WO2015069075A1 - 전해동박, 이를 포함하는 전기부품 및 전지 - Google Patents

전해동박, 이를 포함하는 전기부품 및 전지 Download PDF

Info

Publication number
WO2015069075A1
WO2015069075A1 PCT/KR2014/010737 KR2014010737W WO2015069075A1 WO 2015069075 A1 WO2015069075 A1 WO 2015069075A1 KR 2014010737 W KR2014010737 W KR 2014010737W WO 2015069075 A1 WO2015069075 A1 WO 2015069075A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
heat treatment
elongation
tensile strength
Prior art date
Application number
PCT/KR2014/010737
Other languages
English (en)
French (fr)
Inventor
이선형
조태진
박슬기
송기덕
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Priority to ES14860894T priority Critical patent/ES2695229T3/es
Priority to JP2016548995A priority patent/JP6379207B2/ja
Priority to US15/030,447 priority patent/US10686191B2/en
Priority to EP14860894.6A priority patent/EP3067199B1/en
Priority to PL14860894T priority patent/PL3067199T3/pl
Priority to CN201480061120.0A priority patent/CN105705329B/zh
Publication of WO2015069075A1 publication Critical patent/WO2015069075A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil, an electric component including an electrolytic copper foil, and a battery. More particularly, the present invention relates to a low roughness, a high strength, and a high stretch electrolytic copper foil having high tensile strength and elongation even after high temperature heat treatment.
  • Copper foil is generally used as an electrical power collector of a secondary battery.
  • the copper foil is mainly used for rolling copper foil by rolling, but the manufacturing cost is expensive and it is difficult to manufacture a wide copper foil.
  • the rolled copper foil needs to use lubricating oil during rolling, adhesion to the active material may be deteriorated due to contamination of the lubricating oil, thereby degrading charge and discharge cycle characteristics of the battery.
  • Lithium batteries are accompanied by heat generation due to volume change and overcharge during charging and discharging.
  • the surface of the copper foil to improve the adhesion to the electrode active material and to prevent the occurrence of wrinkles, fractures, etc. in the copper foil as a current collector due to less influence on the copper foil substrate in relation to the expansion and contraction of the active material layer according to the charge and discharge cycle
  • the illuminance should be low. Therefore, a high drawing, high strength and low roughness copper foil capable of withstanding the volume change and exothermic phenomenon of the lithium battery and excellent adhesion to the active material is required.
  • TAB tape automated bonding
  • One aspect of the present invention is to provide a new electrolytic copper foil.
  • Another aspect of the invention is to provide an electrical component comprising an electrolytic copper foil.
  • Another aspect of the invention is to provide a battery comprising an electrolytic copper foil.
  • the center line average roughness (Ra), the maximum height (Rmax) and the 10-point average height (Rz) of the precipitation surface satisfy the following equation.
  • the electrolytic copper foil may have a tensile strength of 40 kgf / mm 2 to 70 kgf / mm 2 before heat treatment, and a tensile strength after heat treatment may also be 40 kgf / mm 2 to 70 kgf / mm 2 .
  • the heat treatment may be performed at 180 ° C. for 1 hour.
  • the tensile strength after heat treatment is preferably 85% to 99% of the tensile strength before heat treatment.
  • the electrolytic copper foil may have an elongation of 2% to 15% before heat treatment, and an elongation after heat treatment may be 4% to 15%.
  • the heat treatment may be performed at 180 ° C. for 1 hour. Further, the elongation after heat treatment may be 1 to 4.5 times the elongation before heat treatment.
  • the corner curl angle of the electrolytic copper foil may be 0 ° to 45 °, the corner curl height may be 0 mm to 40 mm, the thickness of the electrolytic copper foil may be 2 ⁇ m to 10 ⁇ m.
  • a battery including the electrolytic copper foil as described above is proposed.
  • the insulating substrate According to another aspect of the invention, the insulating substrate; And an electrolytic copper foil attached to one surface of an insulating substrate.
  • the electrolytic copper foil of the present invention exhibits a high gloss even before the post-treatment process because of a small difference between the average of the maximum vertical distance and the vertical distance of the surface element protruding from the precipitation surface, thereby improving product quality.
  • the electrolytic copper foil according to the present invention exhibits high strength and high elongation at the same time, so that the stress inside the electrolytic copper foil is small, thereby preventing the curling phenomenon. Therefore, the electrolytic copper foil according to the present invention exhibits low roughness, high strength, and high elongation, which is advantageous in performing a process and reduces product defective rate, and when used in a product such as a negative electrode current collector of a PCB or a secondary battery, product reliability may be improved. .
  • FESEM field emission scanning electron microscopy
  • Figure 2 is a 10,000-fold FESEM image of the electrolytic copper foil according to an embodiment of the present invention.
  • Figure 3 is a 50,000 times FESEM image of the electrolytic copper foil according to an embodiment of the present invention.
  • Figure 4 is a 100,000-fold FESEM image of the electrolytic copper foil according to an embodiment of the present invention.
  • 5 is a 100,000 times FESEM image of the electrolytic copper foil according to an embodiment of the present invention.
  • FIG. 6 is an X-ray diffraction (XRD) spectrum of the precipitated surface of the electrolytic copper foil prepared in Example 1.
  • XRD X-ray diffraction
  • FIG. 7 is a scanning electron microscopy (SEM) image of the surface of the electrolytic copper foil prepared in Example 1.
  • SEM scanning electron microscopy
  • FIG. 8 is an SEM image of the surface of the electrolytic copper foil of Example 2.
  • FIG. 9 is an SEM image of the surface of the electrolytic copper foil of Example 3.
  • FIG. 10 is an SEM image of the surface of the electrolytic copper foil of Example 4.
  • FIG. 11 is an SEM image of the surface of the electrolytic copper foil of Comparative Example 1.
  • FIG. 12 is an SEM image of the surface of the electrolytic copper foil of Comparative Example 2.
  • FIG. 13 is an SEM image of the surface of the electrolytic copper foil of Comparative Example 3.
  • FIG. 14 is an SEM image of the surface of the electrolytic copper foil of Comparative Example 4.
  • the center line average roughness Ra, the maximum height Rmax, and the ten-point average height Rz of the precipitated surface satisfy the following equation.
  • an electrolytic copper foil according to the present invention an electric component and a battery including the electrolytic copper foil, and an electrolytic copper foil manufacturing method will be described in more detail.
  • Electrolytic copper foil according to an embodiment of the present invention satisfies the following equation.
  • Ra is the centerline average roughness of the deposited surface ( ⁇ m)
  • Rmax is the maximum height ( ⁇ m)
  • Rz means the 10-point average height ( ⁇ m).
  • Ra is the average roughness on the precipitation surface, which represents the sum of the absolute values of the area between the actual surface and the centerline, that is, the height of the contour of the measurement section surface.
  • Rmax means the vertical distance from the highest protruding surface element, ie the highest peak to the deepest dig, the deepest valley. In other words, Rmax means the maximum vertical distance of the surface element.
  • Rz is the average of the heights of the five highest peaks measured over the entire measurement interval plus the depth of the five deepest valleys.
  • the 'surface element' refers to a part that protrudes on the surface of the electrodeposited copper foil as a bright part visible on the precipitation surface, and the higher one of the surface elements is called a peak, and a valley between the surface elements is called a valley.
  • the electrolytic copper foil which concerns on this invention has very high glossiness of a precipitation surface.
  • the electrolytic copper foil is obtained by depositing copper foil on the surface of the cathode drum by supplying a current between the rotating cathode drum and the anode immersed in the copper electrolyte bath, the surface of the electrolytic copper foil in contact with the cathode drum (Shiny side, S side), The opposite side is called precipitation side.
  • the deposited surface is the surface on which the electrolytic copper copper foil is deposited as it is, so as a rule, the gloss is low and the surface roughness is high. Therefore, the precipitation surface is subjected to a treatment to lower the surface roughness through the post-treatment and to give gloss as necessary.
  • the glossiness of the precipitation surface of the electrolytic copper foil according to the present invention is high even after the post-treatment step.
  • 1 is a field emission scanning electron microscopy (FESEM) image of 2,000 times the electrolytic copper foil according to an embodiment of the present invention.
  • the precipitated surface is generally not as high in glossiness as the uneven surface appears in the case of 2,000 times FESEM analysis.
  • the precipitated surface of the electrolytic copper foil according to the present invention exhibits a gloss like a mirror image similar to the glossy surface.
  • the unevenness that is, the surface element
  • the unevenness may be identified on the surface as the resolution is increased.
  • irregularities it is difficult to identify irregularities even in a 10,000-fold FESEM image, and irregularities are confirmed at ultra-high resolutions such as 50,000-fold FESEM and 100,000-fold FESEM analysis.
  • the electrolytic copper foil according to the present invention has a uniform size and height of the surface element of the precipitation surface.
  • the results of a 100,000-fold FESEM analysis with 52 degrees tilt for the same sample are shown in FIG. 5.
  • Fig. 5 the valleys between the protruding surface elements are more clearly shown.
  • the surface glossiness is improved when the area where the valley is exposed to the outside or the number of valleys is small. If the roughness is judged as the volume of the surface element, the peak and the valley are sharply formed if the height of the peak is high at the same surface roughness. In other words, if the surface roughness is the entire area where the surface elements protrude or enter the surface, the surface elements are sharply formed if the peak height is high and the depth of the valley is deep at the same surface roughness. This means that if the peak height is low and the valley depth is shallow at the same surface roughness, the surface elements are blunt.
  • the valley which is a dark region appearing on the surface, may further affect the glossiness.
  • the valley if the depth of the valley is deep and the average diameter is small, there are less dark areas on the outside, so that the gloss can be improved without further treatment.
  • the valley at the precipitation surface of the electrolytic copper foil according to the present invention has a relatively deep depth and a small average diameter in terms of gloss.
  • the surface element In order to have a deep valley and a small average diameter, the surface element must be high and sharp.
  • the electrolytic copper foil according to an embodiment of the present invention satisfies the following equation.
  • Ra is the centerline average roughness of the deposited surface ( ⁇ m)
  • Rmax is the maximum height ( ⁇ m)
  • Rz is the 10-point average height ( ⁇ m).
  • Rmax minus Rz is the height of the highest peak of the surface element and the depth of the five deepest valleys at Rmax, which is the sum of the height from the centerline of the highest peak among the surface elements and the depth from the centerline of the largest deep valley.
  • Rz minus the average of the sum it means the difference between the average value of each of five peaks and valleys including the maximum vertical length and the highest peak and valley based on the center line of the surface element. If the difference is large, it means that the difference between the highest peak and the remaining four heights is large, which means that the surface element is formed to have a difference in height or depth as a whole.
  • the surface roughness Rz of the precipitated surface is 1.4 ⁇ m or less
  • the tensile strength after heat treatment is 40 kgf / mm 2 or more
  • the elongation is 4% or more.
  • the electrolytic copper foil has a high tensile strength of 40 kgf / mm 2 and a low roughness copper foil having a Rz of 1.4 ⁇ m or less, and thus has high mechanical strength. At the same time, the electrolytic copper foil has a high elongation of 4% or more even after high temperature.
  • the electrolytic copper foil according to the present invention has a curl angle of 0 ° to 45 °.
  • the corner curl angle refers to the angle at which the end of the electrolytic copper foil, that is, the corner or edge, is bent when the electrolytic copper foil is placed on a flat floor.
  • Edge curling of the electrolytic copper foil is known to occur when the internal energy of the electrolytic copper foil is uneven.When edge curling occurs, a large number of defects may occur, such as tearing of corners in a lamination process in a PCB process, and a lithium secondary battery process. In the case of coating the active material may cause problems such as tearing or folding of the edges or wrinkles.
  • the corner curl angle of the electrolytic copper foil is preferably 0 ° to 45 °.
  • the electrolytic copper foil is laid out on a flat floor, cut into X characters, and the height at which the cut portion rises is called a corner curl height, and the corner curl height is preferably 0 mm to 40 mm.
  • the degree of curling is expected to be large.
  • the impurities are not present in the copper grain boundary, the internal stress is lowered, thereby lowering the degree of curling.
  • the electrolytic copper foil may be used simultaneously for a printed circuit board (PCB) / FPC (flexible PCB) and a current collector for a battery.
  • PCB printed circuit board
  • FPC flexible PCB
  • the surface roughness Rz of the deposited surface of the electrodeposited copper foil exceeds 1.4 ⁇ m, the contact surface between the surface of the electrodeposited copper foil for the negative electrode current collector and the active material may be reduced, and thus the lifespan of the charge / discharge cycle and the initial electric charge may be reduced.
  • the surface roughness Rz of the precipitation surface exceeds 1.4 ⁇ m, it is not easy to form a high density circuit having a fine pitch in the printed wiring board.
  • the electrolytic copper foil has a high strength property of 40kgf / mm 2 to 70kgf / mm 2 tensile strength.
  • the electrolytic copper foil has a tensile strength of 40kgf / mm 2 to 70kgf / mm 2 even after the heat treatment.
  • the heat treatment may be carried out, for example, at 150 ° C. to 220 ° C., and specifically, at 180 ° C.
  • the heat treatment can be carried out over 30 minutes, 1 hour, 2 hours and several hours.
  • the heat treatment is to measure the tensile strength of the electrolytic copper foil, and is a process for obtaining a tensile strength or elongation maintained at a value which does not change to a certain level when the electrolytic copper foil is stored or put into a subsequent process.
  • the electrolytic copper foil has a tensile strength of less than 40kgf / mm 2 after heat treatment, it may be difficult to handle because the mechanical strength is weak.
  • the electrolytic copper foil has a tensile strength after heat treatment similar to that of the electrolytic copper foil.
  • the tensile strength after the heat treatment of the electrolytic copper foil is preferably 85% to 99% of the tensile strength before the heat treatment. If the strength is maintained even after the heat treatment, handling in subsequent steps is easy and the yield is high.
  • the electrolytic copper foil may have an elongation of 2% to 15% before heat treatment.
  • the electrolytic copper foil may have an elongation of 4% to 15% after heat treatment, and the heat treatment may be performed at 180 ° C. for 1 hour.
  • the elongation after heat treatment may be 1 to 4.5 times the elongation before heat treatment.
  • the elongation after heat treatment in the electrolytic copper foil is less than 4%, cracks may occur when the subsequent process is a high temperature process.
  • the process of manufacturing the negative electrode current collector is a high temperature process, and cracks may occur due to the volume change of the active material layer during charging and discharging. Therefore, the predetermined elongation must be maintained after heat treatment.
  • the electrolytic copper foil was obtained in the XRD spectrum of the precipitated surface in which I (200) / is a ratio of the intensity of the diffraction peak (I (200)) to the (200) crystal plane and the intensity of the diffraction peak (I (111)) to the (111) crystal plane.
  • I 111 may be between 0.5 and 1.0.
  • the diffraction angle for the (111) crystal plane is shown at the diffraction angle (2 ⁇ ) 43.0 ° ⁇ 1.0 ° in the XRD spectrum for the precipitation surface, and the diffraction angle (2 ⁇ ) 50.5 ° ⁇ 1.0 ° Represents a diffraction peak with respect to the (200) crystal plane, and the intensity ratio I (200) / I (111) may be 0.5 to 1.0 or more.
  • I (200) / I (111) may be 0.5 to 0.8.
  • the orientation index (M (200)) with respect to the (200) crystal plane M (200) / M (111), which is a ratio of the orientation index obtained from the orientation index (M (111)) to the (111) crystal plane may be 1.1 to 1.5.
  • the orientation index is a value obtained by dividing the relative peak intensity of a particular crystal plane with respect to an arbitrary sample by the relative peak intensity of a property crystal plane obtained from a standard sample that is non-oriented with respect to all crystal planes.
  • M (200) / M (111) in the electrolytic copper foil may be 1.2 to 1.4.
  • the electrolytic copper foil may have an elongation of 10% or more after heat treatment at 180 ° C. for 1 hour. That is, the electrolytic copper foil may have a high elongation of 10% or more after high temperature heat treatment. For example, the electrolytic copper foil may have an elongation of 10% to 20% after high temperature heat treatment. For example, the electrolytic copper foil may have an elongation of 10% to 15% after high temperature heat treatment. For example, the electrolytic copper foil may have an elongation of 10% to 13% after high temperature heat treatment. The electrolytic copper foil may have an elongation of 2% or more before heat treatment. For example, the electrolytic copper foil may have an elongation of 2% to 20% before heat treatment.
  • the electrolytic copper foil may have an elongation of 5% to 20% before heat treatment.
