WO2015099024A1 - アンモニア分解触媒 - Google Patents

アンモニア分解触媒 Download PDF

Info

Publication number
WO2015099024A1
WO2015099024A1 PCT/JP2014/084277 JP2014084277W WO2015099024A1 WO 2015099024 A1 WO2015099024 A1 WO 2015099024A1 JP 2014084277 W JP2014084277 W JP 2014084277W WO 2015099024 A1 WO2015099024 A1 WO 2015099024A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ammonia
zeolite
exhaust gas
type zeolite
Prior art date
Application number
PCT/JP2014/084277
Other languages
English (en)
French (fr)
Inventor
知央 生駒
敏也 梨子田
孝信 櫻井
Original Assignee
日揮ユニバーサル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮ユニバーサル株式会社 filed Critical 日揮ユニバーサル株式会社
Priority to DK14874382.6T priority Critical patent/DK3088080T3/en
Priority to KR1020167019451A priority patent/KR102330635B1/ko
Priority to CN201480070932.1A priority patent/CN105848780B/zh
Priority to US15/108,185 priority patent/US20160339387A1/en
Priority to EP14874382.6A priority patent/EP3088080B1/en
Priority to JP2015554992A priority patent/JP6402336B2/ja
Publication of WO2015099024A1 publication Critical patent/WO2015099024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an ammonia decomposition catalyst and a method for treating exhaust gas containing ammonia (ammonia exhaust gas). More particularly, the present invention relates to an ammonia decomposition catalyst for use in ammonia exhaust gas having a high water content.
  • NH 3 gas and aqueous ammonia is widely as industrial applications, are used in large quantities, and NH 3 nitrogen in sewage treatment, waste water containing NH 3 used in the particle removing process in semiconductor manufacturing and the like.
  • NH 3 gas is a substance with an irritating odor, and its emission amount is regulated by the Water Pollution Prevention Law because it is a bad odor prevention law when released into the atmosphere and as a BOD increasing substance as wastewater (waste water).
  • a stripping method is known in which alkali is added to NH 3 nitrogen and steam or air is sent in a state where the temperature is raised.
  • NH 3 in waste water is separated into a gas phase by a diffusion tower.
  • the released NH 3 is oxidized and decomposed into harmless N 2 and water by an NH 3 oxidation catalyst and released to the atmosphere (see Patent Document 1).
  • ammonia oxidation catalyst here, at least one metal element selected from Fe, Ni, Co, Pt, Pd, Ru, V, Cu, Cr, W, and Mo is used, titania, zirconia, alumina, silica, Activated carbon and those supported or contained in at least one carrier of these complexes are used.
  • a method of treating NH 3 -containing exhaust gas with a two-stage catalyst layer has been proposed.
  • NH 3 is treated with an ammonia oxidation catalyst containing Ti and Ag and one or more of Fe, Mn, Zn, Mo, V, and W, and nitrogen oxides of by-products generated by the treatment of NH 3 are treated.
  • reduction treatment is performed with a known catalyst layer comprising Ti, Mo and V in the latter stage (see Patent Document 2).
  • Patent Document 2 since the method of treating with the two-stage catalyst layer uses a part of the NH 3 gas before the treatment for the reduction treatment of the nitrogen oxide in the latter stage, a part of the NH 3 gas before the treatment is extracted and the catalyst in the latter stage is treated. It is necessary to control the means for sending to the bed and its gas flow, which complicates the apparatus and reaction control.
  • the concentration of NO x also changes, making it difficult to desire stable operation.
  • an NH 3 oxidation catalyst for treating excess NH 3 in a denitration catalyst is effective (see Patent Document 3). .
  • N 2 O decomposition catalyst As possible in front of the step by suppressing the generation of the NO X decomposing NH 3 in NH 3 decomposition catalyst, contacting nitrous oxide generated processing gas a (N 2 O) in the N 2 O decomposition catalyst in a subsequent step A processing method has been proposed.
  • the N 2 O decomposition catalyst that can be used in the latter stage include a catalyst in which Cu is supported on a zeolite composed of silicon and oxygen represented by the formula (SiO 2 ) 55 , Fe ion exchange ⁇ zeolite, and the like (Patent Document 4). reference).
  • a catalyst comprising a catalyst component 1 for reducing nitrogen oxides and a second component having an activity of oxidizing NH 3 to generate NO X has been proposed.
  • a catalyst containing titanium oxide and W, V or Mo oxide and silica, zeolite or alumina supporting noble metal was used, and the catalyst was measured by measuring the outlet N 2 O concentration and oxygen in the process.
  • a purification method for adjusting the gas flow rate of the layer and the oxygen concentration in the process has been proposed (see Patent Document 5 and Patent Document 6).
  • the catalyst in the above prior art examples contains V, and there are cases where V is scattered when the operating temperature range exceeds 410 ° C., and there is a need for an NH 3 decomposition catalyst that does not contain V. Yes.
  • the present inventors have reported an invention of a catalyst for purifying exhaust gas containing organic nitrogen compounds formed by mixing copper oxide particles and zeolite particles, which can be converted to be harmless by converting organic compounds to N 2 (patent) Reference 7).
  • a catalyst for purifying exhaust gas containing organic nitrogen compounds formed by mixing copper oxide particles and zeolite particles which can be converted to be harmless by converting organic compounds to N 2 (patent) Reference 7.
  • ammonia exhaust gas having a water vapor concentration of less than 2 to 10% by volume for example, when decomposing ammonia in exhaust gas containing high concentration of water vapor having a water vapor concentration of 10% by volume or more, the same catalyst may be used.
  • the ammonia decomposition rate is not sufficient, and the activity may decrease when used for a long time.
  • copper oxide component 1: zeolite (component 2): noble metal (as a catalyst having high durability in the presence of high moisture, high sulfur and long life for stripping exhaust gas in sewage treatment.
  • An ammonia decomposition catalyst was reported in which 40 parts by weight and (d) phosphorus content was 0.01 to 5% by weight as P based on the total weight of copper oxide and zeolite (see Patent Document 8). .
  • Non-Patent Document 1 a catalyst having a two-layer structure having an SCR layer on a Pt / Al 2 O 3 layer has been reported (see Non-Patent Document 1). Laboratory experiments describe that providing an SCR layer reduces NO formation and improves N 2 selectivity, but also reduces overall NH 3 conversion.
  • Non-Patent Document 2 a two-layer ammonia slip catalyst composed of an SCR layer and a PGM layer is reported (see Non-Patent Document 2).
  • the objects of the present invention are: (1) A catalyst that decomposes ammonia to make NO x by-product ratio 0.6% or less, suppresses by-product formation of N 2 O as little as possible, converts ammonia into N 2, and renders it harmless Providing, (2) To provide a catalyst capable of decomposing ammonia in ammonia exhaust gas having a water concentration of 10 to 60% by volume, and further having a water concentration of 10 to 50% by volume into nitrogen with high efficiency, (3) It is to provide a catalyst having durability even when treating exhaust gas containing a sulfur compound as well as initial activity.
  • the ammonia decomposition catalyst and ammonia exhaust gas treatment method of the present invention are as follows. That is, the present invention is a catalyst for treating ammonia exhaust gas containing moisture, A lower layer having a noble metal, an inorganic oxide, phosphorus, a first proton-type zeolite or a first ion-exchanged zeolite ion-exchanged with Cu, Co or Fe ions, and provided on the lower layer, An upper layer having a second proton type zeolite or a second ion exchange type zeolite ion-exchanged with Cu, Co or Fe ions, In the ammonia decomposition catalyst.
  • Yet another aspect of the present invention is a method for treating an ammonia exhaust gas containing moisture, comprising:
  • the method for treating exhaust gas includes the step of bringing the ammonia decomposition catalyst into contact with ammonia exhaust gas to decompose ammonia into nitrogen and water.
  • the ammonia decomposition catalyst of the present invention exhibits a high NH 3 decomposition rate even in an ammonia exhaust gas with a high water content, and can suppress high NO X suppression and N 2 O byproduct.
  • ammonia decomposition catalyst of the present invention has high durability even when treating exhaust gas containing sulfur compounds as well as initial activity.
  • FIG. 1 is a drawing showing a comparison of performance evaluation between the comparative catalyst (B-3) and the catalysts of the present invention (A-1) and (D-1).
  • FIG. 2 is a drawing showing the results of a durability test of the catalyst (A-1) of the present invention at an inlet temperature of 340 ° C.
  • FIG. 3 is a drawing showing the results of a durability test of the catalyst (D-1) of the present invention at inlet temperatures of 250 ° C. and 340 ° C.
  • FIG. 4 is a drawing showing a comparison of durability tests between the conventional catalyst (C-4) and the catalyst of the present invention (A-1).
  • FIG. 5 is a drawing showing the results of a durability test of a conventional catalyst (C-4).
  • Ammonia exhaust gas containing water An ammonia exhaust gas having a water concentration of 10% by volume or more.
  • Decomposition rate Represents the ratio (%) of ammonia concentration in the exhaust gas before and after contacting the catalyst.
  • NO X production rate and N 2 O production rate The ratio (%) of the NO x concentration or N 2 O produced in the exhaust gas after contact to the ammonia concentration in the exhaust gas before contact with the catalyst.
  • Nitrogen oxide Refers to both NO X and N 2 O, and may be expressed as NO X or the like.
  • N 2 selectivity A numerical value obtained by subtracting the generation rate of NO X and the like in exhaust gas after contacting the catalyst from the decomposition rate. That is, it is the ratio of ammonia converted to N 2 before contacting the catalyst.
  • New catalyst A catalyst that has just been prepared or has just been used for exhaust gas treatment. The activity of the new catalyst is called initial activity.
  • Catalyst used A catalyst after exhaust gas has been treated for a long time. For the evaluation of catalyst durability, the activity of the catalyst used is measured.
  • the present invention is a catalyst for treating ammonia exhaust gas containing moisture, A lower layer having a noble metal, an inorganic oxide, phosphorus, a first proton-type zeolite or a first ion-exchanged zeolite ion-exchanged with Cu, Co or Fe ions, and provided on the lower layer, An upper layer having a second proton type zeolite or a second ion exchange type zeolite ion-exchanged with Cu, Co or Fe ions, In the ammonia decomposition catalyst. That is, it is particularly characterized in that an upper layer containing a denitration component is further provided on a lower layer containing an ammonia oxidation catalyst component and a denitration component.
  • noble metal used in the present invention examples include Pt, Pd, Ir, Rh, or a composite thereof.
  • Pt is particularly preferable because it has a large effect of improving decomposition activity and N 2 selectivity.
  • the content of the noble metal is preferably 0.05% by weight or more and 5% by weight or less, and preferably 0.2% by weight or more and 2% by weight with respect to the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer.
  • the amount of noble metal supported is preferably 0.05 g / L or more and 5 g / L or less, more preferably 0.1 g / L or more and 3 g / L or less, more preferably 0.2 g / L or more, based on the catalyst volume. 1 g / L or less is more preferable. Within the above range, better results can be obtained with respect to the ammonia decomposition rate, NO x production rate and N 2 O production rate.
  • inorganic oxide examples include titania (TiO 2 ), zirconia (ZrO 2 ), silica (SiO 2 ), alumina and ceria / zirconia composite oxide or solid solution (CeO 2 .ZrO 2) . And a molar ratio of CeO 2 : ZrO 2 is 1: 3 to 3: 1).
  • the inclusion of the above-described inorganic oxide is particularly effective for improving the action of the noble metal, that is, the decomposition activity, particularly the durability of the decomposition activity during long-term use.
  • the content of the inorganic oxide in the catalyst is preferably 5% by weight or more and 50% by weight or less, preferably 10% by weight or more and 35% by weight based on the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer. More preferably, it is less than wt%.
