WO2015098225A1 - 半導体装置および半導体装置の製造方法 - Google Patents
半導体装置および半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2015098225A1 WO2015098225A1 PCT/JP2014/076422 JP2014076422W WO2015098225A1 WO 2015098225 A1 WO2015098225 A1 WO 2015098225A1 JP 2014076422 W JP2014076422 W JP 2014076422W WO 2015098225 A1 WO2015098225 A1 WO 2015098225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- silicon layer
- amorphous silicon
- electride
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000010409 thin film Substances 0.000 claims abstract description 148
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 134
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 44
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 20
- 239000011575 calcium Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 239000010410 layer Substances 0.000 description 142
- 238000004544 sputter deposition Methods 0.000 description 26
- 239000010408 film Substances 0.000 description 22
- 125000004429 atom Chemical group 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 150000001450 anions Chemical class 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 230000031700 light absorption Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229910052740 iodine Inorganic materials 0.000 description 9
- 239000011630 iodine Substances 0.000 description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- -1 oxygen ions Chemical class 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000013081 microcrystal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000005084 Strontium aluminate Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical group [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78618—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78663—Amorphous silicon transistors
- H01L29/78669—Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
Definitions
- the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
- a semiconductor device such as a thin film transistor constructed by forming electrodes such as a source, a drain, and a gate, and a semiconductor layer on an insulating substrate has attracted attention (for example, Patent Document 1).
- Such a semiconductor device can be applied to various electronic devices such as an electro-optical device, for example.
- the present invention has been made in view of such a background, and an object of the present invention is to provide a semiconductor device with higher performance and higher functionality than conventional ones. Another object of the present invention is to provide a method for manufacturing such a semiconductor device.
- a semiconductor device having a source electrode, a drain electrode, a gate electrode, and an amorphous silicon layer, What is claimed is: 1.
- a semiconductor device comprising: a thin film of an amorphous oxide electride containing calcium atoms and aluminum atoms between one or both of the source electrode and the drain electrode and the amorphous silicon layer. Provided.
- the molar ratio (Ca / Al) of aluminum atoms to calcium atoms in the electride thin film may be in the range of 0.3 to 5.0.
- the electride thin film may have an electron density of 2.0 ⁇ 10 17 cm ⁇ 3 or more.
- the electride thin film may have a thickness of 100 nm or less.
- the amorphous silicon layer may be disposed between the source electrode and the gate electrode, or the amorphous silicon layer may be farther from the gate electrode than the source electrode. May be arranged.
- the present invention provides a method for manufacturing a semiconductor device having a source electrode, a drain electrode, a gate electrode, and an amorphous silicon layer, (1) forming a thin film of an amorphous oxide electride containing calcium atoms and aluminum atoms between one or both of the source electrode and the drain electrode and the amorphous silicon layer; A method for manufacturing a semiconductor device is provided.
- the manufacturing method according to the present invention further includes: (A) forming an amorphous silicon layer on the substrate; (B) forming a source electrode and a drain electrode; (C) forming a gate electrode; Have The step (1) may be performed between the step (a) and the step (b).
- the manufacturing method according to the present invention further includes: (A) forming a source electrode and a drain electrode on a substrate; (B) forming an amorphous silicon layer; (C) forming a gate electrode; Have The step (1) may be performed between the step (a) and the step (b).
- the manufacturing method according to the present invention further includes: (A) forming a gate electrode on the substrate; (B) forming an amorphous silicon layer; (C) forming a source electrode and a drain electrode; Have The step (1) may be performed between the step (b) and the step (c).
- the manufacturing method according to the present invention further includes: (A) forming a gate electrode on the substrate; (B) forming a source electrode and a drain electrode; (C) forming an amorphous silicon layer; Have The step (1) may be performed between the step (b) and the step (c).
- the molar ratio (Ca / Al) of aluminum atoms to calcium atoms in the electride thin film may be in the range of 0.3 to 5.0.
- the electride thin film may have an electron density of 2.0 ⁇ 10 17 cm ⁇ 3 or more.
- the electride thin film may have a thickness of 100 nm or less.
- amorphous oxide electride containing calcium atom and aluminum atom is also simply referred to as “amorphous oxide electride”, and “amorphous oxidation containing calcium atom and aluminum atom”.
- the “electride thin film” is also simply referred to as “electride thin film”.
- the present invention it is possible to provide a semiconductor device with higher performance and higher functionality than conventional ones.
- the present invention can also provide a method for manufacturing such a semiconductor device.
- FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor device according to an embodiment of the present invention.
- 1 is a cross-sectional view schematically showing an example of a semiconductor device according to the present invention configured by a top gate structure-bottom contact method.
- 1 is a cross-sectional view schematically showing an example of a semiconductor device according to the present invention configured by a bottom gate structure-top contact method.
- 1 is a cross-sectional view schematically showing an example of a semiconductor device according to the present invention configured by a bottom gate structure-bottom contact method.
- FIG. It is the figure which showed typically an example of the flow at the time of manufacturing the semiconductor device by one Example of this invention.
- FIG. 1 shows a schematic cross section of a conventional semiconductor device.
- the conventional semiconductor device 1 includes a substrate 10, an amorphous silicon layer 5, a source electrode 20, a drain electrode 22, and a gate electrode 24.
- the amorphous silicon layer 5 is disposed on the substrate 10, and the source electrode 20 and the drain electrode 22 are disposed on the amorphous silicon layer 5.
- a gate electrode 24 is disposed on the source electrode 20 and the drain electrode 22 with a gate insulating layer 30 interposed therebetween.
- Such a semiconductor device 1 can be used for, for example, an electro-optical device such as a liquid crystal panel or electronic paper, and a light-emitting display device.
- contact at the interface between the source electrode 20 and the amorphous silicon layer 5 and at the interface between the drain electrode 11 and the amorphous silicon layer 5 is performed in order to achieve higher performance and higher functionality.
- the ohmic junction means a state in which a space charge layer is not formed on the amorphous silicon layer side and a metal and a semiconductor are joined, and in this case, no rectification occurs at the metal / semiconductor interface (that is, , Electrons flow in both directions).
- the work function of the source electrode 20 / drain electrode 22 is made amorphous. It is necessary to make it smaller than the work function of the quality silicon layer 5.
- a metal having a low work function is active and highly reactive, and a reaction layer is easily formed with other components. Therefore, it has been difficult to directly bond a metal having a low work function and an amorphous silicon layer. For this reason, such a problem causes a problem that the material of the source electrode 20 / drain electrode 22 is largely limited.
- a semiconductor device having a source electrode, a drain electrode, a gate electrode, and an amorphous silicon layer, What is claimed is: 1.
- a semiconductor device comprising: a thin film of an amorphous oxide electride containing calcium atoms and aluminum atoms between one or both of the source electrode and the drain electrode and the amorphous silicon layer. Provided.
- an amorphous oxide electride thin film containing calcium atoms and aluminum atoms is disposed between one or both of the source electrode and the drain electrode and the amorphous silicon layer. It has the feature that.
- the amorphous oxide electride thin film containing calcium atoms and aluminum atoms has semiconducting electrical characteristics and a relatively low work function.
- the work function of this thin film is in the range of 2.4 eV to 4.5 eV (eg, 2.8 eV to 3.2 eV).
- this thin film has a feature of high electron density.
- the electron density of the thin film is, for example, in the range of 2.0 ⁇ 10 17 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 .
- the presence of such a thin film can significantly reduce the contact resistance between one or both of the source electrode and the drain electrode and the amorphous silicon layer. Therefore, the present invention can provide a semiconductor device having higher operating characteristics than conventional ones.
- the present invention is more effective when the work function of the source electrode and the work function of the drain electrode are larger than the work function of the amorphous silicon layer.
- the ohmic junction can be developed by lowering the work functions of the source electrode and the drain electrode as compared with the amorphous silicon layer.
