WO2015100775A1 - 一种液晶显示器的玻璃基板的曝光方法 - Google Patents

一种液晶显示器的玻璃基板的曝光方法 Download PDF

Info

Publication number
WO2015100775A1
WO2015100775A1 PCT/CN2014/070383 CN2014070383W WO2015100775A1 WO 2015100775 A1 WO2015100775 A1 WO 2015100775A1 CN 2014070383 W CN2014070383 W CN 2014070383W WO 2015100775 A1 WO2015100775 A1 WO 2015100775A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
photomask
glass substrate
substrate
liquid crystal
Prior art date
Application number
PCT/CN2014/070383
Other languages
English (en)
French (fr)
Inventor
付延峰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/346,423 priority Critical patent/US9134615B2/en
Publication of WO2015100775A1 publication Critical patent/WO2015100775A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133322Mechanical guidance or alignment of LCD panel support components
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Definitions

  • the present invention relates to a manufacturing method of a thin film transistor liquid crystal display (TFT-LCD), and more particularly to a method of exposing a glass substrate of a liquid crystal display.
  • TFT-LCD thin film transistor liquid crystal display
  • the size of liquid crystal display panels has also increased.
  • the pattern of a single large-sized glass substrate is larger than that of the photo mask.
  • the photomask pattern needs to be divided into many.
  • the block is subjected to multiple exposures on a single large-sized glass substrate, and the patterns on a single large-sized glass substrate are spliced in a plurality of photomask patterns.
  • FIG. 1 to FIG. 3 are schematic diagrams showing a conventional splicing exposure on a large-sized glass substrate by using a plurality of photomasks.
  • two photomasks are used in the figure, and each photomask includes an effective area (A area or B area) and an inactive area (in, area or 8, area), and is disposed in the non-active area.
  • the alignment accuracy measurement check mark (Total Pitch Mark), which is indicated by a small square in the figure, is used to measure the offset and deformation amount of the pattern on the substrate after exposure and the original design pattern.
  • the splicing exposure area 90 is generated, and the splicing exposure area belongs to the active area, and the alignment precision measurement check mark is much larger than the effective area.
  • Pixel the two exposure areas of the two stitching exposures cannot expose the alignment precision measurement check mark on the side of the splicing exposure area, so that the alignment accuracy information cannot be measured on the side of the splicing exposure area in the two exposure areas. Therefore, the pattern offset and the deformation amount at the position cannot be monitored, and there is a possibility that the TFT array substrate and the color filter substrate cannot be aligned, resulting in a defective liquid crystal display panel (for example, problems such as light leakage).
  • the technical problem to be solved by the present invention is to provide a method for exposing a glass substrate of a liquid crystal display, which can improve the alignment precision of the TFT array substrate and the color filter substrate, and improve the product yield of the liquid crystal display panel.
  • an aspect of an embodiment of the present invention provides a method for exposing a glass substrate of a liquid crystal display, comprising:
  • each photomask comprising an active area and an inactive area, the active area side comprising an overlapping area corresponding to the glass substrate stitching exposure area, and a plurality of pairs disposed around the effective area Bit accuracy measurement check mark;
  • the exposure is performed at the corresponding position according to the position information, and the exposed pattern is obtained, wherein at least one baffle is used to block the alignment accuracy measurement inspection mark on the side of the overlapping area of the photomask at each exposure.
  • each photomask is respectively exposed at a corresponding position of a separate reference substrate, and a plurality of alignment precision measurement inspection marks on the photomask are measured, and according to the measurement result, whether the exposure parameter needs to be performed is determined.
  • the steps of obtaining accurate exposure parameters and position information for each photomask further include:
  • the comparison result is outside the allowable range of the error, correct the current exposure parameters of the photomask and re-exposure until the comparison result is within the error tolerance.
  • the exposure parameters of the photomask are taken as accurate. Exposure parameters.