  • the amount of the inorganic oxide supported is preferably 1 g / L or more and 50 g / L or less, more preferably 5 g / L or more and 20 g / L or less with respect to the catalyst volume. Within the above range, better results can be obtained with respect to the ammonia decomposition rate, NO x production rate and N 2 O production rate.
  • the inorganic oxide is contained in the catalyst in a state where a noble metal is supported.
  • the TiO 2 0.1 wt relative to particles advance in the TiO 2% ⁇ 5 wt% on the TiO 2 particles (this is expressed as Pt / TiO 2.) Pt, other said particles By mixing with these components, a catalyst composition containing a noble metal and an inorganic oxide can be prepared.
  • the particle size of the inorganic oxide used in the present invention is preferably a particle having an average particle size of 0.1 ⁇ m or more and 100 ⁇ m or less in order to more effectively exhibit the function of the noble metal component in the catalyst composition.
  • the particle size is the size of the secondary particles, and is the length of the major axis when observed by SEM.
  • An average particle diameter is an average value when a long diameter is measured using SEM about at least 10 particle
  • TiO 2 that can be used in the present invention preferably has a BET specific surface area of 5 to 200 m 2 / g, more preferably 10 to 150 m 2 / g.
  • ZrO 2 that can be used in the present invention is a ZrO 2 powder that is generally commercially available, regardless of whether it is monoclinic, tetragonal, or cubic, and is particularly porous with a specific surface area of 10 m 2 / g or more. Those are preferred. Also, composite ZrO 2 , such as ZrO 2 .nCeO 2 , ZrO 2 .nSiO 2 , ZrO 2 .nTiO 2 (where n is generally 0.25 to 0.75), etc. can be used.
  • SiO 2 that can be used in the present invention includes high silica zeolite having a zeolite structure, such as mordenite.
  • the lower layer of the ammonia decomposition catalyst of the present invention contains phosphorus together with noble metals, inorganic oxides, proton type or ion exchange type zeolites.
  • the content of phosphorus is preferably 0.1% by weight or more and 10% by weight or less, preferably 1% by weight or more and 5% by weight or less, based on the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer. More preferred.
  • the amount of phosphorus supported is preferably 0.1 g / L or more and 10 g / L or less, more preferably 0.5 g / L or more and 5 g / L or less with respect to the catalyst volume.
  • the phosphorus content may be determined in consideration of the composition of the exhaust gas, that is, the ammonia concentration, the moisture concentration, and the processing conditions, that is, the processing temperature, the catalyst usage time, and the like. If the content or supported amount is too lower than the above range, the durability improvement effect is insufficient, whereas if the phosphorus content or supported amount is too higher than the above range, the initial activity may be reduced. is there.
  • a conventional ammonia decomposition catalyst tends to cause a decrease in activity due to deterioration when used for a long time at a reaction temperature in ammonia exhaust gas containing a large amount of moisture.
  • the ammonia decomposition catalyst of the present invention since phosphorus is contained, the activity is hardly lowered, and long-term decomposition activity performance is maintained, and high N 2 selectivity is maintained. .
  • the inclusion of phosphorus also effectively prevents a decrease in activity when an ammonia exhaust gas containing a sulfur compound such as hydrogen sulfide, thiophene or sulfide is treated.
  • Ammonia decomposition catalyst of the present invention further contains a phosphorus, the new catalyst and the catalyst used both with a high ammonia decomposition rate, of reducing by-product such as NO X, the effect is observed.
  • the phosphorus may be ubiquitous on the upper layer side in the lower layer. That is, it may be configured such that the phosphorus content decreases sequentially or stepwise from the top of the lower layer.
  • the proton type zeolite that can be used in the present invention may be a natural product or a synthetic product. Examples thereof include mordenite, erionite, ferrierite, chapasite, X-type zeolite, ⁇ -type zeolite, MFI-type zeolite, Y-type zeolite, and SAPO.
  • Zeolite used in the present invention is proton type (H type), ammonium ion; alkali metal ion such as Na and K; alkaline earth metal ion such as Mg and Ca; group 8 metal ion such as Fe; An ion-exchanged zeolite ion-exchanged with any of Group 9 metal ions such as Co; Group 10 metal ions such as Ni; Group 11 metal ions such as Cu can be used. One or a mixture of two or more of these may be used.
  • the first proton type zeolite or the first ion exchange type zeolite used in the lower layer may be the same as or different from the second proton type zeolite or the second ion exchange type zeolite in the upper layer. Both are preferably Cu ion exchange type zeolite.
  • the content of the proton type zeolite or ion exchange type zeolite contained in the lower layer is preferably 40% by weight or more and 95% by weight or less based on the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer, More preferably, it is more than 90% by weight.
  • the supported amount of proton type zeolite or ion exchange type zeolite contained in the lower layer is preferably 5 g / L or more and 95 g / L or less, more preferably 10 g / L or more and 90 g / L or less with respect to the catalyst volume. Within the above range, better results can be obtained with respect to the ammonia decomposition rate, NO x production rate and N 2 O production rate.
  • the supported amount of proton type zeolite or ion exchange type zeolite contained in the upper layer is preferably 20 g / L or more and 150 g / L or less, more preferably 30 g / L or more and 130 g / L or less with respect to the catalyst volume. Within the above range, better results can be obtained with respect to the ammonia decomposition rate, NO x production rate and N 2 O production rate.
  • the content of the proton type zeolite or ion exchange type zeolite contained in the upper layer is preferably 20% by weight or more and 400% by weight or less with respect to the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer. 40% by weight or more and 300% by weight or less is more preferable. Within the above range, better results can be obtained with respect to the ammonia decomposition rate, NO x production rate and N 2 O production rate.
  • Copper oxide can be further contained in the lower layer of the ammonia decomposition catalyst of the present invention.
  • Copper oxide refers to an oxide containing copper and includes a copper-containing composite oxide.
  • the copper oxide include a copper oxide represented by a composition formula of a general formula CuO X (0.45 ⁇ X ⁇ 1.1). Typically, it is CuO and Cu 2 O, and includes a copper oxide present in a copper-containing composite oxide such as hopcalite.
  • the copper oxide in the catalyst of the present invention has a function of maintaining high decomposition activity and N 2 selectivity.
  • the content is preferably 1% by weight or more and 30% by weight or less, and more preferably 5% by weight or more and 10% by weight or less based on the total weight of the noble metal, inorganic oxide, phosphorus and zeolite contained in the lower layer.
  • the copper oxide ratio is less than 1% by weight, the production of NO x and the like increases, and as a result, the N 2 selectivity may decrease.
  • the copper oxide ratio exceeds 30% by weight, In particular, the proportion of zeolite decreases and the decomposition rate decreases.
  • the supported amount of copper oxide is preferably 0.5 g / L or more and 20 g / L or less, more preferably 5 g / L or more and 10 g / L or less with respect to the catalyst volume. Within the above range, better results can be obtained with respect to the NO x production rate, N 2 selectivity and ammonia decomposition rate.
  • Copper oxide is uniformly mixed in the catalyst together with zeolite and inorganic oxide.
  • the average particle size is preferably 0.1 ⁇ m or more and 100 ⁇ m or less from the viewpoint of uniform dispersion with other components.
  • the definitions of the particle diameter and the average particle diameter are as described above.
  • the solid particles of the copper oxide As a means for containing the copper oxide in the catalyst, it is particularly preferable to use the solid particles of the copper oxide as a starting material.
  • an aqueous solution containing a copper-containing compound for example, a copper salt such as copper sulfate or copper acetate, is mixed with other catalyst components, impregnated in the catalyst, and 300 to 600 in an air atmosphere.
  • a method of converting a copper salt into a copper oxide by firing at ° C is mentioned.
  • the ammonia decomposition catalyst of the present invention has a two-layer structure.
  • the lower layer has a noble metal, an inorganic oxide, phosphorus, a first proton type zeolite or a first ion exchange type zeolite, and the upper layer has a second proton type zeolite or a second ion exchange type zeolite.
  • Ammonia decomposition catalyst of the present invention by which the two-layer structure as described above, high moisture using the content of ammonia gas showed high NH 3 decomposition rate, and suppression of high NO x, sub of N 2 O Life can be suppressed.
  • the thickness of the lower layer is preferably 10 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the thickness of the upper layer is preferably 10 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • a support may be further provided on the surface of the lower layer opposite to the upper layer.
  • circulation and a large contact area with gas is preferable.
  • Preferred shapes include honeycombs, sheets, meshes, fibers, pipes and filters.
  • an inorganic binder or an organic binder can be appropriately mixed and used.
  • the inorganic binder include colloidal silica, silica sol, alumina sol, silicic acid sol, titania sol, boehmite, clay, kaolin, and sepiolite.
  • a noble metal-containing aqueous solution is placed in a container, and an inorganic oxide is added thereto.
  • the inorganic oxide is sufficiently impregnated with an aqueous solution containing a noble metal, and then heated with stirring to evaporate moisture and dry. Thereafter, the powder is further heated in a dryer, and the obtained powder is fired in the air to obtain inorganic oxide particles carrying a predetermined amount of noble metal (as a metal component).
  • a predetermined amount of silica sol and the first proton type zeolite or the first ion exchange type zeolite are mixed together to prepare a slurry composition for the lower layer.
  • This slurry is applied to a support and the surplus is blown off by air blow. Then, it heats and dries, and also calcinates in a high-temperature furnace under air circulation to obtain a lower layer catalyst.
  • the method for incorporating phosphorus into the lower layer is as follows. That is, first, a phosphorus solution is prepared by mixing a solution of a phosphorus-containing compound and deionized water. Next, this solution is applied to the catalyst for the lower layer containing the precious metal, the inorganic oxide and the first proton type zeolite or the first ion exchange type zeolite prepared in advance, and the excess liquid is blown off by air blow. Thereafter, drying and baking are performed.
  • the ammonia exhaust gas treatment catalyst of the present invention can further contain a copper oxide in the lower layer.
  • a slurry for the upper layer is prepared by mixing deionized water with a predetermined amount of silica sol (for example, Snowtex C manufactured by Nissan Chemical Industries) and the second proton type zeolite or the second ion exchange type zeolite. This slurry is applied on the lower layer produced above, and the surplus is blown off by air blow. Thereafter, drying and baking are performed in the same manner as described above. Thereby, the ammonia decomposition catalyst which consists of two layers of this invention is obtained.
  • silica sol for example, Snowtex C manufactured by Nissan Chemical Industries
  • the phosphorus is ubiquitous on the upper layer side in the lower layer. That is, the phosphorus content is configured to decrease sequentially or stepwise from the top of the lower layer.
  • the present invention also relates to a method for treating an ammonia exhaust gas containing moisture.