- a metal having a low work function is active and highly reactive, and easily forms a reaction layer with other components, so that it is difficult to develop an ohmic junction.
- the electride thin film according to the present invention has a low work function, it has a high chemical durability and a higher carrier density (electron density). Therefore, an ohmic junction can be developed between the amorphous silicon layer and the electride thin film, and a tunnel effect can be developed between the source electrode and the drain electrode (metal). As a result, contact resistance between one or both of the source electrode and the drain electrode and the amorphous silicon layer can be significantly reduced, and a high-performance semiconductor device can be provided.
- the work function of the electride thin film is preferably smaller than the work function of the amorphous silicon layer.
- the difference between the work function of the amorphous silicon layer and the work function of the electride thin film is preferably greater than 0 eV to 3.0 eV, more preferably 0.1 eV to 2.5 eV, and even more preferably 0.5 eV to 2.0 eV. preferable.
- the work function of the amorphous silicon layer is 4.2 eV.
- the work function of the source and drain electrodes made of Al is 4.1 eV.
- an amorphous oxide electride thin film containing calcium atoms and aluminum atoms is disposed between one or both of the source electrode and the drain electrode and the amorphous silicon layer.
- the work function of this electride thin film is in the range of 2.4 eV to 4.5 eV, for example, can be in the range of 2.8 eV to 3.2 eV, compared with the work function of the amorphous silicon layer. It can be made sufficiently low. Moreover, since this electride thin film is chemically stable, it is difficult to form a reaction layer. In addition, at the interface between the source electrode and drain electrode (metal) and the thin film of electride, the electron resistance of the thin film of electride is high, so that the contact resistance is reduced by the tunnel effect. For this reason, it is easy to develop an ohmic junction, and the contact resistance between one or both of the source electrode and the drain electrode and the amorphous silicon layer can be reduced. As a result, a semiconductor device with higher performance than before can be provided.
- the difference between the electron affinity and the work function in the electride thin film is ⁇ F
- the difference between the electron affinity and the work function in the amorphous silicon layer is ⁇ B
- the difference between ⁇ F and ⁇ B is close to zero.
- the absolute value of the difference between ⁇ F and ⁇ B is preferably 0.5 or less, more preferably 0.3 or less, and even more preferably 0.
- the thin film of electride has an electron affinity of about 2.5 eV, and when the work function is about 3.0 eV, ⁇ F is about 0.5 eV.
- ⁇ F is about 0.5 eV.
- ⁇ B is 0.3 eV to 0.9 eV. In this case, the difference between ⁇ F and ⁇ B is about 0.4 or less, and a very low contact resistance can be achieved.
- the electride thin film may have a high ionization potential.
- the ionization potential of the electride thin film may be 7.0 eV to 9.0 eV, or 7.5 eV to 8.5 eV.
- the ionization potential of the electride thin film is larger than the ionization potential of the amorphous silicon layer.
- the difference in ionization potential between the electride thin film and the amorphous silicon layer may be 1.1 eV to 3.5 eV, 1.3 eV to 3.3 eV, or 1.6 eV to 3.0 eV. It may be.
- the difference between the ionization potential and work function of the electride thin film is larger than the difference between the ionization potential and work function of the amorphous silicon layer.
- ⁇ E is the difference (IP ⁇ WF) between the ionization potential (IP) and work function (WF) of the electride thin film.
- a difference between the ionization potential (IP) and the work function (WF) of the amorphous silicon layer is represented by ⁇ A.
- the difference ( ⁇ E ⁇ A) between the two is preferably 1.3 eV to 5.8 eV, more preferably 2.0 eV to 5.0 eV, and particularly preferably 2.5 eV to 4.5 eV.
- the semiconductor device of the present invention is a thin film field effect transistor
- holes are conducted to the source electrode when the transistor is turned off (when the gate voltage is 0 or a negative voltage is applied as the gate voltage), and the off current (Leakage current) may occur.
- the occurrence of off-current may cause an increase in power consumption.
- the electride thin film has a high ionization potential, and the ionization potential is sufficiently large compared to the amorphous silicon layer.
- the difference ( ⁇ E ⁇ A) between the ionization potential difference ( ⁇ E) of the above-described electride thin film and the ionization potential of the amorphous silicon layer and the work function ( ⁇ E) is the energy in hole conduction. It becomes a barrier. By having a sufficiently high energy barrier, hole conduction can be blocked and off current can be suppressed.
- a configuration in which a quality silicon layer (n + amorphous silicon layer) is provided is known.
- the n + amorphous silicon layer has a work function smaller than that of an amorphous silicon layer not doped with an impurity element depending on the doping concentration of the impurity element, but the ionization potential itself does not change.
- the energy barrier (the difference between the ionization potential and work function of the n + amorphous silicon layer and the difference between the ionization potential and work function of the amorphous silicon layer) can be only about 0.5 eV at most. .
- the off-current is further reduced by disposing an electride thin film having a high ionization potential as described above between one or both of the source electrode and the drain electrode and the amorphous silicon layer. It becomes possible.
- an electride of an amorphous oxide containing calcium atoms and aluminum atoms refers to an amorphous composed of calcium atoms, aluminum atoms, and oxygen atoms. It means an amorphous solid substance composed of a solvate having a solvent and electrons as a solute. Electrons in the amorphous oxide act as anions. The electrons may exist as bipolarons.
- FIG. 2 conceptually shows the structure of the amorphous oxide electride.
- the amorphous oxide electride 70 has a characteristic partial structure called a bipolaron 74 in an amorphous solvent 72 composed of calcium atoms, aluminum atoms and oxygen atoms. Exist in a distributed state.
- the bipolarron 74 is configured such that two cages 76 are adjacent to each other, and each cage 76 includes an electron (solute) 78.
- the state of the amorphous oxide is not limited to the above, and two electrons (solutes) 78 may be included in one cage 76.
- a plurality of these cages may be aggregated, and the aggregated cage can be regarded as a microcrystal. Therefore, a state in which the microcrystal is included in the amorphous is also regarded as amorphous in the present invention.
- the amorphous oxide electride is Sr, Mg, Ba, Si, Ge, Ga, in addition to calcium atom, aluminum atom, and oxygen atom within the range in which the cage structure of bipolaron is maintained.
- One or more atoms selected from the group consisting of In and B may be included.
- the amorphous oxide electride may be a compound in which two electrons included in two cages are replaced with other anions.
- Other anions include, for example, one or more selected from the group consisting of H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , and S 2 ⁇ .
- Anions may be mentioned.
- the thin film of electride exhibits semiconducting electrical characteristics and has a low work function.
- the work function may be 2.4 eV to 4.5 eV, and preferably 2.8 eV to 3.2 eV.
- the electride thin film has a high ionization potential.
- the ionization potential may be 7.0 eV to 9.0 eV, or 7.5 eV to 8.5 eV.
- Bipolaron has almost no light absorption in the visible light range where the photon energy is 1.55 eV to 3.10 eV, and shows light absorption in the vicinity of 4.6 eV. Therefore, the electride thin film according to the present invention is transparent in visible light. Further, by measuring the light absorption characteristics of the thin film sample and measuring the light absorption coefficient in the vicinity of 4.6 eV, whether or not bipolaron is present in the thin film sample, that is, the thin film sample is an amorphous oxide electride. Can be confirmed.
- the molar ratio (Ca / Al) of aluminum atoms to calcium atoms in the electride thin film is preferably in the range of 0.3 to 5.0.
- a high electron density can be maintained as it is 0.3 or more.
- it is excellent in the durability of a thin film as it is 5.0 or less.
- a range of 0.55 to 1.2 is more preferable, and a range of 0.6 to 1.00 is particularly preferable.
- the composition analysis of the thin film can be performed by XPS method, EPMA method, EDX method or the like. Analysis by the XPS method is possible when the film thickness is 100 nm or less, EPMA method when the film thickness is 50 nm or more, and EDX method when it is 3 ⁇ m or more.
