WO2015093281A1 - エポキシ樹脂接着剤 - Google Patents

エポキシ樹脂接着剤 Download PDF

Info

Publication number
WO2015093281A1
WO2015093281A1 PCT/JP2014/081848 JP2014081848W WO2015093281A1 WO 2015093281 A1 WO2015093281 A1 WO 2015093281A1 JP 2014081848 W JP2014081848 W JP 2014081848W WO 2015093281 A1 WO2015093281 A1 WO 2015093281A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
particles
polyolefin resin
mass
epoxy
Prior art date
Application number
PCT/JP2014/081848
Other languages
English (en)
French (fr)
Inventor
岡本 匡史
杉原 範洋
泰治 松川
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to US15/102,981 priority Critical patent/US11242476B2/en
Priority to CN201480068820.2A priority patent/CN105829481B/zh
Priority to JP2015553463A priority patent/JP6526571B2/ja
Priority to KR1020167015912A priority patent/KR102261598B1/ko
Priority to EP14872044.4A priority patent/EP3085751B1/en
Publication of WO2015093281A1 publication Critical patent/WO2015093281A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives

Definitions

  • the present invention relates to an epoxy resin adhesive used for semiconductor encapsulants and the like. More specifically, the present invention relates to an epoxy resin adhesive having low shrinkage and excellent adhesion.
  • the adhesive is being converted from lead-free solder to thermosetting epoxy epoxy adhesive.
  • epoxy adhesives tend to cause cracks and spots due to thermal expansion and contraction, which can cause disconnection around the elements, and shrinkage during cooling. Deformation of the coated substrate due to the problem has become a problem.
  • epoxy resin used as a sealing resin is melt-mixed with a polyolefin-based resin or elastomer resin as a stress relaxation agent (shrinkage inhibitor) using a biaxial kneader or roll.
  • An epoxy resin composition is disclosed (Patent Documents 1 and 2).
  • Patent Document 3 a liquid sealing resin composition containing a polymer particle having a layer structure in which a low-elastic polymer is used as a core and the surface thereof is coated with a glassy polymer, and a thermosetting resin composition
  • Patent Document 4 an epoxy composition containing 50% by weight or more of crosslinked fine particles in an epoxy resin
  • Patent Document 5 an epoxy composition containing particles mainly composed of acrylic rubber to improve shrinkage
  • An adhesive composition Patent Document 5
  • the additive is used as an epoxy resin.
  • a heat kneader such as a biaxial kneader or roll is required.
  • the epoxy resin composition produced by the above-described method uses a caulking agent (filler) such as fused silica or wax in order to prevent the curing reaction after kneading and ensure the coatability and fluidity of the epoxy adhesive. Contains 70% by mass or more of the entire epoxy adhesive. For this reason, the adhesive performance and physical properties of the epoxy resin itself are not sufficient.
  • the present inventors focused on the functionality and particle size of the particles themselves, and as a result of examining the particle size, blending amount, functional group, surface treatment of the particles, etc., the polyolefin resin particles were identified as epoxy resin adhesives.
  • the present invention has found that mixing the appropriate amount of particles can improve the problems of low shrinkage and dispersibility of the epoxy resin adhesive, and that an epoxy resin adhesive having excellent adhesion and low shrinkage can be obtained. It reached.
  • the present invention includes, for example, the subject matters described in the following sections.
  • Item 1. (A) an epoxy resin, (B) a curing agent and (C) a polyolefin resin particle having a volume average particle diameter of 1 to 25 ⁇ m, The polyolefin resin particles are spherical, The polyolefin resin particles are contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin. Epoxy resin adhesive.
  • the polyolefin resin is low density polyethylene, high density polyethylene, a copolymer of ethylene and an epoxy group-containing monomer, a copolymer of ethylene and an acid-modified group-containing monomer, and a copolymer of ethylene and an ethylenically unsaturated monomer.
  • the epoxy resin adhesive according to Item 1 or 2 comprising at least one selected from the group consisting of coalesces.
  • Item 4. Item 4. The epoxy resin adhesive according to any one of Items 1 to 3, wherein the polyolefin resin particles are coated with silica.
  • Item 5. Item 5. The epoxy resin adhesive according to Item 4, wherein the amount of silica added is 0.1 to 1 part by mass with respect to 100 parts by mass of the polyolefin resin particles.
  • Item 6. A shrinkage-inhibiting agent for curing an epoxy resin adhesive, comprising spherical polyolefin resin particles having a volume average particle diameter of 1 to 25 ⁇ m.
  • grains obtained by manufacture example 3 is shown.
  • grains obtained by manufacture example 7 is shown.
  • the epoxy resin adhesive according to the present invention is characterized by containing (A) an epoxy resin, (B) a curing agent, and (C) a polyolefin resin particle having a volume average particle diameter of 1 to 25 ⁇ m.
  • the (A) epoxy resin used in the present invention may be a curable epoxy resin containing an epoxy group, and examples thereof include a monoepoxy compound and a polyvalent epoxy compound.
  • Monoepoxy compounds include butyl glycidyl ether, hexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, para-butylphenyl glycidyl ether, para-xylyl glycidyl ether, glycidyl acetate, glycidyl butyrate, glycidyl hexoate, glycidyl benzoate Etc.
  • polyvalent epoxy compound examples include bisphenol type epoxy resins, epoxy resins obtained by glycidylation of divalent and polyvalent phenol types, novolac type epoxy resins, aliphatic ether type epoxy resins, ether ester type epoxy resins, ester type epoxy resins, amines Type epoxy resin, alicyclic epoxy resin and the like.
  • Bisphenol type epoxy resins include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetra Examples thereof include fluorobisphenol A.
  • epoxy resins obtained by glycidylation of divalent and polyhydric phenol types include epoxy resins obtained by glycidylation of divalent phenol types such as biphenol, dihydroxynaphthalene, and 9,9-bis (4-hydroxyphenyl) fluorene. , 1-tris (4-hydroxyphenyl) methane and other trisphenol type glycidylated epoxy resins, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane and other glycidylated epoxy resins Etc.
  • novolak type epoxy resin examples include epoxy resins obtained by glycidylating novolak types such as phenol novolak type, cresol novolak type, bisphenol A novolak type, brominated phenol novolak type, brominated bisphenol A novolak type and the like.
  • Examples of the aliphatic ether type epoxy resin include epoxy resins obtained by glycidylation of polyhydric alcohols such as glycerin and polyethylene glycol.
  • ether ester type epoxy resin examples include an epoxy resin obtained by glycidylating a hydroxycarboxylic acid such as paraoxybenzoic acid.
  • ester type epoxy resins include epoxy resins obtained by glycidylation of polycarboxylic acids such as phthalic acid and terephthalic acid.
  • amine type epoxy resins include epoxy resins obtained by glycidylating amine compounds such as 4,4-diaminodiphenylmethane and m-aminophenol.
  • Alicyclic epoxy resins include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, bis (3,4-epoxycyclohexylmethyl) adipate, Examples include 1-epoxyethyl 3,4-epoxycyclohexane, limonene diepoxide, and 3,4-epoxycyclohexyl methanol.
  • (A) epoxy resins may be used alone or in admixture of two or more.
  • bisphenol type epoxy resins are preferable, and among them, bisphenol A, bisphenol F, and the like are preferably used.
  • the epoxy resin curing agent used in the present invention may be any resin that can be cured by reacting with (A) the epoxy resin.
  • examples include phenolic compounds, acid anhydrides, imidazole compounds, carboxylic acid compounds, polythiol curing agents, isocyanate compounds, and amine compounds. Of these, phenol compounds are preferred.
  • phenolic compounds include phenol novolak, xylylene novolak, bis A novolak, triphenylmethane novolak, biphenyl novolak, dicyclopentadienephenol novolak, and terpene phenol novolak.
  • acid anhydrides include carbohydrazide, oxalic acid dicarbozide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, Fumaric acid dihydrazide, diglycolic acid hydrazide, tartaric acid dihydrazide, malic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 4,4-bisbenzene dihydrazide, 1,4-naphthoic acid dihydrazide, etc. It is done.
  • imidazole compounds include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, and 1-aminoethyl-2-methylimidazole. It is done.
  • Examples of the carboxylic acid compound include vinyl ether block carboxylic acid.
  • a hemiacetal ester is produced by a reaction between an aliphatic vinyl ether and a carboxyl group, and the carboxyl group produced by the deblocking reaction of the hemiacetal ester in the presence of a Lewis acid And a method of curing by addition reaction with an epoxy group.
  • isocyanate compound examples include toluene diisocyanate polyhydric alcohol adduct, phenylmethane-4,4'-diisocyanate (c-MDI), and blocked isocyanate obtained by blocking isocyanate with caprolactam.
  • polythiol-based curing agent examples include aliphatic polythiol ether, aliphatic polythioester, and aromatic ring-containing polythioether.
  • amine compounds include aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, 1,3- Arocyclic polyamines such as bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine C-260, aromatics such as diaminodiphenylmethane, metaphenylenediamine, and diaminodisulfonylsulfone Polyamine, polyoxypropylenediamine, polyoxypropylenetriamine, polycyclohexylpolyamine mixture, N-aminoethylpiperazine Etc., and the like.
  • 1,3- Arocyclic polyamines
  • (B) curing agents can be used alone or in admixture of two or more as long as they do not inhibit curing.
  • Examples of the resin used in the (C) polyolefin-based resin particles used in the present invention include low-density polyethylene, high-density polyethylene, polypropylene, and copolymerized polyolefins of olefins and other monomers.
  • the low density polyethylene is preferably polyethylene having a density of 0.910 or more and less than 0.930, as defined in the former JIS K6748: 1995.