  • This treatment method includes a step of decomposing ammonia into nitrogen and water by bringing the two-layered ammonia decomposition catalyst obtained above and ammonia exhaust gas into contact with each other.
  • ammonia exhaust gas in which the ammonia decomposition catalyst of the present invention is used is not particularly limited as long as ammonia is contained in the exhaust gas.
  • Examples include exhaust gas containing ammonia from various factories such as semiconductor factories, coke oven exhaust gas, leaked ammonia-containing gas from flue gas denitrification process, and exhaust gas generated by stripping ammonia-containing wastewater from sewage treatment plants, sludge treatment facilities, etc. It is done.
  • ammonia exhaust gas is, for example, ammonia exhaust gas having a water concentration of 10% by volume or more, particularly ammonia exhaust gas having a water concentration of 20 to 50% by volume.
  • the ammonia concentration of the ammonia exhaust gas to which the present invention can be applied is, for example, 10 vol ppm to 5 vol%.
  • Ammonia exhaust gas and air are brought into contact with the catalyst of the present invention to convert ammonia into harmless nitrogen gas and water for oxidative decomposition.
  • This oxidative decomposition temperature is appropriately determined depending on the properties in the exhaust gas (water vapor concentration or ammonia concentration), the reaction conditions (temperature, space velocity), the degree of catalyst deterioration, etc., but is usually 200 to 500 ° C., preferably 250 to 450 ° C. It is appropriate to select from these temperature ranges.
  • the space velocity (SV) of the exhaust gas to be treated with respect to the catalyst may be appropriately selected from the range of 100 to 100,000 hr ⁇ 1 in consideration of the gas properties (ammonia concentration and moisture concentration), the target value of the ammonia decomposition rate, and the like.
  • the concentration of ammonia in the gas supplied to the catalyst reactor is preferably adjusted to 3% by volume or less, preferably 2% by volume or less.
  • concentration of ammonia exceeds 3% by volume, the temperature of the catalyst layer rises too much due to heat generated by the reaction, and the catalyst tends to deteriorate.
  • an oxygen amount / theoretical required oxygen amount ratio of 1.03 to 10.0 at the inlet of the catalyst reactor preferably 1.1 to Air or oxygen-containing gas may be mixed from the outside so as to be 5.0.
  • the theoretical required oxygen amount is the stoichiometric oxygen amount obtained from the equation (1).
  • the ammonia concentration at the inlet of the reactor is 1.0% by volume
  • the oxygen concentration is 0.77 to 7.5. % By volume, preferably 0.83 to 3.8% by volume.
  • ⁇ Sludge from the sewage treatment plant is dehydrated with a dehydrator and the generated waste water is distilled with a distillation facility.
  • a separation device is provided for further promoting evaporation of moisture and ammonia by blowing steam or steam and nitrogen gas from the outside. Water vapor containing ammonia separated by distillation is separated into water and ammonia in a separation tank, and exhaust heat is recovered. After that, steam (ammonia exhaust gas) containing high-concentration moisture and ammonia is introduced into the catalytic reactor, a necessary amount of air is introduced from outside, and the ammonia is decomposed into nitrogen and water vapor by contacting the catalyst and harmless. Process. An outline of the process is introduced in, for example, Japanese Patent Application Laid-Open No. 2002-28637.
  • the catalyst of the present invention is preferably applied to the treatment of exhaust gas from activated sludge treatment.
  • the exhaust gas has a severe composition for the catalyst such that the water concentration is 20 to 70% by volume, the sulfur compound is 10 to 200 ppm by weight with respect to S, the ammonia is 100 volume ppm to 3% by volume, and the balance is nitrogen. That is, the exhaust gas in which the catalyst of the present invention exhibits a particularly effective action is a gas mainly composed of water vapor and nitrogen, except for ammonia. Furthermore, the catalyst of the present invention is particularly preferably used for ammonia treatment in exhaust gas containing sulfur compounds.
  • the exhaust gas discharged from the activated sludge treatment is an example, and it goes without saying that the exhaust gas is not limited to this, and it goes without saying that it is also used for ordinary ammonia exhaust gas treatment mainly composed of air. Yes.
  • This powder was mixed with 64.4 g of deionized water to form a slurry.
  • the slurry, 249 g of silica sol (Snowtex C, manufactured by Nissan Chemical Industries, Ltd.) and 142.3 g of Cu ion exchange ⁇ zeolite (manufactured by Clariant Catalyst, hereinafter sometimes referred to as “Cu ⁇ ”) are mixed and used for the lower layer.
  • a slurry was prepared.
  • This lower layer slurry was applied to a support of cordierite honeycomb 200 cells (number of cells: 200 cells / square inch, vertical 50 mm ⁇ width 50 mm ⁇ height 50 mm, volume: 0.125 liter), and the excess was blown by air blow Blowed away. Then, it dried for 4 hours with a 150 degreeC dryer, and also baked at 500 degreeC for 4 hours in the high temperature furnace under air circulation, and obtained the catalyst for lower layers.
  • the amount of Pt at this time was 0.5 g per liter of catalyst, and the amount of Cu ion-exchanged ⁇ zeolite was 70 g.
  • Catalyst A-2 The amount of Pt was changed from Pt (5.0) / TiO 2 to Pt (2.0) / TiO 2 , and other than that was prepared in the same manner as Catalyst A-1, and Catalyst A-2 was obtained.
  • the catalyst A-2 was prepared in the same manner as the catalyst A-2 except that the TiO 2 of the catalyst A-2 was changed to ZrO 2 (manufactured by the first rare element), and a catalyst A-3 was obtained.
  • the catalyst A-2 was prepared in the same manner as the catalyst A-2 except that the TiO 2 of the catalyst A-2 was changed to CeZrO 2 (manufactured by the first rare element), and a catalyst A-4 was obtained.
  • the catalyst A-1 was prepared in the same manner as the catalyst A-1 by reducing the content of the Cu ion-exchanged ⁇ zeolite in the lower layer slurry of the catalyst A-1 so that the supported amount per unit volume was 20 g / liter and 40 g / liter, respectively. , A-6 was obtained.
  • Catalysts A-7 and A-8> The loading amount of the upper layer slurry (Cu ⁇ slurry) of the catalyst A-1 was adjusted so that the loading amounts per unit volume were 40 g / liter and 120 g / liter, respectively, to obtain catalyst A-7 and catalyst A-8.
  • ⁇ Catalyst D-1> In; (4.5 wt% Pt concentration), TiO 2 powder aqueous solution of dinitro-diamine platinum in the evaporation dish; a (manufactured by Ishihara Sangyo Kaisha, Ltd., average particle size 1 [mu] m, BET specific surface area of 60 m 2 / g) was added, TiO 2 The powder was sufficiently impregnated with an aqueous solution. Thereafter, the water was evaporated with stirring at a temperature of 80 to 90 ° C. and dried. Thereafter, it was further heated to 150 ° C. in a dryer. The obtained powder was baked in air at a temperature of 500 ° C.
  • This lower layer slurry was applied to a support of cordierite honeycomb 200 cells (number of cells: 200 cells / square inch, vertical 50 mm ⁇ width 50 mm ⁇ height 50 mm, volume: 0.125 liter), and the excess was blown by air blow Blowed away. Then, it dried for 4 hours with a 150 degreeC dryer, and also baked at 500 degreeC for 4 hours in the high temperature furnace under air circulation, and obtained the catalyst for lower layers.
  • the amount of Pt at this time was 0.5 g per liter of catalyst, and the amount of Cu ion exchange SAPO-34 zeolite was 70 g.
  • ⁇ Comparative catalyst B-1> A slurry was prepared by mixing Pt (5.0) / TiO 2 powder, deionized water, and silica sol. This slurry was applied to a support of cordierite honeycomb 200 cells, and the excess was blown off by air blow. Thereafter, it was dried in a dryer at 150 ° C. for 4 hours, and further calcined at 500 ° C. for 4 hours in a high-temperature furnace under air flow to obtain a comparative catalyst B-1.
  • ⁇ Comparative catalyst B-4> A slurry was prepared by mixing 64.4 g of deionized water, 249 g of silica sol (Snowtex C manufactured by Nissan Chemical Industries) and 142.3 g of Cu ion exchange ⁇ zeolite (manufactured by Clariant Catalyst). This slurry was applied onto the comparative catalyst B-2, and the excess was blown off by air blow. Thereafter, drying and calcination were carried out in the same manner as described above to obtain a comparative catalyst B-4.
  • ⁇ Comparative catalyst B-5> An upper layer slurry (Cu ⁇ slurry) was applied on the comparative catalyst B-1, and dried and fired in the same manner as the comparative catalyst B-4, to obtain a comparative catalyst B-5. At this time, the coating amount was adjusted so that the amount of Cu ion-exchanged ⁇ zeolite supported on the upper layer was 70 g per liter of catalyst volume.
  • Comparative catalyst B-1 is a catalyst containing Pt and titanium oxide.
  • Comparative catalyst B-2 is a catalyst obtained by adding Cu ion-exchanged ⁇ zeolite to the components of comparative catalyst B-1.
  • Comparative catalyst B-3 is a catalyst obtained by further adding phosphorus to comparative catalyst B-2, and is a catalyst containing a component corresponding to Patent Document 8.
  • the comparative catalyst B-4 has a catalyst containing the catalyst component of the comparative catalyst B-2 as a lower layer, and the upper layer contains the same components as the upper layer of the present invention.
  • Comparative catalyst B-5 has a catalyst containing the catalyst component of comparative catalyst B-1 as a lower layer, and the upper layer contains the same components as the upper layer of the present invention.
  • Table 1 shows the composition of each catalyst (excluding the support).
  • NH 3 decomposition rate 100- ⁇ (outlet NH 3 concentration) / (inlet NH 3 concentration) ⁇ 100 ⁇ NO x production rate (%): (Outlet NO x concentration) / (Inlet NH 3 concentration) ⁇ 100 N 2 O production rate (%): ⁇ (outlet N 2 O concentration) / (inlet NH 3 concentration) ⁇ x 100 N 2 selectivity (%): 100- ⁇ (100-NH 3 decomposition rate) + NO x production rate + N 2 O production rate ⁇ 2 ⁇
  • the catalyst (A-1 to A-8) of the present invention having the component of the comparative catalyst B-3 as the lower layer and the upper layer containing the denitration component has high moisture (30%).
  • the NO X production rate is 0.6% or less
  • the N 2 O production rate is suppressed
  • the N 2 selectivity is also significantly high.
  • the catalyst (D-1) of the present invention containing CuSAPO as the upper and lower zeolite components similarly shows not only a high NH 3 decomposition rate against ammonia exhaust gas containing high moisture (30%), but also NO. It can be seen that the X production rate is 0.6% or less, the N 2 O production rate is suppressed, and the N 2 selectivity is also significantly high.
  • the comparative catalyst B-3 corresponding to only the lower layer of the present invention has a very high NO x production rate of 1.80% and a low N 2 selectivity (see FIG. 1).
  • the catalyst containing the denitration component Cu ion exchange ⁇ zeolite
  • the NO x production rate becomes 0.6% or less
  • the N 2 O production rate is suppressed
  • the N 2 selectivity is also reduced. It can be seen that there was an unexpected effect that was significantly higher.
  • the results of the comparative catalysts B-4 to B-5 have a low NO x production rate, but a relatively high N 2 O production rate and a relatively low N 2 selectivity.
  • Durability tests were performed using catalysts A-1 and D-1.
  • the catalyst when the inlet temperature is 340 ° C., the catalyst is not deteriorated even after 1000 hours, not only shows a high NH 3 decomposition rate, but also shows a NO x production rate of 0.6% or less, N 2 O The production rate was suppressed and the N 2 selectivity was also kept significantly high.
  • the comparative catalyst started to decrease in NH 3 decomposition rate after 800 hours, and then rapidly decreased and decreased to 95% after 1200 hours. That is, the comparative catalyst was significantly deteriorated in a short time as compared with the present invention A-1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 水分含量の高いアンモニア排ガスに使用するためのアンモニア分解触媒およびその浄化方法。 水分を含むアンモニア排ガスを処理するための触媒であって、 貴金属と、無機酸化物と、リンと、第1のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第1のイオン交換型ゼオライトと、を有する下層、及び 前記下層上に設けられ、第2のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第2のイオン交換型ゼオライト、を有する上層、を含む、アンモニア分解触媒。