- the electride thin film of the present invention when X-ray diffraction is measured, no peak is observed and only a halo is observed.
- the electride thin film may contain microcrystals. Whether or not microcrystals are contained in the thin film is determined from, for example, a cross-sectional TEM (transmission electron microscope) photograph of the thin film.
- the composition in the crystalline state is represented by 12CaO ⁇ 7Al 2 O 3 , CaO ⁇ Al 2 O 3 , 3CaO ⁇ Al 2 O 3 and the like.
- the light absorption value at the position of 4.6 eV may be 100 cm ⁇ 1 or more, or 200 cm ⁇ 1 or more.
- the electride thin film preferably contains electrons in an electron density range of 2.0 ⁇ 10 17 cm ⁇ 3 or more and 2.3 ⁇ 10 21 cm ⁇ 3 or less.
- the electron density is more preferably 1.0 ⁇ 10 18 cm ⁇ 3 or more, further preferably 1 ⁇ 10 19 cm ⁇ 3 or more, and particularly preferably 1 ⁇ 10 20 cm ⁇ 3 or more.
- the electron density of the electride thin film can be measured by an iodometric titration method.
- the density of bipolarons in the electride thin film can be calculated by multiplying the measured electron density by 1/2.
- iodine titration method a sample of an electride thin film is immersed in a 5 mol / l iodine aqueous solution, dissolved by adding hydrochloric acid, and then the amount of unreacted iodine contained in this solution is adjusted with sodium thiosulfate. This is a method for titration detection.
- the thickness of the electride thin film is not limited to this, but may be, for example, 100 nm or less, preferably 10 nm or less, and more preferably 5 nm or less. It may be 0.5 nm or more.
- the thin film of electride has conductivity due to hopping conduction of electrons in the cage.
- the direct current conductivity at room temperature of the thin film of electride according to the present invention may be 10 ⁇ 11 S ⁇ cm ⁇ 1 to 10 ⁇ 1 S ⁇ cm ⁇ 1 , and 10 ⁇ 7 S ⁇ cm ⁇ 1. It may be ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 .
- the electride thin film may have an F + center in which one electron is captured in an oxygen vacancy as a partial structure.
- the F + center is configured by a plurality of Ca 2+ ions surrounded by one electron and does not have a cage.
- the F + center has light absorption in the visible light range of 1.55 eV to 3.10 eV centered on 3.3 eV.
- the concentration of F + center is less than 5 ⁇ 10 18 cm ⁇ 3 , the transparency of the thin film is increased, which is preferable.
- the concentration of the F + center is more preferably 1 ⁇ 10 18 cm ⁇ 3 or less, and further preferably 1 ⁇ 10 17 cm ⁇ 3 or less. Note that the concentration of the F + center can be measured by a signal intensity having a g value of 1.998 in ESR.
- the ratio of the light absorption coefficient at a position of 3.3 eV to the light absorption coefficient at a photon energy position of 4.6 eV may be 0.35 or less.
- the thin film of electride is excellent in flatness because it does not have a crystal grain boundary as compared with the polycrystalline thin film.
- the root mean square roughness (RMS) of the surface of the electride thin film according to the present invention may be 0.1 nm to 10 nm, or may be 0.2 nm to 5 nm. It is more preferable that the RMS is 2 nm or less because the characteristics of the device are improved. Further, if the RMS is 10 nm or more, the characteristics of the element may be deteriorated, so that a polishing step or the like needs to be added.
- the RMS can be measured using, for example, an atomic force microscope.
- the composition of the electride thin film may be different from the stoichiometric ratio of 12CaO ⁇ 7Al 2 O 3 , or may be different from the composition ratio of the target used in the production.
- FIG. 3 schematically shows a cross section of a semiconductor device (first semiconductor device) 100 according to an embodiment of the present invention.
- the first semiconductor device 100 includes a substrate 110, an amorphous silicon layer 105, a source electrode 120, a drain electrode 122, and a gate electrode 124.
- the amorphous silicon layer 105 is disposed on the substrate 110, and the source electrode 120 and the drain electrode 122 are disposed on the amorphous silicon layer 105.
- a gate electrode 124 is disposed on the source electrode 120 and the drain electrode 122 with a gate insulating layer 130 interposed therebetween.
- the first semiconductor device 100 includes an amorphous material containing calcium atoms and aluminum atoms between the source electrode 120 and the amorphous silicon layer 105 and / or between the drain electrode 122 and the amorphous silicon layer 105. It is characterized in that a thin oxide electride thin film (electride thin film) 150 is disposed.
- the first electride thin film 150 a is disposed between the source electrode 120 and the amorphous silicon layer 105, and the second electrode 150 is disposed between the drain electrode 122 and the amorphous silicon layer 105.
- An electride thin film 150b is disposed.
- the electride thin films 150a and 150b are characterized by a small work function and a high electron density.
- the contact resistance at the interface between the source electrode 120 and the amorphous silicon layer 105 is significantly suppressed. The effect of being able to be obtained.
- the second electride thin film 150 b is arranged between the drain electrode 122 and the amorphous silicon layer 105, the contact resistance at the interface between the drain electrode 122 and the amorphous silicon layer 105 is significantly suppressed. be able to.
- the first semiconductor device 100 can exhibit significantly higher operation characteristics than the conventional one.
- the material of the substrate 110 is not particularly limited.
- the substrate 110 may be an insulating substrate such as a glass substrate, a ceramic substrate, a plastic substrate, and a resin substrate.
- the substrate 110 is a semiconductor substrate or a metal substrate, and an insulating layer may be formed on the surface.
- the amorphous silicon layer 105 may be made of general amorphous silicon.
- the amorphous silicon layer 105 may be made of hydrogenated amorphous silicon, for example.
- the amorphous silicon layer 105 is preferably an intrinsic semiconductor.
- the material of the source electrode 120 and the drain electrode 122 is not particularly limited as long as it has conductivity.
- the source electrode 120 and the drain electrode 122 may be made of metal, for example.
- the source electrode 120 and the drain electrode 122 may be an alloy containing at least one element selected from Al, Ag, Au, Cr, Cu, Ta, Ti, Mo, and W, for example.
- the source electrode 120 and the drain electrode 122 are made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or IZO (Indium Zinc).
- Oxide Oxide
- AZO ZnO—Al 2 O 3 : zinc oxide doped with aluminum
- GZO ZnO—Ga 2 O 3 : zinc oxide doped with gallium
- Nb-doped TiO 2 Ta-doped TiO 2 And IWZO (In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide).
- the amorphous silicon layer 105 may have a work function of 3.5 eV to 4.8 eV, or 3.9 eV to 4.5 eV.
- the amorphous silicon layer 105 may have a carrier density of 10 9 cm ⁇ 3 to 10 19 cm ⁇ 3 , and preferably 10 15 cm ⁇ 3 to 10 18 cm ⁇ 3 .
- Gate electrode 1234 The material of the gate electrode 124 is not particularly limited as long as it has conductivity.
- the gate electrode 124 is, for example, an element selected from Al, Ag, Au, Cr, Cu, Ta, Ti, Mo, and W, or a metal or alloy containing these elements as a component, or an alloy that combines the above-described elements. Etc.
- the gate electrode 124 is made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (Indium Zinc Oxide), or AZO.
- ZnO—Al 2 O 3 zinc oxide doped with aluminum
- GZO ZnO—Ga 2 O 3 : zinc oxide doped with gallium
- Nb-doped TiO 2 Nb-doped TiO 2
- Ta-doped TiO 2 Nb-doped TiO 2
- IWZO In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide
- the gate insulating layer 130 may be made of an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxide containing nitrogen and silicon nitride containing oxygen, or an organic insulating material such as acrylic or polyimide.
- the gate insulating layer 130 has a skeleton structure formed of a bond of silicon and oxygen, and has an organic group (for example, an alkyl group or an aryl group) containing at least hydrogen as a substituent and a fluoro group, a so-called siloxane-based material. It may be constituted by.