  • the exposed pattern includes at least two exposure regions corresponding to at least two photomask plates, and a spliced exposure region is formed between adjacent two exposure regions.
  • the glass substrate is a thin film transistor array substrate or a color filter substrate.
  • each of the reference substrates has the same size as the glass substrate.
  • the step of exposing each photomask to a corresponding position on a separate reference substrate further includes:
  • the reference substrate is etched and the photoresist layer is removed.
  • the step of exposing at least two photomasks to corresponding positions on the same substrate according to their corresponding accurate exposure parameters further includes:
  • the photomask plate is aligned with the glass substrate before each exposure.
  • a method for exposing a glass substrate of a liquid crystal display further comprising:
  • each photomask comprising an active area and an inactive area, the active area side comprising an overlapping area corresponding to the glass substrate stitching exposure area, and a plurality of pairs disposed around the effective area Bit accuracy measurement check mark;
  • each photomask Exposing each photomask to a corresponding position on a separate reference substrate, measuring a plurality of alignment accuracy measurement marks on the photomask, and determining whether the exposure parameters need to be corrected according to the measurement result.
  • Obtain accurate exposure parameters and position information of each photomask combine the accurate exposure parameters of each photomask, and use at least two photomasks after and after the exposure parameters are sequentially on the same substrate
  • the exposed pattern includes at least two exposure regions corresponding to at least two photomask plates, and a spliced exposure region is formed between adjacent two exposure regions.
  • each photomask is respectively exposed at a corresponding position of a separate reference substrate, and a plurality of alignment precision measurement inspection marks on the photomask are measured, and according to the measurement result, whether the exposure parameter needs to be performed is determined.
  • the steps of obtaining accurate exposure parameters and position information for each photomask further include:
  • the comparison result is outside the allowable range of error, correct the current exposure parameters of the photomask and re-exposure until the comparison result is within the error tolerance.
  • the exposure parameter at the time is taken as its accurate exposure parameter.
  • each of the reference substrates has the same size as the glass substrate.
  • the step of exposing each photomask to a corresponding position on a separate reference substrate further includes:
  • the reference substrate is etched and the photoresist layer is removed.
  • the step of exposing at least two photomasks to corresponding positions on the same substrate according to their corresponding accurate exposure parameters further includes:
  • the photomask plate is aligned with the glass substrate before each exposure.
  • a splicing exposure method is adopted for a glass substrate of a large-sized liquid crystal display, and for each mask, respectively, exposure is performed on a separate reference substrate and measured by a registration accuracy measurement mark.
  • the amount of deformation and the offset of the pattern after exposure, according to the measurement result and correcting the exposure parameters of each exposure area, the alignment accuracy of the exposure pattern formed after the final splicing exposure on the glass substrate can be within the specification range.
  • the alignment precision of the spliced exposure area between adjacent exposure areas can be effectively monitored, and the alignment precision of the TFT array substrate and the color filter substrate can be improved, thereby improving the product yield of the liquid crystal display panel.
  • FIG. 1 is a schematic view of a conventional photomask used in a method of exposing a large-size liquid crystal display glass substrate
  • FIG. 2 is a schematic view showing another photomask used in a method for exposing a large-size liquid crystal display glass substrate
  • FIG. 3 is a schematic view showing exposure on a glass substrate by using the photomask of FIGS. 1 and 2;
  • FIG. 4 is a schematic diagram showing the main flow of a method for exposing a glass substrate of a liquid crystal display according to the present invention
  • Figure 5 is a schematic view of a photomask used in Figure 4
  • Figure 6 is a schematic view of another photomask used in Figure 4;
  • FIG. 7 is a schematic view showing exposure of the photomask of FIG. 5 on a reference substrate
