TWI660776B - 用於氨氧化處理的觸媒 - Google Patents

用於氨氧化處理的觸媒 Download PDF

Info

Publication number
TWI660776B
TWI660776B TW107134339A TW107134339A TWI660776B TW I660776 B TWI660776 B TW I660776B TW 107134339 A TW107134339 A TW 107134339A TW 107134339 A TW107134339 A TW 107134339A TW I660776 B TWI660776 B TW I660776B
Authority
TW
Taiwan
Prior art keywords
catalyst
catalyst particles
support
platinum
ammonia oxidation
Prior art date
Application number
TW107134339A
Other languages
English (en)
Other versions
TW202012045A (zh
Inventor
丁肇誠
Original Assignee
丁肇誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丁肇誠 filed Critical 丁肇誠
Priority to TW107134339A priority Critical patent/TWI660776B/zh
Application granted granted Critical
Publication of TWI660776B publication Critical patent/TWI660776B/zh
Publication of TW202012045A publication Critical patent/TW202012045A/zh

Links

Landscapes

  • Catalysts (AREA)

Abstract

本發明提出一種用於氨氧化處理的觸媒,係於組成上包括:複數顆觸媒顆粒以及用以攜載該複數顆觸媒顆粒的一擔體。特別地,本發明係以鉑或者包含鉑的複合物製成該複數顆觸媒顆粒,並且令晶面為(111)的該觸媒顆粒與晶面為(101)的該觸媒顆粒於該擔體之上具有一分佈比例,且該分佈比例係介於1:1至10:1之間。實際應用本發明之時,只需要將上述之用於氨氧化處理的觸媒於一操作溫度下置於帶有氨氣的廢氣之中,就能夠基於高氮氣選擇率將該氨氣氧化。