- the gate insulating layer 130 may be a single layer or may be composed of two or more layers.
- the first semiconductor device 100 shown in FIG. 3 has a so-called top gate structure-top contact method.
- the arrangement structure of each member constituting the semiconductor device is not limited to this.
- top gate structure-top contact system (i) top gate structure-bottom contact system, (iii) bottom gate structure-top contact system, and (Iii) There is a bottom gate structure-bottom contact method, and the like.
- FIG. 3 described above shows an example of the semiconductor device 100 configured by the top gate structure-top contact method.
- the gate electrode 124 is disposed on the amorphous silicon layer 105 (top gate structure), and the source electrode 120 and the drain electrode 122 are also formed of amorphous silicon. It is disposed on top of the layer 105 (top contact method). Note that in the semiconductor device 100, the amorphous silicon layer 105 may be a channel etch type or a channel protection type.
- FIG. 4 shows an example of a semiconductor device configured by a top gate structure-bottom contact method.
- this semiconductor device 400 includes an amorphous silicon layer 405 formed on a substrate 410, a source electrode 420 and a drain electrode 422, a gate insulating layer 430, and a gate electrode 424.
- the gate electrode 424 is disposed on the amorphous silicon layer 405 (top gate structure).
- the source electrode 420 and the drain electrode 422 are disposed below the amorphous silicon layer 405 (bottom contact method).
- the first electride thin film 450a is disposed between the source electrode 420 and the amorphous silicon layer 405, and the drain electrode 422 and the amorphous silicon layer are disposed. Between 405, a second electride thin film 450b is disposed. However, one of the first electride thin film 450a and the second electride thin film 450b may be omitted.
- FIG. 5 shows an example of a semiconductor device configured by a bottom gate structure-top contact method.
- the semiconductor device 500 includes an amorphous silicon layer 505, a source electrode 520 and a drain electrode 522, a gate insulating layer 530, and a gate electrode 524 on a substrate 510.
- the gate electrode 524 is disposed below the amorphous silicon layer 505 (bottom gate structure).
- the source electrode 520 and the drain electrode 522 are arranged above the amorphous silicon layer 505 (top contact method).
- the amorphous silicon layer 505 may be a channel etch type or a channel protection type.
- the first electride thin film 550a is disposed between the source electrode 520 and the amorphous silicon layer 505, and the drain electrode 522 and the amorphous silicon layer are disposed.
- a second electride thin film 550b is disposed between the electrodes 505.
- one of the first electride thin film 550a and the second electride thin film 550b may be omitted.
- FIG. 6 shows an example of a semiconductor device configured by a bottom gate structure-bottom contact method.
- the semiconductor device 600 includes an amorphous silicon layer 605, a source electrode 620 and a drain electrode 622, a gate insulating layer 630, and a gate electrode 624 on a substrate 610.
- the gate electrode 624 is disposed below the amorphous silicon layer 605 (bottom gate structure).
- the source electrode 620 and the drain electrode 622 are also disposed below the amorphous silicon layer 605 (bottom contact method).
- a first electride thin film 650 a is disposed between the source electrode 620 and the amorphous silicon layer 605, and the drain electrode 622 and the amorphous silicon layer 605 are formed.
- a second electride thin film 650b is disposed therebetween.
- one of the first electride thin film 650a and the second electride thin film 650b may be omitted.
- the semiconductor device in the present invention may be configured in any of these modes.
- the semiconductor device according to the present invention can significantly suppress contact resistance at the interface between the source electrode and the amorphous silicon layer and / or the interface between the drain electrode and the amorphous silicon layer. It will be clear that the effect of being able to do is obtained.
- the type of the semiconductor device is not particularly limited.
- the semiconductor device may be, for example, a field effect transistor such as a thin film transistor as shown in FIGS.
- FIG. 7 schematically shows an example of a flow for manufacturing the first semiconductor device.
- Forming an amorphous silicon layer on the substrate step S110; Forming a thin film of an amorphous oxide electride containing calcium atoms and aluminum atoms (step S120); Forming a source electrode and a drain electrode (step S130); Forming a gate electrode (step S140); Have
- Step S110 First, an amorphous silicon layer 105 is formed on the substrate 110.
- the method for forming the amorphous silicon layer 105 is not particularly limited, and the amorphous silicon layer 105 may be formed on the substrate 110 by a conventionally performed method.
- the amorphous silicon layer 105 is formed on the substrate 110 by, for example, a general CVD method (plasma CVD method or the like) or a sputtering method.
- the formed amorphous silicon layer 105 is patterned into a desired pattern.
- the amorphous silicon layer 105 can be patterned into a desired pattern by performing photolithography or the like.
- Step S120 Next, a thin film of electride is formed on the amorphous silicon layer 105. This thin film of electride later becomes the thin film 150a of the first electride and / or the thin film 150b of the second electride.
- a method of forming a thin film of electride Preparing a target of crystalline C12A7 electride having an electron density of 2.0 ⁇ 10 17 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 (S121); A step of forming a film on the amorphous silicon layer by a vapor deposition method in an atmosphere having an oxygen partial pressure of less than 0.1 Pa using the target (S122); A film forming method having the above will be described.
- Step S121 First, a deposition target used in the subsequent step S120 is prepared.
- the target is composed of crystalline C12A7 electride.
- Crystal C12A7 means a crystal of 12CaO ⁇ 7Al 2 O 3 and an isomorphous compound having a crystal structure equivalent to this.
- the mineral name of this compound is “mayenite”.
- the crystalline C12A7 in the present invention is a compound in which some or all of Ca atoms and / or Al atoms in the C12A7 crystal skeleton are substituted with other atoms within a range in which the cage structure formed by the skeleton of the crystal lattice is maintained.
- the same type compound may be used in which some or all of the free oxygen ions in the cage are replaced with other anions.
- C12A7 is sometimes denoted as Ca 12 Al 14 O 33 or Ca 24 Al 28 O 66.
- Examples of the isomorphous compound include, but are not limited to, the following compounds (1) to (5).
- a compound in which some or all of Ca atoms are substituted with Sr is strontium aluminate Sr 12 Al 14 O 33 , and calcium strontium aluminum is used as a mixed crystal in which the mixing ratio of Ca and Sr is arbitrarily changed.
- Nate Ca 12-x Sr X Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, it is a number greater than 0 and less than 12) (2)
- Si Si, Ge, Ga, In, and B.
- Ca 12 Al 10 Si 4 O 35 like Ca 12 Al 10 Si 4 O 35 .
- a part of metal atoms and / or nonmetal atoms (excluding oxygen atoms) in the 12CaO.7Al 2 O 3 crystal is Ti, One or more atoms selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu, one or more alkali metal atoms selected from the group consisting of Li, Na, and K, or Ce, Pr , Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The same type compound substituted with one or more rare earth atoms selected from the group consisting of Yb. (4) A compound in which some or all of the free oxygen ions included in the cage are replaced with other anions.
- anions include, for example, one or more selected from the group consisting of H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , and S 2 ⁇ .
- anions and nitrogen (N) anions There are anions and nitrogen (N) anions.
- N nitrogen
- the “crystalline C12A7 electride” means that in the above-mentioned “crystalline C12A7”, free oxygen ions included in the cage (in the case of having other anions included in the cage, the anions) ) Means a compound in which part or all of them are substituted with electrons.
- crystalline C12A7 electride shows electroconductivity.
- crystalline C12A7 in which all free oxygen ions are replaced with electrons may be expressed as [Ca 24 Al 28 O 64 ] 4+ (4e ⁇ ).
- the crystalline C12A7 electride includes Ca atoms, Al atoms, and O atoms, and the molar ratio of Ca: Al is in the range of 13:13 to 11:15, and the molar ratio of Ca: Al is 12.5: The range is preferably from 13.5 to 11.5: 14.5, and more preferably from 12.2: 13.8 to 11.8: 14.2.
