930および下記一般式(5)で表される基からなる群より選ばれる基である。R29およびR30はアリール基またはヘテロアリール基である。mは1~6の整数である。ただし、R25~R28は、そのうち少なくとも1個が下記一般式(5)で表される基である。
Figure JPOXMLDOC01-appb-C000027
一般式(5)中、nは1または2である。nが1のとき、Lはアルケンジイル基、アレーンジイル基またはヘテロアレーンジイル基である。nが2のとき、Lはアルケントリイル基、アレーントリイル基またはヘテロアレーントリイル基である。
 一般式(4)で表される化合物は、光吸収係数が高く単一ピークの吸収を有する色選択性良好な化合物である。mを1~6の整数にすることにより、波長400~700nmの範囲に吸収領域を持つ。例えば緑色領域に吸収を持つ光電変換素子を作製する場合、mは2~4であることが好ましく、mは3が特に好ましい。また、R25~R28の置換基の種類を適宜選択することにより吸収波長を制御することができる。また、第一の化合物をp型半導体材料として用いる場合、第二の化合物である一般式(4)で表される化合物は、R25~R28のうち少なくとも1個を一般式(5)で表される基にすることにより、良好な電子輸送性を有するn型半導体材料として機能する。
 ピレン誘導体としては、一般式(6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 R31~R34はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シリル基および-P(=O)R3536および下記一般式(5)で表される基からなる群より選ばれる基である。R35およびR36はアリール基またはヘテロアリール基である。ただし、R31~R34は、そのうち少なくとも1個が下記一般式(5)で表される基である。
Figure JPOXMLDOC01-appb-C000029
一般式(5)中、nは1または2である。nが1のとき、Lはアルケンジイル基、アレーンジイル基またはヘテロアレーンジイル基である。nが2のとき、Lはアルケントリイル基、アレーントリイル基またはヘテロアレーントリイル基である。
 一般式(6)で表される化合物は、単一ピークの吸収を有する色選択性良好な化合物である。R31~R34の置換基の種類を適宜選択することにより、吸収波長を制御することができる。特にR31~R34は、そのうち少なくとも1個が前記一般式(5)で表される基である場合、波長400~700nmの範囲に吸収領域を有し、かつ良好な電子輸送性を有するn型半導体材料として機能するので好ましい。
 ペリレン誘導体としては、一般式(7)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
 R37およびR38はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シアノ基、シリル基および-P(=O)R3940からなる群より選ばれる基である。R39およびR40はアリール基またはヘテロアリール基である。
 一般式(7)で表される化合物は、光吸収係数が高く色選択性良好な化合物である。R37およびR38の置換基の種類を適宜設定することによって、吸収波長を制御することができる。一般式(7)で表される化合物は、良好な電子輸送性を有するのでn型半導体として用いることが好ましい。
 なお、本明細書における吸収係数とは、光が薄膜の中を進むときに、単位長さあたりに吸収される割合のことであり、(吸光度)/(膜厚)なる式に代入して算出した値である。具体的には、厚さ0.7mmの透明な石英ガラスの上に、真空蒸着法にて有機化合物を1Å/秒の蒸着レートで50nmの膜厚にて製膜し、紫外・可視分光光度計にて400nm~700nmの可視領域の吸光度を測定した後、吸光度の最大値を有機化合物の膜厚(単位:cm)で除算することにより吸収係数が算出される。
 一般式(1)で表される第一の化合物は、第二の化合物との相対的なイオン化ポテンシャルと電子親和力の大小によってp型半導体材料としてもn型半導体材料としても使用できるが、p型半導体材料として使用することが好ましい。特に、一般式(1)で表される第一の化合物には一般式(2)または一般式(3)で表される基が含まれるため、正孔輸送性に優れているので、p型半導体材料として使用することが好ましい。そして第二の化合物がn型半導体材料であることが好ましい。
 ここでいうp型半導体材料とは、電子供与性があって電子を放出しやすい性質(イオン化ポテンシャルが小さい)を有する正孔輸送性の半導体材料を示す。n型半導体材料とは、電子受容性があって電子を受け取りやすい性質(電子親和力が大きい)を有する電子輸送性の半導体材料を示す。光電変換層がp型半導体材料とn型半導体材料から構成される場合、入射光により光電変換層で生成された励起子が基底状態に戻っていく前に効率よく正孔と電子に分離させることができる。分離された正孔と電子はそれぞれp型半導体材料およびn型半導体材料を通って陰極と陽極に流れていくことで高い光電変換効率を得ることができる。
 次に、光電変換素子を構成する電極や有機層について説明する。
 (陰極および陽極)
 本発明の光電変換素子において、陰極と陽極は光電変換素子の中で作られた電子及び正孔を流し、十分に電流を流せるための役割を有するものであり、光を入射させるために少なくとも一方は透明または半透明であることが好ましい。通常、基板上に形成される陰極を透明電極とする。
 陰極は、正孔を光電変換層から効率よく抽出でき、かつ光を入射させるために透明であればよい。陰極を透明電極とする場合の陰極の材料としては酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどが好ましく、透明電極として用いる場合には、ガラス基板表面にITOを有するITOガラスや、ガラス基板表面に酸化錫を有するネサガラスを用いることが特に好ましい。
 透明電極の抵抗は光電変換素子で作られた電流を十分流せればよく、光電変換素子の光電変換効率の観点からは低抵抗であることが好ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するので、低抵抗品を使用することが特に好ましい。ITOや酸化錫の厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。また、ITOガラスやネサガラスのガラス基板にはソーダライムガラス、無アルカリガラスなどが用いられる。ガラス基板の厚みは機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラス基板の材質は、ガラス基板からの溶出イオンが少ない方がよいので無アルカリガラスが好ましく、またSiOなどのバリアコートを施したソーダライムガラスも使用できる。さらに、陰極が安定に機能するのであれば、基板はガラスである必要はなく、例えばプラスチック基板上に陰極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法など特に制限を受けるものではない。