  • the high-density polyethylene is preferably polyethylene having a density of 0.942 or more, as defined in the former JIS K6748: 1995.
  • (meth) acrylic acid carboxyl group-containing monomer ““(meth) acrylic acid” means “acrylic acid” or “methacrylic acid”. .
  • Ethylenically unsaturated monomers such as vinyl group-containing monomers, epoxy group-containing monomers, amino group-containing monomers, acid-modified group-containing monomers, and monomers containing metal salts thereof.
  • ethylenically unsaturated monomer examples include acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate and the like.
  • (meth) acryl means “acryl” or “methacryl”. The same applies to the following.
  • epoxy group-containing monomer examples include glycidyl (meth) acrylate, glycidyl acetate, glycidyl butyrate, glycidyl hexoate, and glycidyl benzoate.
  • amino group-containing monomer examples include dimethylaminoethyl (meth) acrylate, (meth) acrylamide, N, N-butoxymethyl (meth) acrylamide, and N-methylacrylamide.
  • Examples of the acid-modifying group-containing monomer include maleic anhydride and maleic acid ester.
  • polystyrene resins examples include partially saponified ethylene-vinyl acetate copolymers, which are saponified ethylene-vinyl acetate copolymers, and ethylene-vinyl alcohol copolymers.
  • low density polyethylene high density polyethylene, copolymers of ethylene and epoxy group-containing monomers, copolymers of ethylene and acid-modified group-containing monomers, ethylene and ethylenically unsaturated monomers
  • a copolymer is preferably used, and a copolymer of ethylene and an epoxy group-containing monomer, a copolymer of ethylene and an acid-modified group-containing monomer, and a copolymer of ethylene and an ethylenically unsaturated monomer are particularly preferably used.
  • ethylene-glycidyl methacrylate copolymer ethylene-maleic anhydride copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic ester-maleic anhydride terpolymer, ethylene-acetic acid
  • a saponified product of a vinyl copolymer is preferably used.
  • polyolefin resin particles having a volume average particle diameter of 1 to 25 ⁇ m are used.
  • the volume average particle diameter is preferably 5 to 20 ⁇ m, and more preferably 8 to 18 ⁇ m. If the volume average particle diameter is larger than 25 ⁇ m, unevenness is likely to occur on the surface of the composition after curing of the epoxy resin adhesive, which is not preferable in terms of appearance and also increases the shrinkage rate.
  • volume average particle diameter is less than 1 ⁇ m, the viscosity of the epoxy resin adhesive increases, and the polyolefin resin particles are difficult to disperse.
  • the volume average particle diameter of the polyolefin resin particles is a value determined by an electrical detection band method (pore electrical resistance method).
  • an electric detection type particle size distribution measuring apparatus Coulter Multisizer, manufactured by Beckman Coulter, Inc.
  • the shape of the polyolefin resin particles used in the present invention is spherical.
  • the term “spherical” refers to those in which the ratio of the longest diameter to the shortest diameter (longest diameter / shortest diameter) of the polyolefin resin particles is 0.98 to 1.02.
  • the method for producing the (C) polyolefin resin particles used in the present invention is not particularly limited as long as spherical particles having a volume average particle diameter of 1 to 25 ⁇ m can be obtained.
  • a method in which polyolefin resin is mechanically pulverized using a high shear pulverizer, a polyolefin resin is dissolved in a good solvent, a non-solvent is added as necessary, particles are precipitated by cooling examples thereof include a method of obtaining particles by evaporation or a method of obtaining dispersed resin particles by mixing a resin with a dispersant and water.
  • a method of obtaining resin particles dispersed by mixing the resin with a dispersant and water is preferable, and spherical particles can be particularly preferably obtained by this method.
  • a surfactant can be used, and for example, an ethylene oxide-propylene oxide copolymer can be preferably used.
  • the surface of the polyolefin resin particles used in the present invention is preferably coated with silica, and more preferably particles whose surface is hydrophobized. This is because the surface of the polyolefin resin particles is coated with silica, so that the compatibility with the epoxy resin is improved and the dispersion between the particles and the epoxy resin is improved. Because it can be expected.
  • the shape of the silica to be used is a particle shape (that is, it is silica particles).
  • Silica is preferably added in an amount of 0.1 to 1.0 part by mass with respect to 100 parts by mass of the polyolefin resin particles.
  • the addition amount of silica is 1.0 part by mass or less, the epoxy resin adhesive is less likely to become cloudy, and spots are hardly generated on the surface of the composition during curing.
  • the addition amount of silica is 0.1 parts by mass or more, dispersibility in a solvent can be further improved (that is, the polyolefin resin particles are more easily dispersed uniformly).
  • the entire surface of the polyolefin resin particles may be coated with silica, or a part of the particle surface may be coated with silica.
  • the method for coating the polyolefin resin particles with silica is not particularly limited, but the silica is surface-treated by adding a suitable amount of silica and mixing and stirring the polyolefin resin particles with a general mixer, that is, silica. Can be obtained.
  • the epoxy resin adhesive of the present invention can be obtained by mixing an epoxy resin (A), a curing agent (B), and polyolefin resin particles (C).
  • an epoxy resin (A) a curing agent (B)
  • the mixing method For example, the method of adding and mixing a polyolefin-type resin particle (C) to the solution which melt
  • organic solvents that dissolve epoxy resins and curing agents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and trimethylbenzene, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and tetrahydrofuran. And ether solvents such as isopropanol and butanol, ether alcohol solvents such as 2-methoxyethanol, and amide solvents such as N-methylpyrrolidone and N, N-dimethylformamide. These may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and trimethylbenzene
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • tetrahydrofuran tetrahydrofuran.
  • ether solvents such as isoprop
  • the blending ratio of the epoxy resin (A) and the curing agent (B) is not particularly limited and may be mixed at an arbitrary ratio, but the epoxy equivalent of the epoxy resin (A) and It is preferable to blend so that the equivalent of the reactive group of the curing agent (B) (for example, phenol group in the case of a phenolic compound) is 1: 2 to 2: 1. It is more preferable to mix
  • the addition amount of the polyolefin resin particles (C) in the epoxy resin adhesive of the present invention is preferably 1 to 50 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the epoxy resin (A). Is more preferable. In another preferred embodiment of the addition amount of the polyolefin resin particles (C) in the epoxy resin adhesive of the present invention, 1 to 50 parts by mass is preferable with respect to 100 parts by mass of the epoxy resin (A), and 3 to 49 parts by mass. 25 to 48 parts by mass is more preferable, and 40 to 45 parts by mass is particularly preferable.
  • the addition amount of the polyolefin resin particles is 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin, “the viscosity of the epoxy resin adhesive is increased and it becomes difficult to disperse. There is less concern that the curing strength will decrease.
  • the addition amount of the polyolefin resin particles is 1 part by mass or more, the effects of adhesiveness and low shrinkage can be more preferably exhibited.
  • the addition amount of the polyolefin resin particles (C) in the epoxy resin adhesive of the present invention is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin (A) and the curing agent (B). Mass parts are preferred, and 3 to 15 parts by mass are more preferred.
  • the addition amount of the polyolefin resin particles is 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin, “the viscosity of the epoxy resin adhesive is increased and it becomes difficult to disperse. There is less concern that the curing strength will decrease.
  • the addition amount of the polyolefin resin particles is 1 part by mass or more, the effects of adhesiveness and low shrinkage can be more preferably exhibited.
  • the method for adding the polyolefin resin particles to the epoxy resin is not particularly limited, and can be uniformly dispersed by stirring with a paddle blade or stirring with a homomixer.
  • additives such as a lubricant, a pigment, a coupling agent, and a leveling agent may be blended as necessary.
  • a lubricant include paraffin wax, polyethylene wax, polypropylene wax, microcrystalline wax, ester wax, petrolatum, carnauba wax, fatty acid such as fatty acid, fatty acid amide, and stearic acid, and metal salts thereof.
  • the pigment include titanium, talc, calcium carbonate, and silica.
  • the coupling agent is not particularly limited and known ones can be used, and examples include 3-aminopropyltriethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-isocyanatopropylethoxysilane.
  • the method for applying the epoxy resin adhesive according to the present invention to the substrate is not particularly limited, and examples thereof include brush coating, roller coating, and spray coating. Furthermore, for the purpose of improving the coating efficiency, electrostatic spray coating, curtain coating, roll coater coating, impregnation coating and the like can also be used.
  • the substrate is not particularly limited, and for example, metal, wood, paper, film product, plastic molded product, elastomer, and the like can be used.
  • metals include stainless steel, aluminum, copper, and brass
  • films and plastics include aromatic polyester resins, epoxy resins, polycarbonate, polystyrene, ABS, polyethylene, polypropylene, polyacetal, cellulose, polyethylene terephthalate, and polybutylene. Terephthalate, polyvinyl chloride, polyamide, polyphenylene oxide, polyurethane, unsaturated polyester, etc .; as the elastomer, natural rubber, chloroprene rubber, urethane rubber, fluoro rubber, silicone rubber, fluorosilicone rubber, etc. Examples thereof include thermoplastic elastomers such as styrene, urethane, polyester, and polyamide.