Description

用於氨氧化處理的觸媒
本發明係關於廢棄污染源處理的技術領域,尤指一種用於氨氧化處理的觸媒。
除了具有優秀的電絕緣作用,氮化矽(Si 3N 4)薄膜在高溫高濕度的環境之下不易被氧化或水氣滲透;因此,氮化矽材料常用於製造半導體元件或積體電路晶片。舉例而言,可使用低壓化學氣相沉積設備(Low Pressure Chemical Vapor Deposition System, LPCVD)形成氮化矽層於矽晶表面;此時,氮化矽層作為防止矽氧化作用發生的遮蔽層。執行LPCVD的過程中,氮化矽層係由二氯矽烷(SiCl 2H 2)與氨依據以下反應式(1)而生成。 SiCl 2H 2+4NH 3→Si 3N 4+6HCl+6H 2…………..(1)
值得注意的是,未利用完全的氨氣通常由後端幫浦抽除並進一步地輸入一廢氣處理系統之中。傳統的廢氣處理系統係使用硫酸水溶液吸收製程廢氣所帶有的氨氣;然而,這種處理方式需使用大量強酸,後續還需進行酸鹼中和操作,同時還會存在著產生氨氮廢水的問題。隨著環保法規趨於嚴格,業者需將氨氮廢水處理至極低濃度(氨氮的濃度需小於20mg/L)才能排放。可想而知,為了降低廢水中的氨氮濃度,業者勢必付出更高的處理成本。
為解決上述問題,業界提出以觸媒直接對廢氣中的氨進行高溫氧化,以將氨轉變成氮(N 2)及水(H 20)。這樣的氨處理方式具有可大量處理與無二次污染等優點。然而,目前業界所使用來氧化廢氣中的氨之觸媒,其被用於低溫(或常溫)的氮處理之時,係顯示出氮選擇率低的重要缺陷。總的來說,現有的氮處理觸媒係仍舊於實務應用上顯示出缺陷與不足;有鑑於此,本案之發明人係極力加以研究發明,而終於研發完成本發明之一種用於氨氧化處理的觸媒。
本發明之主要目的在於提出一種用於氨氧化處理的觸媒,其係於組成上包括:複數顆觸媒顆粒以及用以攜載該複數顆觸媒顆粒的一擔體。特別地,本發明係以鉑或者包含鉑的複合物製成該複數顆觸媒顆粒,並且令晶面為(111)的該觸媒顆粒與晶面為(101)的該觸媒顆粒於該擔體之上具有一分佈比例,且該分佈比例係介於1:1至10:1之間。實際應用本發明之時,只需要將上述之用於氨氧化處理的觸媒於一操作溫度下置於帶有氨氣的廢氣之中,就能夠基於高氮氣選擇率將該氨氣氧化。
為了達成上述本發明之主要目的,本案發明人係提供所述用於氨氧化處理的觸媒的一實施例,係包括: 一擔體;以及 複數顆觸媒顆粒,係由該擔體所攜載; 其中,該觸媒顆粒係由鉑或者包含鉑的複合物所製成; 其中,於該擔體之上,晶面為(111)的該觸媒顆粒與晶面為(101)的該觸媒顆粒之間係具有一分佈比例,且該分佈比例係介於1:1至10:1之間。
於本發明之所述用於氨氧化處理的觸媒的實施例中,其中,該擔體為一氧化銦錫基板或一金屬氧化物半導體材料摻雜的氧化銦錫基板。
於本發明之所述用於氨氧化處理的觸媒的實施例中,其中,該擔體的製程材料可為下列任一者:金屬氧化物半導體材料、銀摻雜的金屬氧化物半導體材料、經氧化鎂修飾表面的銀摻雜的金屬氧化物半導體材料、硫化物半導體材料、銀摻雜的硫化物半導體材料、或硒化物半導體材。
為了能夠更清楚地描述本發明所提出之一種用於氨氧化處理的觸媒,以下將配合圖式,詳盡說明本發明之較佳實施例。
第一實施例
因具有大的電化學表面積(Electrochemical surface area, ECSA),奈米尺寸的鉑(Pt)顆粒經常被應用於直接甲醇燃料電池(Direct-methanol fuel cells, DMFCs)之中,以作為電催化劑使用。於本發明中,奈米尺寸的鉑顆粒進一步地被應用於處理廢氣中的氨。圖1係顯示本發明之一種用於氨氧化處理的觸媒的示意性立體圖。如圖1所示本發明之用於氨氧化處理的觸媒1係於組成上包括:複數顆觸媒顆粒11以及用以攜載該複數顆觸媒顆粒11的一擔體10。必須加以強調的是,本發明的主要技術特徵並非以鉑(Pt)製成所述觸媒顆粒11,而是令晶面為(111)的該觸媒顆粒11與晶面為(101)的該觸媒顆粒11於該擔體10之上具有一分佈比例,且該分佈比例係介於1:1至10:1之間。