- the manufacturing method of the target made of crystalline C12A7 electride is not particularly limited.
- the target may be manufactured using, for example, a conventional method for manufacturing a bulk crystalline C12A7 electride.
- a crystalline C12A7 sintered body is heat-treated at about 1150 to 1460 ° C., preferably about 1200 to 1400 ° C. in the presence of a reducing agent such as Ti, Al, Ca, or C.
- a target made of C12A7 electride may be manufactured.
- a green compact formed by compressing a crystalline C12A7 electride powder may be used as a target.
- a crystalline C12A7 sintered body is effectively heat-treated at 1230 to 1415 ° C. in the presence of carbon and metallic aluminum while keeping the sintered body and metallic aluminum in contact with each other.
- a target made of quality C12A7 electride can be produced.
- the electron density of the target that is, crystalline C12A7 electride is in the range of 2.0 ⁇ 10 17 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 .
- the electron density of the crystalline C12A7 electride is preferably 1 ⁇ 10 18 cm ⁇ 3 or more, more preferably 1 ⁇ 10 19 cm ⁇ 3 or more, and more preferably 1 ⁇ 10 20 cm ⁇ 3 or more. It is more preferably 5 ⁇ 10 20 cm ⁇ 3 or more, and particularly preferably 1 ⁇ 10 21 cm ⁇ 3 or more.
- the higher the electron density of the crystalline C12A7 electride constituting the target the easier it is to obtain an electride thin film having a lower work function.
- the electron density of crystalline C12A7 electride is more preferably 1.4 ⁇ 10 21 cm ⁇ 3 or more, and 1.7 ⁇ 10 21 cm ⁇ 3 or more is more preferable, and 2 ⁇ 10 21 cm ⁇ 3 or more is particularly preferable.
- the electron density of the crystalline C12A7 electride is 2.3 ⁇ 10 21 cm ⁇ 3 .
- the electron density of the crystalline C12A7 electride is less than 2.0 ⁇ 10 17 cm ⁇ 3 , the electron density of the electride thin film obtained by film formation becomes small.
- the electron density of the crystalline C12A7 electride can be measured by a light absorption measurement method. Since the crystalline C12A7 electride has a specific light absorption around 2.8 eV, the electron density can be determined by measuring the absorption coefficient. In particular, when the sample is a sintered body, it is convenient to use the diffuse reflection method after pulverizing the sintered body into a powder.
- the obtained target is used as a raw material source when an electride thin film is formed in the next step.
- the surface of the target may be polished by mechanical means before use.
- a bulk body of crystalline C12A7 electride obtained by a conventional method may have a very thin film (foreign material) on the surface.
- the composition of the obtained thin film may deviate from a desired composition ratio.
- such a problem can be significantly suppressed by carrying out the polishing treatment of the target surface.
- Step S122 film formation is performed on the amorphous silicon layer by a vapor deposition method using the target manufactured in the above-described step S121.
- vapor deposition refers to vapor deposition of a target material including a physical vapor deposition (PVD) method, a PLD method, a sputtering method, and a vacuum deposition method, and then depositing this material on a substrate.
- PVD physical vapor deposition
- PLD physical vapor deposition
- sputtering method a sputtering method
- vacuum deposition method a vacuum deposition method
- the sputtering method is particularly preferable.
- a thin film can be formed relatively uniformly in a large area.
- the sputtering method includes a DC (direct current) sputtering method, a high frequency sputtering method, a helicon wave sputtering method, an ion beam sputtering method, a magnetron sputtering method, and the like.
- step S122 will be described by taking as an example the case where film formation is performed by sputtering.
- the temperature of the substrate on which the thin film of electride is formed is not particularly limited, and any temperature in the range from room temperature to, for example, 700 ° C. may be adopted. It should be noted that the substrate need not necessarily be “positively” heated when depositing the electride thin film. However, there may be a case where the temperature of the deposition target substrate rises “incidentally” due to the radiation heat of the vapor deposition source. For example, the temperature of the deposition target substrate may be 500 ° C. or lower, or 200 ° C. or lower.
- the film formation substrate is not “positively” heated, it is possible to use, as the substrate material, a material whose heat resistance is reduced on the high temperature side exceeding 700 ° C., such as glass or plastic.
- the oxygen partial pressure during film formation is preferably less than 0.1 Pa.
- the oxygen partial pressure is preferably 0.01 Pa or less, more preferably 1 ⁇ 10 ⁇ 3 Pa or less, further preferably 1 ⁇ 10 ⁇ 4 Pa or less, and 1 ⁇ 10 ⁇ 5 Pa or less. It is particularly preferred that When the oxygen partial pressure is 0.1 Pa or more, oxygen is taken into the deposited thin film, which may reduce the electron density.
- the hydrogen partial pressure during film formation is preferably less than 0.004 Pa. If it is 0.004 Pa or more, hydrogen or OH component is taken into the formed thin film, and the electron density of the electride thin film may be lowered.
- the sputtering gas used is not particularly limited.
- the sputtering gas may be an inert gas or a rare gas.
- the inert gas eg, N 2 gas.
- examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These may be used alone or in combination with other gases.
- the sputtering gas may be a reducing gas such as NO (nitrogen monoxide).
- the pressure of the sputtering gas is not particularly limited, and can be freely selected so that a desired thin film can be obtained.
- the pressure P (Pa) of the sputtering gas (pressure in the chamber) is such that when the distance between the substrate and the target is t (m) and the diameter of the gas molecule is d (m), 8.9 ⁇ 10 ⁇ 22 / (td 2 ) ⁇ P ⁇ 4.5 ⁇ 10 ⁇ 20 / (td 2 ) (3) Formula It may be selected to satisfy.
- the mean free path of the sputtered particles becomes substantially equal to the distance between the target and the deposition target substrate, and the sputtered particles are prevented from reacting with the remaining oxygen.
- a sputtering method apparatus it is possible to use an inexpensive and simple vacuum apparatus having a relatively high back pressure.
- the method of forming an electride thin film has been briefly described by taking the sputtering method as an example.
- the method of forming the electride thin film is not limited to this, and it is obvious that the above-described two steps (steps S121 and S122) may be appropriately changed or various steps may be added. is there.
- a pre-sputtering process may be performed on the target before starting the formation of the thin film of the electride by the sputtering method.
- the surface of the target is cleaned, and it becomes easy to form a thin film having a desired composition in the subsequent film formation process (main film formation).
- the target when the target is used for a long time, oxygen is taken into the surface of the target, and the electron density of the crystalline C12A7 electride constituting the target may decrease.
- the composition of the target when the target is used for a long time, the composition of the target may deviate from the initial composition due to the difference in sputtering rate of each component constituting the target (ie, crystalline C12A7 electride).
- the composition may deviate from a desired value even in the formed thin film.
- such a problem is suppressed by performing the pre-sputtering process.
- the gas used in the pre-sputtering process may be the same as or different from the sputtering gas used in the main film formation.
- the gas used for the pre-sputtering process is preferably He (helium), Ne (neon), N 2 (nitrogen), Ar (argon), and / or NO (nitrogen monoxide).
- an electride thin film is formed on the patterned amorphous silicon layer 105.
- the first and / or second electride thin films 150a and 150b can be formed by patterning the electride thin film into a desired pattern by a photolithography process or the like.
- the electride thin film is preferably heat-treated after patterning.
- the heat treatment temperature is preferably 300 ° C. or higher, more preferably 500 ° C. or higher.
- the temperature is lower than the temperature at which the coating film and the deposition target substrate can withstand, and is preferably 700 ° C. or lower.
- the holding time at a predetermined temperature may be 1 minute to 2 hours, or 10 minutes to 1 hour.
- the timing of the heat treatment may be after patterning the electride thin film, after forming the source electrode and the drain electrode on the electride thin film (for example, the example of FIG. 3), or the electride thin film. It may be after the amorphous silicon layer is formed thereon (for example, the example of FIG. 4). By heat treatment, recovery can be achieved when the thin film of electride is damaged during patterning.