  • the method for curing the epoxy resin adhesive of the present invention is not particularly limited, and it is sufficient that the crosslinking reaction of (A) the epoxy resin and (B) the curing agent proceeds, and is performed by a general method for curing an epoxy adhesive. It is also possible to melt the epoxy resin in order to promote cross-linking, allow an appropriate curing time, and allow to cool to room temperature.
  • the present invention also includes a shrinkage-inhibiting agent for epoxy resin adhesive, which is made of spherical polyolefin resin particles having a volume average particle diameter of 1 to 25 ⁇ m.
  • the shrinkage inhibitor is an appropriate amount for the epoxy resin adhesive (preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, further preferably 3 to 15 parts by weight, or epoxy resin based on 100 parts by weight of the epoxy resin). And preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, and still more preferably 3 to 15 parts by weight) with respect to 100 parts by weight of the total amount of the curing agent. Shrinkage can be suppressed.
  • the epoxy resin adhesive to which the shrinkage inhibitor of the present invention is added is preferably an adhesive containing the above (A) epoxy resin and (B) curing agent.
  • the details of the particles are also as described above.
  • Adhesive cured film evaluation method ⁇ Curing method> A masking tape with a thickness of 1 mm is applied to a slide glass measuring 76 mm long x 52 mm wide, 10 mm from both ends of the glass, and an appropriate amount of adhesive is dropped on the glass, and then the adhesive is evenly spread with a scraper. It applied to 32 mm. After primary curing and drying at 150 ° C. for 3 hours, secondary curing and drying at 180 ° C. for 3 hours, and then allowed to cool to room temperature.
  • Shrinkage (%) ⁇ Coating surface area (cm 2 ) ⁇ Dry film area (cm 2 ) ⁇ / Coating surface area (cm 2 ) ⁇ 100 If the shrinkage rate is 30% or less, it can be said that the shrinkage rate is low.
  • ⁇ Cross-cut test> With reference to JIS K5600 (former JIS K5400) (cross-cut peeling tape method test), using a cutter, a grid-like cut (100 squares of 10 x 10) with a clearance of 3 mm has reached the glass plate. ), And then a gum tape was applied to the cut portion on the film. Subsequently, one to two minutes after the tape was applied, the tape was peeled off at a right angle with one end of the tape, and the adhesion was evaluated.
  • the evaluation criteria are as follows.
  • the “lattice” referred to in the evaluation criteria is a grid-like 10 ⁇ 10 100 square cut cut on the film.
  • a masking tape with a thickness of 1 mm is applied to an aluminum plate with a length of 76 mm, a width of 45 mm, and a thickness of 1 mm, and 10 mm from both ends of the aluminum plate, and a suitable amount of adhesive is dropped on the aluminum plate. It was applied to the surface of 56 mm long ⁇ 25 mm wide.
  • An aluminum plate to be an adherend of the same size is brought into close contact with the adherend side so that the adhesion area is 25 mm ⁇ 10 mm, cured and dried in an oven at 150 ° C. for 1 hour, and 25 ° C. at room temperature.
  • the aluminum plates were bonded to each other by cooling at 0 ° C. for 1 hour, and the shear shear strength of the aluminum plates bonded at a pulling rate of 1 mm / min was measured with an autograph (SHIMADZU AGS-J).
  • ⁇ Particle shape measurement method> The manufactured polyolefin resin particles were enlarged 50 to 300 times with an electron microscope (JEOL JSM-6390LA, manufactured by JEOL Ltd.), and the shape of the polyolefin resin particles was confirmed by observing the enlarged view. . As described above, the shape was determined to be spherical if the ratio of the longest diameter to the shortest diameter (longest diameter / shortest diameter) of the polyolefin resin particles was 0.98 to 1.02.
  • the volume average particle size was measured with an electric detection type particle size distribution analyzer (Coulter Multisizer, manufactured by Beckman Coulter, Inc.). Specifically, 20 ml of ISOTON II (electrolytic solution manufactured by Beckman Coulter, Inc.) and 0.2 ml of an anionic surfactant such as sodium alkyl sulfate were mixed in a 100 ml beaker. Thereto was added 0.1 g of the particles obtained in each of the following production examples, and the particles were dispersed by applying ultrasonic waves for 3 minutes while stirring with a spatula. Using this dispersion, the volume average particle size was measured with an electric detection type particle size distribution analyzer (Coulter Multisizer, manufactured by Beckman Coulter, Inc.).
  • the aqueous dispersion was filtered with a filter paper, washed with water, and dried in a vacuum dryer at 60 ° C. for 24 hours to obtain polyethylene particles.
  • Hydrophobic-treated silica particles R972, manufactured by Nippon Aerosil Co., Ltd. (0.32 g) were added to 80 g of the obtained particles, and the mixture was stirred and mixed with a mixer and classified to obtain spherical polyethylene particles having a volume average particle diameter of 10 ⁇ m.
  • the aqueous dispersion was filtered with a filter paper, washed with water, and dried in a vacuum dryer at 60 ° C. for 24 hours to obtain polyethylene particles.
  • Hydrophobic-treated silica particles (R972 manufactured by Nippon Aerosil Co., Ltd., 0.32 g) were added to 80 g of the obtained particles, and the mixture was stirred and mixed with a mixer, and classified to obtain spherical polyethylene particles having a volume average particle diameter of 13 ⁇ m (see FIG. 1).
  • aqueous dispersion of an ethylene-glycidyl methacrylate copolymer.
  • the aqueous dispersion was filtered through a filter paper, washed with water, and dried in a vacuum dryer at 60 ° C. for 24 hours to obtain ethylene-glycidyl methacrylate copolymer particles.
  • 0.32 g of hydrophobically treated silica particles RX200 manufactured by Nippon Aerosil Co., Ltd.
  • was added stirred and mixed with a mixer, classified, and a spherical ethylene-glycidyl methacrylate copolymer having a volume average particle diameter of 17 ⁇ m. Particles were obtained.
  • aqueous dispersion of an ethylene-maleic anhydride copolymer was obtained.
  • the aqueous dispersion was filtered through a filter paper, washed with water, and dried in a vacuum dryer at 60 ° C. for 24 hours to obtain ethylene-maleic anhydride copolymer particles.
  • 0.32 g of hydrophobically treated silica particles R974 manufactured by Nippon Aerosil Co., Ltd.
  • was added stirred and mixed with a mixer, classified, and spherical ethylene-maleic anhydride copolymer having a volume average particle size of 9 ⁇ m. Combined particles were obtained.
  • the aqueous dispersion was filtered with a filter paper, washed with water, and dried in a vacuum dryer at 60 ° C. for 24 hours to obtain polyethylene particles.
  • 0.32 g of hydrophobically treated silica particles (Nipseal SS100 manufactured by Tosoh Silica Co., Ltd.) was added, mixed by stirring with a mixer, classified, and spherical ethylene-acrylic acid copolymer having a volume average particle size of 12 ⁇ m. Combined particles were obtained.
  • Production Example 8 The particles obtained in Production Example 2 were classified to obtain particles having a volume average particle diameter of 30 ⁇ m.
  • Example 1 ⁇ Preparation of epoxy resin> Bisphenol A type epoxy resin (Epiclon 1050; Epoxy equivalent 476 manufactured by DIC) was dissolved in a methyl ethyl ketone solvent to a concentration of 70% by mass.
  • Bisphenol A type epoxy resin (Epiclon 1050; Epoxy equivalent 476 manufactured by DIC) was dissolved in a methyl ethyl ketone solvent to a concentration of 70% by mass.
  • a phenolic curing agent for epoxy resin (HF-1M: phenol number 105 manufactured by Meiwa Kasei Co., Ltd.) was dissolved in methyl ethyl ketone solvent to a concentration of 70% by mass.
  • the epoxy resin adhesive was prepared by adding 5 mass parts of the low density polyethylene particles obtained in Production Example 1 to the parts, stirring and mixing. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 2 An epoxy resin adhesive was prepared in the same manner as in Example 1 except that the low-density polyethylene particles obtained in Production Example 2 were used as the polyolefin resin particles. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 3 An epoxy resin adhesive was prepared in the same manner as in Example 1 except that the high-density polyethylene particles obtained in Production Example 3 were used as the polyolefin resin particles. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 4 An epoxy resin adhesive was prepared in the same manner as in Example 1 except that the ethylene-glycidyl methacrylate copolymer particles obtained in Production Example 4 were used as polyolefin resin particles. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 5 An epoxy resin adhesive was prepared in the same manner as in Example 1 except that the ethylene-maleic anhydride copolymer particles obtained in Production Example 5 were used as the polyolefin resin particles. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 6 An epoxy resin adhesive was prepared in the same manner as in Example 1 except that the ethylene-acrylic acid copolymer particles obtained in Production Example 6 were used as polyolefin resin particles. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • Example 4 An epoxy resin adhesive was prepared in the same manner as in Example 2 except that 55 parts by weight of low density polyethylene particles were added in Example 2. Using the obtained adhesive, the film prepared under the above curing conditions was evaluated according to each evaluation method. The results are shown in Table 1.
  • the epoxy resin adhesive according to the present invention can be cured by heat to obtain a cured product having low shrinkage and excellent adhesion, and the adhesion of the formed product coated with this epoxy resin adhesive, It is possible to solve problems such as wrinkles and warpage of the coated material of the agent and the substrate to be adhered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