 陽極は、電子を光電変換層から効率良く抽出できる物質が好ましく、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、セシウム、ストロンチウムなどがあげられる。電子抽出効率をあげて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウム、セシウムまたはこれら低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、正孔阻止層に微量のリチウムやマグネシウム、セシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができる。またフッ化リチウムのような無機塩の使用も可能である。更に電極保護のために白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい。これらの電極の作製法も抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができる方法がよい。
 なお、本発明の光電変換素子をイメージセンサとして使用する場合においては、陽極と陰極の間に外部から電界を印加すると、光電変換層において発生した電子が陽極側に、正孔が陰極側に導かれやすくなるので、光電変換効率を向上させる効果が生じる。この場合、印加電圧としては10V/m以上10V/m以下であることが好ましい。印加電圧が10V/m以上とすることにより、発生した電荷を効率良く電極へ運びやすくなるので光電変換効率が低下しにくくなる。また、10V/m以下とすることにより、暗電流が少なくなるためにS/N比が向上したり、電流リークが発生する確率が低くなる。また、陽極と陰極の間に電界を印加しなくても、陽極と陰極を繋いで閉回路にした時に内蔵電界によって光電変換素子に電荷が流れるので、光起電力性素子として使用することも可能である。
 (光電変換層)
 光電変換層とは入射光を吸収して電荷を発生する光電変換が生じる層である。これは単独の光電変換材料で構成されても良いが、p型半導体材料とn型半導体材料とで構成されることが好ましい。この際、p型半導体材料とn型半導体材料はそれぞれ単独でも複数でもよい。光電変換層では光電変換材料が光を吸収し、励起子を形成した後、電子と正孔がそれぞれn型半導体材料とp型半導体材料により、分離される。このように分離された電子と正孔はそれぞれ伝導準位と価電子準位を通して両極まで流され、電気エネルギーを発生させる。
 光電変換層の構成としては、上述の第一の化合物と第二の化合物を共蒸着などの手法により同一層内に混合させたバルクヘテロジャンクションであることが好ましい。バルクヘテロジャンクションとは、2種以上の化合物が1層の中にランダムに混ざり、化合物どうしがナノレベルで接合した構造のことである。これにより、いずれか一方の材料で発生させた電荷を、正孔と電子に効率良く分離することが可能となる。また、第一の化合物と第二の化合物の混合膜の吸収係数は、高い光吸収性を発現させるために、5×10cm-1以上であることが好ましく、より好ましくは8×10cm-1以上、さらに好ましくは1×10cm-1以上である。
 一般式(1)で表される第一の化合物と、第二の化合物の混合比率は、第一の化合物を多くすればするほど薄膜全体の吸収係数と第二の化合物が担うキャリア輸送性が低下すること、また第二の化合物の混合比率を多くすればするほど第一の化合物が担うキャリア輸送性が低下することから、モル比で(第一の化合物):(第二の化合物)=75%:25%~25%:75%の範囲にすることが好ましい。また、吸収係数の大きい第二の化合物を多く含む方が、薄膜全体の吸収係数が向上し、光電変換効率の向上に繋がるので、(第一の化合物):(第二の化合物)=50%:50%~25%:75%にする方がより好ましい。
 第一の化合物、第二の化合物いずれにおいても、高い光電変換効率を得るためには、発生した電荷を効率良く運ぶ機能を有する必要がある。そのため、第一の化合物、第二の化合物の電荷移動度は、いずれも1×10-9cm/Vs以上であることが好ましく、より好ましくは1×10-8cm/Vs以上、さらに好ましくは1×10-7cm/Vs以上である。
 本明細書における電荷移動度とは、空間電荷制限電流法(SCLC法)により測定された移動度であり、参考文献としては、Adv.Funct.Mater,Vol.16(2006)の701頁などが挙げられる。
 有機層の膜厚は、薄すぎると電流リークが発生する確率が高くなり、また光電変換層が薄くなる影響によりキャリア発生数が減少するので光電変換効率が低くなる。また、有機層の膜厚が厚すぎると、光電変換層において発生したキャリアが電極まで到達しにくくなるので光電変換効率が低下し、さらに高電界が必要となるため消費電力の増加に繋がる。そのため、有機層の膜厚は20nm以上200nm以下であることが好ましい。
 光電変換層を構成する光電変換材料は上述の第一の化合物および第二の化合物のほか、以前から光電変換材料として知られていた材料を併用しても良い。また、上述の第一の化合物および第二の化合物が光電変換層以外の有機層に用いられる場合は、以前から光電変換材料として知られていた材料を単独もしくは混合物として用いることができる。
 光電変換材料の光吸収波長領域によって、光電変換層の吸収波長が決められるため、用いようとする色に対応する光吸収特性の材料を用いることが好ましい。例えば、緑色の光電変換素子では490nm~570nmで光を吸収する材料で光電変換層を構成する。また、光電変換層を2種以上の材料で構成する場合、p型半導体材料とn型半導体材料が含まれると、光電変換層で発生したキャリアのうち、正孔はp型半導体材料を流れやすくなり、電子はn型半導体材料を流れやすくなるために、正孔と電子を効率良く分離することができる。そのため、高い光電変換効率を得るためには、p型半導体材料とn型半導体材料のそれぞれのエネルギー準位が異なる材料で光電変換層が構成され、さらに光電変換層で発生した正孔と電子が電極側に移動できるように電荷移動度の高い材料で光電変換層を構成する。
 p型半導体材料はイオン化ポテンシャルが比較的に小さく、電子供与性があって正孔輸送性化合物であれば、どの有機化合物でも良い。p型有機半導体材料の例としてはナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合多環芳香族誘導体を有する化合物やその誘導体、シクロペンタジエン誘導体、フラン誘導体、チオフェン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ピラゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、スチリルアミン誘導体、ベンジジン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、 キナクリドン誘導体などを挙げられる。
 ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体を挙げられるが特にこれらに限定されるものではない。
 n型半導体材料は電子親和力が高く、電子輸送性の化合物であれば、どの材料でもよい。n型半導体材料の例としてはナフタレン、アントラセン、ナフタセンなどの縮合多環芳香族誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、芳香族アセチレン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、イミダゾール、チアゾール、チアジアゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体を挙げられる。