  • the electrolytic copper foil may have an elongation of 5% to 15% before heat treatment.
  • the electrolytic copper foil may have an elongation of 5% to 10% before heat treatment.
  • the term “before heat treatment” refers to 25 ° C. to 130 ° C., which is a temperature before heat treatment at a high temperature.
  • the elongation is a value obtained by dividing the elongated distance up to the time immediately before the electrolytic copper foil is broken by the initial length of the electrolytic copper foil.
  • the surface roughness Rz of the electrodeposited copper foil may be 0.7 ⁇ m or less.
  • the electrolytic copper foil may be used as both a copper foil for PCB / FPC and a copper foil for negative electrode current collector for secondary batteries by having a low roughness of Rz of 0.7 ⁇ m or less.
  • the surface roughness Rz of the deposited surface of the electrolytic copper foil may be 0.5 ⁇ m or less.
  • the surface roughness Rz of the deposited surface of the electrolytic copper foil may be 0.45 ⁇ m or less.
  • the surface roughness Ra of the deposited surface of the electrolytic copper foil may be 0.15 ⁇ m or less.
  • the electrolytic copper foil may be used as both a copper foil for PCB / FPC and a copper foil for negative electrode current collector for secondary batteries by having a low roughness of Ra is 0.15 ⁇ m or less.
  • the surface roughness Ra of the precipitation surface of the electrolytic copper foil may be 0.12 ⁇ m or less.
  • the surface roughness Ra of the precipitation surface of the electrolytic copper foil may be 0.11 ⁇ m or less.
  • the tensile strength after heat treatment of the electrolytic copper foil may be 85% or more of the tensile strength before heat treatment.
  • the tensile strength after heat treatment at 180 ° C. of the electrolytic copper foil for 1 hour may be 90% or more of the tensile strength before heat treatment.
  • the tensile strength before heat treatment is the tensile strength of the copper foil obtained without high temperature heat treatment.
  • Tensile strength before heat treatment of the electrolytic copper foil may be 40kgf / mm 2 to 70kgf / mm 2 .
  • Glossiness (Gs (60 °)) in the width direction of the precipitation surface in the electrolytic copper foil may be 500 or more.
  • the glossiness (Gs (60 °)) in the width direction of the precipitation surface in the electrolytic copper foil may be 500 to 1000.
  • the glossiness is a value measured according to JIS Z 871-1997.
  • the thickness of the electrolytic copper foil may be 35 ⁇ m or less.
  • the thickness of the electrolytic copper foil may be 6 to 35 ⁇ m.
  • the thickness of the electrolytic copper foil may be 6 to 18 ⁇ m.
  • the thickness of the electrolytic copper foil may be 2 to 10 ⁇ m.
  • surface treatment may be additionally performed to make the adhesiveness practical or higher.
  • the surface treatment on the copper foil include any one or a combination of heat and chemical resistance treatments, chromate treatments, silane coupling treatments, and the like. Depending on the process conditions it is carried out by a person of ordinary skill in the art.
  • An electrical component includes an insulating substrate; And the electrolytic copper foil described above attached to one surface of the insulating substrate, and includes a circuit formed by etching the electrolytic copper foil.
  • the electrical component is, for example, TAB tape, printed wiring board (PCB), flexible printed circuit board (FPC, Flexible PCB) and the like, but not necessarily limited to these, by using the electrolytic copper foil attached to the insulating substrate in the art Anything that can be used in.
  • a battery according to an exemplary embodiment includes the electrolytic copper foil.
  • the electrolytic copper foil may be used as a negative electrode current collector of the battery, but is not necessarily limited thereto, and may be used as other components used in the battery.
  • the battery is not particularly limited and includes all primary and secondary batteries, and any battery that can be used in the art as a battery using an electrolytic copper foil as a current collector, such as a lithium ion battery, a lithium polymer battery, or a lithium air battery It is possible.
  • Electrolytic copper foil manufacturing method is an additive A; Additive B; Electrolyzing a copper electrolyte comprising the additive C and the additive D; wherein the additive A is at least one selected from the group consisting of a thiol group compound and a compound in which a thiol group is connected to a heterocyclic ring containing nitrogen, the additive B is a sulfonic acid or metal salt thereof of a compound containing a sulfur atom, and the additive C is a nonionic water soluble polymer;
  • the additive D is a phenazinium compound.
  • the electrolytic copper foil manufacturing method may include a low thickness copper foil having a thin thickness, high mechanical strength and high stretching by including additives of a new composition.
  • the copper electrolyte may include chlorine (chlorine ion) having a concentration of 1 to 40 ppm. The presence of a small amount of chlorine ions in the copper electrolyte increases the initial nucleation site during electroplating, resulting in fine grains, and the precipitation of CuCl 2 formed at the grain boundary interface inhibits crystal growth when heated to high temperatures, thereby improving thermal stability at high temperatures. Can be improved.
  • the concentration of the chlorine ion is less than 1 ppm, the concentration of chlorine ions required in the sulfuric acid-copper sulfate electrolyte may be insufficient, thereby lowering the tensile strength before heat treatment and lowering the thermal stability at high temperature. If the concentration of chlorine ion is more than 40 ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture low roughness electrolytic copper foil, lowering tensile strength before heat treatment, and lowering thermal stability at high temperature.
  • the content of the additive A in the copper electrolyte solution is 1 to 10ppm
  • the content of the additive B is 10 to 200ppm
  • the content of the additive C is 5 to 40ppm
  • the content of the additive D may be 1 to 10ppm.
  • the additive A may improve the production stability of the electrolytic copper foil and improve the strength of the electrolytic copper foil. If the content of the additive A is less than 1ppm, the tensile strength of the electrolytic copper foil may be lowered. If the content of the additive A is more than 10ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture the electrolytic copper foil of low roughness and the tensile strength may be lowered.
  • the additive B in the copper electrolyte may improve the surface gloss of the electrolytic copper foil. If the content of the additive B is less than 10ppm the gloss of the electrolytic copper foil may be lowered, if the content of the additive B is more than 200ppm the surface roughness of the precipitation surface is increased, making it difficult to manufacture a low-light electrolytic copper foil and the tensile strength of the electrolytic copper foil may be lowered. .
  • the additive C in the copper electrolyte may lower the surface roughness of the electrolytic copper foil and improve surface gloss. If the content of the additive C is less than 5ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture low-temperature electrolytic copper foil, and the gloss of the electrolytic copper foil may be lowered. If the content of the additive C is more than 40ppm, there is a difference in physical properties or appearance of the electrolytic copper foil. It may not be economical.
  • the additive D in the copper electrolyte may serve to improve the flatness of the surface of the electrolytic copper foil.
  • the content of the additive D is less than 1ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture low-temperature electrolytic copper foil, and the gloss of the electrolytic copper foil may be lowered.
  • the tensile strength of may be inhibited.
  • the thiourea compounds include diethylthiourea, ethylenethiourea, acetylenethiourea, dipropylthiourea, dibutylthiourea, N-trifluoroacetylthiourea, N-ethylthiourea (N -ethylthiourea), N-cyanoacetylthiourea, N-allylthiourea, o-tolylthiourea, N, N'-butylene thiourea (N , N'-butylene thiourea, thiozolidinethiol, 4-thiazolinethiol, 4-methyl-2-pyrimidinethiol, 2-thiouracil It may be one or more selected from the group consisting of (2-thiouracil), but is not necessarily limited thereto, and any thiourea compound usable as an additive in the art is possible.
  • Compounds in which thiol groups are linked to the heterocycle including nitrogen are, for example, 2-mercapto-5-benzoimidazole sulfonic acid sodium salt, sodium 3- (5- Mercapto-1-tetrazolyl) benzene sulfonate, 2-mercapto benzothiazole.
  • the sulfonic acid or metal salt thereof of the compound containing the sulfur atom is, for example, bis- (3-sulfopropyl) -disulfide disodium salt (SPS), 3-mercapto-1-propanesulfonic acid (MPS), 3- (N , N-dimethylthiocarbamoyl) -thiopropanesulfonate sodium salt (DPS), 3-[(amino-iminomethyl) thio] -1-propanesulfonate sodium salt (UPS), o-ethyldithiocarbonato -S- (3-sulfopropyl) -ester sodium salt (OPX), 3- (benzothiazolyl-2-mercapto) -propyl-sulfonic acid sodium salt (ZPS), ethylenedithiodipropylsulfonic acid sodium salt (Ethylenedithiodipropylsulfonic acid sodium salt), Thioglycolic acid,
  • the nonionic water-soluble polymer is polyethylene glycol, polyglycerol, hydroxyethyl cellulose, carboxymethyl cellulose (Carboxymethylcellulose), nonylphenol polyglycol ether, octane diol-bis- (polyalkylene glycol ether (Octane diol- bis- (polyalkylene glycol ether), octanol polyalkylene glycol ether, oleic acid polyglycol ether, polyethylene propylene glycol, polyethylene glycol dimethyl ether dimethyl ether, polyoxypropylene glycol, polyvinyl alcohol, ⁇ -naphthol polyglycol ether, stearic acid polyglycol ether, stearyl alcohol Stearyl alcohol polyglycol ether
  • the polyethylene glycol may have a molecular weight of 2000
  • the phenazinium compound may be at least one selected from the group consisting of safranine-O, Janus Green B, and the like.
  • the temperature of the copper electrolyte used in the production method may be 30 to 60 °C, but is not necessarily limited to this range can be appropriately adjusted within the range to achieve the object of the present invention.
  • the temperature of the copper electrolyte may be 40 to 50 °C.
  • the current density used in the manufacturing method may be 20 to 500A / dm 2 , but is not necessarily limited to this range and may be appropriately adjusted within a range capable of achieving the object of the present invention.
  • the current density may be 30 to 40 A / dm 2 .
  • the copper electrolyte may be sulfuric acid-copper sulfate copper electrolyte.
  • the concentration of the Cu 2+ ions in the sulfuric acid-copper sulfate copper electrolyte may be 60 g / L to 180 g / L, but is not necessarily limited thereto, and may be appropriately adjusted within a range capable of achieving the object of the present invention. have.
  • the concentration of Cu 2+ may be 65 g / L to 175 g / L.
  • the copper electrolyte may be prepared by a known method.
  • the concentration of Cu 2+ ions can be obtained by adjusting the amount of copper ions or copper sulfate added, and the concentration of SO 4 2+ ions can be obtained by adjusting the amount of sulfuric acid and copper sulfate added.
  • the concentration of the additives included in the copper electrolyte solution may be obtained from the dose and molecular weight of the additives added to the copper electrolyte solution, or may be obtained by analyzing the additives contained in the copper electrolyte solution by a known method such as column chromatography.
  • the electrolytic copper foil may be manufactured by a known method except for using the above-described copper electrolyte.
  • the electrolytic copper foil may be prepared by supplying and electrolyzing the copper electrolyte between the curved cathode surface of the rotating titanium drum-shaped titanium and the anode to precipitate the electrolytic copper foil on the cathode surface and winding it continuously to produce an electrolytic copper foil.
  • an electrolytic cell system having a capacity of 3 L capable of circulation at 20 L / min was used, and the temperature of the copper electrolyte was kept constant at 45 ° C.
  • the positive electrode was a 5 mm thick, 10 ⁇ 10 cm 2 Dimentionally Stable Electrode (DSE) electrode plate, and the negative electrode used a titanium electrode plate having the same size and thickness as the positive electrode.
  • DSE Dimentionally Stable Electrode
  • plating was performed at a current density of 35 A / dm 2 , and an electrolytic copper foil having a thickness of 18 ⁇ m was prepared.
  • the basic composition of the copper electrolyte is as follows:
  • Chlorine ions and additives are added to the copper electrolyte, and the composition of the added additives and chlorine ions is shown in Table 1 below.
  • ppm is the same concentration as mg / L.
  • a scanning electron micrograph of the prepared electrolytic copper foil deposition surface (matte surface, M surface) is shown in FIG.
  • An electrolytic copper foil was manufactured in the same manner as in Example 1 except that the composition of the copper electrolyte was changed as in Table 1 below. Scanning electron microscope photographs of the surface of the precipitated surfaces of the electrolytic copper foils prepared in Examples 2 to 4 and Comparative Examples 1 to 4 are shown in FIGS. 8 to 14, respectively.
  • PEG polyethylene glycol (canto chemical Cas No. 25322-68-3)
  • PGL Polyglycerine (KCI, PGL 104KC)
  • the electrolytic copper foils of Examples 1 to 4 had a lower surface roughness than the electrolytic copper foils of Comparative Examples 1 to 4.
  • Glossiness was measured about the surface of the precipitation surface of the electrolytic copper foil obtained in Examples 1-4 and Comparative Examples 1-4.
  • the glossiness is a value measured according to JIS Z 871-1997.
  • Glossiness was measured by irradiating measurement light on the surface of the copper foil along the flow direction (MD direction) of the electrolytic copper foil at an incident angle of 60 ° and measuring the intensity of light reflected at a reflection angle of 60 °. It measured based on 8741-1997.
  • the electrolytic copper foils of Examples 1 to 4 exhibited improved glossiness as compared to the electrolytic copper foils of Comparative Examples 1 to 4.
  • X-ray diffraction (XRD) spectra of the precipitated surfaces of the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were measured.
  • XRD spectra for Example 1 are shown in FIG. 6.
  • the peak intensity of the (111) crystal plane was the highest, followed by the (200) crystal plane.
  • I (200) / I (111) which is the ratio of the intensity (I (200)) of the diffraction peak with respect to the (200) crystal plane and the intensity (I (111)) of the diffraction peak with respect to the (111) crystal plane, was 0.605.
  • Orientation indexes are S. Yoshimura, S. Yoshihara, T. Shirakashi, E. Sato, Electrochim. Measurement was performed using the orientation index (M) proposed in Acta 39, 589 (1994).
  • an orientation index (M) is calculated in the following manner.
  • IFR (111) IF (111) / ⁇ IF (111) + IF (200) + IF (220) + IF (311) ⁇
  • IR (111) I (111) / ⁇ I (111) + I (200) + I (220) + I (311) ⁇
  • IF 111 is the XRD intensity on JCPDS Cards and I 111 is the experimental value. If M (111) is greater than 1, it has a preferred orientation parallel to the (111) plane, and if M is less than 1, it means that the preferred orientation is reduced.
  • the ratio of the orientation index obtained from the orientation index (M (200)) to the (200) crystal plane and the orientation index (M (111)) to the (111) crystal plane in the XRD spectrum of the precipitation surface M (200) / M (111) was 1.31.
  • the surface roughness Rz, Ra, and Rmax of the precipitation surface of the electrolytic copper foil obtained in Examples 1-4 and Comparative Examples 1-4 were measured in accordance with JISB0601-1994.
  • Surface roughness Rz, Ra and Rmax obtained by the above measuring method are shown in Table 4 below. Lower values mean lower roughness.
  • Evaluation Example 5 Measurement of room temperature tensile strength, room temperature elongation, high temperature tensile strength and high temperature elongation
  • IPC-TM-650 2.4.18B Specification of tensile test was performed on the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 with a width of 12.7 mm X gauge length of 50 mm and a tensile test at a crosshead speed of 50.8 mm / min.
  • the maximum load of the tensile strength measured and carried out in accordance with the above was called room temperature tensile strength, and the elongation at break was called room temperature elongation. Room temperature is 25 degreeC here.
  • the same electrolytic copper foil used for measuring tensile strength and elongation at room temperature was taken out after heat treatment at 180 ° C. for 1 hour, and the tensile strength and elongation were measured in the same manner as described above, and were referred to as high temperature tensile strength and high temperature elongation.
  • Example 1 0.81 0.30 0.08 6.37 46.15 7.21 43.30 11.63
  • Example 2 0.73 0.28 0.07 6.42 42.28 5.00 40.16 12.06
  • Example 3 0.89 0.38 0.10 5.10 45.41 6.16 41.55 9.38
  • Example 4 0.91 0.44 0.11 4.27 44.74 6.62 40.78 10.53 Comparative Example 1 2.02 0.67 0.16 8.43 86.65 2.18 77.91 3.30 Comparative Example 2 1.81 0.48 0.10 13.30 98.76 1.30 92.30 1.74 Comparative Example 3 3.84 0.46 0.24 14.08 52.81 1.64 49.53 1.87 Comparative Example 4 3.63 0.38 0.25 13.00 70.73 1.71 64.30 1.47
  • the electrolytic copper foils of Examples 1 to 4 had a low surface roughness Rz of less than 0.5 ⁇ m, a tensile strength of 40 kgf / mm 2 or more after high temperature heat treatment, and a high elongation rate of 10% or more after high temperature heat treatment. .
  • the electrolytic copper foils of Comparative Examples 1 to 4 have higher surface roughness and lower elongation after high temperature heat treatment than the electrolytic copper foils of Examples 1 to 4, so that they can be used as negative current collectors for secondary batteries and / or low-low copper foils for PDB / FPC. It was inappropriate.
  • the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were sampled to a width of 10 cm X 10 cm, and then placed on a flat bottom, and the corner portions were bent at an angle (corner curling angle) and cut off with an X-shaped cut.
  • the coming height (corner curling height) was measured and shown in Table 5 below.
  • the electrolytic copper foils of Examples 1 to 4 had a curling angle of 5 to 30 ° and 45 ° or less.
  • the curling angles of the corners were 46 ° to 52 °, exceeding 45 °, and exhibited a difficult handling condition in subsequent steps.
  • the electrolytic copper foils of Comparative Examples 1 to 4 exhibited a state in which the quality of the curled edge was more than 40 mm. Therefore, the electrolytic copper foil according to the present invention exhibits excellent performance due to its high strength and low internal stress, resulting in less edge curl.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