  • FIG. 8 is a schematic view showing exposure of the photomask of FIG. 6 on another reference substrate
  • FIG. 5 and the photomask of FIG. 6 are simultaneously exposed on a glass substrate.
  • a schematic diagram of a main flow in an embodiment of a method for exposing a glass substrate of a liquid crystal display provided by the present invention is shown.
  • a method for exposing a glass substrate of the liquid crystal display includes the following steps:
  • Step S10 provides at least two photomasks.
  • the structure of the at least two photomasks can be as shown in FIG. 5 and FIG. 6, wherein each photomask 1 includes an effective area (such as zone A or Area B) and non-effective area (such as A, area or B, area), and include an overlapping area (such as A1 area or B1 area) on the side of the effective area, the overlapping area is located corresponding to the glazing exposure area forming the glass substrate
  • a plurality of alignment precision measurement check marks are disposed around the effective area, and alignment marks are provided on at least two sides of the effective area (indicated by a cross in the figure), In FIG. 5 and FIG. 6, the alignment mark is disposed on the upper and lower sides of the effective area;
  • each photomask 1 is exposed at a corresponding position of the separate reference substrate 2, and after the exposure, the alignment precision measurement inspection mark formed on the reference substrate 2 is measured, and it is determined according to the measurement result.
  • the exposure parameters need to be corrected to obtain accurate exposure parameters and position information of each photomask; specifically, including:
  • the reference substrate 2 may be made of the same material as the glass substrate, which may be reused; in the embodiment in which the array substrate is fabricated, the reference is required A metal deposition layer and a photoresist layer are coated on the substrate 2, and after the exposure, the reference substrate 2 is etched and the photoresist layer is removed, that is, the reference substrate 2 is used to simulate the glass substrate.
  • Mask process
  • Each of the photomask plates 1 is exposed at a corresponding position on a separate reference substrate 2, as shown in Figs. 7 and 8.
  • an exposure pattern is formed on the left side of one of the reference substrates 2 by using the photomask 1 in FIG. 5; and the exposure is formed on the right side of the other reference substrate 2 by using the photomask 1 in FIG. Light pattern.
  • the parameter is used as its accurate exposure parameter
  • the comparison result exceeds the allowable range of the error, the current exposure parameter of the photomask is corrected, and the exposure is repeated until the comparison result is within the error tolerance range, and the exposure parameter of the photomask is used as Its accurate exposure parameters.
  • the position information is a position at which each mask 1 is exposed to the reference substrate 2, for example, the position information of the photomask 1 in FIG. 5 for exposure on the reference substrate 2 is a left position. Specifically, it can be marked by coordinate information.
  • Step S11 combining the accurate exposure parameters of each photomask, and performing at least two photomasks on the corresponding positions of the same glass substrate 3 according to their positional residences according to their corresponding accurate exposure parameters. exposure.
  • the exposed pattern includes each photomask corresponding to each The exposed area, and the spliced exposure area 30 is formed between the adjacent two exposed areas.
  • a splicing exposure method is adopted for a glass substrate of a large-sized liquid crystal display, and for each mask, respectively, exposure is performed on a separate reference substrate and measured by a registration accuracy measurement mark.
  • the amount of deformation and the offset of the pattern after exposure, according to the measurement result and correcting the exposure parameters of each exposure area, the alignment accuracy of the exposure pattern formed after the final splicing exposure on the glass substrate can be within the specification range.
  • the alignment precision of the spliced exposure area between adjacent exposure areas can be effectively monitored, and the alignment precision of the TFT array substrate and the color filter substrate can be improved, thereby improving the product yield of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一种液晶显示器玻璃基板的曝光方法,包括提供至少两个光掩膜板,每一光掩膜板(1)包括有效区域及非有效区域,在所述有效区域的周围设置有多个对位精度测量检查标记;将每一光掩膜板分别在单独的基准基板(2)的相应位置上进行曝光,并对多个对位精度测量检查标记进行测量,根据测量结果确定是否需要对曝光参数进行补正,获得每一光掩膜板准确的曝光参数;将每一光掩膜板的准确的曝光参数进行合并,并将所述至少两个光掩膜板利用合并后的曝光参数依次在同一基板(3)的对应位置上进行曝光,获得曝光后的图案。该技术方案可以提高TFT阵列基板与彩色滤光片基板的对准的精度。