 低収縮性で、接着性の優れたエポキシ樹脂接着剤を提供する。 (A)エポキシ樹脂、(B)硬化剤および(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有し、前記ポリオレフィン系樹脂粒子が球状であり、前記エポキシ樹脂100質量部に対し、前記ポリオレフィン系樹脂粒子は1~50質量部含有される、エポキシ樹脂接着剤。

Description

エポキシ樹脂接着剤
 本発明は、半導体封止剤などに使用されるエポキシ樹脂接着剤に関する。さらに詳しくは、低収縮性で、接着性の優れたエポキシ樹脂接着剤に関する。
 近年、半導体製品は、軽薄、軽量、高集積化の傾向があり、それに伴い薄く局所的に半導体接続部を封止することができる接着剤が求められている。
 当該接着剤は、鉛フリーはんだから熱硬化性樹脂のエポキシ接着剤へ転換されつつある。しかし、半導体素子の高集積化によって発熱量は増大しているため、エポキシ接着剤では熱膨張および収縮によりクラックやスポットが生じやすくなり、素子周辺の断線などが起こりやすいことや、冷却時の収縮による塗工基材の変形などが問題になっている。
 このような状況に対して、封止樹脂として用いられるエポキシ樹脂に、応力緩和剤(収縮抑制剤)としてポリオレフィン系樹脂や、エラストマー樹脂などを二軸ニーダーやロールを用いて溶融混合した、低収縮性のエポキシ樹脂組成物が開示されている(特許文献1、2)。
 また、エポキシ樹脂組成を変えることなく、粒子を添加することによってエポキシ接着剤を改良することも提案されている。例えば、低熱膨張化を目的に、低弾性ポリマーを核とし、その表面をガラス状ポリマーで被覆した層構造をもつポリマー粒子を配合した液状封止樹脂組成物(特許文献3)、熱硬化樹脂組成において、応力緩和を目的に、エポキシ樹脂に架橋微粒子を50重量%以上配合したエポキシ系組成物(特許文献4)、収縮性を改良するため、アクリルゴムを主成分とした粒子を配合したエポキシ系接着剤組成物(特許文献5)等が開示されている。
特開昭63-90530号公報 特開2001-279056号公報 特開2001-261931号公報 特開2005-36136号公報 特開2008-38070号公報
 特許文献1~3のように、接着剤の熱硬化による収縮を減少させることを目的として、エポキシ樹脂に他樹脂を溶融して新規なエポキシ樹脂組成物を作製する方法では、添加剤をエポキシ樹脂と均一に混合させるために、二軸ニーダーやロールなどの加熱混練機が必要となる。また、上記方法で作製したエポキシ樹脂組成物は、混練後の硬化反応を防ぎ、エポキシ接着剤の塗工性や流動性を確保するために、溶融シリカやワックスなどのコーキング剤(充填剤)をエポキシ接着剤全体の70質量%以上含んでいる。このため、エポキシ樹脂そのものの接着性能や物性は十分とは言えない。
 また従来からあるエポキシ樹脂接着剤へ粒子を添加する方法の多くは、簡便にエポキシ接着剤の物性を改良できるが、添加材料の多くはゴムやエラストマー粒子などである。このような粒子は、応力緩和による低収縮性を改良することが目的で使用されており、エポキシ接着剤の接着性能やエポキシ接着剤に対する相溶性、分散性を考慮して設計された粒子ではなかった。このため、上記従来技術のように粒子を多量にエポキシ樹脂接着剤に添加すると、粒子とエポキシ樹脂接着剤との相溶性の悪さが原因で塗膜表面に粒子による凹凸が残ったり、接着性の低下や接着剤の増粘が起こったり、粒子が均一に分散しにくいなどの問題があった。加えて、冷却時の収縮による塗工基材の変形、しわ、反り等が発生するという問題もあった。
 そこで、本発明者らは粒子自体の機能性、粒子径などに着目し、ポリオレフィン系樹脂粒子の粒子径、配合量、官能基、粒子の表面処理などを検討した結果、エポキシ樹脂接着剤に特定の粒子を適量混合することで、エポキシ樹脂接着剤の低収縮性や粒子の分散性の問題を改善でき、優れた接着性、低収縮性を有するエポキシ樹脂接着剤が得られることを見出し本発明に到った。
 すなわち、本発明は、例えば以下の項に記載の主題を包含する。
項1.
(A)エポキシ樹脂、(B)硬化剤および(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有し、
前記ポリオレフィン系樹脂粒子が球状であり、
前記エポキシ樹脂100質量部に対し、前記ポリオレフィン系樹脂粒子は1~50質量部含有される、
エポキシ樹脂接着剤。
項2.
 (A)エポキシ樹脂、(B)硬化剤および(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有し、
前記ポリオレフィン系樹脂粒子が球状であり、
前記エポキシ樹脂および前記硬化剤の総量100質量部に対し、前記ポリオレフィン系樹脂粒子は1~50質量部含有される、
エポキシ樹脂接着剤。
項3.
ポリオレフィン系樹脂が、低密度ポリエチレン、高密度ポリエチレン、エチレンとエポキシ基含有モノマーとの共重合体、エチレンと酸変性基含有モノマーとの共重合体、及びエチレンとエチレン性不飽和モノマーとの共重合体からなる群より選ばれる少なくとも1種を含む、項1または2に記載のエポキシ樹脂接着剤。
項4.
前記ポリオレフィン系樹脂粒子が、シリカにより被覆されている、項1~3のいずれか1項に記載のエポキシ樹脂接着剤。
項5.
シリカの添加量が、前記ポリオレフィン系樹脂粒子100質量部に対して0.1~1質量部である、項4に記載のエポキシ樹脂接着剤。
項6.
体積平均粒子径が1~25μmの、球状ポリオレフィン系樹脂粒子を含む、エポキシ樹脂接着剤用硬化時収縮抑制剤。
 本発明によれば、特定の粒子を添加することで、硬化時の収縮性が抑制され、なおかつ接着性の優れたエポキシ樹脂接着剤を提供することができる。
製造例3で得られた粒子についての電子顕微鏡観察結果を示す。 製造例7で得られた粒子についての電子顕微鏡観察結果を示す。
 本発明にかかるエポキシ樹脂接着剤は(A)エポキシ樹脂、(B)硬化剤、(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有することを特徴とする。
  本発明に用いる(A)エポキシ樹脂としては、エポキシ基を含有する、硬化可能なエポキシ樹脂であればよく、例えばモノエポキシ化合物、多価エポキシ化合物などが挙げられる。
 モノエポキシ化合物としては、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、パラ-ブチルフェニルグリシジルエーテル、パラ-キシリルグリシジルエーテル、グリシジルアセテート、グリシジルブチレート、グリシジルヘキソエート、グリシジルベンゾエートなどが挙げられる。
 多価エポキシ化合物としては、ビスフェノール型エポキシ樹脂、2価および多価フェノール型をグリシジル化したエポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂、エーテルエステル型エポキシ樹脂、エステル型エポキシ樹脂、アミン型エポキシ樹脂、脂環属エポキシ樹脂などが挙げられる。
 ビスフェノール型エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールAなどが挙げられる。
 2価及び多価フェノール型をグリシジル化したエポキシ樹脂としては、ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの2価フェノール型をグリシジル化したエポキシ樹脂や、1,1,1-トリス(4-ヒドロキシフェニル)メタンなどのトリスフェノール型をグリシジル化したエポキシ樹脂、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンなどのテトラキスフェノール型をグリシジル化したエポキシ樹脂などが挙げられる。
 ノボラック型エポキシ樹脂としては、フェノールノボラック型、クレゾールノボラック型、ビスフェノールAノボラック型、臭素化フェノールノボラック型、臭素化ビスフェノールAノボラック型などのノボラック型をグリシジル化したエポキシ樹脂などが挙げられる。
 脂肪族エーテル型エポキシ樹脂としては、グリセリンやポリエチレングリコールなどの多価アルコールをグリシジル化したエポキシ樹脂などが挙げられる。
 エーテルエステル型エポキシ樹脂としては、パラオキシ安息香酸などのヒドロキシカルボン酸をグリシジル化したエポキシ樹脂などが挙げられる。
 エステル型エポキシ樹脂としてはフタル酸、テレフタル酸などのポリカルボン酸をグリシジル化したエポキシ樹脂などが挙げられる。
 アミン型エポキシ樹脂としては、4,4-ジアミノジフェニルメタン、m-アミノフェノールなどのアミン化合物をグリシジル化したエポキシ樹脂などが挙げられる。
 脂環属エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、1-エポキシエチル3,4-エポキシシクロヘキサン、リモネンジエポキシド、3,4-エポキシシクロヘキシルメタノールなどが挙げられる。
 これらの(A)エポキシ樹脂は、単独で、または2種以上を混合して使用してもよい。(A)エポキシ樹脂の中でもビスフェノール型エポキシ樹脂が好ましく、なかでもビスフェノールAやビスフェノールFなどが好適に用いられる。
 本発明で使用する(B)エポキシ樹脂の硬化剤としては、(A)エポキシ樹脂と反応し、硬化可能であればよい。例えば、フェノール系化合物、酸無水物、イミダゾール化合物、カルボン酸化合物、ポリチオール系硬化剤、イソシアネート化合物、およびアミン化合物などが挙げられる。なかでも、フェノール系化合物が好ましい。
 フェノール系化合物としては、フェノールノボラック、キシリレンノボラック、ビスAノボラック、トリフェニルメタンノボラック、ビフェニルノボラック、ジシクロペンタジエンフェノールノボラック、テルペンフェノールノボラックなどが挙げられる。
 酸無水物としては、カルボヒドラジド、シュウ酸ジカルボジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ヒドラジド、酒石酸ジヒドラジド、りんご酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、2,6-ナフトエ酸ジヒドラジド、4,4-ビスベンゼンジヒドラジド、1,4-ナフトエ酸ジヒドラジドなどが挙げられる。
 イミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-アミノエチル-2-メチルイミダゾールなどが挙げられる。
 カルボン酸化合物としては、ビニルエーテルブロックカルボン酸などが挙げられる。当該カルボン酸化合物を用いた硬化方法としては、脂肪族ビニルエーテルとカルボキシル基との反応によりヘミアセタールエステルを生成させ、ルイス酸の存在下で、ヘミアセタールエステルの脱ブロック化反応によって生成したカルボキシル基と、エポキシ基とを付加反応させることで硬化させる方法などが挙げられる。
 イソシアネート化合物としては、トルエンジイソシアネートの多価アルコールアダクト、フェニルメタン-4,4’-ジイソシアネート(c-MDI)や、イソシアネートをカプロラクタムでブロックしたブロックイソシアネートなどが挙げられる。
 ポリチオール系硬化剤としては、脂肪族ポリチオールエーテル、脂肪族ポリチオエステル、芳香環含有ポリチオエーテルなどが挙げられる。
 アミン化合物としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミンなどの脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミンC-260などの脂環式ポリアミン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジスルフォニルスルフォンなどの芳香族ポリアミン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリシクロヘキシルポリアミン混合物、N-アミノエチルピペラジンなどが挙げられる。
 これらの(B)硬化剤は、単独で、あるいは硬化を阻害しない範囲において2種以上を混合して使用することができる。
 本発明に用いる(C)ポリオレフィン系樹脂粒子に使用される樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンおよびオレフィンと他のモノマーとの共重合ポリオレフィンが挙げられる。