 また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、マレイン酸無水物、フタル酸無水物などの酸無水物系化合物、C60、PCBMなどのフラーレンおよびフラーレン誘導体、なども挙げられる。
 また炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物もあげられる。ここでいう電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有し、n型半導体材料として好ましい。
 電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
 これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。
 好ましいn型半導体材料としては、上述の材料群が使用できるが特に限定されるものではない。
 (電荷阻止層)
 電荷阻止層とは、光電変換層で光電変換された電子および正孔を効率よくかつ安定に電極から取り出すために用いられる層であり、電子を阻止する電子阻止層と正孔を阻止する正孔阻止層とが挙げられる。これらは無機物から構成されても良いし、有機化合物から構成されても良い。さらに、無機物と有機化合物の混合層からなってもよい。
 正孔阻止層とは、光電変換層で生成された正孔が陽極側に流れ、電子と再結合するのを阻止するための層であり、各層を構成する材料の種類によっては、この層を挿入することにより正孔と電子の再結合が抑制され、光電変換効率が向上する。したがって、正孔阻止性材料は光電変換材料よりもHOMOレベルがエネルギー的に低いものがよい。光電変換層からの正孔の移動を効率よく阻止できる化合物が好ましく、具体的には8-ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタレン誘導体、クマリン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、ビピリジン、ターピリジンなどのオリゴピリジン誘導体、フェナントロリン誘導体、キノリン誘導体、芳香族リンオキサイド化合物などがある。これらの正孔阻止材料は単独でも用いられるが、異なる正孔阻止材料と積層または混合して使用しても構わない。
 電子阻止層とは、光電変換層で生成された電子が陰極側に流れ、正孔と再結合するのを阻止するための層であり、各層を構成する材料の種類によっては、この層を挿入することにより正孔と電子の再結合が抑制され、光電変換効率が向上する。したがって、電子阻止性材料は光電変換材料よりもLUMOレベルがエネルギー的に高いものがよい。光電変換層からの電子の移動を効率よく阻止できる化合物が好ましく、具体的にはN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどのトリフェニルアミン類、ビス(N-アリルカルバゾール)またはビス(N-アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ジスチリル誘導体、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが挙げられるが、光電変換素子作製に必要な薄膜を形成し、光電変換層から正孔を抽出できて、さらに正孔を輸送できる化合物であれば良い。これらの電子阻止材料は単独でも用いられるが、異なる電子阻止材料と積層または混合して使用しても構わない。
 以上の正孔阻止層、電子阻止層は単独または二種類以上の材料を積層、混合するか、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
 有機層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。
 <イメージセンサ>
 本発明の光電変換素子はイメージセンサに好適に利用できる。イメージセンサは光学的な映像を電気的な信号に変換する半導体素子である。一般的にイメージセンサは光を電気エネルギーに変換する前述の光電変換素子と電気エネルギーを電気信号に読み出す回路で構成される。イメージセンサの用途によって、複数の光電変換素子を一次元直線または二次元平面に配列することができる。また、モノカラーのイメージセンサの場合は1種の光電変換素子で構成されてもよいが、カラーイメージセンサの場合は、2種以上の光電変換素子で構成され、例えば赤色光を検出する光電変換素子、緑色光を検出する光電変換素子、および青色光を検出する光電変換素子で構成される。各色の光電変換素子は積層構造を有する、すなわち一つの画素に積層されていてもよいし、横に並んでマトリクス構造で構成されてもよい。
 なお、光電変換素子が一つの画素に積層された構造の場合は、図5に示すように、緑色光を検出する光電変換素子32、青色光を検出する光電変換素子33、赤色光を検出する光電変換素子31を順次積層した3層構造でも良く、図6に示すように緑色光を検出する光電変換素子32を上層に全面配置し、赤色光を検出する光電変換素子31および青色光を検出する光電変換素子33をマトリクス構造で形成された2層構造でも良い。この構造は、緑色光を検出する光電変換素子32が入射光34に対して最も近い層に配置されているものである。各色の積層の順序はこれに限らず、図5とは異なっていても良いが、最上層の光電変換素子が特定色を吸収し、かつ特定色以外の長波長光および短波長光を透過させる色フィルタとしての機能を有する観点から、緑色の光電変換素子を最上層に配置する構成が好ましい。また、青色の光電変換素子の色選択性が優れている場合には、短波長の検出しやすさの観点で、青色の光電変換素子を最上層に配置する構成をとっても良い。
 またマトリクス構造の場合は、ベイヤー配列、ハニカム配列、ストライプ状配列、デルタ配列などの配列から選択することができる。また、緑色光を検出する光電変換素子に有機光電変換材料を使用し、赤色光を検出する光電変換素子および青色光を検出する光電変換素子については、従来用いられている無機系の光電変換材料や有機光電変換材料から適宜組み合わせて用いてもよい。
 <太陽電池>
 本発明の光電変換素子は太陽電池に利用できる。太陽電池は、太陽光のエネルギーを吸収して直接電気に変えるエネルギー変換素子である。光を吸収して電気エネルギーを発生させる点ではイメージセンサと原理が共通しているが、イメージセンサは通常外部から電界を印加することにより光電変換層で発生した電荷を取り出しやすくするのに対し、太陽電池は光電変換素子自体が光起電力を発生させ、光電変換層で発生した電荷が外部に取り出されるところが異なる。
 本発明の光電変換素子は、波長400~700nmにおいて光吸収をする化合物を含有することから、主に可視領域の光を電気エネルギーに変換するのに適している。なお、太陽電池の変換効率向上のためには、なるべく広い波長領域の光を吸収することが好ましいので、特に光吸収係数の高い第二の化合物において、波長400~700nmの全ての領域に光吸収性を有する化合物を用いることが好ましい。また、本発明の光電変換素子において光吸収波長領域が狭くても、それぞれ光吸収波長領域の異なる光電変換素子(例えば赤・緑・青のそれぞれの光を吸収する光電変換素子)を縦型積層し、タンデム構造の太陽電池を作製しても良い。
 <単色検知センサ>
 本発明の光電変換素子は、単色検知センサに利用できる。特に光電変換素子が色選択性・色識別性を有し、高い光吸収係数を有する場合に好適に利用できる。例えば、テレビや電化製品などのリモコン、コンパクトディスクプレイヤーの受光素子、照度センサ、蛍光プローブセンサ、CCD、フォトレジスタなどに適用できるが、用途はこれに限定されるものではない。