Description

一种液晶显示器的玻璃基板的曝光方法
本申请要求于 2013 年 12 月 31 日提交中国专利局、 申请号为 201310747958.2、 发明名称为 "一种液晶显示器的玻璃基板的曝光方法" 的 中国专利申请的优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及薄膜晶体管液晶显示器(Thin Film Transistor liquid crystal display, TFT-LCD )的制造技术, 特别涉及一种液晶显示器的玻璃基板的曝 光方法。
背景技术
随着薄膜晶体管液晶显示器技术的迅猛发展, 液晶显示器面板的尺寸也 不断增大。 此时, 曝光工艺中会遇到单个大尺寸的玻璃基板的图形要比光掩 膜板(Photo Mask )还要大的情况, 在这种还必须形下, 需要将光掩膜板图 形分成多块在单个大尺寸玻璃基板上进行多次曝光, 以多个光掩模板图形来 拼接单个大尺寸玻璃基板上的图形。
如图 1至图 3示出了现有的一种通过多块光掩膜板实现在大尺寸玻璃基 板上拼接曝光的示意图。 其中, 图中采用了两块光掩膜板, 每一光掩膜板包 括有效区 (A区或 B区)和非有效区 (入,区或8,区), 在非有效区中设置有 对位精度测量检查标记( Total Pitch Mark ),该对位精度测量检查标记在图中 用小方块表示, 其用于测量曝光后基板上图形与原设计图形的偏移及变形 量。 因为利用两块掩膜板在玻璃基板 9上进行两次曝光, 时会产生拼接曝光 区 90, 而该拼接曝光区域属于有效区 (Active area ), 且对位精度测量检查 标记远大于有效区的像素, 两次拼接曝光的两个曝光区在拼接曝光区一侧无 法曝光出对位精度测量检查标记, 这样在两个曝光区在拼接曝光区域一侧均 无法量测到对位精度的信息, 故该位置处的图形偏移及变形量无法得到监 控,有可能出现 TFT阵列基板与彩色滤光片基板无法对准,导致液晶显示器 面板不良的出现(例如会产生漏光等问题)。 发明内容
本发明所要解决的技术问题在于,提供一种液晶显示器的玻璃基板的曝 光方法,可以提高 TFT阵列基板与彩色滤光片基板的对准的精度, 以及提高 液晶显示器面板的产品良率。
降低成本, 并能改善阵列基板的性能。
为了解决上述技术问题,本发明的实施例的一方面提供了一种液晶显示 器玻璃基板的曝光方法, 包括:
提供至少两个光掩膜板, 每一光掩膜板包括有效区域及非有效区域, 有 效区域一侧包括有对应于玻璃基板拼接曝光区域的重叠区域,在有效区域的 周围设置有多个对位精度测量检查标记;
将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对光掩 膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否需要 对曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信息; 将每一光掩膜板的准确的曝光参数进行合并, 并将至少两个光掩膜板利 用后并后的曝光参数依次在同一基板的根据位置信息在对应位置上进行曝 光, 获得曝光后的图案, 其中, 在每次曝光时, 至少采用一挡板遮挡住光掩 膜板重叠区域一侧的对位精度测量检查标记。
其中, 将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光, 对光掩膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是 否需要对曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信 息的步骤进一步包括:
将测量结果与设计的目标值进行比较,如果比较结果在误差允许的范围 之内, 则将光掩膜板当前的曝光参数作为其准确的曝光参数;
如果比较结果超出误差允许的范围, 则对光掩膜板当前的曝光参数进行 补正, 重新进行曝光, 直至比较结果在误差允许的范围之内, 将光掩膜板此 时的曝光参数作为其准确的曝光参数。
其中, 曝光后的图案包括对应于至少两个光掩膜板的至少两个曝光区, 在相邻的两个曝光区之间形成有拼接曝光区。
其中, 玻璃基板为薄膜晶体管阵列基板或彩色滤光片基板。 其中, 每一基准基板的尺寸与玻璃基板相同。
其中,将每一光掩膜板分别在单独的基准基板的对应位置上进行曝光的 步骤进一步包括:
在曝光后, 对基准基板进行蚀刻以及去除光刻胶层的工艺。
其中, 将至少两个光掩膜板根据其对应的准确曝光参数, 依次在同一基 板的对应位置上进行曝光的步骤进一步包括:
在每次曝光前, 将光掩膜板与玻璃基板进行对位。