 低密度ポリエチレンは、旧JIS K6748:1995において定義されるように、密度0.910以上~0.930未満のポリエチレンであることが好ましい。
 高密度ポリエチレンは、旧JIS K6748:1995において定義されるように、密度0.942以上のポリエチレンであることが好ましい。
 オレフィンと共重合する他のモノマーとしては、特に限定はなく、例えば、(メタ)アクリル酸系カルボキシル基含有モノマー[「(メタ)アクリル酸」とは「アクリル酸」または「メタクリル酸」を意味する。以下同じ]、ビニル基含有モノマーなどのエチレン性不飽和モノマー、エポキシ基含有モノマー、アミノ基含有モノマー、酸変性基含有モノマー、ならびにその金属塩を含んだモノマーなどが挙げられる。
 エチレン性不飽和モノマーとしては、例えば、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられる。ここで、「(メタ)アクリ」とは「アクリ」または「メタクリ」を意味する。以下も同様である。
 エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、グリシジルアセテート、グリシジルブチレート、グリシジルヘキソエート、グリシジルベンゾエートなどが挙げられる。
 アミノ基含有モノマーとしては、例えば、ジメチルアミノエチル(メタ)アクリレート、(メタ)アクリルアミド、N,N-ブトキシメチル(メタ)アクリルアミド、N-メチルアクリルアミドなどが挙げられる。
 酸変性基含有モノマーとしては、例えば、無水マレイン酸、マレイン酸エステルなどが挙げられる。
 また、これらのポリオレフィン系樹脂としては、例えばエチレン-酢酸ビニル共重合体のケン物であるエチレン-酢酸ビニル共重合体の部分ケン化物や、エチレン-ビニルアルコール共重合体などが挙げられる。
 これらのポリオレフィン系樹脂の中でも、低密度ポリエチレン、高密度ポリエチレン、エチレンとエポキシ基含有モノマーとの共重合体、エチレンと酸変性基含有モノマーとの共重合体、エチレンとエチレン性不飽和モノマーとの共重合体が好ましく用いられ、エチレンとエポキシ基含有モノマーとの共重合体、エチレンと酸変性基含有モノマーとの共重合体及びエチレンとエチレン性不飽和モノマーとの共重合体がとりわけ好ましく用いられる。より具体的には、例えばエチレン-グリシジルメタクリレート共重合体、エチレン-無水マレイン酸共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル-無水マレイン酸三元共重合体、エチレン-酢酸ビニル共重合体のケン化物などが好適に用いられる。
 本発明のエポキシ樹脂接着剤では、体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子が用いられる。当該体積平均粒子径は、5~20μmであることが好ましく、8~18μmであることがより好ましい。体積平均粒子径が25μmより大きくなると、エポキシ樹脂接着剤の硬化後の組成物表面に凹凸が生じやすくなり、外観上好ましくないだけでなく、収縮率が大きくなってしまう。
 また体積平均粒子径が1μm未満では、エポキシ樹脂接着剤の粘度が上昇し、ポリオレフィン系樹脂粒子が分散しにくくなる。
 なお、ポリオレフィン系樹脂粒子の体積平均粒子径は、電気的検知帯法(細孔電気抵抗法)により求められる値である。例えば、電気検知式粒度分布測定装置(ベックマンコールター社製 コールターマルチサイザー)を用いて求めることができる。
 本発明に用いるポリオレフィン系樹脂粒子の形状は、球状である。ここでいう球状は、ポリオレフィン系樹脂粒子の最長となる径と最短となる径の比率(最長径/最短径)が0.98~1.02となるものをいう。
 本発明に用いる(C)ポリオレフィン系樹脂粒子の製造方法は、体積平均粒子径が1~25μmの球状粒子が得られるのであれば特に限定されない。例えば、ポリオレフィン系樹脂を高せん断微粉化装置を用いて機械的に粉砕する方法、ポリオレフィン系樹脂を良溶剤に溶解し、必要に応じて非溶剤を加え、冷却により粒子を析出させたり、溶剤を蒸発させたりして粒子を得る方法、また樹脂を分散剤および水と混合することにより分散させた樹脂の粒子を得る方法などが例示できる。なかでも、樹脂を分散剤および水と混合することにより分散させた樹脂の粒子を得る方法が好適であり、この方法であれば球状の粒子を特に好ましく得ることができる。ここでの分散剤としては、界面活性剤を用いることができ、例えばエチレンオキシド-プロピレンオキシド共重合体等を好ましく用いることができる。
 本発明に用いるポリオレフィン系樹脂粒子の表面は、シリカにより被覆されていることが好ましく、さらに、そのシリカ表面が疎水化された粒子であることがより好ましい。これは、ポリオレフィン系樹脂粒子表面がシリカにより被覆されていることで、エポキシ樹脂との相溶性がよくなり、より均一に分散しやすくなるだけでなく、粒子とエポキシ樹脂との密着性が良くなることが期待できるからである。なお、用いるシリカの形状は粒形であること(すなわちシリカ粒子であること)が好ましい。シリカは、ポリオレフィン系樹脂粒子100質量部に対し0.1~1.0質量部添加するのが好ましい。シリカの添加量が1.0質量部以下であることで、エポキシ樹脂接着剤が白濁しにくくなり、また、硬化時に組成物表面にスポットが生じにくくなる。シリカの添加量が0.1質量部以上であることで、溶媒への分散性がより向上し得る(すなわち、ポリオレフィン系樹脂粒子がより均一に分散しやすい)。
 ポリオレフィン系樹脂粒子は、その粒子表面全体がシリカで被覆されていてもよいし、粒子表面の一部がシリカで被覆されていてもよい。
 ポリオレフィン系樹脂粒子にシリカを被覆する方法は、特に制限はないが、シリカを適量添加し、一般的なミキサーで、ポリオレフィン系樹脂粒子と混合攪拌することにより、シリカで表面処理された、すなわちシリカが付着又は固着されたポリオレフィン系樹脂粒子を得ることができる。
 本発明のエポキシ樹脂接着剤は、エポキシ樹脂(A)と硬化剤(B)とポリオレフィン系樹脂粒子(C)を混合することにより得られる。混合方法については特に制限が無く、例えば、エポキシ樹脂(A)と硬化剤(B)を有機溶媒に溶解した溶液にポリオレフィン系樹脂粒子(C)を添加して混合する方法が挙げられる。
 エポキシ樹脂や硬化剤を溶解する有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼンのような芳香族炭化水素系溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトンのようなケトン系溶媒、テトラヒドロフランのようなエーテル系溶媒、イソプロパノール、ブタノールのようなアルコール系溶媒、2-メトキシエタノールのようなエーテルアルコール系溶媒、N-メチルピロリドン、N,N-ジメチルホルムアミドのようなアミド系溶媒などが挙げられる。これらは、単独で、あるいは2種以上を併用してもよい。
 本発明のエポキシ樹脂接着剤において、エポキシ樹脂(A)と硬化剤(B)の配合割合には、特に制限はなく、任意の割合で混合すればよいが、エポキシ樹脂(A)のエポキシ当量と硬化剤(B)の反応基(例えば、フェノール系化合物の場合はフェノール基)の当量が、1:2~2:1となるように配合することが好ましく、1:1.5~1.5:1となるように配合することがより好ましく、約1:1となるように配合することがさらに好ましい。
 本発明のエポキシ樹脂接着剤におけるポリオレフィン系樹脂粒子(C)の添加量はエポキシ樹脂(A)100質量部に対し1~50質量部が好ましく、2~30質量部が好ましく、3~15質量部がより好ましい。本発明のエポキシ樹脂接着剤におけるポリオレフィン系樹脂粒子(C)の添加量のさらに別の好ましい態様としては、エポキシ樹脂(A)100質量部に対し1~50質量部が好ましく、3~49質量部が好ましく、25~48質量部がより好ましく、40~45質量部が特に好ましい。エポキシ樹脂100質量部に対しポリオレフィン系樹脂粒子の添加量が50質量部以下であると、"エポキシ樹脂接着剤の粘度が上昇し、分散しにくくなる結果、接着性の低下、エポキシ樹脂接着剤の硬化強度が低下する"といった虞がより小さい。ポリオレフィン系樹脂粒子の添加量が1質量部以上であると、接着性や低収縮性の効果がより好ましく発揮され得る。
 さらに、本発明のエポキシ樹脂接着剤におけるポリオレフィン系樹脂粒子(C)の添加量はエポキシ樹脂(A)及び硬化剤(B)の総量100質量部に対し1~50質量部が好ましく、2~30質量部が好ましく、3~15質量部がより好ましい。エポキシ樹脂100質量部に対しポリオレフィン系樹脂粒子の添加量が50質量部以下であると、"エポキシ樹脂接着剤の粘度が上昇し、分散しにくくなる結果、接着性の低下、エポキシ樹脂接着剤の硬化強度が低下する"といった虞がより小さい。ポリオレフィン系樹脂粒子の添加量が1質量部以上であると、接着性や低収縮性の効果がより好ましく発揮され得る。
 ポリオレフィン系樹脂粒子のエポキシ樹脂への添加方法としては、特に制限はなく、パドル羽根による攪拌、ホモミキサーによる攪拌などで均一に分散させることができる。
 本発明のエポキシ樹脂接着剤においては、必要に応じて、滑剤、顔料、カップリング剤、レベリング剤などの添加物を配合してもよい。滑剤としては、パラフィンワックス、ポリエチレンワックス、ポリプロピレンワックス、マイクロクリスタリンワックス、エステルワックス、ワセリン、カルナバワックス、脂肪酸、脂肪酸アミド、ステアリン酸などの脂肪酸とその金属塩などが挙げられる。顔料としてはチタン、タルク、炭酸カルシウム、シリカなどが挙げられる。カップリング剤としては特に限定はなく公知のものを用いることができ、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアネートプロピルエトキシシラン等が例示される。
 本発明にかかるエポキシ樹脂接着剤を基材に塗布する方法としては、特に限定されず、例えば、はけ塗り、ローラー塗工、スプレー塗工などが挙げられる。さらに、塗工効率を向上させる目的で、静電スプレー塗工、カーテン塗工、ロールコーター塗工、含浸塗工などを用いることもできる。
 前記基材としては、特に限定されず、例えば金属、木材、紙、フィルム製品、プラスチック形成品、エラストマーなどが使用できる。具体的には金属としては、ステンレス、アルミ、銅、真鍮など;フィルム、プラスチックとしては、芳香族ポリエステル樹脂、エポキシ樹脂、ポリカーボネート、ポリスチレン、ABS、ポリエチレン、ポリプロピレン、ポリアセタール、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリアミド、ポリフェニレンオキサイド、ポリウレタン、不飽和ポリエステルなど;エラストマーとしては、天然ゴム、クロロプレンゴム、ウレタンゴム、フッ素ゴム、シリコーンゴム、フロロシリコーンゴムなどの熱加硫ゴムやオレフィン系、スチレン系、ウレタン系、ポリエステル系、ポリアミド系などの、熱可塑性のエラストマーなどが挙げられる。
 本発明のエポキシ樹脂接着剤の硬化方法は、特に限定されず、(A)エポキシ樹脂と(B)硬化剤の架橋反応が進行すればよく、一般的なエポキシ接着剤の硬化方法で行う。架橋を促進させるためにエポキシ樹脂を溶融させ、適当な硬化時間を置き、室温まで放冷することも可能である。
 本発明は、体積平均粒子径が1~25μmの、球状ポリオレフィン系樹脂粒子からなる、エポキシ樹脂接着剤用硬化時収縮抑制剤も包含する。当該収縮抑制剤は、エポキシ樹脂接着剤に適量(エポキシ樹脂100質量部に対し、好ましくは1~50質量部、より好ましくは2~30質量部、さらに好ましくは3~15質量部、あるいはエポキシ樹脂及び硬化剤の総量100質量部に対し、好ましくは1~50質量部、より好ましくは2~30質量部、さらに好ましくは3~15質量部)添加することにより、当該接着剤が硬化する際に収縮するのを抑制することができる。また、当該収縮抑制剤をエポキシ樹脂接着剤に添加したとしてもエポキシ樹脂接着剤の接着性にはほとんど悪影響を与えない。なお、本発明の収縮抑制剤を添加するエポキシ樹脂接着剤は、上記(A)エポキシ樹脂と(B)硬化剤とを含有する接着剤が好ましい。なお、当該エポキシ樹脂接着剤における(A)エポキシ樹脂及び(B)硬化剤の詳細、並びに当該エポキシ樹脂接着剤用硬化時収縮抑制剤として用いる、体積平均粒子径が1~25μmの球状ポリオレフィン系樹脂粒子の詳細についても、上記の通りである。