Description

アンモニア分解触媒
 本発明は、アンモニア分解触媒及びアンモニアを含む排ガス(アンモニア排ガス)の処理方法に関する。さらに詳細には、本発明は水分含量の高いアンモニア排ガスに使用するためのアンモニア分解触媒に関する。
 NHガス及びアンモニア水は産業用途として広く、大量に使用されており、下水処理におけるNH態窒素や、半導体製造におけるパーティクルの除去工程で使用するNHを含む排水等が挙げられる。
 しかしながら、NHガスは刺激臭の物質で大気への放出においては悪臭防止法、排水(廃水)としてはBOD増加物質であることから水質汚濁防止法により排出量が規制されている。
 NHを含む排水(廃水)中のNHを除去する方法としては、例えばNH態窒素にアルカリを添加し、温度を上げた状態で蒸気または空気を送り込むストリッピング法が知られている。この方法では、まず、放散塔で排水中のNHを気相中に分離させる。そして、放出されたNHをNH酸化触媒で無害のNと水に酸化分解して大気へ放出する(特許文献1参照)。ここでのアンモニア酸化触媒としては、Fe,Ni,Co,Pt,Pd,Ru,V,Cu,Cr,W,Moより選ばれた少なくとも1種の金属元素を、チタニア,ジルコニア,アルミナ,シリカ,活性炭およびこれらの複合体の少なくとも1種の担体に担持もしくは含有したものが用いられる。
 NH含有排ガスを二段触媒層で処理する方法が提案されている。前段触媒層ではTiおよびAgと、Fe、Mn、Zn、Mo、V、Wの一種以上を含むアンモニア酸化触媒でNHを処理し、NHの処理で生成した副生成物の窒素酸化物を後段のTi、MoおよびVからなる公知の触媒層で還元処理することが報告されている(特許文献2参照)。しかし、二段触媒層で処理する方法は、後段の窒素酸化物の還元処理には処理前のNHガスの一部を用いるので、処理前のNHガスの一部を抜き出して後段の触媒層に送る手段とそのガス流を制御することが必要となり装置や反応制御が複雑となる。NHガス中のNH濃度の変化にともない、NOの濃度も変化し、安定した運転を望むことが難しい。
 NH含有ガスを無害のNと水に分解して大気に放出する方法としては、例えば脱硝触媒における余剰NHを処理するNH酸化触媒が有効とされている(特許文献3を参照)。
 前段の工程でできるだけNOの生成を抑制してNH分解触媒でNHを分解し、生成した処理ガス中の亜酸化窒素(NO)を後段の工程でNO分解触媒に接触させ処理する方法が提案されている。後段に使用できるNO分解触媒として、示性式(SiO55で示されるケイ素と酸素からなるゼオライトにCuを担持した触媒、Feイオン交換βゼオライト等が例示されている(特許文献4参照)。
 一段の触媒で処理する方法として、窒素酸化物を還元処理する触媒成分1とNHを酸化してNOを生成させる活性を有する第2成分とからなる触媒が提案されている。具体的にはチタンの酸化物及びW、VもしくはMoとの酸化物と貴金属を担持したシリカ、ゼオライトまたはアルミナを含有する触媒を使用し、出口NO濃度や工程中の酸素を測定し触媒層のガス流量や工程中の酸素濃度を調整する浄化方法が提案されている(特許文献5、特許文献6を参照)。
 上記従来技術の例示における触媒は、Vが含有されており、使用温度域が410℃を上回るとVが飛散されるという事例が見られており、Vを含まないNH分解触媒が求められている。
 本発明者らは、有機化合物をNに転化して無害化し得る、銅酸化物粒子及びゼオライト粒子を混合することによって形成される有機窒素化合物含有排ガスの浄化用触媒の発明を報告した(特許文献7参照)。しかし、水蒸気濃度が2~10容量%未満のアンモニア排ガスに比べて、例えば水蒸気濃度が10容量%以上のような高濃度の水蒸気を含む排ガス中のアンモニアを分解する場合、同じ触媒であっても、アンモニア分解率は十分でなく、しかも長時間使用すると活性が低下する場合がある。
 さらに、本発明者らは、下水処理におけるストリッピング排ガス用に高水分、高硫黄存在下で耐性が強く、長寿命である触媒として、酸化銅(成分1):ゼオライト(成分2):貴金属(成分3):およびリン(成分4):場合により、無機酸化物(成分5)を含み、(c)酸化銅の含有量が、酸化銅と前記ゼオライトの合計100重量部に対して、2~40重量部、(d)リンの含有量が、酸化銅とゼオライトの重量和に対して、Pとして0.01重量%~5重量%である、アンモニア分解触媒を報告した(特許文献8参照)。しかしながら、当該触媒におけるNO及びNOの副生率は1~5%であり、環境対策の重要性がより一層増している近年の状況においては、依然として不充分である。したがって、NOの副生率が0.6%以下であり、NOの副生成もできるだけ少ない触媒が求められている。
 一方、Pt/Al層上にSCR層を有する二層構造の触媒が報告されている(非特許文献1参照)。実験室的実験で、SCR層を設けることにより、NO形成を減少させ、N選択性を改善するが、全体としてNH変換も減少したことが記載されている。
 同様に、SCR層およびPGM層からなる、二層アンモニアスリップ触媒を報告する(非特許文献2参照)。この二層触媒により、自動車用ウレア-SCR触媒変換器における、可及的に少ないアンモニアブレイクスルーで高脱NO効率の達成を期待できることが記載されている。
特開平11-76761号公報 特開平10-309437号公報 特開平05-146634号公報 特開2005-95786号公報 特開2002-52381号公報 特開2002-66538号公報 国際公開WO2006/006702号 国際公開WO2009/075311号
Applied Catalysis B: Environmental 111 - 112 (2012) 445-455 Chemical Engineering Science 75 (2012) 75 - 83
 したがって、本発明の目的は:
(1)アンモニアを分解して、NOの副生率が0.6%以下であり、NOの副生成もできるだけ少なく抑制して、アンモニアをNに転化して、無害化する触媒を提供すること、
(2)水分濃度が10~60容量%、更には水分濃度が10~50容量%のアンモニア排ガス中のアンモニアを高い効率で窒素に分解する触媒を提供すること、
(3)初期活性はもとより、硫黄化合物を含む排ガスを処理しても、耐久性を有する触媒を提供することにある。
 本発明者等は上記目的を達成するために、鋭意研究を進め、本発明を完成した。本発明のアンモニア分解触媒およびアンモニア排ガスの処理方法は以下のとおりである。すなわち、本発明は、水分を含むアンモニア排ガスを処理するための触媒であって、
 貴金属と、無機酸化物と、リンと、第1のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第1のイオン交換型ゼオライトと、を有する下層、及び
 前記下層上に設けられ、第2のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第2のイオン交換型ゼオライト、を有する上層、
を含む、アンモニア分解触媒にある。
 さらに本発明の別の態様は、水分を含むアンモニア排ガスを処理するための方法であって、
前記のアンモニア分解触媒とアンモニア排ガスとを接触させて、アンモニアを窒素と水に分解する工程;を含む、排ガス処理方法にある。
 本発明のアンモニア分解触媒は、水分含量の高いアンモニア排ガスであっても、高いNH分解率を示し、高いNOの抑制と、NOの副生が抑制できる。
 さらに、本発明のアンモニア分解触媒は、初期活性はもとより、硫黄化合物を含む排ガスを処理しても、高い耐久性を有する。
図1は比較触媒(B-3)と本発明触媒(A-1)および(D-1)との性能評価の比較を示す図面である。 図2は、本発明触媒(A-1)の入口温度340℃における耐久性試験の結果を表す図面である。 図3は、本発明触媒(D-1)の入口温度250℃および340℃における耐久性試験の結果を表す図面である。 図4は、従来触媒(C-4)と本発明触媒(A-1)との耐久試験の比較を示す図面である。 図5は、従来触媒(C-4)の耐久性試験の結果を表す図面である。
 (用語の定義)
 本明細書で用いる用語の意味は、特に断らない限り以下のとおりである;
水分を含むアンモニア排ガス:水分濃度が10容量%以上のアンモニア排ガスをいう。
分解率: 触媒に接触する前と接触した後の排ガス中のアンモニア濃度の比率(%)を表す。
NO生成率およびNO生成率: 触媒に接触する前の排ガス中のアンモニア濃度に対する、接触後の排ガス中に生成したNOx濃度あるいはNOの比率(%)を表す。
窒素酸化物: NOとNOの両方を指し、NO等と表現することがある。
選択率: 分解率から、触媒に接触後の排ガス中NO等の生成率を差し引いた数値を表す。すなわち触媒に接触する前のアンモニアのうち、Nに転化した割合である。
新触媒: 調製直後あるいは排ガス処理に使用して間もない段階の触媒をいう。新触媒の活性を初期活性という。
使用触媒: 長期間排ガスを処理した後の触媒をいう。触媒耐久性の評価には、使用触媒の活性等を測定する。
 以下、本発明をさらに詳細に説明する。
 本発明は、水分を含むアンモニア排ガスを処理するための触媒であって、
 貴金属と、無機酸化物と、リンと、第1のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第1のイオン交換型ゼオライトと、を有する下層、及び
 前記下層上に設けられ、第2のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第2のイオン交換型ゼオライト、を有する上層、
を含む、アンモニア分解触媒にある。すなわち、アンモニア酸化触媒成分と脱硝成分を含有する下層上にさらに脱硝成分を含有する上層を設けたことを特に特徴とする。
 以下、本発明の触媒に使用する成分について具体的に説明する。
 <貴金属>
 本発明で使用される貴金属には、Pt、Pd、Ir、Rhまたはその複合物等が挙げられる。これら貴金属の中でも、Ptは分解活性およびN選択率の向上効果が大きいため、特に好ましい。
 貴金属の含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して0.05重量%以上、5重量%以下が好ましく、0.2重量%以上、2重量%以下がより好ましい。また、貴金属の担持量は、触媒容積に対して、0.05g/L以上、5g/L以下が好ましく、0.1g/L以上、3g/L以下がより好ましく、0.2g/L以上、1g/L以下がさらに好ましい。上記の範囲内であると、アンモニア分解率、NO生成率及びNO生成率に関してより良好な結果が得られる。
 <無機酸化物>
 本発明で使用される無機酸化物としては、例えば、チタニア(TiO)、ジルコニア(ZrO)、シリカ(SiO)、アルミナおよびセリア・ジルコニアの複合酸化物または固溶体(CeO・ZrOで表され、CeO:ZrOモル比は1:3~3:1である)から選ばれる少なくとも1種が挙げられる。上記した無機酸化物を含有させることは、貴金属の作用、すなわち分解活性の向上、とりわけ長期間使用中における分解活性の持続性向上に特に有効である。これらのなかでも、特にTiOおよびZrO、セリア・ジルコニアは長期間使用における分解活性の持続効果が優れている。該無機酸化物の触媒中における含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して5重量%以上、50重量%以下が好ましく、10重量%以上、35重量%以下がより好ましい。また、無機酸化物の担持量は、触媒容積に対して1g/L以上、50g/L以下が好ましく、5g/L以上、20g/L以下がより好ましい。上記の範囲内であると、アンモニア分解率、NO生成率及びNO生成率に関してより良好な結果が得られる。
 該無機酸化物は、貴金属を担持させた状態で、触媒中に含有させることが、特に有効である。例えばPtをTiO粒子に予めTiOに対して0.1重量%~5重量%担持したTiO粒子(これをPt/TiOと表現する。)を用意しておいて、該粒子を他の成分と混合することにより、貴金属と無機酸化物とを含有した触媒組成物を調製することができる。
 本発明で使用される無機酸化物の粒子のサイズは、触媒組成物中における貴金属成分の機能をより有効に発揮させるためには、平均粒径が0.1μm以上、100μm以下の粒子が好ましい。ここで粒径とは、2次粒子の大きさであり、SEMで観察したときの長径の長さである。平均粒径とは、少なくとも10個の粒子についてSEMを用いて長径を測定したときの平均値である。
 本発明において用いることができるTiOは、BET比表面積が5~200m/gであることが好ましく、さらに好ましくは10~150m/gである。
 本発明において用いることができるZrOとしては、単斜晶系、正方晶系、立方晶系を問わず、一般に市販されているZrO粉末、とりわけ比表面積が10m/g以上の多孔質のものが好ましい。また複合系のZrO、例えば、ZrO・nCeO、ZrO・nSiO、ZrO・nTiO(ここでnは概して0.25~0.75)等、も用いることができる。
 本発明において用いることができるSiOには、ゼオライト構造を有する高シリカゼオライト、例えばモルデナイトを含む。
 <リン>
 本発明において、アンモニア分解触媒の下層にリンを含有させるのに使用できるリン含有化合物としては、リン酸(HPO)、メタリン酸、リン酸二水素アンモニウム(NHPO)、第二リン酸アンモニウム((NHHPO)等の水溶性のリン酸、これらのNa塩、K塩、アンモニウム塩等の無機塩又は有機酸エステルが例示される。