相应地, 本发明实施例的另一方面, 还提供一种液晶显示器玻璃基板的 曝光方法, 其中, 包括:
提供至少两个光掩膜板, 每一光掩膜板包括有效区域及非有效区域, 有 效区域一侧包括有对应于玻璃基板拼接曝光区域的重叠区域,在有效区域的 周围设置有多个对位精度测量检查标记;
将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对光掩 膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否需要 对曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信息; 将每一光掩膜板的准确的曝光参数进行合并, 并将至少两个光掩膜板利 用后并后的曝光参数依次在同一基板的根据位置信息在对应位置上进行曝 光, 获得曝光后的图案, 其中, 在每次曝光时, 至少采用一挡板遮挡住光掩 膜板重叠区域一侧的对位精度测量检查标记;
其中, 曝光后的图案包括对应于至少两个光掩膜板的至少两个曝光区, 在相邻的两个曝光区之间形成有拼接曝光区。
其中, 将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光, 对光掩膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是 否需要对曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信 息的步骤进一步包括:
将测量结果与设计的目标值进行比较,如果比较结果在误差允许的范围 之内, 则将光掩膜板当前的曝光参数作为其准确的曝光参数;
如果比较结果超出误差允许的范围, 则对光掩膜板当前的曝光参数进行 补正, 重新进行曝光, 直至比较结果在误差允许的范围之内, 将光掩膜板此 时的曝光参数作为其准确的曝光参数。
其中, 每一基准基板的尺寸与玻璃基板相同。
其中,将每一光掩膜板分别在单独的基准基板的对应位置上进行曝光的 步骤进一步包括:
在曝光后, 对基准基板进行蚀刻以及去除光刻胶层的工艺。
其中, 将至少两个光掩膜板根据其对应的准确曝光参数, 依次在同一基 板的对应位置上进行曝光的步骤进一步包括:
在每次曝光前, 将光掩膜板与玻璃基板进行对位。
实施本发明的实施例, 具有如下的有益效果:
本发明的实施例中,通过对大尺寸液晶显示器的玻璃基板采用拼接曝光 方式, 且对于每一掩膜板, 分别在单独的基准基板进行曝光并通过对位精度 测量检查标记进行量测, 获得曝光后图形的变形量以及偏移量, 根据该量测 结果并补正各曝光区的曝光参数, 可以使最终在玻璃基板上进行拼接曝光后 形成的曝光图案的对位精确度处于规格范围之内, 可有效监控到相邻曝光区 之间拼接曝光区域的对位精度,可以提高 TFT阵列基板与彩色滤光片基板的 对准的精度, 从而提高液晶显示器面板的产品良率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1是现有的一种对大尺寸液晶显示器玻璃基板进行曝光的方法中所采 用的一块光掩膜板示意图;
图 2是现有的一种对大尺寸液晶显示器玻璃基板进行曝光的方法中所采 用的另一块光掩膜板示意图;
图 3是利用图 1和图 2的光掩膜板在玻璃基板上进行曝光的示意图; 图 4是本发明提供的一种液晶显示器的玻璃基板的曝光方法的主流程示 意图;
图 5是图 4中采用的一块光掩膜板示意图; 图 6是图 4中采用的另一块光掩膜板示意图;
图 7是将图 5中的光掩膜板在一块基准基板上进行曝光的示意图; 图 8是将图 6中的光掩膜板在另一块基准基板上进行曝光的示意图; 图 9是将图 5及图 6中的光掩膜板同时在一块玻璃基板上进行曝光的示 意图。
具体实施方式
下面参考附图对本发明的优选实施例进行描述。
如图 4所示, 示出了本发明提供的液晶显示器的玻璃基板的曝光方法的 一个实施例中的主流程示意图; 在该实施例中, 该液晶显示器的玻璃基板曝 光方法包括如下的步骤:
步骤 S10提供至少两个光掩膜板,该至少两个光掩膜板的结构可参照图 5及图 6所示, 其中, 每一光掩膜板 1均包括有有效区域(如 A区或 B区) 和非有效区 (如 A,区或 B,区), 且在有效区域一侧包括有重叠区域(如 A1 区或 B1区), 该重叠区域位于对应于形成玻璃基板拼接曝光区域的一侧, 在 有效区域的周围设置有多个对位精度测量检查标记(图中以小方块标示), 以及在有效区域的至少两个侧设置有对位标记(图中以十字标示), 在图 5 及图 6中, 是在有效区域的上下两侧设置有对位标志;