 <フレキシブルセンサ>
 本発明の光電変換素子は、フレキシブルセンサに利用できる。有機化合物を用いた光電変換素子は、既存の無機半導体を用いた光電変換素子には無い軽量さと柔軟性を有している。この特徴を生かし、曲面構造物に実装したり、生体表面の撮像用に実装することが可能である。また、印刷プロセスで作製することが可能であることから、大面積のセンサを作製が可能である。
 以下、実施例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は前に記載した化合物の番号を指すものである。また構造分析に関する評価方法を下記に示す。
 H-NMRは超伝導FTNMR EX-270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。
 吸収スペクトルはU-3200形分光光度計(日立製作所(株)製)を用い、石英基板上に50nmの膜厚で蒸着して測定を行った。吸収係数は Lambert-Beer Lawにより計算した。
 光電変換素子の分光感度特性(外部量子効率および最大感度波長)は、SM-250型分光感度測定装置(分光計器(株)製)を用いて測定を行った。
 合成例1
 化合物[10]の合成方法
 フェニルアセチレン(10.0g)、脱水テトラヒドロフラン(200ml)の混合溶液を窒素気流下、0℃で攪拌した。この混合溶液にn-ブチルリチウム(1.6Mヘキサン溶液、62ml)を滴下した後、0℃で2時間攪拌した。その後、フェニルアセトアルデヒド(6.0g)、脱水テトラヒドロフラン(20ml)の混合溶液を滴下した後、室温に戻して4時間攪拌した。反応溶液に純水100mlを加えた後、酢酸エチルで抽出した。得られた溶液を硫酸マグネシウムで乾燥し、ろ過後溶媒を留去した。得られた液体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして黄色液体9.0gを得た。
 次に、上記黄色液体(9.0g)、ナトリウムビカルボナート(6.8g)、ヨウ素(30.8g)、アセトニトリル(400ml)の混合溶液を窒素気流下、室温で4時間攪拌した。反応溶液に飽和チオ硫酸ナトリウム水溶液100mlを加え、1時間攪拌した後、酢酸エチルで抽出した。得られた溶液を硫酸マグネシウムで乾燥し、ろ過後溶媒を留去した。得た液体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして黄色液体9.3gを得た。
 次に、上記黄色液体(9.3g)、脱水テトラヒドロフラン(56ml)の混合溶液を窒素気流下、-78℃で攪拌した。この混合溶液にn-ブチルリチウム(1.6Mヘキサン溶液、19ml)を滴下した後、-78℃で2時間攪拌した。反応溶液に5,12-ナフタセンキノン(2.9g)を30分かけて添加した後、室温で4時間攪拌した。反応溶液に純水100mlを加え、エバポレートしてテトラヒドロフランの半分を除去した後、ジクロロメタンで抽出した。得られた溶液を硫酸マグネシウムで乾燥し、ろ過後溶媒を留去した。得られた固体を少量のジクロロメタンに溶解した後、メタノールを加え、沈澱させてろ過した。得られた固体を真空乾燥し黄色粉末2.8gを得た。
 次に、上記黄色粉末(2.8g)、脱水テトラヒドロフラン(43ml)の混合溶液を窒素気流下、40℃で攪拌した。この混合溶液に濃縮塩酸(22.4ml)、塩化スズ(II)二水和物(9.6g)を滴下した後、4時間還流した。反応溶液を室温に戻した後、メタノール100mlを添加して30分間攪拌した後、ろ過した。得られた固体を純水とメタノールで洗浄した後、ろ過した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして橙色粉末550mgを得た。
 得られた粉末のH-NMR分析結果は次の通りであり、上記で得られた橙色粉末が化合物[10]であることが確認された。
H-NMR(CDCl(d=ppm)):6.70-7.74(m,26H),8.04-9.09(t,4H),8.19(s,2H)。
 また、化合物[10]の光吸収特性は以下のようであった。
最大吸収波長:504nm(薄膜:50nm)
最大吸収波長における半値幅:23nm
最大吸収波長における吸収係数:4.72×10cm-1
 合成例2
 化合物[43]の合成方法
 2-ブロモアセトフェノン(35.0g)、フェノール(18.2g)、炭酸カリウム(26.7g)、アセトン(700ml)の混合溶液を窒素気流下、5時間還流した。反応溶液を室温に戻して、エバポレートして溶媒を除去した後、トルエンで抽出した。得た溶液を硫酸マグネシウムで乾燥した後、エバポレートして溶媒を除去した。得られた固体をメタンールで再結晶して白色粉末23.0gを得た。
 次に、上記白色粉末(23.0g)、メタンスルホン酸(52.0g)、トルエン(430ml)の混合溶液を窒素気流下、80℃で6時間攪拌した。反応溶液を室温に戻して、純水400mlを加え、30分間攪拌した後、トルエンで抽出した。得られた溶液を硫酸マグネシウムで乾燥した後、エバポレートして溶媒を除去した。得られた溶液をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして無色液体19.0gを得た。
 次に、上記無色液体19.0g、脱水テトラヒドロフラン(200ml)の混合溶液を窒素気流下、0℃で攪拌した。この混合溶液にn-ブチルリチウム(1.6Mヘキサン溶液、61ml)を滴下した後、0℃で3時間攪拌した。反応溶液に5,12-ナフタセンキノン(10.1g)を30分かけて添加した後、0℃で1時間攪拌した。反応溶液を室温に戻して、されに1時間攪拌した後、純水200mlとトルエン200mlを加え30分間攪拌した。有機層を分離した後、硫酸マグネシウムで乾燥してエバポレートし、溶媒を除去した。得られた固体をトルエンで再結晶して白色粉末21.4gを得た。
 次に、上記白色粉末(21.4g)、次亜リン酸ナトリウム一水和物(34.9g)、ヨウ化カリウム(36.2g)、酢酸(330ml)の混合溶液を窒素気流下、2時間還流した。反応溶液に純水350mlを加え、30分間攪拌した後、ろ過した。得られた固体にシクロペンチルメチルエテル200mlを加え、2時間還流した後、ろ過した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして橙色粉末15.5gを得た。
 得られた粉末のH-NMR分析結果は次の通りであり、上記で得られた橙色粉末が化合物[43]であることが確認された。
H-NMR(CDCl(d=ppm)):7.06-8.29(m,26H), 8.50(s,2H)
 また、化合物[43]の光吸収特性は以下のようであった。
最大吸収波長:512nm(薄膜:50nm)
最大吸収波長における半値幅:103nm
最大吸収波長における吸収係数:2.75×10cm-1
 合成例3
 化合物[108]の合成方法
 1-ブロモメチル-2-ジブロモメチルナフタレン(10.0g)、1,4-ナフトキノン(5.2g)、ヨウ化ナトリウム(25.5g)、脱水ジメチルホルムアミド(85ml)の混合溶液を窒素気流下、70℃で6時間攪拌した。反応溶液を室温に戻した後、ろ過した。得られた固体を純水とメタノールで洗浄した後ろ過した。得られた固体を真空乾燥し、黄色粉末4.32gを得た。