 本発明を下記実施例によって具体的に説明するが、これらは本発明を例示するためのものであり、本発明の範囲を制限しない。
接着剤硬化皮膜評価方法
 <硬化方法>
 縦76mm×横52mmのスライドガラスに厚さ1mmのマスキングテープをガラス両端から10mmに張り、この上に接着剤を適量垂らしたのちスクレーパーにて接着剤を均一に伸ばし、ガラス表面の縦56mm×横32mmに塗布した。150℃、3時間で一次硬化、乾燥し、180℃、3時間で二次硬化、乾燥後、室温まで放冷した。
 <収縮率>
 上記硬化乾燥後の皮膜について、以下の式により、皮膜の収縮率を算出した。
収縮率(%)={塗工面面積(cm)-乾燥皮膜面積(cm)}/塗工面面積(cm)×100
収縮率が30%以下であれば、低収縮率といえる。
 <碁盤目試験>
 JIS K5600(旧JIS K5400)(碁盤目剥離テープ法試験)を参考に、カッターを用いて、すきま間隔3mmの碁盤目状(10×10の100マス)の切り傷(ガラス版にまで到達している)を付けた後、皮膜上の当該切り傷部にガムテープを貼り付けた。次いで、テープを貼り付けてから1~2分後に、テープの一方の端を持って直角に引き剥がし接着性を評価した。評価基準は下記の通りである。なお、当該評価基準でいう「格子」とは、皮膜上に付けた碁盤目状の10×10の100マスの切り傷のことである。
碁盤目試験評価基準;
○格子が剥がれないか、剥がれても20%未満である。
△格子が20%以上剥がれる。
×格子が50%以上剥がれる。
 <ずれせん断強度>
 縦76mm×横45mm×厚さ1mmのアルミ板に厚さ1mmのマスキングテープをアルミ板両端から10mmに張り、この上に接着剤を適量垂らしたのちスクレーパーにて接着剤を均一に伸ばし、アルミ板表面の縦56mm×横25mmに塗布した。同様な大きさの被着体となるアルミ板を接着面積25mm×10mmになるように被着体側のアルミ板をずらして密着させ、150℃のオーブンで、1時間で硬化乾燥させ、室温で25℃、1時間、放冷で冷却することでアルミ板同士を接着させ、オートグラフ(SHIMADZU AGS-J)にて、引っ張り速度1mm/minで接着されたアルミ板のずれせん断強度を測定した。
 <粒子形状測定方法>
 製造したポリオレフィン系樹脂粒子を、電子顕微鏡(日本電子(株)製 JEOL JSM-6390LA)で50~300倍に拡大し、当該拡大図を観察することにより、当該ポリオレフィン系樹脂粒子の形状を確認した。形状については上述したように、ポリオレフィン系樹脂粒子の最長となる径と最短となる径の比率(最長径/最短径)が0.98~1.02であれば球状と判定した。
 なお、下記製造例3で得られた粒子についての電子顕微鏡観察結果を図1に、下記製造例7で得られた粒子についての電子顕微鏡観察結果を図2に、それぞれ示す。
 <粒子径測定方法>
 電気検知式粒度分布測定装置(ベックマンコールター社製 コールターマルチサイザー)にて体積平均粒子径を測定した。具体的には、100mlのビーカーにISOTONII(ベックマンコールター社製 電解液)を20ml、アルキル硫酸ナトリウム等のアニオン系界面活性剤を0.2ml混合した。そこへ下記の各々の製造例で得られた粒子を0.1g添加し、スパチュラで撹拌しながら3分間超音波をあてて粒子を分散させた。この分散液を用いて電気検知式粒度分布測定装置(ベックマンコールター社製 コールターマルチサイザー)にて体積平均粒子径を測定した。
 (製造例1)
 500mL容の攪拌機付き耐圧容器に、低密度ポリエチレン樹脂(LDPE)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、180℃まで昇温した。容器内を180℃に保って30分間攪拌した。次いで、50℃まで冷却して、ポリエチレンの水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、体積平均粒子径10μmの球状ポリエチレン粒子を得た。
 (製造例2)
 500mL容の攪拌機付き耐圧容器に、低密度ポリエチレン樹脂(LDPE)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、180℃まで昇温した。容器内を180℃に保って30分間攪拌した。次いで、50℃まで冷却して、ポリエチレンの水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、ポリエチレン粒子を得た。得られた粒子80gに疎水性処理シリカ粒子(日本アエロジル社製 R972)0.32gを添加し、ミキサーにて攪拌混合し、分級して、体積平均粒子径が10μmの球状ポリエチレン粒子を得た。
 (製造例3)
 500mL容の攪拌機付き耐圧容器に、高密度ポリエチレン樹脂(HDPE)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、180℃まで昇温した。容器内を180℃に保って30分間攪拌した。次いで、50℃まで冷却して、ポリエチレンの水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、ポリエチレン粒子を得た。得られた粒子80gに疎水性処理シリカ粒子(日本アエロジル社製 R972)0.32gを添加し、ミキサーにて攪拌混合し、分級して、体積平均粒子径13μmの球状ポリエチレン粒子を得た(図1参照)。
 (製造例4)
 500mL容の攪拌機付き耐圧容器に、エチレン-グリシジルメタクリレート共重合体樹脂(GMA含有量20質量%)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、150℃まで昇温した。容器内を150℃に保って30分間攪拌した。次いで、50℃まで冷却して、エチレン-グリシジルメタクリレート共重合体の水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、エチレン-グリシジルメタクリレート共重合体粒子を得た。得られた粒子80gに疎水性処理シリカ粒子(日本アエロジル社製 RX200)0.32gを添加し、ミキサーにて攪拌混合し、分級して、体積平均粒子径17μmの球状エチレン-グリシジルメタクリレート共重合体粒子を得た。
 (製造例5)
 500mL容の攪拌機付き耐圧容器に、変性ポリオレフィン樹脂(エチレン-無水マレイン酸共重合体 無水マレイン酸含有量3質量%)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、180℃まで昇温した。容器内を180℃に保って30分間攪拌した。次いで、50℃まで冷却して、エチレン-無水マレイン酸共重合体の水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、エチレン-無水マレイン酸共重合体粒子を得た。得られた粒子80gに疎水性処理シリカ粒子(日本アエロジル社製 R974)0.32gを添加し、ミキサーにて攪拌混合し、分級して、体積平均粒子径9μmの球状エチレン-無水マレイン酸共重合体粒子を得た。
 (製造例6)
 500mL容の攪拌機付き耐圧容器に、エチレン-アクリル酸共重合体樹脂(アクリル酸含有量7質量%)を100g、乳化剤としてエチレンオキシド-プロピレンオキシド共重合体(株式会社ADEKA製、商品名:プルロニックF108、エチレンオキシド含有割合80質量%)15g、および水135gを仕込み密閉した。引き続き、毎分500回転で攪拌しながら、180℃まで昇温した。容器内を180℃に保って30分間攪拌した。次いで、50℃まで冷却して、エチレン-アクリル酸共重合体の水分散体を得た。その水分散液をろ紙によりろ過、水洗し、60℃で24時間、減圧乾燥機にて乾燥し、ポリエチレン粒子を得た。得られた粒子80gに疎水性処理シリカ粒子(東ソーシリカ社製 ニップシールSS100)0.32gを添加し、ミキサーにて攪拌混合し、分級して、体積平均粒子径12μmの球状エチレン-アクリル酸共重合体粒子を得た。
 (製造例7)
 1000ml容の四つ口フラスコに130℃~140℃の熱キシレン495g、低密度ポリエチレン(LDPE)  25gを仕込み、高速攪拌しつつ室温にて放冷し、ポリエチレンの微粉を析出させた。析出したポリマーを取り出し、水洗、乾燥しポリエチレン粒子を得た。これを分級して、体積平均粒子径15μmの粒子を得た。この粒子の形状は異形状であった(図2参照)。
 (製造例8)
 製造例2により得られた粒子を分級して、体積平均粒子径が30μmの粒子を得た。
 (実施例1)
<エポキシ樹脂の調製>
 メチルエチルケトン溶媒にビスフェノールA型エポキシ樹脂(エピクロン 1050;DIC社製 エポキシ当量476)を70質量%濃度になるように溶解させた。
<硬化剤の調製>
 メチルエチルケトン溶媒にエポキシ樹脂用フェノール系硬化剤(HF-1M:明和化成(株)社製 フェノール価105)を70質量%濃度になるように溶解させた。
<エポキシ樹脂接着剤の調製>
 上記メチルエチルケトンに溶解させた70質量%濃度のエポキシ樹脂およびフェノール系硬化樹脂の溶液を、質量比で4.5:1(エポキシ当量:フェノール価=1:1)になるように混合した溶液95質量部に対して、製造例1で得られた低密度ポリエチレン粒子5質量部を添加し、撹拌、混合してエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (実施例2)
 ポリオレフィン系樹脂粒子として製造例2で得られた低密度ポリエチレン粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (実施例3)
 ポリオレフィン系樹脂粒子として製造例3で得られた高密度ポリエチレン粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (実施例4)
 ポリオレフィン系樹脂粒子として製造例4で得られたエチレン-グリシジルメタクリレート共重合体粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (実施例5)
 ポリオレフィン系樹脂粒子として製造例5で得られたエチレン-無水マレイン酸共重合体粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (実施例6)
 ポリオレフィン系樹脂粒子として製造例6で得られたエチレン-アクリル酸共重合体粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (比較例1)
 低密度ポリエチレン粒子を添加しなかった以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (比較例2)
 ポリオレフィン系樹脂粒子として製造例8で得られた体積平均粒子径が30μmの低密度ポリエチレン粒子に変更した以外は同様に評価した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (比較例3)
 ポリオレフィン系樹脂粒子として製造例7で得られた低密度ポリエチレン粒子を用いた以外は実施例1と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
 (比較例4)
 実施例2において低密度ポリエチレン粒子を55重量部添加した以外は実施例2と同様にしてエポキシ樹脂接着剤を調製した。得られた接着剤を用いて、上記硬化条件にて作成した皮膜について各評価方法に従って評価した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、エポキシ樹脂接着剤に、体積平均粒子径が1~25μmの球状のポリオレフィン系樹脂粒子を、エポキシ樹脂100質量部に対して1~50質量部添加することで、硬化時の応力緩和による低収縮の効果があることが分かる。さらに共重合ポリオレフィン系樹脂粒子を添加することで、低収縮の効果と、ずれせん断強度が向上することが分かる。
 本発明によるエポキシ樹脂接着剤は、熱硬化させることによって、低収縮性、接着性に優れた硬化物を得ることができ、このエポキシ樹脂接着剤を塗工した形成物の接着性や、この接着剤の塗布物、および被着体となる基材のしわや反り等の問題を解決することができる。