步骤 S11 , 将每一光掩膜板 1分别在单独的基准基板 2的对应位置上进 行曝光,并在曝光后对基准基板 2上形成的对位精度测量检查标记进行测量, 根据测量结果确定是否需要对此次的曝光参数进行补正, 获得每一光掩膜板 准确的曝光参数以及位置信息; 具体地, 包括:
提供至少两个与最终采用的玻璃基板尺寸相同的基准基板 2, 该基准基 板 2可以采用与玻璃基板相同的材料制成, 其可以重复使用; 在制作阵列基 板的实施例中, 需要在该基准基板 2 上涂布一金属沉积层以及一光刻胶层 ( photoresist ), 在曝光后, 再对该基准基板 2进行蚀刻并去除光刻胶层, 即 采用该基准基板 2用以模拟玻璃基板的掩膜工艺;
将每一光掩膜板 1分别在单独的基准基板 2的对应位置上进行曝光,见 图 7和图 8所示。 其中, 采用图 5中的光掩膜板 1在一块基准基板 2的左侧 形成曝光图案; 采用图 6中的光掩膜板 1在另一块基准基板 2的右侧形成曝 光图案。 可以理解的是, 此处仅为举例, 只是需要保证每一光掩膜板所对应 的曝光区的位置, 与其最终在玻璃基板上所对应的曝光区位置两者是一致 的;
测量基准基板 2上形成的曝光图案中的对位精度测量检查标记,将测量 结果与设计的目标值进行比较, 如果比较结果在误差允许的范围之内, 则将 该光掩膜板当前的曝光参数作为其准确的曝光参数;
如果比较结果超出误差允许的范围, 则对该光掩膜板当前的曝光参数进 行补正, 重新进行曝光, 直至其比较结果在误差允许的范围之内, 并光掩膜 板此时的曝光参数作为其准确的曝光参数。
其中, 该位置信息为每一掩膜板 1对应在基准基板 2进行曝光所处的位 置, 例如图 5中的光掩膜板 1在基准基板 2的上进行曝光的位置信息为左侧 位置, 具体可以通过坐标信息来标示。
步骤 S11 , 将每一光掩膜板的准确的曝光参数进行合并, 将至少两个光 掩膜板根据其对应的准确曝光参数, 根据其位置住息依次在同一玻璃基板 3 的对应位置上进行曝光。
在每次曝光前, 需要利用光掩膜板 1上的定位标记与玻璃基板 3进行对 位, 且在每次曝光时, 至少采用一挡板遮挡住该光掩膜板 1 重叠区域(A1 或 B1 区)一侧的对位精度测量检查标记, 从而获得大尺寸液晶显示器玻璃 基板的曝光后的图案, 可以参照图 9所示; 其中, 该曝光后的图案包括对应 于每一光掩膜板的曝光区, 且在相邻的两个曝光区之间形成拼接曝光区 30。
实施本发明, 具有如下的有益效果:
本发明的实施例中,通过对大尺寸液晶显示器的玻璃基板采用拼接曝光 方式, 且对于每一掩膜板, 分别在单独的基准基板进行曝光并通过对位精度 测量检查标记进行量测, 获得曝光后图形的变形量以及偏移量, 根据该量测 结果并补正各曝光区的曝光参数, 可以使最终在玻璃基板上进行拼接曝光后 形成的曝光图案的对位精确度处于规格范围之内, 可有效监控到相邻曝光区 之间拼接曝光区域的对位精度,可以提高 TFT阵列基板与彩色滤光片基板的 对准的精度, 从而提高液晶显示器面板的产品良率。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种液晶显示器玻璃基板的曝光方法, 其中, 包括:
提供至少两个光掩膜板, 所述每一光掩膜板包括有效区域及非有效区 域, 所述有效区域一侧包括有对应于玻璃基板拼接曝光区域的重叠区域, 在 所述有效区域的周围设置有多个对位精度测量检查标记;
将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对所述 光掩膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否 需要对所述曝光参数进行补正,获得每一光掩膜板准确的曝光参数以及位置 信息;
将每一光掩膜板的准确的曝光参数进行合并, 并将所述至少两个光掩膜 板利用后并后的曝光参数依次在同一基板的根据所述位置信息在对应位置 上进行曝光, 获得曝光后的图案, 其中, 在每次曝光时, 至少采用一挡板遮 挡住所述光掩膜板重叠区域一侧的对位精度测量检查标记。
2、 如权利要求 1 所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对所述光掩 膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否需要 对所述曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信息 的步骤进一步包括:
将所述测量结果与设计的目标值进行比较,如果比较结果在误差允许的 范围之内, 则将所述光掩膜板当前的曝光参数作为其准确的曝光参数; 如果比较结果超出误差允许的范围, 则对所述光掩膜板当前的曝光参数 进行补正, 重新进行曝光, 直至所述比较结果在误差允许的范围之内, 将所 述光掩膜板此时的曝光参数作为其准确的曝光参数。