 本発明のアンモニア分解触媒の下層には、貴金属、無機酸化物、プロトン型又はイオン交換型ゼオライトとともにリンが含有される。リンの含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して0.1重量%以上、10重量%以下が好ましく、1重量%以上、5重量%以下がより好ましい。また、リンの担持量は、触媒容積に対して0.1g/L以上、10g/L以下が好ましく、0.5g/L以上、5g/L以下がより好ましい。
 リンの含有量は排ガスの組成、すなわちアンモニア濃度、水分濃度等、と処理条件、すなわち処理する温度や触媒の使用時間等を考慮して定められればよい。含有量又は担持量が上述の範囲より低すぎると、耐久性の向上効果が不十分であり、一方、リンの含有量又は担持量が上述の範囲より高すぎると、初期活性が低下する場合がある。
 従来のアンモニア分解触媒は、水分を大量に含むアンモニア排ガス中で、反応温度において長期間使用されると、劣化による活性低下を起こしやすい。しかし、本発明のアンモニア分解触媒では、リンを含有しているので、活性低下が起き難く、長期間の分解活性性能を持続し、高いN選択率を持続するという、格別顕著な効果をもたらす。リンの含有は、さらに硫化水素、チオフェン、スルフィド等の硫黄化合物を含むアンモニア排ガスを処理した場合の活性低下も有効に防止する。さらにリンを含む本発明のアンモニア分解触媒は、新触媒および使用触媒共に、アンモニアの分解率が高いと共に、NO等の副生を低下させるという、効果がみられる。
 (リンの施用方法)
 下層にリンを含有させるには、まず、リン含有化合物の溶液と脱イオン水を混ぜ合わせ、リン溶液を調製する。そして、この溶液を予め作成した貴金属、無機酸化物及び第1のプロトン型ゼオライトまたは第1のイオン交換型ゼオライトを含有する層に塗布し、余剰液をエアブローにて吹き飛ばす。その後、乾燥、焼成を実施する。
 前記リンは、前記下層内において、前記上層側に遍在していてもよい。すなわち、リンの含量が該下層頂部から順次減少または段階的に減少するように構成されていてもよい。
 <ゼオライト>
 本発明で用いることができるプロトン型ゼオライトは天然品であっても合成品であってもよい。例えば、モルデナイト、エリオナイト、フェリエライト、シャパサイト、X型ゼオライト、β型ゼオライト、MFI型ゼオライト、Y型ゼオライト、及びSAPO等が挙げられる。本発明で用いられるゼオライトはプロトン型(H型)のほか、アンモニウムイオン;Na、K等のアルカリ金属のイオン;Mg、Ca等のアルカリ土類金属のイオン;Fe等の8族金属のイオン;Co等の9族金属のイオン;Ni等の10族金属のイオン;Cu等の11族金属イオンのいずれかとイオン交換したイオン交換型ゼオライトを用いることができる。これらの1種または2種以上の混合物を使用してもよい。
 下層で使用する第1のプロトン型ゼオライトまたは第1のイオン交換型ゼオライトと上層の第2のプロトン型ゼオライトまたは第2のイオン交換型ゼオライトとは同一であっても異なっていても良い。双方とも、Cuイオン交換型ゼオライトが好ましい。
 下層に含まれるプロトン型ゼオライト又はイオン交換型ゼオライトの含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して40重量%以上、95重量%以下が好ましく、50重量%以上、90重量%以下がより好ましい。また、下層に含まれるプロトン型ゼオライト又はイオン交換型ゼオライトの担持量は、触媒容積に対して5g/L以上、95g/L以下が好ましく、10g/L以上、90g/L以下がより好ましい。上記の範囲内であると、アンモニア分解率、NO生成率及びNO生成率に関してより良好な結果が得られる。
 上層に含まれるプロトン型ゼオライト又はイオン交換型ゼオライトの担持量は、触媒容積に対して20g/L以上、150g/L以下が好ましく、30g/L以上、130g/L以下がより好ましい。上記の範囲内であると、アンモニア分解率、NO生成率及びNO生成率に関してより良好な結果が得られる。
 また、上層に含まれるプロトン型ゼオライト又はイオン交換型ゼオライトの含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して20重量%以上、400重量%以下が好ましく、40重量%以上、300重量%以下がより好ましい。上記の範囲内であると、アンモニア分解率、NO生成率及びNO生成率に関してより良好な結果が得られる。
 <銅酸化物>
 本発明のアンモニア分解触媒の下層に銅酸化物をさらに含有させることができる。銅酸化物は、銅を含む酸化物を指し、銅含有複合酸化物を含む。銅酸化物としては、一般式CuO(0.45≦X≦1.1)の組成式で表される銅酸化物が挙げられる。典型的にはCuO及びCuOであり、ホプカライト等の銅含有複合酸化物で存在する銅酸化物を含む。
 本発明の触媒中における銅酸化物は、分解活性とN選択率を高く維持する働きがある。その含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して1重量%以上、30重量%以下が好ましく、5重量%以上、10重量%以下がより好ましい。銅酸化物の割合が1重量%未満では、NO等の生成が増加し、結果としてN選択率が低下する場合があり、一方、銅酸化物の割合が30重量%を超えると、相対的にゼオライトの割合が少なくなり、分解率が低下する。また、銅酸化物の担持量は、触媒容積に対して0.5g/L以上、20g/L以下が好ましく、5g/L以上、10g/L以下がより好ましい。上記の範囲内であると、NOの生成率、N選択率及びアンモニア分解率に関して、より良好な結果を得ることができる。
 銅酸化物は、ゼオライトおよび無機酸化物とともに、触媒中で均一に混合される。他成分の粒子との共存下で触媒作用を発揮するため、他の成分との均一分散の面から、その平均粒径は0.1μm以上、100μm以下が好ましい。ここで粒径及び平均粒経の定義については上述したとおりである。
 触媒中への銅酸化物の含有手段としては、出発原料として、前記の銅酸化物の固体粒子を使用するのが特に好ましい。別の手段としては、銅を含有する化合物、例えば硫酸銅や酢酸銅等の銅塩を含む水溶液を他の触媒成分と混合し、触媒中に含浸させておいて、空気雰囲気下で300~600℃で焼成することにより、銅塩を銅酸化物に転換する方法が挙げられる。
 下層における貴金属、無機酸化物、リン、プロトン型ゼオライト又はイオン交換型ゼオライトの相対割合(重量比)は、貴金属:無機酸化物:リン:プロトン型ゼオライト又はイオン交換型ゼオライト=0.05~5:5~50:0.1~10:40~95が好ましい。
 <触媒の構造>
 本発明のアンモニア分解触媒は、二層構造からなる。下層には、貴金属、無機酸化物、リン、第1のプロトン型ゼオライトまたは第1のイオン交換型ゼオライトを有し、上層には第2のプロトン型ゼオライトまたは第2のイオン交換型ゼオライトを有する。本発明のアンモニア分解触媒は、前記のような二層構造にしたことにより、高水分含有アンモニア排ガスに使用しても高いNH分解率を示し、高いNOの抑制と、NOの副生が抑制できる。
 前記下層の厚さは、10~200μmが好ましく、30~100μmがより好ましい。
 前記上層の厚さは、10~200μmが好ましく、30~100μmがより好ましい。
 <支持体>
 本発明の二層構造触媒は、前記下層における前記上層とは反対側の面に支持体をさらに設けることができる。使用する支持体の形状に特に制限はなく、ガス流通時に発生する差圧が小さく、ガスとの接触面積が大きい形状が好ましい。好ましい形状には、ハニカム、シート、メッシュ、繊維、パイプ、フィルターが含まれる。支持体の材質に特に制限はなく、コージェライト、アルミナ等公知の触媒担体、炭素繊維、金属繊維、ガラス繊維、セラミック繊維、チタン、アルミニウム、ステンレス等の金属が挙げられる。
 本発明の触媒を成形もしくは支持体へ担持するには、無機バインダーあるいは有機バインダーを適宜混合して用いることができる。無機バインダーの具体例として、コロイダルシリカ、シリカゾル、アルミナゾル、ケイ酸ゾル、チタニアゾル、ベーマイト、白土、カオリン、セピオライトが挙げられる。
 <触媒の製造法>
 以下、本発明のアンモニア分解触媒の製造方法について、一実施形態を説明する。ただし、製造方法については以下の方法に限定されるものではない。
 <下層の製造>
 まず、容器の中に貴金属含有水溶液を入れ、これに無機酸化物を加える。無機酸化物中に貴金属含有水溶液を十分含浸させた後、攪拌しながら加熱して水分を蒸発させ、乾燥させる。その後、更に乾燥機中で加熱し、得られた粉末を空気中で焼成して、貴金属(金属分として)が所定量担持された無機酸化物粒子を得る。
 この粉末と脱イオン水とを混ぜ合わせた後、ここに、所定量のシリカゾル及び第1のプロトン型ゼオライトまたは第1のイオン交換型ゼオライトを混ぜ合わせて、下層用スラリー組成を調製する。このスラリーを支持体に塗布し、余剰をエアブローにて吹き飛ばす。その後、加熱して乾燥し、更に空気流通下の高温炉にて焼成し下層用触媒を得る。
 リンを下層へ含有させる方法は以下のとおりである。すなわち、まず、リン含有化合物の溶液と脱イオン水とを混ぜ合わせ、リン溶液を調製する。次いで、この溶液を予め作成した貴金属、無機酸化物及び第1のプロトン型ゼオライトまたは第1のイオン交換型ゼオライトを含有する上記下層用触媒に塗布し、余剰液をエアブローにて吹き飛ばす。その後、乾燥、焼成を実施する。
 こうして本発明のアンモニア分解触媒の下層を得ることができる。
 なお、本発明のアンモニア排ガス処理用触媒は、下層内にさらに銅酸化物を含有させることができる。
 <上層の製造>
 脱イオン水と所定量のシリカゾル(例えば、日産化学工業製スノーテックスC)及び第2のプロトン型ゼオライトまたは第2のイオン交換型ゼオライトを混ぜ合わせて、上層用スラリーを調製する。このスラリーを上記で作製した下層上に塗布し、余剰をエアブローにて吹き飛ばす。その後、上記と同様に乾燥、焼成を実施する。これにより、本発明の二層からなるアンモニア分解触媒を得る。
 前記リンは、前記下層内において、前記上層側に遍在している。すなわち、リンの含量が該下層頂部から順次減少または段階的に減少するように構成されている。
 本発明は、水分を含むアンモニア排ガスを処理するための方法にも関する。この処理方法は、上記で得られた二層構造アンモニア分解触媒とアンモニア排ガスとを接触させて、アンモニアを窒素と水に分解する工程を含む。
 本発明のアンモニア分解触媒が使用されるアンモニア排ガスとしては、排ガス中にアンモニアが含まれていれば特に制限はない。例えば半導体工場等、各種工場からのアンモニアを含む排ガス、コークス炉排ガス、排煙脱硝プロセスからのリークアンモニア含有ガス、下水処理場、汚泥処理施設等のアンモニア含有排水のストリッピングにより発生する排ガスが挙げられる。
 アンモニア排ガスは、例えば、水分濃度が10容量%以上のアンモニア排ガス、特に、水分濃度が20~50容量%のアンモニア排ガスである。
 本発明を適用できるアンモニア排ガスのアンモニア濃度は、例えば、10容量ppm~5容量%である。本発明の触媒にアンモニア排ガスと空気を接触させて、アンモニアを無害な窒素ガスと水に変換し、酸化分解する。この酸化分解温度は、排ガス中の性状(水蒸気濃度やアンモニア濃度)、反応条件(温度、空間速度)、触媒劣化度合い等により適宜決定されるが、通常200~500℃、好ましくは250~450℃の温度範囲から選択するのが適当である。
 処理対象排ガスの触媒に対する空間速度(SV)は、ガスの性質(アンモニア濃度や水分濃度)やアンモニア分解率の目標値等を考慮して、100~100000hr-1の範囲から適宜選択すればよい。
 触媒反応器に供給するガス中のアンモニアの濃度は3容量%以下、好ましくは2容量%以下となるよう調整することが好ましい。アンモニアの濃度が3容量%を超えると、反応による発熱で触媒層の温度が上がりすぎて触媒の劣化が起こりやすい。
 また分解反応に必要な酸素が十分に含まれていない排ガスを処理する場合は、触媒反応器の入口で、酸素量/理論必要酸素量比1.03~10.0、好ましくは1.1~5.0となるように、外部より空気あるいは酸素含有ガスを混入させればよい。ここで、理論必要酸素量は、式(1)より得られる化学量論酸素量であり、反応器の入口アンモニア濃度が1.0容量%のときは、酸素濃度は0.77~7.5容量%、好ましくは0.83~3.8容量%である。
    4NH +3O →6HO+2N・・・(1)
 以下、下水処理場排ガスの例を紹介する。
 下水処理場の汚泥を脱水機で脱水して、発生する排水を蒸留設備で蒸留する。必要ならさらに外部よりスチームあるいはスチームと窒素ガスを吹き込んで、水分およびアンモニアの蒸発を促進するための分離装置が設けられる。蒸留により分離されたアンモニアを含む水蒸気を分離槽にて水とアンモニアに分離し、排熱を回収する。その後、高濃度水分とアンモニアとを含む蒸気(アンモニア排ガス)を触媒反応装置に導入して、別途外部から必要量の空気を導入し、触媒に接触してアンモニアを窒素と水蒸気に分解し、無害化処理する。該プロセスの概要は、例えば特許文献特開2002-28637号公報に紹介されている。