Claims (6)

  1.  (A)エポキシ樹脂、(B)硬化剤および(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有し、
    前記ポリオレフィン系樹脂粒子が球状であり、
    前記エポキシ樹脂100質量部に対し、前記ポリオレフィン系樹脂粒子は1~50質量部含有される、
    エポキシ樹脂接着剤。
  2.  (A)エポキシ樹脂、(B)硬化剤および(C)体積平均粒子径が1~25μmのポリオレフィン系樹脂粒子を含有し、
    前記ポリオレフィン系樹脂粒子が球状であり、
    前記エポキシ樹脂および前記硬化剤の総量100質量部に対し、前記ポリオレフィン系樹脂粒子は1~50質量部含有される、
    エポキシ樹脂接着剤。
  3. ポリオレフィン系樹脂が、低密度ポリエチレン、高密度ポリエチレン、エチレンとエポキシ基含有モノマーとの共重合体、エチレンと酸変性基含有モノマーとの共重合体、及びエチレンとエチレン性不飽和モノマーとの共重合体からなる群より選ばれる少なくとも1種を含む、請求項1または2に記載のエポキシ樹脂接着剤。
  4. 前記ポリオレフィン系樹脂粒子が、シリカにより被覆されている、請求項1~3のいずれか1項に記載のエポキシ樹脂接着剤。
  5. シリカの添加量が、前記ポリオレフィン系樹脂粒子100質量部に対して0.1~1質量部である、請求項4に記載のエポキシ樹脂接着剤。
  6. 体積平均粒子径が1~25μmの、球状ポリオレフィン系樹脂粒子を含む、エポキシ樹脂接着剤用硬化時収縮抑制剤。
PCT/JP2014/081848 2013-12-16 2014-12-02 エポキシ樹脂接着剤 WO2015093281A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/102,981 US11242476B2 (en) 2013-12-16 2014-12-02 Epoxy resin adhesive agent
CN201480068820.2A CN105829481B (zh) 2013-12-16 2014-12-02 环氧树脂胶粘剂
JP2015553463A JP6526571B2 (ja) 2013-12-16 2014-12-02 エポキシ樹脂接着剤
KR1020167015912A KR102261598B1 (ko) 2013-12-16 2014-12-02 에폭시 수지 접착제
EP14872044.4A EP3085751B1 (en) 2013-12-16 2014-12-02 Epoxy resin adhesive agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-259158 2013-12-16
JP2013259158 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015093281A1 true WO2015093281A1 (ja) 2015-06-25

Family

ID=53402630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081848 WO2015093281A1 (ja) 2013-12-16 2014-12-02 エポキシ樹脂接着剤

Country Status (6)