- Step S130 Next, the source electrode 120 and the drain electrode 122 are formed on the first and / or second electride thin films 150a and 150b.
- the source electrode 120 and the drain electrode 122 various conventional methods can be used.
- the source electrode 120 and the drain electrode 122 can be formed by performing a photolithography process or the like on the film after forming the conductive layer for forming the source electrode 120 and the drain electrode 122.
- the source electrode 120 is disposed on the first electride thin film 150a, and / or the drain electrode 122 is disposed on the second electride thin film 150b.
- the contact resistance at the interface between the source electrode 120 and the amorphous silicon layer 105 and / or the interface between the drain electrode 122 and the amorphous silicon layer 105 is reduced.
- the amorphous silicon layer 105 and the source electrode 102 and / or the drain electrode 122 do not have a direct contact portion.
- the amorphous silicon layer and the source electrode and / or the drain electrode have a portion in direct contact. It doesn't matter.
- an amorphous silicon layer and an electride thin film are successively formed and patterned in a lump by a photolithography process. The side surface of the pattern of the amorphous silicon layer tends to be uncovered by the electride thin film.
- a source electrode and a drain electrode are formed on the electride thin film. At this time, the side surface of the pattern of the amorphous silicon layer may be in contact with the source electrode and the drain electrode.
- Step S140 Next, a gate insulating film 130 is formed so as to cover the source electrode 120 and the drain electrode 122.
- the gate insulating film 130 may be formed by a coating method such as a dipping method, a spin coating method, a droplet discharge method, a casting method, a spinner method, a printing method, a CVD method, a sputtering method, or the like.
- a coating method such as a dipping method, a spin coating method, a droplet discharge method, a casting method, a spinner method, a printing method, a CVD method, a sputtering method, or the like.
- a gate electrode 124 is formed on the gate insulating film 130.
- Various methods conventionally used can be used to form the gate electrode 124.
- the gate electrode 124 may be formed by a sputtering method, an evaporation method, or the like.
- the gate electrode 124 can be formed by performing a photolithography process or the like on the film after forming the conductive layer for forming the gate electrode 124.
- the first semiconductor device 100 can be manufactured.
- the semiconductor device 400, the semiconductor device 500, and further the semiconductor device 600 can be manufactured by the same method. That is, by changing the order of the steps shown in FIG. 7, the semiconductor device having each configuration can be manufactured.
- the present invention can be applied to, for example, a semiconductor device used for various electronic devices such as an electro-optical device.
- a semiconductor device used for various electronic devices such as an electro-optical device.
- it can be used for electronic devices such as displays such as televisions, electrical appliances such as washing machines and refrigerators, and information processing devices such as mobile phones and computers.
- the semiconductor device of the present invention can also be used for electronic devices included in automobiles and various industrial equipment.
- SYMBOLS 1 Conventional semiconductor device 5 Amorphous silicon layer 10 Substrate 20 Source electrode 22 Drain electrode 24 Gate electrode 30 Gate insulating layer 70 Amorphous oxide electride 72 Solvent (amorphous) 74 Bipolaron 76 Cage 78 Electron (solute) DESCRIPTION OF SYMBOLS 100 1st semiconductor device 105 Amorphous silicon layer 110 Substrate 120 Source electrode 122 Drain electrode 124 Gate electrode 130 Gate insulating layer 150a, 150b Electride thin film 400, 500, 600 Semiconductor device 405, 505, 605 Amorphous silicon Layer 410, 510, 610 Substrate 420, 520, 620 Source electrode 422, 522, 622 Drain electrode 424, 524, 624 Gate electrode 430, 530, 630 Gate insulating layer 450a, 450b, 550a, 550b, 650a, 650b Thin film
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を有することを特徴とする半導体装置が提供される。
前記非晶質シリコン層は、前記ソース電極よりも前記ゲート電極から遠い側に配置されても良い。
(1)前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップ
を有することを特徴とする半導体装置の製造方法が提供される。
(a)基板上に非晶質シリコン層を形成するステップと、
(b)ソース電極およびドレイン電極を形成するステップと、
(c)ゲート電極を形成するステップと、
を有し、
前記(1)のステップは、前記(a)のステップと前記(b)のステップの間に、実施されても良い。
(a)基板上にソース電極およびドレイン電極を形成するステップと、
(b)非晶質シリコン層を形成するステップと、
(c)ゲート電極を形成するステップと、
を有し、
前記(1)のステップは、前記(a)のステップと前記(b)のステップの間に、実施されても良い。
(a)基板上にゲート電極を形成するステップと、
(b)非晶質シリコン層を形成するステップと、
(c)ソース電極およびドレイン電極を形成するステップと、
を有し、
前記(1)のステップは、前記(b)のステップと前記(c)のステップの間に、実施されても良い。
(a)基板上にゲート電極を形成するステップと、
(b)ソース電極およびドレイン電極を形成するステップと、
(c)非晶質シリコン層を形成するステップと、
を有し、
前記(1)のステップは、前記(b)のステップと前記(c)のステップの間に、実施されても良い。
前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を有することを特徴とする半導体装置が提供される。
ここで、本発明による半導体装置に含まれる、「カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜」に関連する用語について説明しておく。