 本発明の触媒は、活性汚泥処理からの排ガスの処理に好ましく適用される。該排ガスは水分濃度が20~70容量%、硫黄化合物をS分として10~200重量ppm、アンモニアを100容量ppm~3容量%、残部は窒素であるような、触媒にとって過酷な組成を有する。すなわち本発明の触媒が特に有効な作用を発揮する排ガスは、アンモニア以外は、実質的に水蒸気と窒素を主体とするガスである。さらに硫黄化合物を含む排ガス中のアンモニア処理に対して、本発明の触媒は特に好ましく使用される。上記活性汚泥処理から排出される排ガスは一例であり、これに限定されるものではないことは言うまでもなく、これら以外に、空気を主成分とする通常のアンモニア排ガス処理にも使用されることは言うまでもない。
 以下、本発明を実施例によりさらに詳細に説明する。しかし、本発明はこれらに限定されるものではない。
 (触媒の調製)
 <触媒A-1>
 蒸発皿の中でジニトロジアミン白金の水溶液(Pt濃度;4.5重量%)に、TiO粉末(石原産業社製、平均粒径1μm、BET比表面積;60m/g)を加え、TiO粉末中に水溶液を十分含浸させた。その後、温度80~90℃で、攪拌しながら水分を蒸発させ、乾燥させた。その後、更に乾燥機中で150℃に加熱した。得られた粉末を空気中、500℃の温度で1時間焼成して、Pt(金属分として)が5.0重量%担持したTiO粒子(これをPt(5.0)/TiOと表示する。)を得た。この粉末と脱イオン水64.4gとを混ぜ合わせてスラリー状物とした。このスラリー状物とシリカゾル(日産化学工業製スノーテックスC)249gとCuイオン交換βゼオライト(クラリアント触媒製、以下「Cuβ」と表記することもある。)142.3gとを混ぜ合わせて、下層用スラリーを調製した。この下層用スラリーをコージライトハニカム200セル(セル数;200セル/平方インチ、たて50mm×横50mm×高さ50mm、容積;0.125リットル)の支持体に塗布し、余剰をエアブローにて吹き飛ばした。その後、150℃の乾燥機にて4時間乾燥し、更に空気流通下の高温炉にて500℃にて4時間焼成し下層用触媒を得た。このときのPt量は触媒1リットル当り0.5g、Cuイオン交換βゼオライトの量は70gであった。
 次に85%リン酸溶液50gと脱イオン水500gを混ぜ合わせ、リン溶液を調製した。この溶液を前記下層用触媒に塗布し、余剰液をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成を実施し、下層触媒を得た。この時のリン担持量は触媒1リットル当り1.0gであった。
 次に、脱イオン水64.4gとシリカゾル(日産化学工業製スノーテックスC)249gとCuイオン交換βゼオライト(クラリアント触媒社製)142.3gとを混ぜ合わせて、上層用スラリー(Cuβスラリー)を調製した。このスラリーを下層触媒上に塗布し、余剰をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成を実施し、二層構造の触媒A-1を得た。このときの上層のCuイオン交換βゼオライトの担持量は、触媒容積1リットル当り80gであった。
 <触媒A-2>
 Pt量をPt(5.0)/TiOからPt(2.0)/TiOに変更し、それ以外は触媒A-1と同様に調製し、触媒A-2を得た。
 <触媒A-3>
 上記触媒A-2のTiOをZrO(第一希元素製)に変更し、それ以外は触媒A-2と同様に調製し、触媒A-3を得た。
 <触媒A-4>
 上記触媒A-2のTiOをCeZrO(第一希元素製)に変更し、それ以外は触媒A-2と同様に調製し、触媒A-4を得た。
 <触媒A-5、A-6>
 上記触媒A-1の下層用スラリー中のCuイオン交換βゼオライトの含有量を減らし単位容積あたりの担持量を20g/リットル、40g/リットルとして触媒A-1と同様に調製しそれぞれ触媒A-5、A-6を得た。
 <触媒A-7、A-8>
 上記触媒A-1の上層用スラリー(Cuβスラリー)の担持量を調整し、単位容積あたりの担持量を40g/リットル、120g/リットルとしてそれぞれ触媒A-7、触媒A-8を得た。
 <触媒D-1>
 蒸発皿の中でジニトロジアミン白金の水溶液(Pt濃度;4.5重量%)に、TiO粉末(石原産業社製、平均粒径1μm、BET比表面積;60m/g)を加え、TiO粉末中に水溶液を十分含浸させた。その後、温度80~90℃で、攪拌しながら水分を蒸発させ、乾燥させた。その後、更に乾燥機中で150℃に加熱した。得られた粉末を空気中、500℃の温度で1時間焼成して、Pt(金属分として)が5.0重量%担持したTiO粒子(これをPt(5.0)/TiOと表示する。)を得た。この粉末と脱イオン水64.4gとを混ぜ合わせてスラリー状物とした。このスラリー状物とシリカゾル(日産化学工業製スノーテックスC)249gとCuイオン交換SAPO-34ゼオライト(UOP社製、以下「CuSAPO」と表記することもある。)142.3gとを混ぜ合わせて、下層用スラリーを調製した。この下層用スラリーをコージライトハニカム200セル(セル数;200セル/平方インチ、たて50mm×横50mm×高さ50mm、容積;0.125リットル)の支持体に塗布し、余剰をエアブローにて吹き飛ばした。その後、150℃の乾燥機にて4時間乾燥し、更に空気流通下の高温炉にて500℃にて4時間焼成し下層用触媒を得た。このときのPt量は触媒1リットル当り0.5g、Cuイオン交換SAPO-34ゼオライトの量は70gであった。
 次に85%リン酸溶液50gと脱イオン水500gを混ぜ合わせ、リン溶液を調製した。この溶液を前記下層用触媒に塗布し、余剰液をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成を実施し、下層触媒を得た。この時のリン担持量は触媒1リットル当り1.0gであった。
 次に、脱イオン水64.4gとシリカゾル(日産化学工業製スノーテックスC)249gとCuイオン交換SAPO-34ゼオライト(UOP社製)142.3gとを混ぜ合わせて、上層用スラリー(CuSAPOスラリー)を調製した。このスラリーを下層触媒上に塗布し、余剰をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成を実施し、二層構造の触媒D-1を得た。このときの上層のCuイオン交換SAPO-34ゼオライトの担持量は、触媒容積1リットル当り80gであった。
 <比較触媒B-1>
 Pt(5.0)/TiO粉末と脱イオン水とシリカゾルとを混ぜあわせスラリーを調製した。このスラリーをコージライトハニカム200セルの支持体に塗布し、余剰をエアブローにて吹き飛ばした。その後、150℃の乾燥機にて4時間乾燥し、更に空気流通下の高温炉にて500℃にて4時間焼成し比較触媒B-1を得た。
 <比較触媒B-2>
 Pt(5.0)/TiO粉末と脱イオン水とシリカゾルとCuイオン交換βゼオライトとを混ぜ合わせスラリーとした。このスラリーを、比較触媒B-1と同様にしてコージライト支持体に塗布し、乾燥焼成を行い比較触媒B-2を得た。
 <比較触媒B-3>
 Pt(5.0)/TiO粉末と脱イオン水とシリカゾルとCuイオン交換βゼオライトとを混ぜ合わせスラリーとした。このスラリーを、比較触媒B-1と同様にコージライト支持体に塗布し乾燥焼成を行い、第1層触媒を得た。
 次に85%リン酸溶液50gと脱イオン水500gを混ぜ合わせ、リン溶液を調製した。この溶液を上記で作製した第1層触媒に塗布し、余剰液をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成し、比較触媒B-3を得た。
 <比較触媒B-4>
 脱イオン水64.4gとシリカゾル(日産化学工業製スノーテックスC)249gとCuイオン交換βゼオライト(クラリアント触媒社製)142.3gとを混ぜ合わせて、スラリーを調製した。このスラリーを比較触媒B-2上に塗布し、余剰をエアブローにて吹き飛ばした。その後、上記と同様に乾燥、焼成を実施し、比較触媒B-4を得た。
 <比較触媒B-5>
 前記比較触媒B-1上に上層用スラリー(Cuβスラリー)を塗布し、比較触媒B-4と同様に乾燥焼成を行い比較触媒B-5を得た。このとき、上層のCuイオン交換βゼオライトの担持量が触媒容積1リットル当り70gとなるように塗布量を調整した。
 比較触媒B-1は、Ptと酸化チタンを含む触媒である。比較触媒B-2は比較触媒B-1の成分にさらにCuイオン交換βゼオライトを加えた触媒である。比較触媒B-3は、比較触媒B-2にさらにリンを加えた触媒であり、特許文献8に相当する成分を含む触媒である。比較触媒B-4は、比較触媒B-2の触媒成分を含む触媒を下層とし、上層に本発明の上層と同一の成分を含む。比較触媒B-5は比較触媒B-1の触媒成分を含む触媒を下層とし、上層に本発明の上層と同一の成分を含む。
 <従来触媒C-4>
 従来触媒C-4は、WO2006/006702号公報に記載の従来技術触媒(Pt=0.03;10-TiO;CuO=10;H-モルデナイトを含む触媒(触媒組成110g/リットル)である。
 表1に、各触媒の組成を示す(支持体は含まない)。
Figure JPOXMLDOC01-appb-T000001
 <活性評価試験>
 前記で得られたハニカム型触媒から円柱状(直径21mm、長さ50mm)のハニカム型触媒を採取し、これを流通式反応装置に充填した。マスフローコントローラーにより流量を制御して所定のガス量を流通した。電気炉にて触媒を加熱することで触媒入口の温度(入口温度)を所定の温度として、アンモニア分解活性を評価した。
ガス条件: 
SV=10,000h-1、NH=1%、H0=30%、Airバランス
 <ガスの分析方法>
アンモニア: ガスクロマトグラフィー(TCD検出器)またはガス検知管
NOx: ケミルミネッセンス(化学発光式)分析装置
N2O: ガスクロマトグラフィー(TCD検出器)
 <計算>
NH分解率(%):100-{(出口 NH濃度)/ (入口NH濃度) × 100}
NO生成率(%):(出口NO濃度)/(入口NH濃度)× 100
O生成率(%):{(出口NO濃度) / (入口NH濃度)}x 100
選択率(%):100-{(100-NH分解率)+NO生成率+NO生成率×2}
 性能試験条件と性能測定結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、比較触媒B-3の成分を下層とし、脱硝成分を含む上層とする本発明の触媒(A-1~A-8)は、高水分(30%)を含むアンモニア排ガスに対して、高NH分解率を示すのみならず、NO生成率が0.6%以下を示し、NO生成率を抑制し、N選択率も顕著に高いことが分かる。また、上層および下層のゼオライト成分としてCuSAPOを含む本発明の触媒(D-1)も同様に高水分(30%)を含むアンモニア排ガスに対して、高NH分解率を示すのみならず、NO生成率が0.6%以下を示し、NO生成率を抑制し、N選択率も顕著に高いことが分かる。
 これに対し、本発明の下層のみに相当する比較触媒B-3は、NO生成率が1.80%と非常に高くN選択率も低い(図1参照)。このように、上層に脱硝成分(Cuイオン交換βゼオライト)を含む触媒を組み合わせたことにより、NO生成率が0.6%以下となり、NO生成率も抑制し、N選択率も顕著に高くなる予期できない効果を奏したことが分かる。また、比較触媒B-4~B-5の結果は、NO生成率は低いが、NO生成率が相対的に高く、N選択率も相対的に低い。これらの結果から分かるように、上層に本発明と同様の脱硝成分(Cuイオン交換βゼオライト)を含む触媒を組み合わせても、下層に、貴金属、無機酸化物、リン、および第1のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第1のイオン交換型ゼオライトを含まなければ、所望の効果を示さない。
 <耐久性試験>
 触媒A-1およびD-1を使用して耐久性試験を行った。評価試験は上記の活性評価試験と同様にして行った。入口温度をA-1においては340℃として、D-1においては250℃および340℃として試験を行った。ガス条件は、A-1においてはSV=5,000h-1、D-1においては10000h-1、NH=1%(10000ppm)、H0=30%、Airバランスである。試験期間は、13,000時間である。
 結果を、表3、ならびに図2および図3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記の結果から、A-1については8500時間経過後も、触媒の劣化はみられず、高NH分解率を示すのみならず、NO生成率が0.6%以下を示し、NO生成率を抑制し、N選択率も顕著に高く維持した。D-1については、入口温度250℃の場合、このような低い入口温度でも800時間経過後も触媒の劣化はみられず、高NH分解率を示すのみならず、NO生成率が0.6%以下を示した。また、入口温度340℃の場合、1000時間経過後も、触媒の劣化はみられず、高NH分解率を示すのみならず、NO生成率が0.6%以下を示し、NO生成率を抑制し、N選択率も顕著に高く維持した。
 <耐久性比較試験>
 従来技術触媒(C-4:Pt=0.03;10-TiO;CuO=10;H-モルデナイトを含む触媒(触媒組成g/リットル))の耐久試験を行い、本発明の触媒(A-1)と比較した。評価試験は上記の活性評価試験と同様にして行った。入口温度340℃で試験を行った。ガス条件は、SV=5,000h-1)、NH=1%、H0=30%、Airバランスである。
 結果を図4および図5に示す。この結果から分かるように、比較触媒は、800時間後で、NH分解率の低下が始まり、その後、急速に低下が進行し、1200時間後では95%まで低下した。すなわち、比較触媒は、本発明A-1と比較して短時間で顕著に劣化した。