Country Link
US (1) US11242476B2 (ja)
EP (1) EP3085751B1 (ja)
JP (1) JP6526571B2 (ja)
KR (1) KR102261598B1 (ja)
CN (1) CN105829481B (ja)
WO (1) WO2015093281A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207110A1 (de) * 2015-04-20 2016-10-20 Volkswagen Aktiengesellschaft Klebstoffzusammensetzung mit verbesserter Delta-Alpha-Toleranz, dazugehöriges Fügeverfahren und erhältliches Verbundwerkstück
JP2016210905A (ja) * 2015-05-11 2016-12-15 日本化薬株式会社 樹脂組成物の製造方法
TWI629308B (zh) * 2016-04-21 2018-07-11 山榮化學股份有限公司 Thermosetting resin composition and electronic component mounting substrate
WO2018131570A1 (ja) 2017-01-10 2018-07-19 住友精化株式会社 エポキシ樹脂組成物
JP2020079383A (ja) * 2019-09-02 2020-05-28 日本化薬株式会社 樹脂組成物の製造方法
US11066510B2 (en) 2015-07-10 2021-07-20 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition, process for producing same, and uses of said composition
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11111382B2 (en) 2017-01-10 2021-09-07 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11292872B2 (en) 2017-01-10 2022-04-05 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
WO2023033075A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物
WO2023033076A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物
WO2023033074A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396332B1 (ko) * 2015-09-22 2022-05-12 삼성전자주식회사 Led 디스플레이용 미세간격 코팅부재 및 이를 이용한 코팅방법
EP3974488A4 (en) * 2019-05-20 2023-05-31 Sumitomo Seika Chemicals Co., Ltd. ADHESIVE COMPOSITION
CN114423801B (zh) * 2019-07-19 2024-08-06 蓝立方知识产权有限责任公司 用于环氧粉末涂料的酚醛硬化剂
CN115074049A (zh) * 2022-08-05 2022-09-20 深圳市图特美高分子材料有限公司 一种高粘结强度的环氧胶膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140371A (ja) * 1984-07-31 1986-02-26 Hitachi Chem Co Ltd 接合用ワニス
JPH07228847A (ja) * 1994-02-15 1995-08-29 Ricoh Co Ltd 接着剤及び接着方法
JP2001261931A (ja) 2000-03-14 2001-09-26 Toshiba Chem Corp 液状封止用樹脂組成物
JP2001279056A (ja) 2000-03-31 2001-10-10 Toray Ind Inc 半導体封止用エポキシ樹脂組成物
JP2002105283A (ja) * 2000-09-28 2002-04-10 Nhk Spring Co Ltd エポキシ樹脂分散体およびそれを用いた銅張り積層板及び銅張り金属基板
JP2005036136A (ja) 2003-07-17 2005-02-10 Jsr Corp 低弾性率熱硬化性樹脂組成物および該組成物を用いた熱硬化性フィルム、ならびにそれらの硬化物
JP2008038070A (ja) 2006-08-09 2008-02-21 Toshiba Corp エポキシ接着剤、それを用いた注型品およびエポキシ接着剤を用いた注型品の製造方法
JP2009114241A (ja) * 2007-11-02 2009-05-28 Sakuranomiya Kagaku Kk シリカ微粒子を被覆したエチレン−酢酸ビニル共重合体ケン化物微粒子からなる複合微粒子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390530A (ja) 1986-10-03 1988-04-21 Toray Ind Inc 半導体封止用エポキシ樹脂組成物
JP2006265337A (ja) 2005-03-23 2006-10-05 Dainippon Ink & Chem Inc 金属用塗料組成物
JP5515220B2 (ja) 2008-01-18 2014-06-11 株式会社安川電機 真空用機器に用いられる封止樹脂組成物、これを用いた真空用機器および真空用磁気センサ
JP2010189550A (ja) * 2009-02-18 2010-09-02 Sumitomo Seika Chem Co Ltd 塗料組成物
US8546491B2 (en) * 2009-09-04 2013-10-01 Sumitomo Seika Chemicals Co., Ltd. Polyolefin-based composite resin spherical particles, coating composition, and coated object
JP5724401B2 (ja) * 2011-01-19 2015-05-27 富士ゼロックス株式会社 樹脂粒子及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140371A (ja) * 1984-07-31 1986-02-26 Hitachi Chem Co Ltd 接合用ワニス
JPH07228847A (ja) * 1994-02-15 1995-08-29 Ricoh Co Ltd 接着剤及び接着方法
JP2001261931A (ja) 2000-03-14 2001-09-26 Toshiba Chem Corp 液状封止用樹脂組成物
JP2001279056A (ja) 2000-03-31 2001-10-10 Toray Ind Inc 半導体封止用エポキシ樹脂組成物
JP2002105283A (ja) * 2000-09-28 2002-04-10 Nhk Spring Co Ltd エポキシ樹脂分散体およびそれを用いた銅張り積層板及び銅張り金属基板
JP2005036136A (ja) 2003-07-17 2005-02-10 Jsr Corp 低弾性率熱硬化性樹脂組成物および該組成物を用いた熱硬化性フィルム、ならびにそれらの硬化物
JP2008038070A (ja) 2006-08-09 2008-02-21 Toshiba Corp エポキシ接着剤、それを用いた注型品およびエポキシ接着剤を用いた注型品の製造方法
JP2009114241A (ja) * 2007-11-02 2009-05-28 Sakuranomiya Kagaku Kk シリカ微粒子を被覆したエチレン−酢酸ビニル共重合体ケン化物微粒子からなる複合微粒子

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207110A1 (de) * 2015-04-20 2016-10-20 Volkswagen Aktiengesellschaft Klebstoffzusammensetzung mit verbesserter Delta-Alpha-Toleranz, dazugehöriges Fügeverfahren und erhältliches Verbundwerkstück
DE102015207110B4 (de) * 2015-04-20 2021-06-02 Volkswagen Aktiengesellschaft Klebstoffzusammensetzung mit verbesserter Delta-Alpha-Toleranz, dazugehöriges Fügeverfahren und Verwendung der Klebstoffzusammensetzung
JP2016210905A (ja) * 2015-05-11 2016-12-15 日本化薬株式会社 樹脂組成物の製造方法
US11066510B2 (en) 2015-07-10 2021-07-20 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition, process for producing same, and uses of said composition
US10870725B2 (en) 2016-04-21 2020-12-22 San-Ei Kagaku Co., Ltd. Heat curable resin composition, and circuit board with electronic component mounted thereon
TWI629308B (zh) * 2016-04-21 2018-07-11 山榮化學股份有限公司 Thermosetting resin composition and electronic component mounting substrate
KR20190099480A (ko) 2017-01-10 2019-08-27 스미토모 세이카 가부시키가이샤 에폭시 수지 조성물
WO2018131570A1 (ja) 2017-01-10 2018-07-19 住友精化株式会社 エポキシ樹脂組成物
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11111382B2 (en) 2017-01-10 2021-09-07 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11292872B2 (en) 2017-01-10 2022-04-05 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
KR102459581B1 (ko) * 2017-01-10 2022-10-27 스미토모 세이카 가부시키가이샤 에폭시 수지 조성물
US11603466B2 (en) 2017-01-10 2023-03-14 Sumitomo Seika Chemicals Co.. Ltd. Epoxy resin composition
JP2020079383A (ja) * 2019-09-02 2020-05-28 日本化薬株式会社 樹脂組成物の製造方法
WO2023033075A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物
WO2023033076A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物
WO2023033074A1 (ja) * 2021-08-31 2023-03-09 住友精化株式会社 接着剤組成物

Also Published As

Publication number Publication date
EP3085751B1 (en) 2020-02-26
JPWO2015093281A1 (ja) 2017-03-16
EP3085751A1 (en) 2016-10-26
US20160355711A1 (en) 2016-12-08
JP6526571B2 (ja) 2019-06-05
KR20160097216A (ko) 2016-08-17
CN105829481B (zh) 2019-08-30
US11242476B2 (en) 2022-02-08
EP3085751A4 (en) 2017-07-19
KR102261598B1 (ko) 2021-06-07
CN105829481A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015093281A1 (ja) エポキシ樹脂接着剤
TW201529709A (zh) 樹脂組成物
BR112018071368B1 (pt) Tinta de resina epóxi de dois componentes
TW201925339A (zh) 基於脂肪酸改質的環氧樹脂與固化劑之固化型組成物
JP2014531495A (ja) 銀被覆粒子含有導電性接着剤
JP2008248128A (ja) チップ用保護膜形成用シートおよび保護膜付半導体チップ
JP7185289B2 (ja) 電磁波シールド用スプレー塗布剤
JP2011116996A (ja) 電子部品用接着剤
JP7024356B2 (ja) 一液型エポキシ樹脂組成物、硬化物、及びその用途
JPWO2017078056A1 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6453638B2 (ja) 2液型下塗り塗料組成物
JP2010132840A (ja) 接着シート用エポキシ樹脂組成物
JP4567377B2 (ja) 潜在性硬化剤および組成物
JP2011079964A (ja) 電気絶縁材料およびその製造方法、それを用いた電気機器絶縁物の製造方法
JP2016117869A (ja) 半導体接着用樹脂組成物及び半導体装置
JP2006307050A (ja) 一液型下塗塗料組成物及び塗装方法
JP6894221B2 (ja) 異方性導電フィルム、これを含む積層フィルム、およびこれらの製造方法
TWI722192B (zh) 片型接著劑及使用其之接著方法
JP6385116B2 (ja) 加熱硬化型エポキシ樹脂用硬化剤及びそれを含む一液性加熱硬化型エポキシ樹脂組成物
JP7552753B2 (ja) 被着体の接着方法
KR102045446B1 (ko) 내식성 및 환경친화성이 우수한 열경화성 비스페놀 f형 에폭시 분체도료 조성물 및 그 조성물로 도장된 파이프
JP2023063118A (ja) 封止材組成物および封止材
WO2019107198A1 (ja) 半導体用接着フィルム及び半導体用接着シート
JP2023137042A (ja) 一液性エポキシ樹脂組成物用マスターバッチ型硬化剤、及びエポキシ樹脂組成物
TW202344652A (zh) 樹脂組成物及熱硬化型接著薄片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553463

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102981

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167015912

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014872044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872044

Country of ref document: EP