석출면의 중심선평균거칠기(Ra), 최대높이(Rmax) 및 10점평균높이(Rz)가 하기 식을 만족시키는 전해동박이 제시된다. 1.5 ≤ (Rmax - Rz)/Ra ≤6.5. 본 발명에 따른 전해동박은 저조도 및 고강도를 유지하면서 높은 연신율을 나타내고, 특히 광택도가 높아, 중대형 리튬이온 2차 전지의 집전체 및 TCP(Tape Carrier Package)에 사용되는 TAB(Tape Automated Bonding)용 반도체 패키징(packaging) 기판 등에 사용될 수 있다.

Description

전해동박, 이를 포함하는 전기부품 및 전지
본 발명은 전해동박, 전해동박을 포함하는 전기부품 및 전지에 관한 것으로, 보다 상세하게는 고온 열처리 후에도 높은 인장강도와 연신율을 동시에 구비한 저조도, 고강도 및 고연신 전해동박에 관한 것이다.
이차전지의 집전체로는 일반적으로 동박이 사용된다. 상기 동박은 압연가공에 의한 압연동박이 주로 사용되나, 제조비용이 고가이고 광폭의 동박 제조가 어렵다. 또한, 압연동박은 압연 가공시 윤활유를 사용해야 하기 때문에 윤활유의 오염에 의해 활물질과의 밀착성이 저하되어 전지의 충방전 사이클 특성이 저하될 수 있다.
리튬전지는 충방전시 체적변화 및 과충전에 따른 발열현상을 수반한다. 또한, 전극활물질과의 밀착성을 향상시키고 충방전 사이클에 따른 활물질층의 팽창 수축과 관련하여 동박 기재에 영향을 덜 받아 집전체로서의 동박에 주름, 파단 등의 발생을 방지하는 효과가 있도록 동박의 표면 조도가 낮아야 한다. 따라서, 리튬전지의 체적변화 및 발열현상을 견딜 수 있고 활물질과의 밀착성이 우수한 고연신, 고강도 및 저조도 동박이 요구된다.
또한, 전자기기의 경박단소 요구로 인하여 고기능화, 소형화, 경량화에 따른 적은 면적 내에 회로의 집적도를 높이고자 반도체실장기판이나 메인보드 기판의 미세 배선화에 대한 요구가 증가하고 있다. 이러한 미세 패턴을 가지는 프린트 배선판의 제조에 두꺼운 동박이 이용되면 배선 회로 형성을 위한 에칭 시간이 길어지고 배선 패턴의 측벽 수직성이 저하된다. 특히, 에칭에 의해 형성되는 배선패턴의 배선 선폭이 좁은 경우에는 배선이 단선될 수 있다. 따라서, 미세 피치 회로를 얻기 위해서는, 보다 두께가 얇은 동박이 요구된다. 그러나, 얇은 동박은 동박의 두께가 제한되므로 기계적 강도가 약해 프린트 배선 기판의 제조시에 구김이나 꺽임 등의 불량 발생 빈도가 높아진다.
그리고, TCP(Tape Carrier Package)에 사용되는 TAB(Tape Automated Bonding)용 반도체 패키징(packaging) 기판 등에서 제품의 중앙부에 위치하는 디바이스홀(device hall)에 배치되는 이너리드(inner lead)에 대해 IC 칩의 복수의 단자를 직접 본딩하게 되며, 이 때 본딩장치를 이용하여 순간적으로 전류를 흘려 가열하며 일정한 압력을 가한다. 따라서, 전해동박의 에칭에 의하여 형성된 이너리드가 본딩압에 의하여 당겨져 늘어나게 된다.
따라서, 두께가 얇고, 기계적 강도가 높으면서도 고연신이 가능한 저조도 동박이 요구된다.
본 발명의 한 측면은 새로운 전해동박을 제공하는 것이다.
본 발명의 다른 한 측면은 전해동박을 포함하는 전기부품을 제공하는 것이다.
본 발명의 또 다른 한 측면은 전해동박을 포함하는 전지를 제공하는 것이다.
이상과 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 전해동박은, 석출면의 중심선평균거칠기(Ra), 최대높이(Rmax) 및 10점평균높이(Rz)가 하기 식을 만족시킨다.
1.5 ≤ (Rmax - Rz)/Ra ≤6.5.
전해동박은 열처리 전 인장강도가 40 kgf/mm2 내지 70 kgf/mm2일 수 있고, 열처리 후 인장강도 또한, 40 kgf/mm2 내지 70 kgf/mm2일 수 있다. 열처리는 180℃에서 1시간동안 수행될 수 있다. 나아가, 열처리 후 인장강도는 열처리 전 인장강도의 85 % 내지 99 %인 것이 바람직하다.
전해동박은 열처리 전 연신율이 2 % 내지 15 %일 수 있고, 열처리 후 연신율은 4 % 내지 15 %일 수 있다. 열처리는 180℃에서 1시간동안 수행될 수 있다. 나아가, 열처리 후 연신율은 열처리 전 연신율의 1배 내지 4.5배일 수 있다.
전해동박의 모서리 말림각도는 0 ° 내지 45°일 수 있고, 모서리 말림높이는 0mm 내지 40 mm일 수 있으며, 전해동박의 두께는 2㎛ 내지 10㎛일 수 있다.
본 발명의 다른 측면에 따르면, 상기와 같은 전해동박을 포함하는 전지가 제안된다.
본 발명의 또다른 측면에 따르면, 절연성 기재; 및 절연성 기재의 일 표면에 부착된 상기의 전해동박;을 포함하는 전기부품이 제안된다.
본 발명의 전해동박은 석출면에서 외부로 돌출된 표면요소의 최대수직거리와 수직거리의 평균의 차가 작아 후처리 공정 이전에도 고광택도를 나타내어 제품품질을 향상시키는 효과가 있다. 또한, 본 발명에 따른 전해동박은 고강도를 나타내면서도 이와 함께 고연신율을 나타내고, 전해동박 내부의 스트레스가 작아 모서리 말림 현상을 방지할 수 있다. 따라서, 본 발명에 따른 전해동박은 저조도, 고강도 및 고연신율을 나타내어 공정 수행이 유리하고 제품불량률을 감소시키며, PCB 또는 이차전지의 음극집전체 등과 같은 제품에 사용되는 경우, 제품신뢰성을 향상시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 전해동박의 2,000배 전계방출주사전자현미경(Field emission scanning electron microscopy, FESEM) 이미지이다.
도 2는 본 발명의 일실시예에 따른 전해동박의 10,000배 FESEM 이미지이다.
도 3은 본 발명의 일실시예에 따른 전해동박의 50,000배 FESEM 이미지이다.
도 4는 본 발명의 일실시예에 따른 전해동박의 100,000배 FESEM 이미지이다.
도 5는 본 발명의 일실시예에 따른 전해동박의 100,000배 FESEM 이미지이다.
도 6은 실시예 1에서 제조된 전해동박의 석출면에 대한 XRD(X-ray diffraction) 스펙트럼이다.
도 7은 실시예 1에서 제조된 전해동박의 표면에 대한 주사전자현미경(scanning electron microscopy, SEM) 이미지이다.
도 8은 실시예 2의 전해동박의 표면에 대한 SEM 이미지이다.
도 9는 실시예 3의 전해동박의 표면에 대한 SEM 이미지이다.
도 10은 실시예 4의 전해동박의 표면에 대한 SEM 이미지이다.
도 11은 비교예 1의 전해동박의 표면에 대한 SEM 이미지이다.
도 12는 비교예 2의 전해동박의 표면에 대한 SEM 이미지이다.
도 13은 비교예 3의 전해동박의 표면에 대한 SEM 이미지이다.
도 14는 비교예 4의 전해동박의 표면에 대한 SEM 이미지이다.
본 발명의 일 측면에 따른 전해동박은, 석출면의 중심선평균거칠기(Ra), 최대높이(Rmax) 및 10점평균높이(Rz)가 하기 식을 만족시킨다.
1.5 ≤ (Rmax - Rz)/Ra ≤6.5.
이하에서는 본 발명에 따른 전해동박, 상기 전해동박을 포함하는 전기부품 및 전지, 및 전해동박 제조방법에 관하여 더욱 상세히 설명한다.
본 발명의 일실시예에 따른 전해동박은 다음 식을 만족시킨다.
[수학식 1]
1.5 ≤ (Rmax - Rz)/Ra ≤6.5.
식 중, Ra는 석출면의 중심선평균거칠기이고(㎛), Rmax는 최대높이(㎛)이며, Rz는 10점평균높이(㎛)를 의미한다.
Ra(Roughness Average)는 석출면에서의 평균거칠기로서, 실제 표면과 중심선 사이 면적, 즉 측정구간표면 윤곽의 높이의 절대값의 합을 나타낸다. Rmax는 가장 높이 돌출된 표면요소, 즉 가장 높은 피크(peak)로부터 가장 깊게 파인 곳, 즉 가장 깊은 밸리(valley)까지의 수직거리를 의미한다. 즉 Rmax는 표면요소의 최대수직거리를 의미한다. Rz는 전체 측정구간에서 측정한 5개의 가장 높은 피크의 높이에 5개의 가장 깊은 밸리의 깊이를 더한 값의 평균값이다.
본 명세서에서 '표면요소'는 석출면에 보이는 밝은 부분으로서 전해동박의 표면에 돌출된 부분을 의미하는데, 표면요소 중 높은 것을 피크라 하고, 표면요소 사이에 파인 영역을 밸리라 한다.
본 발명에 따른 전해동박은 석출면의 광택도가 매우 높다. 전해동박은 구리전해액 욕조에 침지된 회전하는 음극드럼과 양극사이에서 전류를 공급하여 음극드럼 표면에 동박을 석출시켜 얻는데, 전해동박 중 음극드럼과 접촉하는 면은 광택면(Shiny side, S면)이고, 그 반대면을 석출면이라고 한다. 석출면은 드럼과 접촉하는 광택면과 달리 전해된 구리 동박이 그대로 석출되는 면이므로 원칙적으로 광택이 적고 표면조도가 높다. 따라서, 석출면은 후처리를 통해 표면조도를 낮추고 필요에 따라 광택을 부여하는 처리를 수행한다.
그러나, 본 발명에 따른 전해동박의 석출면의 광택도는 후처리공정 이전에도 높다. 도 1은 본 발명의 일실시예에 따른 전해동박의 2,000배 전계방출주사전자현미경(Field emission scanning electron microscopy, FESEM) 이미지이다.
석출면은 공정의 특성상 일반적으로 2,000배 FESEM 분석하는 경우, 표면에 요철이 나타나면서 광택도가 높지 않다. 반면, 도 1에서 본 발명에 따른 전해동박의 석출면은 광택면과 유사하게 거울상(mirror)과 같은 광택을 나타내고 있다.
FESEM 분석의 해상도를 높여서 도 2의 10,000배 FESEM 이미지, 도 3의 50,000배 FESEM 이미지 및 도 4의 100,000배 FESEM 이미지를 분석해보면, 해상도를 높일수록 표면에 요철, 즉 표면요소를 확인할 수 있다. 그러나, 10,000배 FESEM 이미지에서도 요철을 확인하기 어렵고, 50,000배 FESEM 및 100,000배 FESEM 분석과 같은 초고해상도에서 요철이 확인되고 있다.
도 4에서 본 발명에 따른 전해동박은 석출면의 표면요소의 크기 및 높이가 균일하다. 동일한 샘플에 대하여 52도 틸트(tilt)시켜 100,000배 FESEM 분석한 결과가 도 5에 나타나 있다. 도 5에서는 돌출된 표면요소 사이의 밸리가 더욱 명확히 나타난다.
전해동박의 표면이 동일한 표면조도를 갖는 경우에도 밸리가 외부로 드러나는 영역이 작거나 밸리의 개수가 작은 경우, 표면광택도는 향상된다. 조도를 표면요소의 부피로 판단한다면 동일한 표면조도에서 피크의 높이가 높다면 피크와 밸리가 예리하게 형성되어 있다고 볼 수 있다. 즉 표면조도를 표면에서의 표면요소가 돌출되거나 인입된 전체 영역이라고 한다면, 동일한 표면조도에서 피크의 높이가 높고 밸리의 깊이가 깊으면 표면요소가 예리하게 형성되어 있다고 할 수 있다. 이는 동일한 표면조도에서 피크의 높이가 낮고 밸리의 깊이가 얕다면 표면요소는 뭉툭하게 형성되어 있다고 할 수 있다.
이 경우, 석출면에서의 밸리의 깊이가 얕고, 외부로 보이는 어두운 부분의 평균직경이 크다면 표면에 나타난 어두운 영역인 밸리가 더 크게 광택도에 영향을 미칠 수 있다. 즉, 밸리의 깊이가 깊고, 평균직경이 작다면 외부에 어두운 영역이 적게 나타나 추가적인 처리없이도 광택도가 향상될 수 있는 것이다.