3、 如权利要求 2所述的一种液晶显示器玻璃基板的曝光方法, 其中, 所述曝光后的图案包括对应于至少两个光掩膜板的至少两个曝光区,在相邻 的两个曝光区之间形成有拼接曝光区。
4、 如权利要求 3所述的一种液晶显示器玻璃基板的曝光方法, 其中, 所述玻璃基板为薄膜晶体管阵列基板或彩色滤光片基板。
5、 如权利要求 4所述的一种液晶显示器玻璃基板的曝光方法, 其中, 所述每一基准基板的尺寸与所述玻璃基板相同。
6、 如权利要求 5所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将每一光掩膜板分别在单独的基准基板的对应位置上进行曝光的步骤进一 步包括:
在曝光后, 对所述基准基板进行蚀刻以及去除光刻胶层的工艺。
7、 如权利要求 6所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将所述至少两个光掩膜板根据其对应的准确曝光参数,依次在同一基板的对 应位置上进行曝光的步骤进一步包括:
在每次曝光前, 将所述光掩膜板与玻璃基板进行对位。
8、 一种液晶显示器玻璃基板的曝光方法, 其中, 包括:
提供至少两个光掩膜板, 所述每一光掩膜板包括有效区域及非有效区 域, 所述有效区域一侧包括有对应于玻璃基板拼接曝光区域的重叠区域, 在 所述有效区域的周围设置有多个对位精度测量检查标记;
将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对所述 光掩膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否 需要对所述曝光参数进行补正,获得每一光掩膜板准确的曝光参数以及位置 信息;
将每一光掩膜板的准确的曝光参数进行合并, 并将所述至少两个光掩膜 板利用后并后的曝光参数依次在同一基板的根据所述位置信息在对应位置 上进行曝光, 获得曝光后的图案, 其中, 在每次曝光时, 至少采用一挡板遮 挡住所述光掩膜板重叠区域一侧的对位精度测量检查标记;
其中, 所述曝光后的图案包括对应于至少两个光掩膜板的至少两个曝光 区, 在相邻的两个曝光区之间形成有拼接曝光区。
9、 如权利要求 8所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将每一光掩膜板分别在单独的基准基板的相应位置上进行曝光,对所述光掩 膜板上的多个对位精度测量检查标记进行测量,根据测量结果确定是否需要 对所述曝光参数进行补正, 获得每一光掩膜板准确的曝光参数以及位置信息 的步骤进一步包括: 将所述测量结果与设计的目标值进行比较,如果比较结果在误差允许的 范围之内, 则将所述光掩膜板当前的曝光参数作为其准确的曝光参数;
如果比较结果超出误差允许的范围, 则对所述光掩膜板当前的曝光参数 进行补正, 重新进行曝光, 直至所述比较结果在误差允许的范围之内, 将所 述光掩膜板此时的曝光参数作为其准确的曝光参数。
10、 如权利要求 9所述的一种液晶显示器玻璃基板的曝光方法, 其中, 所述每一基准基板的尺寸与所述玻璃基板相同。
11、 如权利要求 10所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将每一光掩膜板分别在单独的基准基板的对应位置上进行曝光的步骤进一 步包括:
在曝光后, 对所述基准基板进行蚀刻以及去除光刻胶层的工艺。
12、 如权利要求 11所述的一种液晶显示器玻璃基板的曝光方法, 其中, 将所述至少两个光掩膜板根据其对应的准确曝光参数,依次在同一基板的对 应位置上进行曝光的步骤进一步包括:
在每次曝光前, 将所述光掩膜板与玻璃基板进行对位。
PCT/CN2014/070383 2013-12-31 2014-01-09 一种液晶显示器的玻璃基板的曝光方法 WO2015100775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/346,423 US9134615B2 (en) 2013-12-31 2014-01-09 Exposure method for glass substrate of liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310747958.2 2013-12-31
CN201310747958.2A CN103744214B (zh) 2013-12-31 2013-12-31 一种液晶显示器的玻璃基板的曝光方法