所述複數個觸媒顆粒11可以是由鉑或者包含鉑的複合物所製成,且該些觸媒顆粒11的粒徑大小係介於0.1奈米至10奈米之間。較佳地,若所述複數個觸媒顆粒11的平均粒徑大小被控制在5奈米左右,則能夠發揮最好的電化學表面,於此指的是對於氨(NH 3)的氧化效果。另一方面,所述鉑的複合物係由鉑與至少一複合金屬所組成;其中,該複合金屬可以選自於週期表中的鉑族金屬,例如:釕(Ru)、銠(Rh)、鈀(Pd)、鋨(Os)、或銥(Ir) 。然而,鉑族金屬屬於貴金屬,因此,為了降低本發明之用於氨氧化處理的觸媒1的製造成本,也可以採用鈦(Ti)、銀(Ag)、錫(Sn)、鋅(Zn)、或鈷(Co)作為所述複合金屬。另一方面,用以攜載該複數個觸媒顆粒11的擔體10可以是一氧化銦錫(Indium Tin Oxide, ITO)基板或一金屬氧化物半導體材料摻雜的氧化銦錫基板。
除此之外,擔體(support)10也可以直接由一製程材料製成;該製程材料可以是金屬氧化物半導體材料、銀摻雜的金屬氧化物半導體材料、經氧化鎂修飾表面的銀摻雜的金屬氧化物半導體材料、硫化物半導體材料、銀摻雜的硫化物半導體材料、或者硒化物半導體材料。下表(1)之中係載有前面所列出的各種製程材料的示範性材料。 表(1)
一製程材料 示範性材料
氧化物半導體材料 TiO2, SnO2, ZrO2, CeO2, CdO, ZnO, WO3, Fe2O3
銀摻雜的 金屬氧化物半導體材料 Ag/TiO2, Ag/SnO2, Ag/ZrO2, Ag/CeO2, Ag/CdO, Ag/ZnO, Ag/WO3, Ag/Fe2O3
硫化物半導體材料 ZnS, CuS, CdS, SnS, SnS2
銀摻雜的 硫化物半導體材料 Ag8SnS6, Ag2(S/In)2S3
硒化物半導體材料 ZnSe, CdSe
實驗數據
繼續地參閱圖1,並請同時參閱圖2所顯示的用於氨氧化處理的觸媒的掃描式電子顯微鏡(Scanning electron microscope, SEM)的影像圖。比較圖1與圖2可以發現,雖然圖1繪示所述複數個觸媒顆粒11係有規則地沉積並排列於該擔體10之上,但由圖2的SEM影像可知,所述複數個觸媒顆粒11係分散排列於該擔體10之上。然而,必須知道的是,現階段的製程技術係能夠根據圖1的設計完成此用於氨氧化處理的觸媒1之製作。
第二實施例
請重複參閱圖1。於本發明之用於氨氧化處理的觸媒1的第二實施例之中,晶面為(111)的該觸媒顆粒11與晶面為(100)的該觸媒顆粒11係於該擔體10之上具有一分佈比例,且該分佈比例係介於1:1至10:1之間。簡單地說,第一實施例的技術特徵在於令晶面為(111)的該觸媒顆粒11與晶面為(101)的該觸媒顆粒11於所述擔體10之上具有特定的分佈比例,而第二實施例的技術特徵則在於令晶面為(111)的該觸媒顆粒11與晶面為(100)的該觸媒顆粒11於擔體10之上具有特定的分佈比例。
必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。
<本發明>
1‧‧‧用於氨氧化處理的觸媒
11‧‧‧觸媒顆粒
10‧‧‧擔體
<習知>
圖1係顯示本發明之一種用於氨氧化處理的觸媒的示意性立體圖;以及 圖2係顯示用於氨氧化處理的觸媒的掃描式電子顯微鏡(Scanning electron microscope, SEM)的影像圖。