 次に、3-フェニルベンゾフラン(5.9g)、脱水テトラヒドロフラン(50ml)の混合溶液を窒素気流下、0℃で攪拌した。この混合溶液にn-ブチルリチウム(1.6Mヘキサン溶液、15ml)を滴下した後、0℃で3時間攪拌した。反応溶液に上記黄色粉末(3.0g)を30分かけて添加した後、0℃で1時間攪拌した。反応溶液を室温に戻して、されに1時間攪拌した後、純水100mlとトルエン100mlを加え30分間攪拌した。有機層を分離した後、硫酸マグネシウムで乾燥してエバポレートし、溶媒を除去した。得られた固体をトルエンで再結晶して白色粉末5.4gを得た。
 次に、上記白色粉末(5.4g)、次亜リン酸ナトリウム一水和物(8.2g)、ヨウ化カリウム(8.5g)、酢酸(80ml)の混合溶液を窒素気流下、2時間還流した。反応溶液に純水80mlを加え、30分間攪拌した後、ろ過した。得られた固体にシクロペンチルメチルエテル50mlを加え、2時間還流した後、ろ過した。得られた固体を真空乾燥し、黄色粉末2.7gを得た。
 得られた粉末のH-NMR分析結果は次の通りであり、上記で得られた橙色粉末が化合物[108]であることが確認された。
H-NMR(CDCl(d=ppm)):7.08-7.13(m,7H),7.25-7.51(m,13H),7.69-7.75(m,3H),7.89-7.96(m,2H),8.04-8.08(m,2H),8.34-8.35(m,2H),9.19-9.22(d,1H,d=7.56Hz)
 また、化合物[108]の光吸収特性は以下のようであった。
最大吸収波長:492nm(薄膜:50nm)
最大吸収波長における半値幅:  吸収スペクトルの明確なピークが無く、算出不可
最大吸収波長における吸収係数:  3.00×10cm-1
 合成例4
 化合物[7]の合成方法
 アルゴン雰囲気下、2,4-ジフェニルアミン24.5gに3N塩酸水300mLを加え、オイルバスにて60℃に加熱し、4時間撹拌して塩酸塩(白色懸濁液)にした。この白色懸濁液を食塩-氷バスにて5℃以下まで冷却し、撹拌下、亜硝酸ナトリウム8.27gを含む水溶液60mLを30分かけて滴下した。この際、液温が10℃を超えないようにした。生成した赤褐色溶液を5℃でさらに1時間撹拌し、ジアゾニウム塩溶液を調製した。ビーカーにヨウ化カリウム60gを含む水溶液180mLを調整し、撹拌下、調製したジアゾニウム塩溶液を30分かけて少しずつ添加した。窒素ガスの発生が収まるまで、さらに30分撹拌した後、塩化メチレン200mLを加えて生成物を溶解した。少量の亜硫酸水素ナトリウムを添加して副生した沃素を分解したのち、有機層を分離し、炭酸ナトリウム水、及び水で洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去し、カラムクロマトで精製して、2,4-ジフェニルヨウ化ベンゼン29.4g(収率82.5%)を得た。
 2,4-ジフェニルヨウ化ベンゼン27.4gを、アルゴン雰囲気下、脱水トルエン180mLと脱水エーテル60mLに溶解し、ドライアイス-アセトンバスで-45℃に冷却した。そこに、2.44Mのnブチルリチウム-nヘキサン溶液31mLを15分かけて滴下し、温度をゆっくり-10℃まで上げて、さらに1時間撹拌した。そこに、5,12-ナフタセンキノン7.75gを30分かけて少量ずつ添加し、その後、室温まで徐々に温度を上げ、さらに5時間撹拌した。氷水で0℃まで冷却し、メタノール60mLを滴下した。生成した粉末を濾取し、冷メタノールで数回洗浄し、真空乾燥して、白色粉末を得た。トルエン200mLを加えて1時間加熱・懸洗し、室温まで冷却した。濾過、冷トルエン洗浄、及び真空乾燥し、ジオール体の白色粉末15.1g(収率69.8%)を得た。
 以下の反応は、アルゴン吹き込み管を備えたフラスコをアルミホイルで遮光して実施した。上記のジオール体14.42gに脱気したテトラヒドロフラン(THF)450mLを加え、アルゴンを吹き込みながら室温で撹拌し、溶解した。その後、オイルバスで40℃まで加温した。ここに二塩化スズ・2水和物45.1gを含む濃塩酸水溶液150mLを90分かけて滴下した。その後、オイルバス温度を70℃まで上げ、還流下、さらに2時間撹拌し、室温まで冷却した。2Lビーカーをアルミホイルで遮光し、蒸留水1Lを入れ、アルゴン気流を流して脱気した。このなかに反応液を添加し、30分撹拌した。析出した黄色粉末を濾過して取り、再度蒸留水1L中に入れて撹拌・洗浄した。濾過し、メタノールで十分に洗浄した後に真空乾燥した。これをアルゴンを吹き込んで脱気したアセトン250mLにて加熱懸洗し、濾過・真空乾燥し、目的とする化合物[7]のオレンジ-黄色粉末12.70g(収率92.7%)を得た。
 また、化合物[7]の光学特性は以下のようであった。
最大吸収波長:506nm(薄膜:50nm)
最大吸収波長における半値幅:23nm
最大吸収波長における吸収係数:4.65×10cm-1
 実施例1
 化合物[10]を用いた光電変換素子を次のように作製した。ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、エッチングを行った。得られた基板をアセトン、”セミコクリーン(登録商標)56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いて、イソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を、光電変換素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-5Pa以下になるまで排気した。抵抗加熱法によって、電子阻止層として酸化モリブデンを30nm蒸着した。次に、光電変換層としてp型半導体材料である化合物[10]とn型半導体材料である化合物A-1を蒸着速度比1:3で70nm共蒸着した。次に、アルミニウムを60nm蒸着して陰極とし、2×2mm角の光電変換素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。
 また、吸収スペクトル測定用の基板作製のために、光電変換層の蒸着と同時に同一チャンバー内に石英基板を置き、70nmの薄膜を作製した。
 紫外・可視分光光度計にて、石英基板上の蒸着膜の400nm~700nmの吸収スペクトルを測定したところ、光吸収特性は以下のようになった。
最大吸収波長:525nm
最大吸収波長における半値幅:143nm
最大吸収波長における吸収係数:9.88×10cm-1
 光電変換素子にバイアス電圧(-3V)を印加したときの分光感度特性は以下の通りとなった。
最大感度波長:540nm
最大感度波長における外部量子効率:50%
 なお、本発明において、光電変換効率は、最大感度における外部量子効率により評価する。
 実施例2~9
 p型半導体材料、n型半導体材料の種類、および蒸着速度比を表1に示すとおりにした以外は、実施例1と同様にして光電変換素子を作製した。光吸収特性および分光感度特性を表1に示す。
Figure JPOXMLDOC01-appb-T000031
 実施例10~30
電子阻止層として酸化モリブデンを30nm蒸着するかわりに、PEDOT/PSS(CleviosTM P VP AI4083)を30nm塗布し、p型半導体材料、n型半導体材料の種類、および蒸着速度比を表2に示すとおりにした以外は、実施例1と同様にして光電変換素子を作製した。光吸収特性および分光感度特性を表2に示す。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-T000034
 比較例1~7