따라서, 본 발명에 따른 전해동박의 석출면에서의 밸리는 상대적으로 깊이는 깊고 평균직경은 작은 것이 광택도면에서 바람직하다. 밸리의 깊이가 깊고 평균직경이 작기 위해서는 표면요소의 높이가 높고, 예리하게 형성되어 있어야 한다.
이를 위하여, 본 발명의 일실시예에 따른 전해동박은 다음 식을 만족시킨다.
[수학식 1]
1.5 ≤ (Rmax - Rz)/Ra ≤6.5.
식 중, Ra는 석출면의 중심선평균거칠기이고(㎛), Rmax는 최대높이(㎛)이며, Rz는 10점평균높이(㎛)이다.
상기 식에서, (Rmax - Rz)/Ra 값은 6.5 이하이면 후처리 공정없이 우수한 광택도값을 얻을 수 있다. 반면, (Rmax - Rz)/Ra 값이 1.5 이하인 경우, Rmax와 Rz의 차이가 너무 작아, 표면요소의 피크부터 밸리까지의 값이 전체적으로 높아지게 되어 전체적인 표면조도가 높아지게 된다.
Rmax에서 Rz를 뺀 값은, 표면요소중 최대 높은 피크의 중심선으로부터의 높이와 최대 깊은 밸리의 중심선으로부터의 깊이를 더한 값인 Rmax에서 표면요소 중 가장 높은 피크 5개의 높이와 가장 깊은 밸리 5개의 깊이를 더한 값의 평균값인 Rz를 뺀 값이다. 즉, 표면요소의 중심선을 기준으로 한 최대수직길이와 가장 높은 피크 및 밸리를 포함한 높은 피크 및 밸리 각 5개의 평균값의 차이를 의미한다. 그 차이가 크다면, 가장 높은 피크와 나머지 4개의 높이 차이가 크다는 것을 의미하는데 이는 곧 전체적으로 표면요소가 높이나 깊이의 편차가 있도록 형성되어 있다는 것을 의미한다. 그 차이가 작다면, 높은 피크나 깊은 밸리가 많이 형성되어 있고, 표면요소의 높이의 편차가 많지 않다는 것을 의미한다. 다만, Rz가 5개의 피크 및 밸리값의 평균을 나타내므로 Ra를 식에 반영하여 평균적인 편차를 얻을 수 있다.
표면조도가 동일한 경우, (Rmax - Rz)/Ra가 크다면, 석출면의 표면요소들의 높이 편차가 크게 되고 표면요소는 뭉툭하게 형성되게 된다. (Rmax - Rz)/Ra가 작다면, 석출면 표면요소들의 높이편차가 작아 표면요소는 예리하게 형성되고, 이는 광택도 향상효과를 나타낸다. (Rmax - Rz)/Ra의 최대값 및 최소값에 대하여는 이하, 실시예를 참조하여 더 설명하기로 한다.
본 발명의 일실시예에 따른 전해동박은 석출면의 표면조도 Rz가 1.4㎛ 이하이며, 열처리 후 인장강도가 40kgf/mm2이상이며, 연신율이 4 % 이상이다.
상기 전해동박은 표면조도가 Rz가 1.4㎛ 이하의 저조도 동박이면서도 40kgf/mm2이상의 높은 인장강도를 가지므로 기계적 강도가 높다. 이와 동시에, 상기 전해동박은 고온을 거친 후에도 4% 이상의 고연신율을 가진다.
또한, 본 발명에 따른 전해동박은 모서리 말림(curl) 각도가 0 ° 내지 45°이다. 모서리 말림 각도는 전해동박을 평평한 바닥 위에 놓을 경우 전해동박의 끝부분, 즉 모서리나 가장자리가 휘어지는 각도를 의미한다. 전해동박의 모서리 말림현상은 전해동박의 내부 에너지가 불균일할 때 발생하는 것으로 알려져 있는데 모서리 말림이 발생할 경우, PCB공정에서 적층 등의 공정에서 모서리가 찢어지는 것과 같이 불량이 다수 발생할 수 있고, 리튬 이차전지 공정에서는 활물질 코팅 시 모서리가 찢어지거나 접히거나 또는 주름이 발생하는 등의 문제가 발생할 수 있다. 전해동박의 모서리 말림각도가 크면 후속공정에 사용하기 어려우므로 모서리 말림 각도는 0 ° 내지 45°인 것이 바람직하다. 또한, 전해동박을 평평한 바닥위에 펼쳐놓고 X자로 잘라, 자른 부분이 올라오는 높이를 모서리 말림높이라 하는데, 모서리 말림높이는 0mm 내지 40 mm인 것이 바람직하다. 본 발명에 따른 전해동박의 경우, 구리 결정 내에 불순물이 존재하여 강도가 높으므로 모서리 말림정도가 클 것으로 예상되나 구리결정립계에 불순물이 존재하지 않아 내부 스트레스가 낮아져 모서리 말림정도가 낮아지게 된다.
따라서, 상기 전해동박은 PCB(Printed Circuit Board)/FPC(Flexible PCB) 용도 및 전지의 집전체 용도로 동시에 사용될 수 있다.
상기 전해동박에서 석출면의 표면조도 Rz가 1.4㎛를 초과이면 음극집전체용 전해동박의 표면과 활물질과의 접촉면이 작아져서 충방전 사이클의 수명 및 충전 초기의 전기 용량이 낮아질 수 있다. 또한, 상기 석출면의 표면조도 Rz가 1.4㎛를 초과이면 프린트배선판에서 미세 피치를 가지는 고밀도 회로를 형성하는 것이 용이하지 않다.
상기 전해동박은 인장강도가 40kgf/mm2 내지 70kgf/mm2로 고강도 특성을 갖는다. 또한, 상기 전해동박은 열처리 후에도 인장강도가 40kgf/mm2 내지 70kgf/mm2이다. 열처리는 예를 들어 150℃ 내지 220℃에서 수행될 수 있고, 상세하게는 180℃에서 수행될 수 있다. 열처리는 30분, 1시간, 2시간 및 몇 시간에 걸쳐 수행될 수 있다. 열처리는 전해동박의 인장강도를 측정하기 위한 것으로서, 전해동박을 보관하거나 후속공정에 투입한 경우 일정 수준으로 변하지 않는 값으로 유지되는 인장강도나 연신율을 얻기 위한 처리이다.
상기 전해동박은 열처리 후 인장강도가 40kgf/mm2미만이면 기계적 강도가 약해 취급이 어려울 수 있다.
상기 전해동박은 열처리 후의 인장강도가 열처리 전의 인장강도와 유사한 것이 바람직하다. 상기 전해동박의 열처리 후의 인장강도는 열처리 전 인장강도의 85% 내지 99%인 것이 바람직한데, 열처리 후에도 강도를 유지하면 후속되는 공정에서의 취급이 용이하고 수율이 높아진다.
상기 전해동박은 열처리 전 연신율이 2% 내지 15%일 수 있다. 또한, 상기 전해동박은 열처리 후 연신율이 4% 내지 15%일 수 있는데, 열처리는 180℃에서 1시간 수행될 수 있다. 또는, 열처리 후 연신율은 열처리 전 연신율의 1배 내지 4.5배일 수 있다.
상기 전해동박에서 열처리 후 연신율이 4% 미만이면, 후속공정이 고온공정인 경우 크랙이 발생할 수 있다. 예를 들어, 상기 전해동박이 이차전지의 음극집전체로 사용되는 경우, 음극집전체 제조시의 공정이 고온공정이고, 충방전시에 활물질 층의 부피변화가 수반되므로 크랙이 발생하여 불량을 유발할 수 있으므로 열처리 후 소정 연신율을 유지하여야 한다.
상기 전해동박은 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 회절 피크의 강도(I(200))와 (111) 결정면에 대한 회절 피크의 강도(I(111))의 비인 I(200)/I(111)가 0.5 내지 1.0일 수 있다.
예를 들어, 도 6에서 보여지는 바와 같이 석출면에 대한 XRD 스펙트럼에서 회절 각도(2θ) 43.0°± 1.0°에서 (111) 결정면에 대한 회절 피크를 나타내며, 회절 각도(2θ) 50.5°± 1.0°에서 (200) 결정면에 대한 회절 피크를 나타내며, 이들의 강도비 I(200)/I(111)가 0.5 내지 1.0이상일 수 있다.
예를 들어, 상기 전해동박에서 I(200)/I(111)가 0.5 내지 0.8일 수 있다.상기 전해동박에서 상기 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 배향지수(M(200))와 (111) 결정면에 대한 배향지수(M(111))로부터 얻어지는 배향지수의 비인 M(200)/M(111)가 1.1 내지 1.5일 수 있다. 상기 배향지수(orientation index)는 임의의 시료에 대한 특정 결정면의 상대적인 피크 강도를 모든 결정면에 대하여 무배향인 표준 시료에서 얻어지는 특성 결정면의 상대적인 피크 강도로 나누어준 값이다. 예를 들어, 상기 전해동박에서 M(200)/M(111)가 1.2 내지 1.4일 수 있다.
상기 전해동박은 180℃에서 1시간 열처리 후 연신율이 10% 이상일 수 있다. 즉, 상기 전해동박은 고온열처리 후 연신율이 10% 이상인 고연신율을 가질 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 20%일 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 15%일 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 13%일 수 있다. 상기 전해동박은 열처리 전 연신율이 2% 이상일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 2% 내지 20%일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 5% 내지 20%일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 5% 내지 15%일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 5% 내지 10%일 수 있다. 상기 "열처리 전"이라는 용어는 고온상태로 열처리하기 전의 온도인 25℃ 내지 130℃를 의미한다. 상기 연신율은 전해동박이 파단되기 직전까지 연신된 거리를 전해동박의 최초길이로 나눈 값이다.
상기 전해동박은 석출면의 표면조도 Rz가 0.7㎛ 이하일 수 있다. 상기 전해동박은 Rz가 0.7㎛ 이하인 저조도를 가짐에 의하여 PCB/FPC 용 동박 및 이차전지용 음극집전체용 동박으로 모두 사용될 수 있다. 예를 들어, 상기 전해동박은 석출면의 표면조도 Rz가 0.5㎛ 이하일 수 있다. 예를 들어, 상기 전해동박은 석출면의 표면조도 Rz가 0.45㎛ 이하일 수 있다.
상기 전해동박은 석출면의 표면조도 Ra가 0.15㎛ 이하일 수 있다. 상기 전해동박은 Ra가 0.15㎛ 이하인 저조도를 가짐에 의하여 PCB/FPC 용 동박 및 이차전지용 음극집전체용 동박으로 모두 사용될 수 있다. 예를 들어, 상기 전해동박은 석출면의 표면조도 Ra가 0.12㎛ 이하일 수 있다. 예를 들어, 상기 전해동박은 석출면의 표면조도 Ra가 0.11㎛ 이하일 수 있다.
상기 전해동박의 열처리 후 인장강도가 열처리 전 인장강도의 85% 이상일 수 있다. 예를 들어, 상기 전해동박의 180℃에서 1시간 동안 열처리 후 인장강도가 열처리 전 인장강도의 90% 이상일 수 있다. 상기 열처리 전 인장강도는 고온 열처리 없이 얻어진 동박의 인장강도이다. 상기 전해동박의 열처리 전 인장강도는 40kgf/mm2 내지 70kgf/mm2일 수 있다.
상기 전해동박에서 석출면의 폭 방향에 대한 광택도(Gs(60°))가 500 이상일 수 있다. 예를 들어, 상기 전해동박에서 석출면의 폭 방향에 대한 광택도(Gs(60°))가 500 내지 1000일 수 있다. 상기 광택도는 JIS Z 871-1997에 따라 측정된 값이다.
상기 전해동박의 두께는 35㎛ 이하일 수 있다. 예를 들어, 상기 전해동박의 두께는 6 내지 35㎛ 일 수 있다. 예를 들어, 상기 전해동박의 두께는 6내지 18㎛ 일 수 있다. 또한, 예를 들어 상기 전해동박의 두께는 2 내지 10㎛ 일 수 있다.