Publications (1)

Publication Number Publication Date
WO2015100775A1 true WO2015100775A1 (zh) 2015-07-09

Family

ID=50501246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070383 WO2015100775A1 (zh) 2013-12-31 2014-01-09 一种液晶显示器的玻璃基板的曝光方法

Country Status (3)

Country Link
US (1) US9134615B2 (zh)
CN (1) CN103744214B (zh)
WO (1) WO2015100775A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241344B2 (ja) * 2014-03-25 2017-12-06 日亜化学工業株式会社 表示システム
CN105093815B (zh) * 2014-05-21 2019-10-15 北大方正集团有限公司 器件设计尺寸的提取方法
CN104297989B (zh) * 2014-10-22 2017-06-27 京东方科技集团股份有限公司 基板、掩膜板及液晶显示装置
CN104407504B (zh) * 2014-11-28 2017-01-18 南京中电熊猫液晶材料科技有限公司 彩色滤光片中拼接曝光方法
CN104391431B (zh) * 2014-12-12 2016-06-29 合肥京东方光电科技有限公司 曝光显影方法和系统、曝光控制系统
NL2017120A (en) * 2015-07-16 2017-01-17 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN105182680B (zh) * 2015-10-22 2019-12-17 深圳市华星光电技术有限公司 色阻掩膜板及其使用方法
CN105759564B (zh) * 2016-03-17 2020-04-17 京东方科技集团股份有限公司 一种掩膜板及其制作方法
CN106324892B (zh) * 2016-10-11 2019-08-02 武汉华星光电技术有限公司 一种用于制备显示基板的曝光系统及曝光控制方法
CN107065428B (zh) * 2016-12-29 2021-01-15 Tcl华星光电技术有限公司 用于形成色阻层、黑矩阵的拼接单元光罩
JP2018127702A (ja) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ 蒸着マスク、蒸着マスクのアライメント方法、及び蒸着マスク固定装置
CN107290909B (zh) * 2017-06-30 2020-09-29 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN107589631B (zh) * 2017-10-16 2020-12-01 京东方科技集团股份有限公司 掩模板及其制造方法、显示面板、触控板
CN110109325A (zh) * 2018-02-01 2019-08-09 李冰 一种拼接光波导结构及其制备方法
CN108873402B (zh) * 2018-06-22 2020-12-22 南京中电熊猫液晶显示科技有限公司 一种显示基板及检测曝光异常的方法
US11158600B2 (en) * 2018-09-28 2021-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography process for semiconductor packaging and structures resulting therefrom
CN110967920A (zh) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 双光掩膜和曝光方法
CN109613742A (zh) * 2019-01-11 2019-04-12 惠科股份有限公司 彩色滤光模组及其制作方法以及显示面板
CN110687757A (zh) * 2019-10-10 2020-01-14 深圳市华星光电技术有限公司 拼接曝光系统及采用该系统的拼接曝光方法
CN110716359A (zh) * 2019-10-14 2020-01-21 深圳市华星光电技术有限公司 阵列基板及其制造方法与对准精度检测方法
US11237485B2 (en) * 2020-01-21 2022-02-01 Applied Materials, Inc. System, software application, and method for lithography stitching
CN117406546B (zh) * 2023-12-14 2024-04-12 合肥晶合集成电路股份有限公司 一种掩模版及其图形修正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661220A (zh) * 2008-08-27 2010-03-03 北京京东方光电科技有限公司 液晶显示器面板和掩模板
US7875409B2 (en) * 2005-11-22 2011-01-25 Renesas Electronics Corporation Method of manufacturing semiconductor device, mask and semiconductor device
CN201974632U (zh) * 2011-04-12 2011-09-14 京东方科技集团股份有限公司 掩膜版及掩膜版组
CN103092005A (zh) * 2013-01-21 2013-05-08 深圳市华星光电技术有限公司 玻璃基板的曝光对位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699630B2 (en) * 2000-07-07 2004-03-02 Nikon Corporation Method and apparatus for exposure, and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875409B2 (en) * 2005-11-22 2011-01-25 Renesas Electronics Corporation Method of manufacturing semiconductor device, mask and semiconductor device
CN101661220A (zh) * 2008-08-27 2010-03-03 北京京东方光电科技有限公司 液晶显示器面板和掩模板
CN201974632U (zh) * 2011-04-12 2011-09-14 京东方科技集团股份有限公司 掩膜版及掩膜版组
CN103092005A (zh) * 2013-01-21 2013-05-08 深圳市华星光电技术有限公司 玻璃基板的曝光对位方法

Also Published As

Publication number Publication date
US9134615B2 (en) 2015-09-15
CN103744214A (zh) 2014-04-23
US20150192823A1 (en) 2015-07-09
CN103744214B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015100775A1 (zh) 一种液晶显示器的玻璃基板的曝光方法
US20210296392A1 (en) Flat Panel Array with the Alignment Marks in Active Area
WO2016192314A1 (zh) 隔垫物的对位标识的制备方法和位置精度检测方法、彩色滤光片及其制备方法
WO2016112636A1 (zh) 掩模板及其制备方法和显示面板中封框胶的固化方法
WO2013177874A1 (zh) 对位标识及在曝光工艺中采用该对位标识制作工件的方法
US10394081B2 (en) Display substrate and manufacturing method thereof, and display panel
US10620526B2 (en) Mask, manufacturing method thereof, patterning method employing mask, optical filter
WO2017114098A1 (zh) 显示基板母板及其制造和检测方法以及显示面板母板
WO2019075900A1 (zh) 液晶显示面板及其制作方法
CN103092005A (zh) 玻璃基板的曝光对位方法
WO2014127568A1 (zh) 多膜层基板及其制备方法和显示装置
WO2016029516A1 (zh) Cf基板的对组标记的制作方法
TWI435185B (zh) 一種曝光圖案形成之方法
JPWO2006137396A1 (ja) 露光方法および露光装置
JP2006337631A (ja) 検査方法及びこれを用いた液晶表示装置の製造方法
WO2018166375A1 (zh) 基板及其制备方法、以及显示面板
TWI398737B (zh) 光罩對位曝光方法及光罩組件
TWI506354B (zh) 光罩用基板、光罩及圖案轉印方法
JP5937409B2 (ja) フォトマスク用基板、フォトマスク、フォトマスクの製造方法、及びパターン転写方法
JP2788822B2 (ja) ホトマスク
JP5937873B2 (ja) フォトマスク用基板セット、フォトマスクセット、及びパターン転写方法
TWI688988B (zh) 元件基板及其製造方法
TWI401529B (zh) 光罩上的對位標尺及應用對位標尺的遮蔽件位置確認方法
TWI287689B (en) Optical proximity correction mask and method of fabricating color filter
JP5836678B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14346423

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876847

Country of ref document: EP

Kind code of ref document: A1