 p型半導体材料、n型半導体材料のいずれか1種類のみを光電変換層に用いた以外は、実施例1と同様にして光電変換素子を作製した。光吸収特性および分光感度特性を表3に示す。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
 比較例8
 n型半導体材料として化合物A-4を用いた以外は、実施例1と同様にして光電変換素子を作製した。光吸収特性および分光感度特性を表3に示す。
比較例9、10
 p型半導体材料を表3に示すとおりにした以外は、比較例7と同様にして光電変換素子を作製した。光吸収特性および分光感度特性を表3に示す。
産業上利用の可能性
 本発明の光電変換素子はイメージセンサや太陽電池などの分野に応用可能である。具体的には、携帯電話、スマートフォン、タブレット型パソコン、デジタルスチルカメラなどに搭載された撮像素子や、光起電力発生器、可視光センサなどのセンシングデバイスなどの分野に利用可能である
10 第一電極
11 有機層
13 電子阻止層
15 光電変換層
17 正孔阻止層
20 第二電極
31 赤色光を検出する光電変換素子
32 緑色光を検出する光電変換素子
33 青色光を検出する光電変換素子
34 入射光

Claims (18)

  1. 第一電極と第二電極の間に少なくとも一層の有機層が存在する光電変換素子であって、前記有機層に下記一般式(1)で表される第一の化合物と、波長400~700nmにおける吸収係数の極大値が5×10cm-1以上である第二の化合物とを含有する光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R~R12はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。隣接する置換基が互いに結合して環構造を形成していても良い。
     但し、前記一般式(1)のRおよびR12は、下記一般式(2)または下記一般式(3)で表される基である。
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)または一般式(3)中、R15~R24はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基および-P(=O)R1314からなる群より選ばれる基である。R13およびR14はアリール基またはヘテロアリール基である。R16~R19およびR21~R24は隣接する置換基同士で環を形成してもよい。Xは酸素原子、硫黄原子または-NR25である。R25は水素、アルキル基、シクロアルキル基、複素環基、アリール基またはヘテロアリール基である。)
  2. 前記一般式(1)のRおよびR12が一般式(2)で表され、前記一般式(2)のR15がアルキル基、アルコキシ基、アリール基またはヘテロアリール基である請求項1記載の光電変換素子。
  3. 前記一般式(1)のRおよびR12が一般式(3)で表され、前記一般式(3)のR20がアルキル基、アルコキシ基、アリール基またはヘテロアリール基である請求項1記載の光電変換素子。
  4. 前記一般式(1)のRおよびR12が一般式(3)で表され、前記一般式(3)のXが酸素原子である請求項1または3記載の光電変換素子。
  5. 前記第二の化合物が、チオフェン誘導体、ピレン誘導体およびペリレン誘導体の中から選ばれる誘導体である請求項1~4のいずれかに記載の光電変換素子。
  6. 前記第二の化合物が、下記一般式(4)で表される化合物である請求項5記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(4)中、R25~R28はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シリル基および-P(=O)R2930および下記一般式(5)で表される基からなる群より選ばれる基である。R29およびR30はアリール基またはヘテロアリール基である。mは1~6の整数である。ただし、R25~R28は、そのうち少なくとも1個が下記一般式(5)で表される基である。
    Figure JPOXMLDOC01-appb-C000004
    一般式(5)中、nは1または2である。nが1のとき、Lはアルケンジイル基、アレーンジイル基またはヘテロアレーンジイル基である。nが2のとき、Lはアルケントリイル基、アレーントリイル基またはヘテロアレーントリイル基である。)
  7. 前記第二の化合物が、下記一般式(6)で表される化合物である請求項5記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(6)中、R31~R34はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シリル基および-P(=O)R3536および下記一般式(5)で表される基からなる群より選ばれる基である。R35およびR36はアリール基またはヘテロアリール基である。ただし、R31~R34は、そのうち少なくとも1個が下記一般式(5)で表される基である。
    Figure JPOXMLDOC01-appb-C000006
    一般式(5)中、nは1または2である。nが1のとき、Lはアルケンジイル基、アレーンジイル基またはヘテロアレーンジイル基である。nが2のとき、Lはアルケントリイル基、アレーントリイル基またはヘテロアレーントリイル基である。)
  8. 前記第二の化合物が、一般式(7)で表される化合物である請求項5記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(7)中、R37およびR38はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、アミノ基、シアノ基、シリル基および-P(=O)R3940からなる群より選ばれる基である。R39およびR40はアリール基またはヘテロアリール基である。)
  9. 前記有機層が光電変換層を含み、該光電変換層が前記第一の化合物および前記第二の化合物を含む請求項1~8のいずれかに記載の光電変換素子。
  10. 前記第一の化合物がp型半導体材料であり、前記第二の化合物がn型半導体材料である請求項1~9のいずれかに記載の光電変換素子。
  11. 前記第一の化合物と前記第二の化合物の電荷移動度が、いずれも1×10-9cm/Vs以上である請求項1~10のいずれかに記載の光電変換素子。
  12. 前記有機層の膜厚が20nm以上200nm以下である請求項1~11のいずれかに記載の光電変換素子。
  13. 請求項1~12のいずれかに記載の光電変換素子を有するイメージセンサ。
  14. 2種類以上の光電変換素子で構成され、そのうちの少なくとも1種類の光電変換素子が請求項1~12のいずれかに記載の光電変換素子である請求項13記載のイメージセンサ。
  15. 前記2種類以上の光電変換素子が積層構造を有する請求項14記載のイメージセンサ。
  16. 請求項1~12のいずれかに記載の光電変換素子を有する太陽電池。
  17. 請求項1~12のいずれかに記載の光電変換素子を有する単色検知センサ。
  18. 請求項1~12のいずれかに記載の光電変換素子を有するフレキシブルセンサ。
PCT/JP2015/072229 2014-08-20 2015-08-05 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ WO2016027675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167034372A KR102325535B1 (ko) 2014-08-20 2015-08-05 광전 변환 소자 및 그것을 이용한 이미지 센서, 태양 전지, 단색 검지 센서 및 플렉서블 센서