本願において、「カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライド」、すなわち「非晶質酸化物のエレクトライド」は、カルシウム原子、アルミニウム原子および酸素原子から構成される非晶質を溶媒とし、電子を溶質とする溶媒和からなる非晶質固体物質を意味する。非晶質酸化物中の電子は、陰イオンとして働く。電子はバイポーラロンとして存在しても良い。
また、本発明において、非晶質酸化物のエレクトライドは、2つのケージに包接されている2つの電子が、他の陰イオンに置換された化合物であっても良い。他の陰イオンとしては、例えば、H-、H2 -、H2-、O-、O2 -、OH-、F-、Cl-、およびS2-からなる群から選択される1以上の陰イオンが挙げられる。
エレクトライドの薄膜は、半導体的な電気的特性を示し、低い仕事関数を有する。仕事関数は2.4eV~4.5eVであっても良く、2.8eV~3.2eVであることが好ましい。また、エレクトライドの薄膜は、高いイオン化ポテンシャルを有する。イオン化ポテンシャルは7.0eV~9.0eVであっても良く、7.5eV~8.5eVであっても良い。
I2+2e-→2I- (1)式
また、チオ硫酸ナトリウムでヨウ素水溶液を滴定した場合、
2Na2S2O3+I2→2NaI+Na2S4O6 (2)式
の反応により、未反応のヨウ素がヨウ化ナトリウムに変化する。最初の溶液中に存在するヨウ素量から、(2)式で滴定検出されたヨウ素量を差し引くことにより、(1)式の反応で消費されたヨウ素量が算定される。これにより、エレクトライドの薄膜のサンプル中の電子密度を測定することができる。
次に、図3を参照して、本発明の一実施例による半導体装置について説明する。図3には、本発明の一実施例による半導体装置(第1の半導体装置)100の断面を模式的に示す。
次に、半導体装置100を構成する各部材について、簡単に説明する。
基板110の材質は、特に限られない。基板110は、例えば、ガラス基板、セラミック基板、プラスチック基板、および樹脂基板等の絶縁基板であっても良い。
非晶質シリコン層105は、一般的な非晶質シリコンで構成されていれば良い。非晶質シリコン層105は、例えば、水素化非晶質シリコンで構成されても良い。また、非晶質シリコン層105は、真性半導体であることが好ましい。
ソース電極120およびドレイン電極122の材質は、導電性を有する限り特に限られない。ソース電極120およびドレイン電極122は、例えば、金属で構成されても良い。
ソース電極120およびドレイン電極122は、例えば、Al、Ag、Au、Cr、Cu、Ta、Ti、Mo、およびWから選定された少なくとも一つの元素を含む合金であっても良い。ソース電極120およびドレイン電極122は、例えば、ITO、アンチモン酸化物(Sb2O3)、ジルコニウム酸化物(ZrO2)、スズ酸化物(SnO2)、亜鉛酸化物(ZnO)、IZO(Indium Zinc Oxide)、AZO(ZnO-Al2O3:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO-Ga2O3:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO2、TaドープTiO2、およびIWZO(In2O3-WO3-ZnO:三酸化タングステンおよび酸化亜鉛がドーピングされたインジウム酸化物)等の金属酸化物材料で構成されても良い。
ゲート電極124の材質は、導電性を有する限り特に限られない。
図3に示した第1の半導体装置100は、いわゆるトップゲート構造-トップコンタクト方式で構成されている。しかしながら、半導体装置を構成する各部材の配置構造は、これに限られるものではない。
次に、図7を参照して、図3に示した第1の半導体装置100の製造方法の一例について説明する。
基板上に非晶質シリコン層を形成するステップ(ステップS110)と、
カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を成膜するステップ(ステップS120)と、
ソース電極およびドレイン電極を形成するステップ(ステップS130)と、
ゲート電極を形成するステップ(ステップS140)と、
を有する。
まず、基板110上に、非晶質シリコン層105が成膜される。
次に、非晶質シリコン層105の上に、エレクトライドの薄膜が成膜される。このエレクトライドの薄膜は、後に、第1のエレクトライドの薄膜150aおよび/または第2のエレクトライドの薄膜150bとなる。
電子密度が2.0×1017cm-3~2.3×1021cm-3の結晶質C12A7エレクトライドのターゲットを準備する工程(S121)と、
前記ターゲットを用いて、酸素分圧が0.1Pa未満の雰囲気下で、気相蒸着法により、非晶質シリコン層上に成膜を行う工程(S122)と、
を有する成膜方法について説明する。
まず、以降の工程S120で使用される成膜用のターゲットが準備される。
本願において、「結晶質C12A7」とは、12CaO・7Al2O3の結晶、およびこれと同等の結晶構造を有する同型化合物を意味する。本化合物の鉱物名は、「マイエナイト」である。
(1)結晶中のCa原子の一部乃至全部が、Sr、Mg、およびBaからなる群から選択される一以上の金属原子に置換された同型化合物。例えば、Ca原子の一部乃至全部がSrに置換された化合物としては、ストロンチウムアルミネートSr12Al14O33があり、CaとSrの混合比が任意に変化された混晶として、カルシウムストロンチウムアルミネートCa12-xSrXAl14O33(xは1~11の整数;平均値の場合は0超12未満の数)などがある。
(2)結晶中のAl原子の一部乃至全部が、Si、Ge、Ga、In、およびBからなる群から選択される一以上の原子に置換された同型化合物。例えば、Ca12Al10Si4O35などが挙げられる。
(3)12CaO・7Al2O3の結晶(上記(1)、(2)の化合物を含む)中の金属原子および/または非金属原子(ただし、酸素原子を除く)の一部が、Ti、V、Cr、Mn、Fe、Co、Ni、およびCuからなる群から選択される一以上の原子、Li、Na、およびKからなる群から選択される一以上のアルカリ金属原子、またはCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される一以上の希土類原子と置換された同型化合物。
(4)ケージに包接されているフリー酸素イオンの一部乃至全部が、他の陰イオンに置換された化合物。他の陰イオンとしては、例えば、H-、H2 -、H2-、O-、O2 -、OH-、F-、Cl-、およびS2-からなる群から選択される一以上の陰イオンや、窒素(N)の陰イオンなどがある。
(5)ケージの骨格の酸素の一部が、窒素(N)などで置換された化合物。
本願において、「結晶質C12A7エレクトライド」とは、前述の「結晶質C12A7」において、ケージに包接されたフリー酸素イオン(ケージに包接された他の陰イオンを有する場合は、当該陰イオン)の一部乃至全部が電子に置換された化合物を意味する。
次に、前述の工程S121において作製されたターゲットを用いて、気相蒸着法により、非晶質シリコン層上に成膜が行われる。
8.9×10-22/(td2)<P<4.5×10-20/(td2) (3)式
を満たすように選定されても良い。この場合、スパッタ粒子の平均自由行程が、ターゲット~被成膜基板間の距離とほぼ等しくなり、スパッタ粒子が残存酸素と反応することが抑制される。また、この場合、スパッタリング法の装置として、背圧が比較的高く、安価で簡易的な真空装置を用いることが可能となる。
次に、第1および/または第2のエレクトライドの薄膜150a、150bの上部に、ソース電極120およびドレイン電極122が形成される。
次に、ソース電極120およびドレイン電極122を覆うように、ゲート絶縁膜130が形成される。
ナー法、印刷法などの塗布法や、CVD法、スパッタリング法などの方法によって成膜しても良い。
5 非晶質シリコン層
10 基板
20 ソース電極
22 ドレイン電極
24 ゲート電極
30 ゲート絶縁層
70 非晶質酸化物のエレクトライド
72 溶媒(非晶質)
74 バイポーラロン
76 ケージ
78 電子(溶質)
100 第1の半導体装置
105 非晶質シリコン層
110 基板
120 ソース電極
122 ドレイン電極
124 ゲート電極
130 ゲート絶縁層
150a、150b エレクトライドの薄膜
400、500、600 半導体装置
405、505、605 非晶質シリコン層
410、510、610 基板
420、520、620 ソース電極
422、522、622 ドレイン電極
424、524、624 ゲート電極
430、530、630 ゲート絶縁層
450a、450b、550a、550b、650a、650b エレクトライドの薄膜
Claims (13)
- ソース電極、ドレイン電極、ゲート電極および非晶質シリコン層を有する半導体装置であって、
前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を有することを特徴とする半導体装置。 - 前記エレクトライドの薄膜において、アルミニウム原子とカルシウム原子のモル比(Ca/Al)は、0.3~5.0の範囲である、請求項1に記載の半導体装置。
- 前記エレクトライドの薄膜は、2.0×1017cm-3以上の電子密度を有する、請求項1または2に記載の半導体装置。
- 前記エレクトライドの薄膜の厚さは、100nm以下である、請求項1乃至3のいずれか一つに記載の半導体装置。
- 前記非晶質シリコン層は、前記ソース電極と前記ゲート電極の間に配置され、または
前記非晶質シリコン層は、前記ソース電極よりも前記ゲート電極から遠い側に配置される、請求項1乃至4のいずれか一つに記載の半導体装置。 - ソース電極、ドレイン電極、ゲート電極および非晶質シリコン層を有する半導体装置の製造方法であって、
前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップ
を有することを特徴とする半導体装置の製造方法。 - さらに、
(a)基板上に非晶質シリコン層を形成するステップと、
(b)ソース電極およびドレイン電極を形成するステップと、
(c)ゲート電極を形成するステップと、
を有し、
前記(a)のステップと前記(b)のステップの間に、前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップを実施する、請求項6に記載の製造方法。 - さらに、
(a)基板上にソース電極およびドレイン電極を形成するステップと、
(b)非晶質シリコン層を形成するステップと、
(c)ゲート電極を形成するステップと、
を有し、
前記(a)のステップと前記(b)のステップの間に、前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップを実施する、請求項6に記載の製造方法。 - さらに、
(a)基板上にゲート電極を形成するステップと、
(b)非晶質シリコン層を形成するステップと、
(c)ソース電極およびドレイン電極を形成するステップと、
を有し、
前記(b)のステップと前記(c)のステップの間に、前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップを実施する、請求項6に記載の製造方法。 - さらに、
(a)基板上にゲート電極を形成するステップと、
(b)ソース電極およびドレイン電極を形成するステップと、
(c)非晶質シリコン層を形成するステップと、
を有し、
前記(b)のステップと前記(c)のステップの間に、前記ソース電極および前記ドレイン電極の片方または双方と前記非晶質シリコン層との間に、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドの薄膜を形成するステップを実施する、請求項6に記載の製造方法。 - 前記エレクトライドの薄膜において、アルミニウム原子とカルシウム原子のモル比(Ca/Al)は、0.3~5.0の範囲である、請求項6乃至10のいずれか一つに記載の製造方法。