상기 전해동박은 절연수지 등과 접착할 필요가 있는 경우, 밀착성을 실용 수준 또는 그 이상으로 만들기 위해서 표면 처리가 추가적으로 실시될 수 있다. 동박 상에서의 표면 처리로서는, 예를 들면 내열 및 내화학성 처리, 크로메이트 처리, 실란 커플링 처리 중 어느 하나 또는 이들의 조합 등을 들 수 있고, 어떤 표면 처리를 어떻게 실시하는가는 절연수지로 이용하는 수지나 공정조건에 따라서 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 선택하여 수행된다.
예시적인 일실시예에 따른 전기부품은 절연성 기재; 및 상기 절연성 기재의 일 표면에 부착된 상술한 전해동박;을 포함하며, 상기 전해동박을 에칭하여 형성된 회로를 포함한다.
상기 전기부품은 예를 들어, TAB 테이프, 프린트배선판(PCB), 연성프린트배선판(FPC, Flexible PCB) 등이나 반드시 이들로 한정되지 않으며, 상기 전해동박을 절연성 기재상에 부착시켜 사용하는 것으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.
예시적인 일실시예에 따른 전지는 상기 전해동박을 포함한다. 상기 전해동박은 상기 전지의 음극집전체로 사용될 수 있으나 반드시 이들로 한정되지 않으며 전지에 사용되는 다른 구성요소로도 사용될 수 있다. 상기 전지는 특별히 한정되지 않으며 1차 전지, 2차 전지를 모두 포함하며, 리튬이온전지, 리튬폴리머 전지, 리튬공기전지 등 전해동박을 집전체로 사용하는 전지로서 당해기술분야에서 사용할 수 있는 전지라면 모두 가능하다.
예시적인 일실시예에 따른 전해동박 제조방법은 첨가제 A; 첨가제 B; 첨가제 C 및 첨가제 D;를 포함하는 구리전해액을 전해하는 단계를 포함하며, 상기 첨가제 A가 티오우레아계 화합물 및 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물로 이루어진 군에서 선택된 하나 이상이며, 상기 첨가제 B가 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이며, 상기 첨가제 C가 비이온성 수용성 고분자이며; 상기 첨가제 D가 페나지늄(phenazinium)계 화합물이다.
상기 전해동박 제조방법은 새로운 조성의 첨가제들을 포함함에 의하여 두께가 얇고, 기계적 강도가 높으면서도 고연신이 가능한 저조도 동박을 제조할 수 있다. 상기 구리전해액은 농도 1 내지 40ppm의 염소(염소이온)를 포함할 수 있다. 구리전해액 중에 염소이온이 소량 존재하게 되면 전해도금시 초기 핵생성 사이트가 많아져서 결정립이 미세하게 되고 결정립계 계면에 형성되는 CuCl2의 석출물들이 고온으로 가열시 결정 성장을 억제하여 고온에서의 열적 안정성을 향상시킬 수 있다. 상기 염소이온의 농도가 1 ppm 미만이면 황산-황산동 전해액 중에 필요한 염소이온의 농도가 부족하여 열처리 전 인장강도가 저하되고 고온에서의 열적 안정성이 저하될 수 있다. 염소이온의 농도가 40 ppm 초과이면 석출면의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 열처리 전 인장강도가 저하되고 고온에서의 열적 안정성이 저하될 수 있다.
상기 구리전해액에서 상기 첨가제 A의 함량이 1 내지 10ppm이며, 상기 첨가제 B의 함량이 10 내지 200ppm이며, 상기 첨가제 C의 함량이 5 내지 40ppm이며, 상기 첨가제 D의 함량이 1 내지 10ppm 일 수 있다.
상기 구리전해액에서 첨가제 A는 전해동박의 제조 안정화를 향상시키고 전해동박의 강도를 향상시킬 수 있다. 상기 첨가제 A의 함량이 1ppm 미만이면 전해동박의 인장강도가 저하될 수 있으며, 상기 첨가제 A의 함량이 10ppm 초과이면 석출면의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 인장강도가 저하될 수 있다.
상기 구리전해액에서 첨가제 B는 전해동박의 표면광택을 향상시킬 수 있다. 상기 첨가제 B의 함량이 10ppm 미만이면 전해동박의 광택이 저하될 수 있으며, 상기 첨가제 B의 함량이 200ppm 초과이면 석출면의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 전해동박의 인장강도가 저하될 수 있다.
상기 구리전해액에서 첨가제 C는 전해동박의 표면 조도를 낮추고 표면광택을 향상시킬 수 있다. 상기 첨가제 C의 함량이 5ppm 미만이면 석출면의 표면조도가 상승하여 저도도의 전해동박 제조가 어렵고 전해동박의 광택이 저하될 수 있으며, 상기 첨가제 C의 함량이 40ppm 초과이면 전해동박의 물성이나 외관에 차이가 없으며 경제적이지 못할 수 있다.
상기 구리전해액에서 첨가제 D는 전해동박의 표면을 평평함을 향상시키는 역할을 수행할 수 있다. 상기 첨가제 D의 함량이 1ppm 미만이면 석출면의 표면조도가 상승하여 저도도의 전해동박 제조가 어렵고 전해동박의 광택이 저하될 수 있으며, 상기 첨가제 D의 함량이 40ppm 초과이면 전해동박의 석출상태가 불안정해지고 전해동박의 인장강도가 저해될 수 있다.
상기 티오우레아계 화합물은 디에틸티오우레아, 에틸렌티오우레아, 아세틸렌티오우레아, 디프로필티오우레아, 디부틸티오우레아, N-트리플루오로아세틸티오우레아(N-trifluoroacetylthiourea), N-에틸티오우레아(N-ethylthiourea), N-시아노아세틸티오우레아(N-cyanoacetylthiourea), N-알릴티오우레아(N-allylthiourea), o-톨릴티오우레아(o-tolylthiourea), N,N'-부틸렌 티오우레아(N,N'-butylene thiourea), 티오졸리딘티올(thiazolidinethiol), 4-티아졸리티올(4-thiazolinethiol), 4-메틸-2-피리미딘티올(4-methyl-2-pyrimidinethiol), 2-티오우라실(2-thiouracil)로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 첨가제로 사용가능한 티오우레아 화합물이라면 모두 가능하다. 상기 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물은 예를 들어, 2-머캅토-5-벤조이미다졸 술폰산 소듐염(2-mercapto-5-benzoimidazole sulfonic acid sodium salt), 소듐 3-(5-머캅토-1-테트라졸릴)벤젠 술포네이트(Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate), 2-머캅토 벤조티아졸(2-mercapto benzothiazole)일 수 있다.
상기 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염은 예를 들어, 비스-(3-술포프로필)-디설파이드 디소듐염(SPS), 3-머캅토-1-프로판술폰산(MPS), 3-(N,N-디메틸티오카바모일)-티오프로판술포네이트 소듐염(DPS), 3-[(아미노-이미노메틸)티오]-1-프로판술포네이트 소듐염(UPS), o-에틸디티오카보네이토-S-(3-설포프로필)-에스테르 소듐염(OPX), 3-(벤조티아졸릴-2-머캅토)-프로필-술폰산 소듐염(ZPS), 에틸렌디티오디프로필술폰산 소듐염(Ethylenedithiodipropylsulfonic acid sodium salt), 티오글리콜산(Thioglycolic acid), 티오포스포릭산-o-에틸-비스-(ω-술포프로필)에스테르 디소듐염(Thiophosphoric acid-o-ethyl-bis-(ω-sulfopropyl)ester disodium salt), 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염(Thiophosphoric acid-tris-(ω-sulfopropyl)ester trisodium salt)으로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 첨가제로 사용할 수 있는 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이라면 모두 가능하다.
상기 비이온성 수용성 고분자는 폴리에틸렌글리콜, 폴리글리세린, 하이드록시에틸셀룰로오스, 카르복시메틸셀룰로오스(Carboxymethylcellulose), 노닐페놀 폴리글리콜에테르(Nonylphenol polyglycol ether), 옥탄 디올-비스-(폴리알킬렌 글리콜 에테르(Octane diol-bis-(polyalkylene glycol ether), 옥탄올 폴리알킬렌 글리콜 에테르(Ocatanol polyalkylene glycol ether), 올레익산 폴리글리콜 에테르(Oleic acid polyglycol ether), 폴리에틸렌 프로필렌 글리콜(Polyethylene propylene glycol), 폴리에틸렌 글리콜 디메틸 에테르(Polyethylene glycol dimethyl ether), 폴리옥시프로필렌 글리콜(Polyoxypropylene glycol), 폴리비닐 알코올(Polyvinyl alcohol), β-나프톨 폴리글리콜 에테르(β-naphthol polyglycol ether), 스테아릭산 폴리글리콜 에테르(Stearic acid polyglycol eter), 스테아릴 알코올 폴리글리콜 에테르(Stearyl alcohol polyglycol ether)로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 첨가제로 사용될 수 있는 수용성 고분자라면 모두 가능하다. 예를 들어, 상기 폴리에틸렌글리콜은 분자량이 2000 내지 20000일 수 있다.
상기 페나지늄계 화합물은 사프라닌-O(Safranine-O), 야누스 그린 B(Janus Green B) 등으로 이루어진 군에서 선택된 하나 이상일 수 있다.
상기 제조방법에서 사용되는 구리전해액의 온도는 30 내지 60℃일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 구리전해액의 온도는 40 내지 50℃일 수 있다.
상기 제조방법에서 사용되는 전류밀도는 20 내지 500A/dm2일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 전류밀도는 30 내지 40 A/dm2일 수 있다. 상기 구리전해액은 황산-황산동 구리전해액일 수 있다. 상기 황산-황산동 구리전해액에서 상기 Cu2+이온의 농도는 60g/L 내지 180g/L일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 Cu2+의 농도는 65g/L 내지 175g/L 일 수 있다.
상기 구리전해액은 공지의 방법으로 제조될 수 있다. 예를 들어, Cu2+ 이온의 농도는 구리 이온 또는 황산구리의 첨가량을 조절하여 얻을 수 있으며, SO4 2+이온의 농도는 황산 및 황산구리의 첨가량을 조절하여 얻을 수 있다.
상기 구리전해액에 포함되는 첨가제들의 농도는 구리전해액에 투입되는 첨가제의 투입량 및 분자량에서 얻어지거나, 구리전해액에 포함된 첨가제들을 컬럼크로마토그래피와 같은 공지의 방법으로 분석하여 얻을 수 있다.
상기 전해동박의 제조방법은 상술한 구리전해액을 사용한 것을 제외하고는 공지의 방법으로 제조될 수 있다.