US15/317,856 US20170141320A1 (en) 2014-08-20 2015-08-05 Photoelectric conversion element, and image sensor, solar cell, single color detection sensor and flexible sensor each of which uses said photoelectric conversion element
JP2015539987A JP6610257B2 (ja) 2014-08-20 2015-08-05 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
CN201580043505.9A CN106575708B (zh) 2014-08-20 2015-08-05 光电转换元件以及使用其的图像传感器、太阳能电池、单色检测传感器及柔性传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167325 2014-08-20
JP2014-167325 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027675A1 true WO2016027675A1 (ja) 2016-02-25

Family

ID=55350621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072229 WO2016027675A1 (ja) 2014-08-20 2015-08-05 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ

Country Status (6)

Country Link
US (1) US20170141320A1 (ja)
JP (1) JP6610257B2 (ja)
KR (1) KR102325535B1 (ja)
CN (1) CN106575708B (ja)
TW (1) TWI685136B (ja)
WO (1) WO2016027675A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169719A1 (ja) * 2016-03-28 2017-10-05 ソニー株式会社 固体撮像素子、および電子機器
JP2018085427A (ja) * 2016-11-22 2018-05-31 ソニー株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置
CN109075258A (zh) * 2016-03-29 2018-12-21 住友化学株式会社 有机光电转换元件以及具备该有机光电转换元件的太阳能电池模块和传感器
JP2021093534A (ja) * 2021-02-03 2021-06-17 ソニーグループ株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置
WO2022144678A1 (ja) * 2020-12-29 2022-07-07 株式会社半導体エネルギー研究所 光デバイス、表示装置、及び電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484569B (zh) * 2018-03-07 2020-06-30 中国科学院化学研究所 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN112694388A (zh) * 2019-10-22 2021-04-23 中国科学院化学研究所 一种并四苯类衍生物及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247169A (ja) * 1985-08-26 1987-02-28 Oki Electric Ind Co Ltd 光センサ
JP2010109161A (ja) * 2008-10-30 2010-05-13 Idemitsu Kosan Co Ltd 有機薄膜太陽電池
WO2010084852A1 (ja) * 2009-01-23 2010-07-29 東レ株式会社 発光素子材料および発光素子
JP2010225838A (ja) * 2009-03-24 2010-10-07 Toray Ind Inc 光起電力素子
JP2011029219A (ja) * 2009-07-21 2011-02-10 Idemitsu Kosan Co Ltd 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP2012231062A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Corp アセン系化合物を利用した有機薄膜太陽電池
KR20130134966A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 방향족 고리 화합물, 이를 포함하는 유기태양전지 및 이의 제조방법
JP2014007359A (ja) * 2012-06-27 2014-01-16 Toray Ind Inc 発光素子材料および発光素子
JP2014053310A (ja) * 2012-09-10 2014-03-20 Samsung Electronics Co Ltd 透光性電極とこれを備える有機光電素子及び有機発光ダイオード並びにイメージセンサー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024009B2 (ja) * 2000-04-21 2007-12-19 Tdk株式会社 有機el素子
DE102005010978A1 (de) * 2005-03-04 2006-09-07 Technische Universität Dresden Photoaktives Bauelement mit organischen Schichten
WO2010016331A1 (ja) * 2008-08-05 2010-02-11 東レ株式会社 デバイスの製造方法
CN102656130A (zh) * 2009-12-16 2012-09-05 东丽株式会社 发光元件用材料的制造方法、发光元件用材料前体及发光元件的制造方法
KR101860084B1 (ko) 2012-07-06 2018-05-23 삼성전자주식회사 유기 광전 재료, 상기 유기 광전 재료를 포함하는 유기 광전 소자 및 이미지 센서

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247169A (ja) * 1985-08-26 1987-02-28 Oki Electric Ind Co Ltd 光センサ
JP2010109161A (ja) * 2008-10-30 2010-05-13 Idemitsu Kosan Co Ltd 有機薄膜太陽電池