- 前記エレクトライドの薄膜は、2.0×1017cm-3以上の電子密度を有する、請求項6乃至11のいずれか一つに記載の製造方法。
- 前記エレクトライドの薄膜の厚さは、100nm以下である、請求項6乃至12のいずれか一つに記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015554615A JPWO2015098225A1 (ja) | 2013-12-26 | 2014-10-02 | 半導体装置および半導体装置の製造方法 |
CN201480065559.0A CN105793969A (zh) | 2013-12-26 | 2014-10-02 | 半导体装置和半导体装置的制造方法 |
KR1020167014096A KR20160101904A (ko) | 2013-12-26 | 2014-10-02 | 반도체 장치 및 반도체 장치의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-268342 | 2013-12-26 | ||
JP2013268342 | 2013-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098225A1 true WO2015098225A1 (ja) | 2015-07-02 |
Family
ID=53478105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076422 WO2015098225A1 (ja) | 2013-12-26 | 2014-10-02 | 半導体装置および半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2015098225A1 (ja) |
KR (1) | KR20160101904A (ja) |
CN (1) | CN105793969A (ja) |
TW (1) | TW201526118A (ja) |
WO (1) | WO2015098225A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016157856A (ja) * | 2015-02-25 | 2016-09-01 | エルジー ディスプレイ カンパニー リミテッド | シリコン系薄膜半導体装置、およびシリコン系薄膜半導体装置の製造方法 |
WO2018066483A1 (ja) * | 2016-10-03 | 2018-04-12 | 国立大学法人東京工業大学 | 半導体素子 |
JP2019016659A (ja) * | 2017-07-05 | 2019-01-31 | 三菱電機株式会社 | 薄膜トランジスタ基板、液晶表示装置および薄膜トランジスタ基板の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008294129A (ja) * | 2007-05-23 | 2008-12-04 | Daikin Ind Ltd | 熱電子発電素子、及び当該熱電子発電素子を備えた熱電子発電装置 |
JP5557304B1 (ja) * | 2013-09-26 | 2014-07-23 | 国立大学法人東北大学 | 有機半導体素子及びそれを備えたcmis半導体装置 |
JP2014214075A (ja) * | 2013-04-30 | 2014-11-17 | 旭硝子株式会社 | 非晶質酸化物のエレクトライドの薄膜の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002146346A (ja) * | 2000-11-13 | 2002-05-22 | Minolta Co Ltd | 希土類元素を含むアルミン酸塩の薄膜およびその作製方法ならびに蓄光性光学素子 |
JP5064747B2 (ja) | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法 |
JP5430248B2 (ja) * | 2008-06-24 | 2014-02-26 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよび表示装置 |
JP5339825B2 (ja) * | 2008-09-09 | 2013-11-13 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
WO2010090266A1 (ja) * | 2009-02-05 | 2010-08-12 | 旭硝子株式会社 | マイエナイト含有酸化物の製造方法および導電性マイエナイト含有酸化物の製造方法 |
CN102842619B (zh) * | 2012-09-03 | 2016-08-03 | 南京中电熊猫液晶显示科技有限公司 | 一种半导体装置及其制造方法 |
-
2014
- 2014-10-02 WO PCT/JP2014/076422 patent/WO2015098225A1/ja active Application Filing
- 2014-10-02 CN CN201480065559.0A patent/CN105793969A/zh active Pending
- 2014-10-02 JP JP2015554615A patent/JPWO2015098225A1/ja active Pending
- 2014-10-02 KR KR1020167014096A patent/KR20160101904A/ko not_active Application Discontinuation
- 2014-11-03 TW TW103138104A patent/TW201526118A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008294129A (ja) * | 2007-05-23 | 2008-12-04 | Daikin Ind Ltd | 熱電子発電素子、及び当該熱電子発電素子を備えた熱電子発電装置 |
JP2014214075A (ja) * | 2013-04-30 | 2014-11-17 | 旭硝子株式会社 | 非晶質酸化物のエレクトライドの薄膜の製造方法 |
JP5557304B1 (ja) * | 2013-09-26 | 2014-07-23 | 国立大学法人東北大学 | 有機半導体素子及びそれを備えたcmis半導体装置 |
Non-Patent Citations (1)
Title |
---|
TOSHIO KAMIYA ET AL.: "Field-Induced Current Modulation in Nanoporous Semiconductor , Electron-Doped 12CaO.7Al2O3", CHEMISTRY OF MATERIALS, vol. 17, pages 6311 - 6316, XP002596253, Retrieved from the Internet <URL:http://pubs.acs.org/doi/pdf/10.1021/cm051904s> * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016157856A (ja) * | 2015-02-25 | 2016-09-01 | エルジー ディスプレイ カンパニー リミテッド | シリコン系薄膜半導体装置、およびシリコン系薄膜半導体装置の製造方法 |
WO2018066483A1 (ja) * | 2016-10-03 | 2018-04-12 | 国立大学法人東京工業大学 | 半導体素子 |
JP2019016659A (ja) * | 2017-07-05 | 2019-01-31 | 三菱電機株式会社 | 薄膜トランジスタ基板、液晶表示装置および薄膜トランジスタ基板の製造方法 |
JP2021157195A (ja) * | 2017-07-05 | 2021-10-07 | 三菱電機株式会社 | 表示装置 |
JP7245871B2 (ja) | 2017-07-05 | 2023-03-24 | トライベイル テクノロジーズ, エルエルシー | 表示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105793969A (zh) | 2016-07-20 |
TW201526118A (zh) | 2015-07-01 |
JPWO2015098225A1 (ja) | 2017-03-23 |
KR20160101904A (ko) | 2016-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6296463B2 (ja) | 薄膜トランジスタおよびその製造方法 | |
JP6989656B2 (ja) | 半導体装置 | |
JP6148311B2 (ja) | 電子装置 | |
TWI442570B (zh) | Semiconductor thin film and its manufacturing method and thin film transistor | |
JP5466939B2 (ja) | 半導体デバイス、多結晶半導体薄膜、多結晶半導体薄膜の製造方法、電界効果型トランジスタ、及び、電界効果型トランジスタの製造方法 | |
JP6284157B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6297789B2 (ja) | 配線の形成方法および半導体装置の作製方法 | |
WO2009093625A1 (ja) | 電界効果型トランジスタ及びその製造方法、それを用いた表示装置、並びに半導体装置 | |
JP6149725B2 (ja) | 半導体装置および半導体装置の製造方法 | |
KR102201469B1 (ko) | C12a7 일렉트라이드의 박막의 제조 방법, 및 c12a7 일렉트라이드의 박막 | |
WO2015098225A1 (ja) | 半導体装置および半導体装置の製造方法 | |
WO2018066483A1 (ja) | 半導体素子 | |
WO2015115330A1 (ja) | 薄膜トランジスタ、酸化物半導体、およびその製造方法 | |
JP6308583B2 (ja) | 薄膜トランジスタ、薄膜トランジスタの製造方法および半導体装置 | |
JP2015076540A (ja) | 半導体素子およびダイオード | |
JP2015056585A (ja) | 電磁波検出素子および電磁波検出装置 | |
JP6252903B2 (ja) | 薄膜トランジスタおよびその製造方法 | |
JP6087668B2 (ja) | 半導体装置の作製方法 | |
WO2014163116A1 (ja) | 有機エレクトロルミネッセンス装置 | |
JP6252904B2 (ja) | 酸化物半導体およびその製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874680 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554615 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167014096 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874680 Country of ref document: EP Kind code of ref document: A1 |