Claims (13)

  1.  水分を含むアンモニア排ガスを処理するための触媒であって、
     貴金属と、無機酸化物と、リンと、第1のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第1のイオン交換型ゼオライトと、を有する下層、及び
     前記下層上に設けられ、第2のプロトン型ゼオライトまたはCu、CoもしくはFeイオンとイオン交換された第2のイオン交換型ゼオライト、を有する上層、
    を含む、アンモニア分解触媒。
  2.  前記リンは、前記下層内において、前記上層側に偏在している、請求項1に記載のアンモニア分解触媒。
  3.  前記下層内に、さらに銅酸化物を含む、請求項1又は2に記載のアンモニア分解触媒。
  4.  前記貴金属がPt、Pd、Ir、Rhまたはその複合物であり、前記無機酸化物がチタニア、ジルコニア、セリアジルコニア、アルミナ、シリカまたはその混合物である、請求項1~3のいずれか1項に記載のアンモニア分解触媒。
  5.  前記プロトン型ゼオライト及び/又は前記イオン交換型ゼオライトが、β型、MFI型、Y型、モルデナイト型、SAPOからなる群から選択される請求項1~4のいずれか1項に記載のアンモニア分解触媒。
  6.  前記第1及び/又は第2のイオン交換型ゼオライトがCuイオン交換βゼオライトである、請求項5に記載のアンモニア分解触媒。
  7.  前記第1及び/又は第2のイオン交換型ゼオライトがCuイオン交換SAPOゼオライトである、請求項5に記載のアンモニア分解触媒。
  8.  前記下層における前記上層とは反対側の面に設けられた支持体をさらに有する、請求項1~7のいずれか1項に記載のアンモニア分解触媒。
  9.  前記下層における貴金属、無機酸化物、リン、プロトン型ゼオライト又はイオン交換型ゼオライトの相対割合(重量比)は、貴金属:無機酸化物:リン:プロトン型ゼオライト又はイオン交換型ゼオライト=0.05~5:5~50:0.1~10:40~95であり、上層のゼオライトの含有量は、下層に含まれる貴金属、無機酸化物、リン及びゼオライトの重量の合計に対して20重量%以上、400重量%以下である、請求項1~8のいずれか1項に記載のアンモニア分解触媒。
  10.  前記下層の厚さが10μm~200μmあり、前記上層の厚さが10μm~200μmである、請求項1~9のいずれか1項に記載のアンモニア分解触媒。
  11.  水分を含むアンモニア排ガスを処理するための方法であって、
    請求項1~10のいずれか1項に記載のアンモニア分解触媒とアンモニア排ガスとを接触させて、アンモニアを窒素と水に分解する工程;を含む、排ガス処理方法。
  12.  アンモニア排ガスは、水分濃度が10容量%以上である、請求項11に記載の排ガス処理方法。
  13.  アンモニア排ガスは、水分濃度が20~50容量%である、請求項12に記載の排ガス処理方法。
PCT/JP2014/084277 2013-12-26 2014-12-25 アンモニア分解触媒 WO2015099024A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK14874382.6T DK3088080T3 (en) 2013-12-26 2014-12-25 Ammonia Decomposition Catalyst
KR1020167019451A KR102330635B1 (ko) 2013-12-26 2014-12-25 암모니아 분해 촉매
CN201480070932.1A CN105848780B (zh) 2013-12-26 2014-12-25 氨分解催化剂
US15/108,185 US20160339387A1 (en) 2013-12-26 2014-12-25 Ammonia decomposition catalyst
EP14874382.6A EP3088080B1 (en) 2013-12-26 2014-12-25 Ammonia decomposition catalyst
JP2015554992A JP6402336B2 (ja) 2013-12-26 2014-12-25 アンモニア分解触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-269464 2013-12-26
JP2013269464 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015099024A1 true WO2015099024A1 (ja) 2015-07-02