예를 들어, 상기 전해동박은 회전하는 티탄제 드럼상 티탄의 곡면상 음극 표면과 양극 사이에 상기 구리전해액을 공급하고 전해하여 음극 표면에 전해동박을 석출시키고 이를 연속적으로 권취하여 전해동박을 제조할 수 있다.
이하 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명이 이에 한정되는 것은 아니다.
(전해동박의 제조)
실시예 1
전해에 의한 전해동박을 제조하기 위해 20L/min으로 순환 가능한 3L용량의 전해조 시스템을 이용하였고 구리전해액의 온도는 45℃로 일정하게 유지하였다. 양극은 두께가 5mm이고, 크기가 10×10cm2의 DSE(Dimentionally Stable Electrode) 극판을 사용하였으며, 음극은 양극과 동일한 크기 및 두께를 가진 티타늄 극판을 사용하였다.
Cu2+이온의 이동을 원활하게 하기 위하여 전류밀도는 35A/dm2로 도금을 실시하였으며, 18㎛ 두께의 전해동박을 제조하였다.
구리전해액의 기본조성은 다음과 같다:
CuSO4·5H2O: 250~400g/L
H2SO4: 80~150g/L
상기 구리전해액에 염소이온 및 첨가제가 추가되며, 첨가된 첨가제 및 염소이온의 조성은 하기 표 1에 나타내었다. 하기 표 1에서 ppm은 mg/L와 동일한 농도이다.
제조된 전해동박 석출면(matte 면, M면)표면의 주사전자현미경 사진을 도 7에 나타내었다.
실시예 2 내지 4 및 비교예 1 내지 4
구리전해액의 조성을 하기 표 1에서와 같이 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다. 실시예 2 내지 4 및 비교예 1 내지 4에서 제조된 전해동박의 석출면 표면의 주사전자현미경 사진을 도 8 내지 14에 각각 나타내었다.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4
염소 농도 [ppm] 20 20 20 20 40 40 35 40
DET [ppm] 3 2 3 3 1.5 7
SPS [ppm] 60 45 45 55 55
MPS [ppm] 60 5 20
PEG [ppm] 20 20 20 20
ZPS [ppm] 40 10 40 30
JGB [ppm] 3
SAO [ppm] 3 3 3
2M-SS[ppm] 30 40
DDAC [ppm] 70 70
PGL [ppm] 30 10
상기 표 1에서 약자들은 하기 화합물들을 의미한다.
DET: 디에틸 티오우레아
SPS: 비스-(3-술포프로필)-디설파이드
MPS: 3-머캅토-1-프로판술폰산
PEG: 폴리에틸렌글리콜(칸토 케미칼 Cas No. 25322-68-3)
ZPS: 3-(벤조티아졸릴-2-머캅토)-프로필-술폰산 소듐염
JGB: 야누스 그린 B
2M-SS; 2-머캅토-5-벤조이미다졸 술폰산
DDAC: 디알릴디메틸암모늄클로라이드
PGL: 폴리글리세린(KCI, PGL 104KC)
평가예 1: 주사전자현미경 실험
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면의 표면에 대하여 주사전자현미경을 측정하여 그 결과를 도 7 내지 14에 각각 나타내었다.
도 7 내지 14에서 보여지는 바와 같이 실시예 1 내지 4의 전해동박은 비교예 1 내지 4의 전해동박에 비하여 표면조도가 낮았다.
평가예 2: 광택도 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면의 표면에 대하여 광택도를 측정하였다. 상기 광택도는 JIS Z 871-1997에 따라 측정된 값이다.
광택도의 측정은 전해동박의 흐름 방향(MD 방향)을 따라 당해 동박의 표면에 입사각 60°로 측정광을 조사하고, 반사각 60°로 반사된 빛의 강도를 측정한 것으로 광택도 측정 방법인 JIS Z 8741-1997에 준거하여 측정하였다.
측정 결과를 하기 표 2에 나타내었다.
표 2
광택도 [Gs(60°)]
실시예 1 700
실시예 2 699
실시예 3 630
실시예 4 680
비교예 1 438
비교예 2 472
비교예 3 353
비교예 4 451
상기 표 2에 기재된 바와 같이, 실시예 1 내지 4의 전해동박은 비교예 1 내지 4의 전해동박에 비하여 향상된 광택도를 나타내었다.
평가예 3: XRD 실험
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면에 대하여 XRD(X-ray diffraction) 스펙트럼을 측정하였다. 실시예 1에 대한 XRD 스펙트럼을 도 6에 나타내었다.
도 6에서 보여지는 바와 같이 (111) 결정면의 피크 강도가 가장 높으며, 다음이 (200) 결정면이었다.
상기 (200) 결정면에 대한 회절 피크의 강도(I(200))와 (111) 결정면에 대한 회절 피크의 강도(I(111))의 비인 I(200)/I(111)는 0.605이었다.
또한, 상기 석출면에 대한 XRD 스펙트럼에서 (111), (200), (220), (311), (222) 결정면에 대한 배향지수(orientation index, M)를 측정하여 그 결과를 하기 표 3에 나타내었다.
배향지수는 S.Yoshimura, S. Yoshihara, T.Shirakashi, E.Sato, Electrochim. Acta 39, 589(1994)에서 제안한 배향지수(M)을 사용하여 측정하였다.
예를 들어, (111) 면을 갖는 시편의 경우 다음과 같은 방법으로 배향지수(orientation index)(M)을 계산한다.
IFR(111)=IF(111)/{IF(111)+IF(200)+IF(220)+IF(311)}
IR(111)=I(111)/{I(111)+I(200)+I(220)+I(311)}
M(111)=IR(111)/IFR(111)
IF(111)은 JCPDS 카드(Cards) 에서의 XRD 강도이며 I(111)은 실험값이다. M(111)이 1보다 크면 (111)면에 평행한 우선 방위를 가지며, M이 1보다 작으면 우선방위가 감소함을 의미한다.
표 3
결정면 (111) (200) (220) (311) (222)
배향 지수 1.02 1.34 0.80 0.25 0.97
상기 표 3을 참조하여, 상기 석출면에 대한 XRD 스펙트럼에서 (200)결정면에 대한 배향지수(M(200))와 (111) 결정면에 대한 배향지수(M(111))로부터 얻어지는 배향지수의 비인 M(200)/M(111)는 1.31이었다.
평가예 4: 표면 조도(Rz, Ra 및 Rmax) 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면의 표면조도 Rz, Ra 및 Rmax를 JISB 0601-1994 규격에 따라 측정하였다. 상기 측정방법으로 얻어진 표면 조도 Rz, Ra 및 Rmax를 하기 표 4에 나타내었다. 값이 낮을수록 거칠기가 낮음을 의미한다.
평가예 5: 상온 인장강도, 상온 연신율, 고온 인장강도 및 고온 연신율 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박을 폭 12.7mm X 게이지 길이 50mm로 인장시편을 채취한 후 50.8 mm/min의 크로스헤드 속도로 인장시험을 IPC-TM-650 2.4.18B 규격에 따라 실시하여 측정되는 인장강도의 최대하중을 상온 인장강도라고 하고, 파단시의 연신율을 상온 연신율이라고 하였다. 여기서 상온은 25℃이다.
상온에서의 인장강도 및 연신율 측정에 사용된 전해동박과 동일한 전해동박을 180℃에서 1시간 열처리 후 꺼내어 상기와 동일한 방법으로 인장강도 및 연신율을 측정하고 고온 인장강도 및 고온 연신율이라고 하였다.
상기 측정방법으로 얻어진 상온 인장강도, 상온 연신율, 고온 인장강도, 고온 연신율을 하기 표 4에 나타내었다.
표 4
Rmax[㎛] Rz[㎛] Ra[㎛] (Rmax - Rz)/Ra 상온 인장강도[kgf/mm2] 상온 연신율[%] 고온 인장강도[kgf/mm2] 고온 연신율[%]
실시예1 0.81 0.30 0.08 6.37 46.15 7.21 43.30 11.63
실시예2 0.73 0.28 0.07 6.42 42.28 5.00 40.16 12.06
실시예3 0.89 0.38 0.10 5.10 45.41 6.16 41.55 9.38
실시예4 0.91 0.44 0.11 4.27 44.74 6.62 40.78 10.53
비교예1 2.02 0.67 0.16 8.43 86.65 2.18 77.91 3.30
비교예2 1.81 0.48 0.10 13.30 98.76 1.30 92.30 1.74
비교예3 3.84 0.46 0.24 14.08 52.81 1.64 49.53 1.87
비교예4 3.63 0.38 0.25 13.00 70.73 1.71 64.30 1.47
상기 표 4에서 보여지는 바와 같이 실시예 1 내지 4의 전해동박은 표면조도 Rz가 0.5㎛ 미만으로 낮고, 고온 열처리 후 인장강도가 40kgf/mm2이상이며, 고온 열처리 후 연신율이 대부분 10% 이상으로 높았다.
이에 비해, 비교예 1 내지 4의 전해동박은 실시예 1 내지 4의 전해동박에 비하여 표면조도가 높고, 고온 열처리 후 연신율이 낮아 이차전지용 음극집전체 및/또는 PDB/FPC용 저저도 동박으로 사용하기에 부적합하였다.
또한, 실시예 1 내지 실시예 4의 (Rmax - Rz)/Ra 값은 6.5 이하로 낮은 값을 나타내었으나, 비교예 1 내지 비교예 4의 (Rmax - Rz)/Ra 값은 6.5 이상으로 높은 값을 나타내었다. 이에 따라, 표 2에서 알 수 있듯, 실시예 1 내지 실시예 4의 전해동박의 광택도는 600이상으로 후처리 공정없이도 높은 광택도를 나타내었으나, 비교예 1 내지 비교예 4는 500 이하의 광택도를 나타내었다.
평가예 6: 모서리 말림(curl) 정도 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박을 폭 10cm X 길이 10 cm로 시편을 채취한 후 평평한 바닥 위에 놓고 모서리 부분이 휘어진 각도(모서리 말림 각도) 및 X자로 자른 뒤 자른 부분이 올라오는 높이(모서리 말림 높이)를 측정하여 하기 표 5에 나타내었다.
표 5
모서리 말림 각도(°) 모서리 말림 높이(mm)
실시예 1 5 4
실시예 2 15 12
실시예 3 8 6
실시예 4 30 26
비교예 1 52 48
비교예 2 48 44
비교예 3 46 43
비교예 4 50 46
표 5에서 보여지는 바와 같이 실시예 1 내지 4의 전해동박은 모서리의 말림 각도가 5 내지 30°로서 45° 이하였다. 그러나, 비교예 1 내지 비교예 4의 전해동박은 모서리의 말림 각도가 46° 내지 52°로서 45°를 초과하여 후속공정에서의 취급이 어려운 상태를 나타내었다. 아울러, 비교예 1 내지 비교예 4의 전해동박은 모서리 말림 높이가 40mm를 초과하여 품질이 불량한 상태를 나타내었다. 따라서, 본 발명에 따른 전해동박은 고강도이면서도 내부 스트레스가 낮아 모서리 말림 현상이 적게 나타나 우수한 성능을 나타내었다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니라, 첨부된 청구범위에 의해 해석되어야 한다. 또한, 본 발명에 대하여 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.