Claims (6)

  1. 一種用於氨氧化處理的觸媒,係包括:一擔體;以及複數顆觸媒顆粒,係由該擔體所攜載;其中,該觸媒顆粒係由鉑或者包含鉑的複合物所製成;其中,該擔體為一氧化銦錫基板或一金屬氧化物半導體材料摻雜的氧化銦錫基板;於該擔體之上,晶面為(111)的該觸媒顆粒與晶面為(101)的該觸媒顆粒之間係具有一分佈比例,且該分佈比例係介於1:1至10:1之間。
  2. 如申請專利範圍第1項所述之用於氨氧化處理的觸媒,其中,所述鉑的複合物由鉑與至少一複合金屬所組成,且該複合金屬可為下列任一者:釕(Ru)、銠(Rh)、鈀(Pd)、鋨(Os)、銥(Ir)、鈦(Ti)、銀(Ag)、錫(Sn)、鋅(Zn)、或鈷(Co)。
  3. 如申請專利範圍第1項所述之用於氨氧化處理的觸媒,其中,該複數顆觸媒顆粒的平均粒徑大小係介於0.1奈米至10奈米之間。
  4. 一種用於氨氧化處理的觸媒,係包括:一擔體;以及複數顆觸媒顆粒,係由該擔體所攜載;其中,該觸媒顆粒係由鉑或者包含鉑的複合物所製成;其中,該擔體為一氧化銦錫基板或一金屬氧化物半導體材料摻雜的氧化銦錫基板;於該擔體之上,晶面為(111)的該觸媒顆粒與晶面為(100)的該觸媒顆粒之間係具有一分佈比例,且該分佈比例係介於1:1至10:1之間。
  5. 如申請專利範圍第4項所述之用於氨氧化處理的觸媒,其中,所述鉑的複合物由鉑與至少一複合金屬所組成,且該複合金屬可為下列任一者:銥(Ir)、鈀(Pd)、鋨(Os)、釕(Ru)、鈦(Ti)、銀(Ag)、錫(Sn)、鋅(Zn)、或鈷(Co)。
  6. 如申請專利範圍第4項所述之用於氨氧化處理的觸媒,其中,該複數顆觸媒顆粒的平均粒徑大小係介於0.1奈米至10奈米之間。
TW107134339A 2018-09-28 2018-09-28 用於氨氧化處理的觸媒 TWI660776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107134339A TWI660776B (zh) 2018-09-28 2018-09-28 用於氨氧化處理的觸媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107134339A TWI660776B (zh) 2018-09-28 2018-09-28 用於氨氧化處理的觸媒

Publications (2)

Publication Number Publication Date
TWI660776B true TWI660776B (zh) 2019-06-01
TW202012045A TW202012045A (zh) 2020-04-01

Family

ID=67764313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107134339A TWI660776B (zh) 2018-09-28 2018-09-28 用於氨氧化處理的觸媒

Country Status (1)

Country Link
TW (1) TWI660776B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209991A (zh) * 2021-05-20 2021-08-06 山西恒投环保节能科技有限公司 一种氨低温选择性催化氧化催化剂组合物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201529160A (zh) * 2013-12-26 2015-08-01 Nikki Universal Co Ltd 氨分解觸媒

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201529160A (zh) * 2013-12-26 2015-08-01 Nikki Universal Co Ltd 氨分解觸媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209991A (zh) * 2021-05-20 2021-08-06 山西恒投环保节能科技有限公司 一种氨低温选择性催化氧化催化剂组合物及其制备方法和应用

Also Published As

Publication number Publication date
TW202012045A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
Cho et al. Amine-functionalized graphene/CdS composite for photocatalytic reduction of CO2
Janczarek et al. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems
Jang et al. Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light
Santato et al. Photoelectrochemical properties of nanostructured tungsten trioxide films
Wheeler et al. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition
Goel et al. Metal oxide semiconductors for gas sensing
Qin et al. Encapsulation of Pt nanoparticles as a result of strong metal− support interaction with Fe3O4 (111)
Hsu et al. Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting
Maeda et al. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band
Ansari et al. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite
Tabata et al. Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation
Liu et al. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly
Zhang et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer
Mor et al. Vertically oriented Ti− Fe− O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis
Di Paola et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol
Yu et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition
Hou et al. Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol–gel method
US7473481B2 (en) Photo-catalytic reactor
US7560409B2 (en) Photo-oxidation catalysts
US9568448B2 (en) Gas sensors and methods of preparation thereof
US10527598B2 (en) Metal oxide nanocomposite heterostructure methods and hydrogen sulfide sensors including the same
García‐Tecedor et al. The role of underlayers and overlayers in thin film BiVO4 photoanodes for solar water splitting
Gan et al. A comparative study between photocatalytic and photoelectrocatalytic properties of Pt deposited TiO2 thin films for glucose degradation
TWI660776B (zh) 用於氨氧化處理的觸媒
Osako et al. Direct Observation of Interfacial Charge Transfer between Rutile TiO2 and Ultrathin CuOx Film by Visible‐Light Illumination and Its Application for Efficient Photocatalysis