Family

ID=53478871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084277 WO2015099024A1 (ja) 2013-12-26 2014-12-25 アンモニア分解触媒

Country Status (8)

Country Link
US (1) US20160339387A1 (ja)
EP (1) EP3088080B1 (ja)
JP (1) JP6402336B2 (ja)
KR (1) KR102330635B1 (ja)
CN (1) CN105848780B (ja)
DK (1) DK3088080T3 (ja)
TW (1) TWI658862B (ja)
WO (1) WO2015099024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035410A (ja) * 2014-08-01 2016-03-17 株式会社東芝 ガス分析装置およびガス分析方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693977A (zh) * 2017-01-12 2017-05-24 南开大学 一种高效氨分解催化剂的制备方法
CN107159222B (zh) * 2017-06-06 2020-04-14 江西庞泰环保股份有限公司 克劳斯炉用高温氨分解催化剂
CN109954493A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 氨分解制氢的稀土金属氧化物负载钌催化剂及制备和应用
TWI660776B (zh) * 2018-09-28 2019-06-01 丁肇誠 用於氨氧化處理的觸媒
US11911747B2 (en) * 2018-12-27 2024-02-27 Nikki-Universal Co., Ltd. Catalyst for ammonia decomposition and exhaust gas treatment method
US11073057B2 (en) * 2019-01-31 2021-07-27 Hyundai Motor Company Co clean-up catalyst, after treatment system and after treatment method
JP7489761B2 (ja) * 2019-05-07 2024-05-24 株式会社キャタラー アンモニア酸化触媒装置
CN110449181A (zh) * 2019-08-16 2019-11-15 中国汽车技术研究中心有限公司 一种分子筛催化涂层剩余浆料重复再利用方法及其在scr中的应用
CN110586153A (zh) * 2019-08-27 2019-12-20 浙江工业大学 碳纳米管内嵌金属粒子催化剂在氨分解反应中的应用
CN111068764B (zh) * 2019-11-29 2023-04-28 天津大学 用于柴油车尾气的nh3-sco催化剂及其制备方法
CN111167508A (zh) * 2020-01-08 2020-05-19 中自环保科技股份有限公司 一种用于高温尾气的氨氧化催化剂及其制备方法
CN111841531B (zh) * 2020-06-09 2023-04-14 福大紫金氢能科技股份有限公司 一种负载型合金催化剂及其制备方法和应用
EP3957386A1 (de) 2020-08-18 2022-02-23 UMICORE AG & Co. KG Katalysator zur reduzierung von ammoniak-emmisionen
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
WO2022261488A1 (en) * 2021-06-11 2022-12-15 Amogy Inc. Systems and methods for processing ammonia
KR20240020274A (ko) 2021-06-11 2024-02-14 아모지 인크. 암모니아의 가공처리를 위한 시스템 및 방법
CN115318332A (zh) * 2022-08-30 2022-11-11 天津派森新材料技术有限责任公司 一种氨分解制氢催化剂的制备方法及应用
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146634A (ja) 1991-11-27 1993-06-15 Babcock Hitachi Kk 脱硝機能を備えたアンモニア分解触媒および排ガス浄化方法
JPH07328437A (ja) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd アンモニア分解触媒
JPH10309437A (ja) 1997-05-09 1998-11-24 Hitachi Ltd アンモニア分解処理装置
JPH1176761A (ja) 1997-09-05 1999-03-23 Jgc Corp アンモニア含有廃水の処理方法
JP2002028637A (ja) 2000-07-18 2002-01-29 Osaka City アンモニア含有水の処理方法
JP2002052381A (ja) 2000-08-10 2002-02-19 Babcock Hitachi Kk アンモニア含有排水の浄化方法及び装置
JP2002066538A (ja) 2000-08-31 2002-03-05 Babcock Hitachi Kk アンモニア含有排水の浄化方法及び装置
JP2005095786A (ja) 2003-09-25 2005-04-14 Nippon Shokubai Co Ltd アンモニア含有排ガスおよびアンモニア含有排水の浄化方法
WO2006006702A1 (ja) 2004-07-15 2006-01-19 Nikki-Universal Co., Ltd. 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
WO2009075311A1 (ja) 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
WO2012132678A1 (ja) * 2011-03-31 2012-10-04 エヌ・イー ケムキャット株式会社 アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427753A (en) * 1992-12-24 1995-06-27 Tosoh Corporation Process for removing nitrogen oxides from oxygen rich exhaust gas
WO1995033562A1 (en) * 1994-06-03 1995-12-14 Akzo Nobel N.V. Hydrocracking catalyst comprising coated craking component particles
US6046128A (en) * 1996-11-27 2000-04-04 Idemitsu Kosan Co., Ltd. Method of manufacturing catalyst for purifying exhaust gas
JPH11300211A (ja) * 1998-04-24 1999-11-02 Nissan Motor Co Ltd 排気ガス浄化用触媒及び排気ガス浄化方法
US6146128A (en) * 1999-03-04 2000-11-14 Feng; Xin Cigarette lighter with security arrangement
JP3859940B2 (ja) * 1999-08-06 2006-12-20 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
US8389432B2 (en) * 2006-09-25 2013-03-05 Umicore Ag & Co. Kg Structured automotive catalyst with improved thermal ageing stability
CN103316709A (zh) * 2007-10-29 2013-09-25 优美科触媒日本有限公司 氮氧化物去除用催化剂和使用该催化剂的氮氧化物去除方法
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
BR112012031448A2 (pt) * 2010-06-09 2016-12-13 Sean T Okamoto extração de gás quente para vaporização de reagente e outros sistemas de gás aquecido
US20120328499A1 (en) * 2010-06-30 2012-12-27 N.E. Chemcat Corporation Exhaust gas purification catalyst apparatus using selective reduction-type catalyst and exhaust gas purification method
EP2495032A1 (de) * 2011-03-03 2012-09-05 Umicore Ag & Co. Kg SCR-Katalysator mit verbesserter Kohlenwasserstoffresistenz
US8789356B2 (en) * 2011-07-28 2014-07-29 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas
US9999877B2 (en) * 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146634A (ja) 1991-11-27 1993-06-15 Babcock Hitachi Kk 脱硝機能を備えたアンモニア分解触媒および排ガス浄化方法
JPH07328437A (ja) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd アンモニア分解触媒
JPH10309437A (ja) 1997-05-09 1998-11-24 Hitachi Ltd アンモニア分解処理装置
JPH1176761A (ja) 1997-09-05 1999-03-23 Jgc Corp アンモニア含有廃水の処理方法
JP2002028637A (ja) 2000-07-18 2002-01-29 Osaka City アンモニア含有水の処理方法
JP2002052381A (ja) 2000-08-10 2002-02-19 Babcock Hitachi Kk アンモニア含有排水の浄化方法及び装置
JP2002066538A (ja) 2000-08-31 2002-03-05 Babcock Hitachi Kk アンモニア含有排水の浄化方法及び装置
JP2005095786A (ja) 2003-09-25 2005-04-14 Nippon Shokubai Co Ltd アンモニア含有排ガスおよびアンモニア含有排水の浄化方法
WO2006006702A1 (ja) 2004-07-15 2006-01-19 Nikki-Universal Co., Ltd. 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
WO2009075311A1 (ja) 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
WO2012132678A1 (ja) * 2011-03-31 2012-10-04 エヌ・イー ケムキャット株式会社 アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 111-112, 2012, pages 445 - 455
CHEMICAL ENGINEERING SCIENCE, vol. 75, 2012, pages 75 - 83
ISABELLA NOVA ET AL.: "Experimental and Modelling Study of a Dual-Layer NH3 Slip Monolith Catalyst for Automotive SCR Aftertreatment Systems", TOPICS IN CATALYSIS, vol. 56, no. 1, 1 May 2013 (2013-05-01), pages 227 - 231, XP055354919, DOI: 10.1007/S11244-013-9957-9 *
SACHI SHRESTHA ET AL.: "Selective oxidation of ammonia on mixed and dual-layer Fe-ZSM-5+Pt/ A1203 monolithic catalysts", CATAL. TODAY, vol. 231, 1 January 2014 (2014-01-01), pages 105 - 115, XP055354931, DOI: 10.1016/J.CATTOD.2014.01.024 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035410A (ja) * 2014-08-01 2016-03-17 株式会社東芝 ガス分析装置およびガス分析方法

Also Published As

Publication number Publication date
CN105848780A (zh) 2016-08-10
EP3088080B1 (en) 2018-04-25
TWI658862B (zh) 2019-05-11
JP6402336B2 (ja) 2018-10-10
KR20160102474A (ko) 2016-08-30
CN105848780B (zh) 2018-12-18
JPWO2015099024A1 (ja) 2017-03-23
TW201529160A (zh) 2015-08-01
KR102330635B1 (ko) 2021-11-23
EP3088080A1 (en) 2016-11-02
US20160339387A1 (en) 2016-11-24
DK3088080T3 (en) 2018-06-14
EP3088080A4 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6402336B2 (ja) アンモニア分解触媒
JP5384368B2 (ja) アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
JP5622944B2 (ja) 窒素含有化合物の変換方法
KR101824233B1 (ko) NOx의 선택적인 촉매환원을 위한 불활성화-저항성 촉매
KR101891233B1 (ko) 구조체의 표면에 형성된 촉매층을 포함하는 질소산화물 제거용 촉매, 이의 제조방법 및 용도
JP6697287B2 (ja) 金属水銀の酸化反応および窒素酸化物の還元反応用触媒、ならびに排ガスの浄化方法
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JP2010029782A (ja) 金属水銀を含む排ガスの浄化方法および排ガス中の金属水銀の酸化触媒
JP5164821B2 (ja) 窒素酸化物選択的接触還元用触媒
JP7492743B2 (ja) アンモニア分解用触媒及び排ガスの処理方法
EP3600616A1 (en) A catalyst for treating an exhaust gas, an exhaust system and a method
JP2023026798A (ja) アンモニアエンジンの排ガス処理システム及びアンモニアエンジンの排ガス処理方法
JP3970093B2 (ja) アンモニア分解除去方法
JP2022105849A (ja) アンモニア分解触媒及びこれを用いた排ガス処理方法
WO2024048467A1 (ja) アンモニア分解触媒および排ガス処理方法
JP2007021482A (ja) アンモニア分解触媒及びアンモニア処理方法
WO2016190294A1 (ja) 排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法
JP2011230043A (ja) 窒素酸化物除去触媒及びこれを用いた窒素酸化物除去装置
JP2008194646A (ja) 有機窒素化合物分解触媒及び有機窒素化合物処理方法
JP2009056455A (ja) 排ガス中のメタンの酸化除去用触媒および排ガス中のメタンの酸化除去方法
JP2007268520A (ja) 窒素化合物分解触媒及び窒素化合物処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014874382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167019451

Country of ref document: KR

Kind code of ref document: A