Claims (14)

  1. 석출면의 중심선평균거칠기(Ra), 최대높이(Rmax) 및 10점평균높이(Rz)는 하기 식을 만족시키는 전해동박:
    1.5 ≤ (Rmax - Rz)/Ra ≤6.5.
  2. 청구항 1에 있어서,
    열처리 전 인장강도가 40 kgf/mm2 내지 70 kgf/mm2인 것을 특징으로 하는 전해동박.
  3. 청구항 1에 있어서,
    열처리 후 인장강도는 40 kgf/mm2 내지 70 kgf/mm2인 것을 특징으로 하는 전해동박.
  4. 청구항 1에 있어서,
    180℃에서 1시간 열처리 후 인장강도는 40 kgf/mm2 내지 70 kgf/mm2이상인 것을 특징으로 하는 전해동박.
  5. 청구항 1에 있어서,
    열처리 후 인장강도는 열처리 전 인장강도의 85 % 내지 99 %인 것을 특징으로 하는 전해동박.
  6. 청구항 1에 있어서,
    열처리 전 연신율이 2 % 내지 15 %인 것을 특징으로 하는 전해동박.
  7. 청구항 1에 있어서,
    열처리 후 연신율이 4 % 내지 15 %인 것을 특징으로 하는 전해동박.
  8. 청구항 1에 있어서,
    180℃에서 1시간 열처리 후 연신율이 4 % 내지 15 %인 것을 특징으로 하는 전해동박.
  9. 청구항 1에 있어서,
    열처리 후 연신율은 열처리 전 연신율의 1배 내지 4.5배인 것을 특징으로 하는 전해동박.
  10. 청구항 1에 있어서,
    모서리 말림각도는 0 ° 내지 45°인 것을 특징으로 하는 전해동박.
  11. 청구항 1에 있어서,
    모서리 말림높이는 0mm 내지 40 mm인 것을 특징으로 하는 전해동박.
  12. 청구항 1에 있어서,
    두께가 2㎛ 내지 10㎛인 전해동박.
  13. 상기 청구항 1 내지 청구항 12 중 어느 한 항에 따른 전해동박을 포함하는 전지.
  14. 절연성 기재; 및
    상기 절연성 기재의 일 표면에 부착된 상기 청구항 1 내지 청구항 12 중 어느 한 항에 따른 전해동박;을 포함하는 전기부품.
PCT/KR2014/010737 2013-11-08 2014-11-10 전해동박, 이를 포함하는 전기부품 및 전지 WO2015069075A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14860894T ES2695229T3 (es) 2013-11-08 2014-11-10 Cobre electrodepositado, componente eléctrico y batería que comprende el mismo
JP2016548995A JP6379207B2 (ja) 2013-11-08 2014-11-10 電解銅箔、並びにこれを含む電気部品及び電池
US15/030,447 US10686191B2 (en) 2013-11-08 2014-11-10 Electrodeposited copper foil, and electrical component and battery comprising same
EP14860894.6A EP3067199B1 (en) 2013-11-08 2014-11-10 Electrodeposited copper, and electrical component and battery comprising same
PL14860894T PL3067199T3 (pl) 2013-11-08 2014-11-10 Miedź osadzana elektrolitycznie oraz element elektryczny i bateria ją zawierająca
CN201480061120.0A CN105705329B (zh) 2013-11-08 2014-11-10 电沉积铜、包括其的电部件和电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130135227A KR101449342B1 (ko) 2013-11-08 2013-11-08 전해동박, 이를 포함하는 전기부품 및 전지
KR10-2013-0135227 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015069075A1 true WO2015069075A1 (ko) 2015-05-14