WO2010084852A1 (ja) * 2009-01-23 2010-07-29 東レ株式会社 発光素子材料および発光素子
JP2010225838A (ja) * 2009-03-24 2010-10-07 Toray Ind Inc 光起電力素子
JP2011029219A (ja) * 2009-07-21 2011-02-10 Idemitsu Kosan Co Ltd 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP2012231062A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Corp アセン系化合物を利用した有機薄膜太陽電池
KR20130134966A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 방향족 고리 화합물, 이를 포함하는 유기태양전지 및 이의 제조방법
JP2014007359A (ja) * 2012-06-27 2014-01-16 Toray Ind Inc 発光素子材料および発光素子
JP2014053310A (ja) * 2012-09-10 2014-03-20 Samsung Electronics Co Ltd 透光性電極とこれを備える有機光電素子及び有機発光ダイオード並びにイメージセンサー

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169719A1 (ja) * 2016-03-28 2017-10-05 ソニー株式会社 固体撮像素子、および電子機器
US11211422B2 (en) 2016-03-28 2021-12-28 Sony Corporation Solid-state image sensor and electronic apparatus
CN109075258A (zh) * 2016-03-29 2018-12-21 住友化学株式会社 有机光电转换元件以及具备该有机光电转换元件的太阳能电池模块和传感器
JP2018085427A (ja) * 2016-11-22 2018-05-31 ソニー株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置
CN109952652A (zh) * 2016-11-22 2019-06-28 索尼公司 成像元件、堆叠式成像元件、成像装置和电子装置
KR20190085922A (ko) * 2016-11-22 2019-07-19 소니 주식회사 촬상 소자, 적층형 촬상 소자, 촬상 장치 및 전자 장치
CN109952652B (zh) * 2016-11-22 2023-09-19 索尼公司 成像元件、堆叠式成像元件、成像装置和电子装置
KR102645210B1 (ko) * 2016-11-22 2024-03-08 소니그룹주식회사 촬상 소자, 적층형 촬상 소자, 촬상 장치 및 전자 장치
WO2022144678A1 (ja) * 2020-12-29 2022-07-07 株式会社半導体エネルギー研究所 光デバイス、表示装置、及び電子機器
JP2021093534A (ja) * 2021-02-03 2021-06-17 ソニーグループ株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置
JP7264182B2 (ja) 2021-02-03 2023-04-25 ソニーグループ株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置

Also Published As

Publication number Publication date
TW201622197A (zh) 2016-06-16
TWI685136B (zh) 2020-02-11
KR20170042503A (ko) 2017-04-19
JPWO2016027675A1 (ja) 2017-06-01
JP6610257B2 (ja) 2019-11-27
US20170141320A1 (en) 2017-05-18
KR102325535B1 (ko) 2021-11-12
CN106575708B (zh) 2019-09-17
CN106575708A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6610257B2 (ja) 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
CN107056776B (zh) 用于有机光电器件的化合物以及包括其的有机光电器件、图像传感器和电子器件
EP3961737B1 (en) Composition for photoelectric device, and image sensor and electronic device including the same
EP3228623A1 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
JP5988001B1 (ja) 光電変換素子およびこれを用いたイメージセンサ
US9842884B2 (en) Photoelectric conversion element and image sensor
EP3848374A1 (en) Compound and photoelectric device, image sensor, and electronic device including the same
JP6029606B2 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子の使用方法
KR20190044555A (ko) 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
CN113121408B (zh) 含氮化合物、电子元件和电子装置
JP2016152239A (ja) 光電変換素子およびそれを用いたイメージセンサ
KR20220091870A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
EP4024484B1 (en) Composition for photoelectric device, and photoelectric device, image sensor, and electronic device including the same
JP2016072547A (ja) 光電変換素子およびこれを用いたイメージセンサ
JP2016100551A (ja) 光電変換素子およびこれを用いたイメージセンサ
TWI611594B (zh) 光電轉換元件、攝影元件、光感測器
KR20220096214A (ko) 청색 흡수용 필름, 광전 소자 및 이를 포함하는 이미지 센서와 전자 장치
JP2016092249A (ja) 光電変換素子およびそれを用いたイメージセンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034372

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834515

Country of ref document: EP

Kind code of ref document: A1