Family

ID=51997203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010737 WO2015069075A1 (ko) 2013-11-08 2014-11-10 전해동박, 이를 포함하는 전기부품 및 전지

Country Status (10)

Country Link
US (1) US10686191B2 (ko)
EP (1) EP3067199B1 (ko)
JP (1) JP6379207B2 (ko)
KR (1) KR101449342B1 (ko)
CN (1) CN105705329B (ko)
ES (1) ES2695229T3 (ko)
HU (1) HUE041575T2 (ko)
PL (1) PL3067199T3 (ko)
TW (1) TWI574452B (ko)
WO (1) WO2015069075A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118279B2 (en) * 2016-11-11 2021-09-14 Iljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643982B (zh) * 2015-02-16 2018-12-11 日進Materials股份有限公司 電解銅箔,包含該銅箔之電氣組件及電池
CN105986288A (zh) * 2015-02-28 2016-10-05 日进材料股份有限公司 电解铜箔、包含该电解铜箔的电气部件及电池
PL3316363T3 (pl) * 2015-06-24 2022-08-01 Sk Nexilis Co., Ltd. Folia z miedzi elektrolitycznej, kolektor prądowy zawierający tę folię z miedzi elektrolitycznej, elektroda zawierająca ten kolektor prądowy, akumulator zawierający tę elektrodę i sposób jej wytwarzania
KR101897474B1 (ko) * 2015-06-26 2018-09-12 케이씨에프테크놀로지스 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR102136784B1 (ko) * 2015-07-24 2020-07-22 케이씨에프테크놀로지스 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
US9673646B1 (en) 2016-08-19 2017-06-06 Chang Chun Petrochemical Co., Ltd. Surface-treated electrolytic copper foil and method for wireless charging of flexible printed circuit board
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20180054985A (ko) * 2016-11-15 2018-05-25 케이씨에프테크놀로지스 주식회사 말림이 최소화된 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20180083515A (ko) * 2017-01-13 2018-07-23 케이씨에프테크놀로지스 주식회사 울음 불량이 실질적으로 없는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102377291B1 (ko) * 2017-03-03 2022-03-21 에스케이넥실리스 주식회사 주름과 찢김이 최소화된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조 방법
KR102136794B1 (ko) 2017-03-09 2020-07-22 케이씨에프테크놀로지스 주식회사 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102378297B1 (ko) * 2017-03-29 2022-03-23 에스케이넥실리스 주식회사 리튬 이온 2차전지, 이 2차전지의 음극 전극을 구성하는 집전체 및 이 음극 집전체를 구성하는 전해동박
CN110475909B (zh) * 2017-03-30 2021-12-24 古河电气工业株式会社 表面处理铜箔及使用其的覆铜层压板
JP6611751B2 (ja) * 2017-03-31 2019-11-27 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
KR101951637B1 (ko) * 2017-04-07 2019-02-26 일진머티리얼즈 주식회사 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
US10190225B2 (en) * 2017-04-18 2019-01-29 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil with low repulsive force
US10508348B2 (en) * 2017-06-15 2019-12-17 Rohm And Haas Electronic Materials Llc Environmentally friendly nickel electroplating compositions and methods
KR101992840B1 (ko) 2017-06-20 2019-06-27 케이씨에프테크놀로지스 주식회사 울음과 찢김이 최소화된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조 방법
KR102180926B1 (ko) 2017-06-28 2020-11-19 에스케이넥실리스 주식회사 우수한 작업성 및 충방전 특성을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR101992841B1 (ko) 2017-07-13 2019-06-27 케이씨에프테크놀로지스 주식회사 울음, 주름 및 찢김이 최소화된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조 방법
JP6721547B2 (ja) * 2017-07-27 2020-07-15 ケイシーエフ テクノロジース カンパニー リミテッド 高い引張強度を有する電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
US10403898B2 (en) 2017-07-27 2019-09-03 Kcf Technologies Co., Ltd. Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP6582156B1 (ja) * 2018-02-23 2019-09-25 古河電気工業株式会社 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
HUE058062T2 (hu) * 2018-08-08 2022-06-28 Sk Nexilis Co Ltd Rézfólia minimalizált buggyossággal és repedéssel, az ezt tartalmazó elektród, az ezt tartalmazó akkumulátor, és eljárás ennek gyártására
JP6767441B2 (ja) * 2018-08-16 2020-10-14 ケイシーエフ テクノロジース カンパニー リミテッド たるみ、しわ及び引裂が最小化した銅箔、それを含む電極、それを含む二次電池、及びその製造方法
JP6700350B2 (ja) * 2018-08-16 2020-05-27 ケイシーエフ テクノロジース カンパニー リミテッド 優れた作業性及び充放電特性を有する銅箔、それを含む電極、それを含む二次電池、及びその製造方法
KR102132695B1 (ko) * 2019-03-21 2020-07-10 케이씨에프테크놀로지스 주식회사 이차전지의 용량 유지율을 향상시킬 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
TWI731330B (zh) 2019-04-30 2021-06-21 南亞塑膠工業股份有限公司 電解銅箔、其製造方法、及鋰離子二次電池
TWI740515B (zh) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 液晶高分子膜及包含其之積層板
HU231472B1 (hu) * 2020-01-30 2024-02-28 Mitsui Mining & Smelting Co. Ltd. Elektrolitikus rézfólia
CN111455414A (zh) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 一种用于生产渐变式电解铜箔的添加剂
KR20230062099A (ko) * 2021-10-29 2023-05-09 롯데에너지머티리얼즈 주식회사 이차전지 집전체용 전해동박
US11962015B2 (en) 2022-06-28 2024-04-16 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and lithium-ion cell comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100195603B1 (ko) * 1995-12-06 1999-06-15 미야무라 신페이 프린트배선판용 구리박, 그 제조법 및 전해장치
JP2002052614A (ja) * 2000-08-11 2002-02-19 Kanegafuchi Chem Ind Co Ltd 積層板の製造方法
KR20070107803A (ko) * 2005-03-31 2007-11-07 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박 및 전해 동박의 제조 방법, 그 전해 동박을이용하여 얻어진 표면 처리 전해 동박, 그 표면 처리 전해동박을 이용한 동장 적층판 및 프린트 배선판
KR20110114971A (ko) * 2010-04-14 2011-10-20 일진머티리얼즈 주식회사 전해동박 제조용 구리전해액, 전해동박의 제조방법 및 전해동박

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI229152B (en) * 1999-06-08 2005-03-11 Mitsui Mining & Smelting Co Manufacturing method of electrodeposited copper foil
US7101455B1 (en) * 1999-11-01 2006-09-05 Kaneka Corporation Method and device for manufacturing laminated plate
US20040108211A1 (en) * 2002-12-06 2004-06-10 Industrial Technology Research Institute Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
JP2005154815A (ja) * 2003-11-21 2005-06-16 Mitsui Mining & Smelting Co Ltd 電解銅箔製造用銅電解液及び電解銅箔の製造方法
JP4583149B2 (ja) * 2004-12-01 2010-11-17 三井金属鉱業株式会社 電解銅箔及びその製造方法
JP4065004B2 (ja) * 2005-03-31 2008-03-19 三井金属鉱業株式会社 電解銅箔、その電解銅箔を用いて得られた表面処理電解銅箔、その表面処理電解銅箔を用いた銅張積層板及びプリント配線板
JP2007134272A (ja) * 2005-11-14 2007-05-31 Sony Corp 集電体、負極および電池
WO2008132987A1 (ja) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. リチウム二次電池用電解銅箔及び該銅箔の製造方法
JP5588607B2 (ja) * 2007-10-31 2014-09-10 三井金属鉱業株式会社 電解銅箔及びその電解銅箔の製造方法
KR101385761B1 (ko) * 2010-07-01 2014-04-17 미쓰이금속광업주식회사 전해 동박 및 그 제조 방법
JP5379928B2 (ja) * 2011-06-30 2013-12-25 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
KR20170061717A (ko) * 2011-10-31 2017-06-05 후루카와 덴키 고교 가부시키가이샤 고강도, 고내열 전해 동박 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100195603B1 (ko) * 1995-12-06 1999-06-15 미야무라 신페이 프린트배선판용 구리박, 그 제조법 및 전해장치
JP2002052614A (ja) * 2000-08-11 2002-02-19 Kanegafuchi Chem Ind Co Ltd 積層板の製造方法
KR20070107803A (ko) * 2005-03-31 2007-11-07 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박 및 전해 동박의 제조 방법, 그 전해 동박을이용하여 얻어진 표면 처리 전해 동박, 그 표면 처리 전해동박을 이용한 동장 적층판 및 프린트 배선판
KR20110114971A (ko) * 2010-04-14 2011-10-20 일진머티리얼즈 주식회사 전해동박 제조용 구리전해액, 전해동박의 제조방법 및 전해동박

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118279B2 (en) * 2016-11-11 2021-09-14 Iljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same

Also Published As

Publication number Publication date
ES2695229T3 (es) 2019-01-02
KR101449342B1 (ko) 2014-10-13
CN105705329B (zh) 2018-05-15
US20160260981A1 (en) 2016-09-08
JP6379207B2 (ja) 2018-08-22
TW201523992A (zh) 2015-06-16
PL3067199T3 (pl) 2019-04-30
JP2016537514A (ja) 2016-12-01
EP3067199A1 (en) 2016-09-14
CN105705329A (zh) 2016-06-22
EP3067199B1 (en) 2018-08-22
TWI574452B (zh) 2017-03-11
EP3067199A4 (en) 2017-05-10
HUE041575T2 (hu) 2019-05-28
US10686191B2 (en) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2015069075A1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지
KR20140050541A (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR102049908B1 (ko) 전착된 구리 포일
KR101605071B1 (ko) 전해도금에 의한 구리호일
US9899683B2 (en) Electrolytic copper foil, electric component and battery including the same
JP6014186B2 (ja) 電解銅箔、これを含む電気部品および電池
WO2011129633A2 (en) Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
KR101571064B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
WO2018088642A1 (ko) 이차전지용 전해동박 및 그의 제조방법
EP2568063A1 (en) Low internal stress copper electroplating method
KR20150062230A (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR101571063B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
WO2014061983A9 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
WO2018088643A1 (ko) 이차전지용 전해동박 및 그의 제조방법
KR101502373B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지
WO2018088644A1 (ko) 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법
KR101571066B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
WO2023075196A1 (ko) 이차전지 집전체용 전해동박
WO2023075195A1 (ko) 고강도 고연신 전해동박
TW201631223A (zh) 電解銅箔,包含該銅箔之電氣組件及電池
WO2023075197A1 (ko) 이차전지 집전체용 전해동박
WO2022191402A1 (ko) 낮은 휨 변형을 갖는 저조도 표면처리동박, 이를 포함하는 동박적층판 및 프린트 배선판
CN118140015A (zh) 用于二次电池的电流收集器的电解铜箔
KR20180107990A (ko) 리튬 이온 2차전지, 이 2차전지의 음극 전극을 구성하는 집전체 및 이 음극 집전체를 구성하는 전해동박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548995

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15030447

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014860894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE