WO2018088642A1 - 이차전지용 전해동박 및 그의 제조방법 - Google Patents

이차전지용 전해동박 및 그의 제조방법 Download PDF

Info

Publication number
WO2018088642A1
WO2018088642A1 PCT/KR2017/003360 KR2017003360W WO2018088642A1 WO 2018088642 A1 WO2018088642 A1 WO 2018088642A1 KR 2017003360 W KR2017003360 W KR 2017003360W WO 2018088642 A1 WO2018088642 A1 WO 2018088642A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
vacuum drying
tensile strength
toc
Prior art date
Application number
PCT/KR2017/003360
Other languages
English (en)
French (fr)
Inventor
이선형
조태진
박슬기
송기덕
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Priority to JP2019524170A priority Critical patent/JP6975782B2/ja
Priority to EP17869658.9A priority patent/EP3540833A4/en
Priority to US16/343,500 priority patent/US11380898B2/en
Priority to CN201780068777.3A priority patent/CN109923712B/zh
Publication of WO2018088642A1 publication Critical patent/WO2018088642A1/ko
Priority to US17/145,383 priority patent/US11508967B2/en
Priority to JP2021163961A priority patent/JP2022008856A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolytic copper foil for a secondary battery and a method of manufacturing the same. More particularly, the change in copper physical properties before and after vacuum drying in the manufacturing process of the electrolytic copper foil is excellent, and the cycle life is excellent when testing a battery in a high-density negative electrode, preventing cracks. It is related with the electrolytic copper foil for secondary batteries which can be made, and its manufacturing method.
  • electrolytic copper foil is widely used as a basic material for printed circuit boards (PCBs) used in the electric / electronics industry, and is suitable for slim notebook computers, personal digital assistants (PDAs), electronic books, MP3 players,
  • PCBs printed circuit boards
  • PDAs personal digital assistants
  • MP3 players MP3 players
  • the demand for these products is rapidly increasing, especially for small products such as next-generation mobile phones and ultra-thin flat panel displays.
  • electrolytic copper foil it is widely used as a negative electrode current collector of a secondary battery.
  • Electrolytic copper foil is typically produced by electrolysis and includes a cylindrical anode made of titanium (also called a drum) and a lead alloy shaped at regular intervals or an anode made of titanium coated with iridium oxide, an electrolyte, and a current source. It is prepared in an electrolytic cell.
  • the electrolyte is made of sulfuric acid and / or copper sulfate, and when a direct current flows between the cathode and the anode while rotating the cylindrical cathode, copper is electrodeposited on the cathode, thereby enabling continuous electrolytic copper foil production. In this way, a process of reducing copper ions to metal by an electrolysis method is called a milling process.
  • the copper copper foil obtained in the manufacturing process is subjected to a rough treatment process (also referred to as a Nodule treatment process), a diffusion preventing treatment to prevent the diffusion of copper ions, and to prevent oxidation from the outside, in order to improve the adhesion to the insulating substrate as necessary. It may be subjected to an additional surface treatment process such as antirust treatment, chemical adhesion enhancement treatment to complement the adhesion with the insulating substrate. Through the surface treatment process, it becomes a copper foil for low profile printed circuits, and it becomes a copper foil for secondary batteries when only rust prevention treatment is performed in the surface treatment process.
  • a rough treatment process also referred to as a Nodule treatment process
  • a diffusion preventing treatment to prevent the diffusion of copper ions, and to prevent oxidation from the outside
  • an additional surface treatment process such as antirust treatment, chemical adhesion enhancement treatment to complement the adhesion with the insulating substrate.
  • Electrodeposited copper foil when used for printed circuits, is surface-treated and then supplied to PCB processing companies in the form of laminates (laminates) bonded to insulating substrates. In contrast, when used for secondary batteries, it is supplied to secondary battery generators only after rust prevention treatment.
  • an electrolytic copper foil As a negative electrode electrical power collector for secondary batteries, it coats and uses an electrode active material on both surfaces of copper foil. In this case, when the roughness of both surfaces of the electrolytic copper foil is different, the battery characteristics are different. Therefore, the roughness of both surfaces of the electrolytic copper foil needs to be maintained at the same or similar level.
  • vacuum drying is a process that is performed for a long time at a high temperature, the adhesive force and stress between the copper foil and the active material coating surface is changed in the vacuum drying step of the copper foil.
  • the present invention relates to a secondary battery electrolytic copper foil and a method for manufacturing the same, which can improve the battery life by minimizing changes in grain size and crystal structure by having a certain amount of TOC and zinc and iron as metal additives in the copper electrolyte.
  • the present invention relates to a secondary battery electrolytic copper foil and a method of manufacturing the same, which can improve the cycle life and characteristics of the battery and prevent the occurrence of cracks by minimizing the change in physical properties of the copper foil after vacuum drying in the production of the electrolytic copper foil.
  • embodiments of the present invention is a secondary battery electrolytic copper foil manufactured by using a drum in a plating solution containing TOC (Total Organic Carbon), zinc and iron, the TOC and zinc and iron contained in the electrolytic copper foil A ratio contains the electrolytic copper foil for secondary batteries which concerns on following formula 1.
  • TOC Total Organic Carbon
  • the electrolytic copper foil is vacuum dried after the application of the negative electrode active material, and the ratio of tensile strength and elongation before and after vacuum drying may be according to the following Equation 2.
  • Tensile strength before and after the vacuum drying may be according to the following Equation 3.
  • Elongation before and after the vacuum drying may be as follows.
  • the concentration of TOC contained in the plating solution may be 100 ppm or more.
  • Room temperature tensile strength of the electrolytic copper foil may be 40kgf / mm 2 to 51kgf / mm 2 .
  • the electrolytic copper foil may have a thickness of 4 ⁇ m to 12 ⁇ m.
  • Elongation of the electrolytic copper foil may be 2% to 18%.
  • embodiments of the present invention comprises the steps of (1) preparing a plating solution containing copper, TOC, zinc and iron; (2) adding a current density of 30 ASD to 150 ASD at a temperature of 30 ° C. to 70 ° C., and performing electroplating using a drum; And (3) vacuum drying the electrolytic copper foil formed by the electrolytic plating, wherein the ratio of TOC, zinc, and iron contained in the electrolytic copper foil includes a method of manufacturing an electrolytic copper foil for secondary batteries according to the following formula (1).
  • the ratio of tensile strength and elongation before and after the vacuum drying may be the following Equation 2.
  • Room temperature tensile strength of the electrolytic copper foil may be 40kgf / mm 2 to 51kgf / mm 2 .
  • the electrolytic copper foil may have a thickness of 4 ⁇ m to 12 ⁇ m.
  • Elongation of the electrolytic copper foil may be 2% to 18%.
  • the contents of zinc and iron which are TOC and metal additives, may be present in the copper electrolyte, thereby minimizing changes in grain size and crystal structure, thereby improving battery life.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an electrolytic copper foil for a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a view showing a step of producing an electrolytic copper foil using a drum according to an embodiment of the present invention.
  • Electrolytic copper foil for secondary batteries is an electrolytic copper foil for secondary batteries manufactured using a drum, the electrolytic copper foil is vacuum dried after the application of a negative electrode active material, the ratio of tensile strength and elongation before and after the vacuum drying is formula 2 Can be.
  • the tensile strength before and after the vacuum drying may be the following equation 3
  • the elongation before and after the vacuum drying may be the following equation 4.
  • the electrolytic copper foil When the electrolytic copper foil is vacuum dried in a battery manufacturing process, when the electrolytic copper foil is left at a high temperature for a long time, the grain size and crystal structure of the electrolytic copper foil are changed, which causes deactivation and cracking of the active material during charge and discharge of the battery. This reduces the life of the battery. Therefore, even after vacuum drying, the life of the battery may be excellent when the change in physical properties of the electrolytic copper foil is minimized.
  • the presence of more than 100ppm TOC content in the copper electrolyte to prevent the growth of grain size or change in crystal structure even if the copper foil vacuum-dried for a long time at high temperature. have.
  • TOC is an abbreviation of Total Organic Carbon and refers to total organic carbon and refers to the amount of carbon in the organic material contained in the plating solution, and serves to reduce the grain size included in the copper electrolyte. If there is dissolved carbon dioxide (total inorganic carbon) called TIC (total inorganic carbon) in the copper electrolyte or carbon adsorbed to copper ions in the copper electrolyte, it is left for a long time at high temperature by vacuum drying. In this case, additives present in the mouth diffuse into grain boundaries, causing abnormal growth of grains and changes in crystal structure. The change in physical properties of the copper foil as described above after the vacuum drying may change the adhesion and stress with the active material coating surface may cause detachment and cracking of the active material during charging and discharging of the battery.
  • the TOC may be present in the copper electrolyte of 100 ppm or more, thereby preventing and optimizing the change in physical properties of the copper foil after vacuum drying, thereby improving cycle life and characteristics when testing a battery in a high-density negative electrode.
  • the ratio between the tensile strength and elongation before and after vacuum drying of the electrolytic copper foil for secondary batteries according to the present invention is preferably in the range of the formulas 2 to 4, when the tensile strength and elongation value before and after the vacuum drying is out of the range of the active material in the copper foil Adhesion and stress with the coated surface may be changed, thereby degrading battery performance.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an electrolytic copper foil for a secondary battery according to an embodiment of the present invention.
  • the manufacturing method of the electrolytic copper foil for secondary batteries according to the present invention (1) copper ions (Cu 2 + ) 60g / L to 140g / L, sulfuric acid 70g / L to 200g / L, chlorine 10ppm to 90ppm, TOC 100 ppm Above, preparing a plating solution containing zinc and iron as a metal additive (S100); (2) adding a current density of 30 ASD to 150 ASD at a temperature of 30 ° C. to 70 ° C., and performing electroplating using a drum (S200); And (3) vacuum drying the electrolytic copper foil formed by the electroplating (S300).
  • step (1) (S100), as a step of preparing a plating solution, copper ions (Cu 2 + ) 60 g / L to 140 g / L, sulfuric acid 70 g / L to 200 g / L, chlorine 10 ppm to 90 ppm, TOC 100 ppm Above, the plating solution containing zinc and iron as a metal additive Prepare.
  • the plating solution containing zinc and iron as a metal additive Prepare.
  • TOC plays a role of minimizing the change in grain size and crystal structure of the electrolytic copper foil even if the electrolytic copper foil is maintained at a high temperature for a long time in a vacuum drying step to be performed after the electrolytic copper foil is manufactured.
  • the electrolytic copper foil is manufactured by including TOC in a plating solution of 100 ppm or more, thereby minimizing the change in grain size and crystal structure even when the electrolytic copper foil is left at a high temperature for a long time during vacuum drying to prevent detachment and cracking of the active material during charge and discharge of the battery.
  • TOC in a plating solution of 100 ppm or more
  • the present invention further includes zinc and iron as metal additives in addition to TOC in order to minimize the change in physical properties of the electrolytic copper foil after vacuum drying.
  • the electrolytic copper foil may be prepared by electroplating a plating solution, in which the TOC may be included in a predetermined amount, the zinc may be included in 50 mg / L to 700 mg / L, and the iron may be included in 400 mg / L to 1100 mg / L. Can be.
  • the content of the TOC is preferably 100ppm or more, the content of zinc and iron may be provided to correspond to the following Equation 1.
  • the concentration of additives, such as TOC, zinc, iron, and the like, contained in the plating liquid may not always be the same as the electrolytic copper foil produced by electroplating, and may be the same or smaller.
  • the zinc and iron to adjust the plating rate of the copper during electroplating to flatten the surface of the electrolytic copper foil, and to control the excessive increase in the carbon content in the electrolytic copper foil. Therefore, when the zinc and iron and TOC ratio in the electrolytic copper foil is in the range of the following Equation 1, the change in physical properties of the electrolytic copper foil after vacuum drying is minimized.
  • the ratio is less than 1.3, the content of zinc and iron added to the plating liquid is increased, thereby preventing the effect of preventing abnormal growth of the TOC in the plating liquid, and when the ratio exceeds 1.5, the excessive amount of the electrolytic copper foil is exceeded.
  • the ratio of TOC, zinc and iron is preferably maintained in the range of 1.3 to 1.5 as in Equation 1 above.
  • the chlorine in the plating solution includes 10ppm to 90ppm, the chlorine is to prevent the growth of the precipitates of CuCl 2 formed at the grain boundary interface during electroplating at high temperature to improve the thermal stability at high temperatures. If the chlorine concentration is outside the range of 10ppm to 90ppm, the tensile strength of the electrolytic copper foil is lowered, the thermal stability at high temperature may be lowered.
  • step (2) a current density of 30 ASD (Ampere per Square Deci-metre) to 150 ASD is applied to the plating solution prepared in the step (1) under a temperature of 30 ° C. to 70 ° C., and electroplating using a drum.
  • Figure 2 is a view showing a step of producing an electrolytic copper foil using a drum according to an embodiment of the present invention. If the plating temperature and current density is out of the above-described range, plating may not be performed properly, and thus the surface of the electrodeposited copper foil may not be uniformly formed, or tensile strength and elongation may be degraded, thereby causing battery performance degradation.
  • Step (3) (S300) includes the step of vacuum drying the electrolytic copper foil formed by the electroplating.
  • Vacuum drying is preferably performed for 6 hours to 10 hours in the range of 110 °C to 150 °C. If the vacuum drying temperature is out of the above range, the electrolytic copper foil may not be dried properly or deformation may occur due to the high temperature. In addition, when the vacuum drying time is less than 6 hours, the drying of the electrolytic copper foil may not be completed, and when the drying time exceeds 10 hours, the electrolytic copper foil performance may decrease due to excessive drying.
  • the room temperature tensile strength of the electrolytic copper foil secondary battery according to the present invention is preferably 40 kgf / mm 2 to 51kgf / mm 2.
  • the tensile strength is 40 kgf / mm 2 If less, the electrolytic copper foil may break, causing a problem in that the positive electrode and the negative electrode are short-circuited.
  • the volume of the secondary battery expands or contracts while graphite and other active materials exchange lithium ions. At this time, since the active material layer is in close contact with the electrolytic copper foil, stress due to expansion or contraction occurs.
  • the tensile strength is 40kgf / mm 2 If less than, the electrolytic copper foil is not able to withstand stress and breaks, and thus battery performance may not be maintained, and deformation may occur to cause a short circuit between the positive electrode and the negative electrode.
  • the thickness of the electrolytic copper foil for secondary batteries which concerns on this invention is 4 micrometers-12 micrometers.
  • the thickness of the electrolytic copper foil is less than 4 ⁇ m, the electrolytic copper foil may be easily broken due to the thin thickness, and when the thickness of the electrolytic copper foil exceeds 12 ⁇ m, the volume and weight of the secondary battery manufactured are not preferable.
  • the elongation of the electrolytic copper foil for secondary batteries which concerns on this invention is 2 to 18%.
  • the elongation of the electrolytic copper foil is high, it is possible to prevent the fracture in the process of breaking the tension during the coating of the active material in the electrode manufacturing process, there is an advantage that can be prevented from the stress received during the electrode winding process.
  • it improves the performance of the battery by preventing efficiency degradation and preventing breakage during the charge and discharge cycle of the battery.
  • the elongation exceeds 18%, the secondary battery may become severely deformed during charging and discharging, and may short-circuit.
  • the electrolytic copper foil may be easily broken.
  • the tensile strength and elongation described above are inversely proportional to each other, so when the tensile strength increases, the elongation decreases, and when the tensile strength decreases, the elongation increases. It is important to maintain elongation. Therefore, the tensile strength is 40kgf / mm 2 It is preferable to maintain 51 kgf / mm 2 , and an elongation must be maintained in a range of 2% to 18% to prevent a short circuit between the positive electrode and the negative electrode during deformation of the secondary battery.
  • Electroplating was performed using a drum at a current density of. Thereafter, the electrolytic copper foil formed by electroplating was vacuum dried at 120 ° C. for 7 hours.
  • Comparative Examples 1 to 3 were prepared in the same conditions as in Example 1 except for performing the concentration of the TOC and the amount of zinc and iron in the preparation of the plating solution as shown in Table 2 and Table 3.
  • Tensile strength and elongation were obtained from the electrolytic copper foils obtained in Examples 1 to 8 and Comparative Examples 1 to 3 by IPC by tensile test at 50.8 mm / min crosshead speed after pulling tensile specimens with a width of 12.7 mm X gauge length of 50 mm.
  • the maximum load of the tensile strength measured according to -TM-650 2.4.18B standard was called tensile strength, and the elongation at break was called elongation.
  • the battery evaluation conditions were tested by setting as follows, Cell design, positive electrode, negative electrode, separator (separator), the electrolyte conditions were set as shown in Table 1 below.
  • Example 1 4 43.7 3.2 41.9 3.8
  • Example 2 6 49.7 6.6 43.5 8.1
  • Example 3 6 50.1 7.2 48.4 7.0
  • Example 4 8 43.4 8.0 40.5 8.6
  • Example 5 10 41.3 11.8 39.5
  • Example 6 10 49.2 10.5 44.8 10.9
  • Example 7 12 44.7 7.3 41.6 9.1
  • Example 8 12 43.4 18 40.9 18.1 Comparative Example 1 6 35.1 6.2 25.7 6.2 Comparative Example 2 8 33.0 10.1 28.8 9.8 Comparative Example 3 10 33.0 12.4 28.6 17.2
  • Comparative Examples 1 to 3 having a TOC concentration of less than 100 ppm showed that the ratios of the tensile strength and elongation of Equation 2 before and after vacuum drying were all lower than 28, whereas the TOC concentration was lower.
  • Examples 1 to 8 are all 100ppm or more it can be confirmed that the ratio of the tensile strength and the elongation of vacuum drying before and after both the range of 28 to 50.
  • the vacuum drying proceeds for a long time at a high temperature of 100 °C or more may change the grain size and crystal structure in the electrolytic copper foil due to the high temperature, such a change in physical properties of the electrolytic copper foil may cause a decrease in battery life.
  • TOC plays a role of preventing the change of physical properties of the electrolytic copper foil, so that when the TOC is maintained at 100 ppm or more, as in Examples 1 to 8, the physical properties are less changed even after a high temperature vacuum drying process, and thus the battery life is excellent. You can see that it appears.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 이차전지용 전해동박 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 전해동박 제조과정에서 진공건조 전과 후의 동박 물성변화가 적어 고밀도 음극에서 전지 테스트 시 사이클 수명이 우수하며, 크랙(Crack) 발생을 방지할 수 있는 이차전지용 전해동박 및 그의 제조방법에 관한 것이다. 본 발명의 일 측면에 따르면, 본 발명의 실시예들은 TOC(Total organic carbon), 아연 및 철이 포함된 도금액에서 드럼을 이용하여 제조된 이차전지용 전해동박으로, 상기 전해동박에 함유된 TOC와 아연 및 철의 비율은 하기 식 1에 따르는 이차전지용 전해동박을 포함한다. 식 1 : TOC / (아연+철) = 1.3 ~ 1.5

Description

이차전지용 전해동박 및 그의 제조방법
본 발명은 이차전지용 전해동박 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 전해동박 제조과정에서 진공건조 전과 후의 동박 물성변화가 적어 고밀도 음극에서 전지 테스트 시 사이클 수명이 우수하며, 크랙(Crack) 발생을 방지할 수 있는 이차전지용 전해동박 및 그의 제조방법에 관한 것이다.
일반적으로 전해 동박은 전기/전자 산업분야에서 사용되는 PCB(Printed Circuit Board: 인쇄회로기판)의 기초재료로서 널리 사용되는 것으로써, 슬림형 노트북 컴퓨터, 개인휴대단말기(PDA), 전자북, MP3 플레이어, 차세대 휴대폰, 초박형 평판 디스플레이 등의 소형 제품을 중심으로 그 수요가 급속히 증대되고 있다. 또한 전해 동박의 물성을 개선하여 이차전지의 음극 집전체로서도 널리 사용되고 있다.
통상적으로 전해 동박은 전기분해방법으로 생성되며 티타늄으로 된 원통형 음극(드럼이라고도 함)과 일정한 간격을 유지하는 모양의 납합금이나 또는 이리듐 산화물이 피복된 티타늄으로 된 양극, 전해액 및 전류의 전원을 포함한 전해조에서 제조된다. 전해액은 황산 및/또는 황산동으로 이루어지며, 원통형 음극을 회전시키면서 음극과 양극 사이에 직류전류를 흘려주면 음극에 구리가 전착(electrodeposited)되어 연속적인 전해 동박 생산이 가능해진다. 이와 같이 전기분해 방법으로 구리이온을 금속으로 환원시키는 공정을 제박공정이라 한다.
다음, 제박공정에서 얻어진 구리동박은 필요에 따라, 절연 기판과의 접착력을 향상시키기 위해서 거침 처리 공정(Nodule 처리공정이라고도 함), 구리 이온의 확산을 방지하는 확산방지처리, 외부로부터의 산화를 방지하기 위한 방청처리, 절연기판과의 접착력을 보완시키는 화학적 접착력 향상처리 등의 추가적인 표면처리공정를 거칠 수 있다. 표면 처리 공정을 거치면 로우 프로파일(low profile) 인쇄회로용 동박이 되고, 표면 처리 공정 중에서 방청처리만 하게 되면 2차 전지용 동박이 된다.
전착된 동박은 인쇄회로용으로 사용되는 경우에는 표면 처리된 후 절연 기판과 접착된 형태(라미네이트)로 PCB 가공 업체에 공급된다. 이에 비해 이차전지용으로 사용할 경우에는 방청 처리만을 거쳐서 이차전지 생성 업체에 공급된다.
전해 동박을 이차전지용 음극 집전체로 사용하는 경우에는 동박의 양면에 전극 활물질을 피복하여 사용한다. 이경우 전해 동박 양쪽 면의 조도가 다른 경우에는 전지 특성이 달라지게 되므로 전해 동박의 양쪽 면의 조도가 같거나 비슷한 수준을 유지할 필요가 있다.
이러한 전해동박을 이용한 이차전지 제조공정에서는 동박을 진공건조하는 단계를 거치게 되는데, 진공건조는 고온에서 장시간 수행하는 과정이기 때문에 동박을 진공건조하는 단계에서 동박과 활물질 코팅면과의 접착력 및 응력이 변화하여 전지의 수명을 저하시키거나 크랙(Crack)이 발생하는 문제점이 있다.
따라서, 진공건조과정 이후에도 전지의 수명 및 성능에 영향을 미치지 않도록 장시간 고온방치 후에도 물성변화를 최소화할 수 있는 이차전지용 전해동박이 요구되고 있는 실정이다.
본 발명은 구리 전해액에 TOC 및 금속첨가제인 아연 및 철을 일정함량 존재하도록 하여 그레인 사이즈 및 결정구조의 변화를 최소화하여 전지수명을 향상시킬 수 있는 이차전지용 전해동박 및 그의 제조방법에 관한 것이다.
또한, 본 발명은 전해동박 제조시 진공건조 후에도 동박의 물성변화를 최소화하여 전지의 사이클 수명 및 특성을 향상시키고 크랙발생을 방지할 수 있는 이차전지용 전해동박 및 그의 제조방법에 관한 것이다.
본 발명의 일 측면에 따르면, 본 발명의 실시예들은 TOC(Total organic carbon), 아연 및 철이 포함된 도금액에서 드럼을 이용하여 제조된 이차전지용 전해동박으로, 상기 전해동박에 함유된 TOC와 아연 및 철의 비율은 하기 식 1에 따르는 이차전지용 전해동박을 포함한다.
식 1 : TOC / (아연+철) = 1.3 ~ 1.5
상기 전해동박은 음극활물질 도포 후 진공건조되고, 진공건조 전후의 인장강도 및 연신율의 비율은 하기 식 2에 따를 수 있다.
식 2 : ((진공건조 후 인장강도/ 진공건조 전 인장강도) / (진공건조 후 연신율/ 진공건조 전 연신율)) X 진공건조 후 인장강도 = 28 ~ 50
상기 진공건조 전후의 인장강도는 하기 식 3에 따를 수 있다.
식 3 : 진공건조 후 인장강도 / 진공건조 전 인장강도 = 0.8 ~ 1.01
상기 진공건조 전후의 연신율은 하기 식 4에 따를 수 있다.
식 4 : 진공건조 후 연신율/ 진공건조 전 연신율 = 0.9 ~ 1.4
상기 도금액 중에 포함된 TOC의 농도는 100ppm 이상일 수 있다.
상기 전해동박의 상온 인장강도는 40kgf/mm2 내지 51kgf/mm2일 수 있다.
상기 전해동박의 두께는 4㎛ 내지 12 ㎛일 수 있다.
상기 전해동박의 연신율은 2% 내지 18%일 수 있다.
본 발명의 일 측면에 따르면, 본 발명의 실시예들은 (1) 구리, TOC, 아연 및 철이 포함된 도금액을 준비하는 단계; (2) 온도가 30℃ 내지 70℃인 조건에서 전류밀도 30 ASD 내지 150 ASD를 가하고, 드럼을 이용하여 전해도금을 수행하는 단계; 및 (3) 상기 전해도금에 의하여 형성된 전해동박을 진공건조하는 단계;를 포함하고, 상기 전해동박에 함유된 TOC와 아연 및 철의 비율은 하기 식 1에 따르는 이차전지용 전해동박의 제조방법을 포함한다.
식 1 : TOC / (아연+철) = 1.3 ~ 1.5
상기 진공건조 전후의 인장강도 및 연신율의 비율은 하기 식 2일 수 있다.
식 2 : ((진공건조 후 인장강도/ 진공건조 전 인장강도) / (진공건조 후 연신율/ 진공건조 전 연신율)) X 진공건조 후 인장강도 = 28 ~ 50
상기 전해동박의 상온 인장강도는 40kgf/mm2 내지 51kgf/mm2일 수 있다.
상기 전해동박의 두께는 4㎛ 내지 12 ㎛일 수 있다.
상기 전해동박의 연신율은 2% 내지 18%일 수 있다.
본 발명에 따르면, 구리 전해액에 TOC 및 금속첨가제인 아연 및 철을 함량을 일정함량 존재하도록 하여 그레인 사이즈 및 결정구조의 변화를 최소화하여 전지수명을 향상시킬 수 있다.
또한, 본 발명에 따르면, 전해동박 제조시 진공건조 후에도 동박의 물성변화를 최소화하여 전지의 사이클 수명 및 특성을 향상시키고 크랙발생을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 의한 이차전지용 전해동박의 제조방법을 나타내는 흐름도이다.
도 2는 본 발명의 일 실시예에 의한 드럼을 이용하여 전해동박을 제조하는 단계를 나타낸 도면이다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 이하의 설명에서 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라 그 중간에 다른 매체를 사이에 두고 연결되어 있는 경우도 포함한다. 또한, 도면에서 본 발명과 관계없는 부분은 본 발명의 설명을 명확하게 하기 위하여 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
이하, 첨부된 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
다음은 본 발명의 일 실시예에 관한 이차전지용 전해동박에 관하여 더욱 상세히 설명한다.
본 발명의 일 실시예에 따른 이차전지용 전해동박은 드럼을 이용하여 제조된 이차전지용 전해동박으로, 상기 전해동박은 음극활물질 도포 후 진공건조되고, 상기 진공건조 전후의 인장강도 및 연신율의 비율은 하기 식 2일 수 있다.
식 2 : ((진공건조 후 인장강도/ 진공건조 전 인장강도) / (진공건조 후 연신율/ 진공건조 전 연신율)) X 진공건조 후 인장강도 = 28 ~ 50
또한, 상기 진공건조 전후의 인장강도는 하기 식 3일 수 있으며, 상기 진공건조 전후의 연신율은 하기 식 4일 수 있다.
식 3 : 진공건조 후 인장강도 / 진공건조 전 인장강도 = 0.8 ~ 1.0
식 4 : 진공건조 후 연신율/ 진공건조 전 연신율 = 0.9 ~ 1.4
전지제조 공정에서 전해동박을 진공건조할때, 상기 전해동박을 고온에서 장시간 방치할 경우 전해동박의 그레인 사이즈 및 결정구조에 변화가 일어나게 되는데 이것은 추후 전지의 충방전 시 활물질의 탈리 및 크랙(crack)을 발생시키게 되어 전지의 수명을 떨어뜨리게 된다. 따라서, 진공건조 이후에도 전해동박의 물성변화가 최소화되어야 전지의 수명을 우수하게 할 수 있다.
본 발명에서는 진공건조 후에도 동박의 물성변화를 최소화하기 위하여 동 전해액에 TOC 함량이 100ppm 이상 존재하도록 하여 동박을 고온에서 장시간동안 진공건조하여도 그레인 사이즈가 이상성장하거나 결정구조가 변화하는 것을 방지할 수 있다.
TOC란 Total Organic Carbon의 약자로서 전체 유기탄소를 지칭하며 도금액 중에 포함되는 유기물 중의 탄소량을 의미하고, 구리 전해액에 포함되어 그레인 사이즈를 작게하는 역할을 한다. 만약, 구리 전해액에 TOC가 아닌 TIC(Total inorganic Carbon)으로 지칭되는 용해된 이산화탄소(dissolved carbon dioxide)가 존재하거나, 구리 전해액상에 구리이온에 흡착된 탄소가 존재할 경우, 진공건조로 고온에서 장시간 방치했을 때, 입내에 존재하는 첨가제들이 결정립계(Grain boundary)로 확산되어 그레인의 이상성장 및 결정구조의 변화를 일으킨다. 진공건조 후 상기와 같이 나타나는 동박의 물성변화는 활물질 코팅면과의 접착력 및 응력을 변화시켜 전지의 충방전 시 활물질의 탈리 및 크랙(crack) 발생을 야기할 수 있다.
따라서, 본 발명에서는 TOC를 구리 전해액에 100ppm 이상 존재하도록 하여 진공건조 후 동박의 물성변화를 방지하고 최적화시켜 고밀도 음극에서 전지 테스트 시 사이클 수명 및 특성을 향상시킬 수 있다.
본 발명에 따른 이차전지용 전해동박의 진공건조 전후의 인장강도 및 연신율간의 비율은 상기 식 2 내지 식 4의 범위 내인 것이 바람직하며, 상기 진공건조 전후 인장강도 및 연신율값이 상기 범위를 벗어날 경우 동박에서 활물질 코팅면과의 접착력 및 응력이 변화하여 전지성능이 저하될 수 있다.
도 1은 본 발명의 일 실시예에 의한 이차전지용 전해동박의 제조방법을 나타내는 흐름도이다. 도 1을 참조하면, 본 발명에 따른 이차전지용 전해동박의 제조방법은 (1) 구리이온(Cu2 +) 60g/L 내지 140g/L, 황산 70g/L 내지 200g/L, 염소 10ppm 내지 90ppm, TOC 100 ppm 이상, 금속첨가제로서 아연 및 철이 포함된 도금액을 준비하는 단계(S100); (2) 온도가 30℃ 내지 70℃인 조건에서 전류밀도 30 ASD 내지 150 ASD를 가하고, 드럼을 이용하여 전해도금을 수행하는 단계(S200); 및 (3) 상기 전해도금에 의하여 형성된 전해동박을 진공건조하는 단계(S300)를 포함한다.
단계 (1) (S100)에서는 도금액을 준비하는 단계로서, 구리이온(Cu2 +) 60g/L 내지 140g/L, 황산 70g/L 내지 200g/L, 염소 10ppm 내지 90ppm, TOC 100 ppm 이상, 금속첨가제로서 아연 및 철이 포함된 도금액을 준비한다. 상기 도금액에서 TOC는 전해동박 제조 이후 수행될 진공건조 단계에서 전해동박을 고온에서 장시간 유지하여도 전해동박의 그레인 사이즈 및 결정구조의 변화를 최소화하는 역할을 한다. 본 발명에서는 TOC를 100ppm 이상 도금액에 포함하여 전해동박을 제조함으로써, 진공건조 시 전해동박이 고온에서 장시간 방치되어도 그레인 사이즈 및 결정구조의 변화를 최소화하여 추후 전지의 충방전 시 활물질의 탈리 및 크랙을 방지할 수 있다.
또한, 본 발명에서는 진공건조 후 전해동박의 물성변화를 최소화하기 위하여 TOC 이외에금속첨가제로서 아연 및 철을 더 포함한다. 상기 전해동박은 도금액을 전해도금하여 제조할 수 있는데, 상기 도금액 중에서 TOC는 일정한 함량으로 포함될 수 있고, 상기 아연은 50mg/L 내지 700mg/L로 포함되고, 철은 400mg/L 내지 1100mg/L로 포함될 수 있다.
상기 TOC, 아연 및 철을 포함하는 도금액을 전해도금하여 형성된 전해동박에서, 상기 TOC의 함량은 100ppm 이상인 것이 바람직하고, 상기 아연 및 철의 함량은 하기 식 1에 대응하도록 구비될 수 있다.
도금액을 전해도금하여 전해동박을 제조하는 경우, 도금액 중에 포함되는 첨가제, 예컨대 TOC, 아연 및 철 등의 농도는 전해도금에 의하여 제조되는 전해동박과 항상 동일하지는 않고, 같거나 더 작게 포함될 수 있다.
상기 아연 및 철은 전해도금 시 구리의 도금속도를 조절하여 전해동박 표면을 평탄하게 하며, 전해동박 내부의 탄소함량이 과도하게 증가하는 것을 조절해준다. 따라서, 전해동박 내 아연 및 철과 TOC 비율이 하기 식 1의 범위일 때 진공건조 후 전해동박의 물성변화가 최소화된다.
식 1 : TOC / (아연+철) = 1.3 ~ 1.5
상기 비율이 1.3 미만일 경우, 도금액에 투입되는 아연 및 철의 함량이 증가하여 도금액 내의 TOC가 그레인이 이상성장 하는 것을 방지하는 효과를 억제하여 바람직하지 않으며, 상기 비율이 1.5를 초과할 경우 전해동박 내 과다한 TOC 함량으로 인하여 그레인 내에 응력이 발생하여 전해동박이 진공건조 시 고온에 노출되면 전해동박 내의 그레인이 이상성장하여 진공건조 후 물성변화가 심해질 수 있다. 따라서, 고온에 장시간 노출되어도 그레인 사이즈 및 결정구조의 변화를 최소화하기 위해서 TOC 및 아연 및 철의 비율은 상기 식 1와 같이 1.3 내지 1.5 사이의 범위를 유지하는 것이 바람직하다.
상기 도금액에서 구리이온 및 황산이온이 상기 범위를 벗어날 경우, 이후 수행되는 전해도금 시 동박이 제대로 석출되지 않거나 동박의 경도가 저하될 수 있는 문제가 있다.
또한, 상기 도금액에서 염소는 10ppm 내지 90ppm을 포함하며, 염소는 전해도금시 결정립계 계면에 형성되는 CuCl2의 석출물들이 고온으로 가열시 결정 성장을 억제하여 고온에서의 열적 안정성을 향상시킬 수 있도록 한다. 염소 농도가 10ppm 내지 90ppm의 범위를 벗어날 경우에는 전해동박의 인장강도가 저하되고, 고온에서의 열적 안정성이 저하될 수 있다.
단계 (2) (S200)에서는 상기 단계 (1)에서 준비한 도금액을 온도가 30℃ 내지 70℃인 조건에서 전류밀도 30 ASD(Ampere per Square Deci-metre) 내지 150ASD를 가하고, 드럼을 이용하여 전해도금을 수행한다. 참고로, 도 2는 본 발명의 일 실시예에 의한 드럼을 이용하여 전해동박을 제조하는 단계를 나타낸 도면이다. 도금온도 및 전류밀도가 전술한 범위를 벗어날 경우에는 도금이 제대로 이루어지지 않아 전해동박의 표면이 균일하게 형성되지 않거나, 인장강도 및 연신율이 저하되어 전지성능 저하의 원인이 될 수 있다.
단계 (3) (S300)에서는 상기 전해도금에 의하여 형성된 전해동박을 진공건조하는 단계를 포함한다. 진공건조는 110℃ 내지 150℃의 범위에서 6시간 내지 10시간동안 수행하는 것이 바람직하다. 진공건조 온도가 상기 범위를 벗어날 경우 전해동박의 건조가 제대로 이루어지지 않거나 고온으로 인하여 전해동박에 변형이 일어날 수 있다. 또한, 진공건조 시간이 6시간 미만일 경우에는 전해동박의 건조가 완료되지 않을 수 있으며 건조시간이 10시간을 초과할 경우에는 과도한 건조로 인하여 전해동박 성능이 저하될 수 있다.
또한, 본 발명에 따른 이차전지용 전해동박의 상온 인장강도는 40 kgf/mm2 내지 51kgf/mm2인 것이 바람직하다. 상기 인장강도가 40 kgf/mm2 미만일 경우에는 전해동박이 파단되어 양극과 음극이 단락되는 문제가 발생할 수 있다. 이차전지의 충방전 시에는 그라파이트 등 기타 활물질들이 리튬이온을 주고받는 과정에서 이차전지의 체적이 팽창 또는 수축하게 되는데 이때 활물질 층이 전해동박과 밀착하기 때문에 팽창 또는 수축에 의한 응력이 발생한다. 따라서, 인장강도가 40kgf/mm2 미만일 경우에는 전해동박이 응력을 견디지 못하고 파단되어 전지성능을 유지할 수 없으며, 파단으로 인해 변형되어 양극과 음극이 단락되는 문제가 발생할 수 있다.
또한, 본 발명에 따른 이차전지용 전해동박의 두께는 4㎛ 내지 12 ㎛인 것이 바람직하다. 상기 전해동박의 두께가 4㎛ 미만일 경우에는 얇은 두께로 인하여 전해동박이 쉽게 파단될 수 있으며, 전해동박의 두께가 12㎛를 초과하는 경우에는 제조되는 이차전지의 부피 및 무게가 증가하여 바람직하지 않다.
또한, 본 발명에 따른 이차전지용 전해동박의 연신율은 2 내지 18%인 것이 바람직하다. 전해동박의 연신율이 높을 경우에는 전극 제조 공정에서 활물질 코팅 시 장력을 버텨 공정 상 파단을 방지할 수 있으며, 전극을 감는 공정에서 받는 스트레스에서 파단을 방지할 수 있는 장점이 있다. 또한 전지의 충방전 사이클 시 효율 저하를 방지하고 파단을 방지하여 전지의 성능을 향상 시킨다. 하지만, 연신율이 18%를 초과할 경우에는 충방전시 이차전지의 변형이 심해져 단락될 수 있으며, 연신율이 2% 미만일 경우에는 전해동박이 쉽게 파단될 수 있다.
전술한 인장강도 및 연신율은 서로 반비례하여 인장강도가 증가하면 연신율은 하락하며 인장강도가 감소하면 연신율은 증가하게 되므로, 파단을 방지하면서도 높은 인장강도를 갖는 전해동박을 제조하기 위해서는 적정범위의 인장강도 및 연신율을 유지하는 것이 중요하다. 따라서, 인장강도는 40kgf/mm2 내지 51 kgf/mm2를 유지하는 것이 바람직하며, 연신율은 2% 내지 18%의 범위를 유지해야 이차전지의 변형 시 양극과 음극의 단락을 방지할 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나, 하기 실시예들은 본 발명의 바람직한 일 실시예일뿐 본 발명의 권리 범위가 하기 실시예들에 의하여 제한되는 것은 아니다.
TOC 농도 및 진공건조 전후 물성변화에 따른 전지수명 테스트
*(실시예 1)
구리이온 90g/L, 황산 120g/L, 염소 30ppm, TOC 360ppm, 아연 0.375g/L, 철 0.75g/L(아연 및 철의 총합 0.243g/L)가 포함된 도금액을 준비하여 55℃, 90ASD의 전류밀도로 드럼을 이용하여 전해도금을 수행하였다. 이후 전해도금에 의하여 형성된 전해동박을 120℃에서 7시간동안 진공건조하였다.
(실시예 2 내지 실시예 8)
도금액 내에 포함되는 TOC의 농도 및 아연 및 철의 양을 하기 표 2 및 표 3과 같이 수행하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
(비교예 1 내지 비교예 3)
비교예 1 내지 비교예 3은 도금액 제조시 TOC의 농도 및 아연 및 철의 양을 하기 표 2 및 표 3과 같이 수행하는 것을 제외하고는 실시예 1과 동일한 조건으로 전해동박을 제조하였다.
실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 3의 실험조건은 상기와 같으며, 상기 방법으로 제조된 각각의 이차전지용 전해동박의 진공건조 전 인장강도 및 연신율, 진공건조 후 인장강도 및 연신율, 동박을 녹인 후의 TOC와 아연 및 철의 비율값, 300사이클 후의 전지수명을 측정하여 하기 표 2 및 표 3에 기재하였다.
인장강도 및 연신율은 실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 3에서 얻어진 전해동박을 폭 12.7mm X 게이지 길이 50mm로 인장시편을 채취한 후 50.8 mm/min 크로스헤드 속도로 인장시험으로 IPC-TM-650 2.4.18B 규격에 따라 실시하여 측정되는 인장강도의 최대하중을 인장강도라 하고, 파단시의 연신율을 연신율이라 하였다.
또한, 동박을 녹인 후의 TOC와 아연 및 철의 비율값은 실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 3에서 얻어진 전해동박을 염산(35%) 60ml, 과산화수소수(30%) 40ml에 녹인 후 ICP(Inductively coupled plasma mass spectrometry)를 이용하여 분석하였다. TOC와 아연 및 철의 비율값은 전술한 식 1를 이용하여 계산하였으며, 하기 표 3에 그 결과를 기재하였다.
전지평가 조건은 하기와 같이 설정하여 실험하였으며, Cell 설계, 양극, 음극, 세퍼레이터(separator), 전해액 조건은 하기 표 1과 같이 설정하여 실험하였다.
1) 정전류 충전 : 전류치 1C, 충전 종지 전압 4.2V
2) 20분간 휴지
3) 정전류 방전 : 전류치 1C, 충전 종지 전압 : 2.5V cut off
4) 1C=487mAh
5) Cycle : 300cycle 평가, 온도 : 55℃
대분류 소분류 단위 전지구성
셀 (Cell) 설계 Size 34 X 50
용량 mAh 487
전류 밀도 mAh/㎠ 3.06
N/P ratio - 1.10
양극 활물질 - LCO
조성 활물질 : 도전재: 바인더 92 : 4 : 4
L/L ㎎/㎠ 21.72
합제밀도 g/㎤ 3.0
음극 활물질 - 그라파이트 (Natural graphite)
조성 활물질 : 증점재 : 바인더 96 : 2 : 2
L/L ㎎/㎠ 9.00
합제밀도 g/㎤ 1.50
세퍼레이터(Separator) 재질 - PE
두께 16
전해액 염 (Salt) - 1.0M LiPF6
용매 (Solvent) - EC:EMC=3:7
첨가제 (Additive) - VC 3%
액량 2.0
구분 두께(㎛) VD전 인장강도(kgf/mm2) VD전 연신율(%) VD후 인장강도(kgf/mm2) VD후연신율(%)
실시예 1 4 43.7 3.2 41.9 3.8
실시예 2 6 49.7 6.6 43.5 8.1
실시예 3 6 50.1 7.2 48.4 7.0
실시예 4 8 43.4 8.0 40.5 8.6
실시예 5 10 41.3 11.8 39.5 10.7
실시예 6 10 49.2 10.5 44.8 10.9
실시예 7 12 44.7 7.3 41.6 9.1
실시예 8 12 43.4 18 40.9 18.1
비교예 1 6 35.1 6.2 25.7 6.2
비교예 2 8 33.0 10.1 28.8 9.8
비교예 3 10 33.0 12.4 28.6 17.2
구분 VD후 인장강도/VD전 인장강도 VD후 연신율/VD전 연신율 (VD 후 인장강도/ VD전 인장강도) /(- VD후 연신율/ VD전 연신율 ) X VD후 인장강도 TOC농도 동박을 녹인후 TOC/(아연+철) 300사이클 후 전지 수명
실시예 1 0.95 1.18 33.52 360 1.48 88.3
실시예 2 0.87 1.22 30.88 344 1.48 87.4
실시예 3 0.96 0.97 47.9 450 1.42 88.5
실시예 4 0.93 1.07 35.23 1080 1.43 87.8
실시예 5 0.95 0.90 41.47 650 1.35 88.2
실시예 6 0.91 1.03 39.42 350 1.45 88.6
실시예 7 0.93 1.24 31.20 680 1.30 87.4
실시예 8 0.94 1.00 38.44 100 1.50 87.1
비교예 1 0.73 1.00 18.76 79 1.11 82.9(파단 내지 박리)
비교예 2 0.87 0.97 25.63 98 1.21 85.4(파단 내지 박리)
비교예 3 0.86 1.38 17.73 69 1.08 81.8(파단 내지 박리
표 2 및 표 3을 참조하면, TOC 농도가 100ppm 미만인 비교예 1 내지 비교예 3은 식 2의 인장강도 및 연신율의 진공건조 전후 비율이 모두 28 미만으로 낮게 나타난 것을 확인할 수 있으며, 반면에 TOC 농도가 모두 100ppm 이상인 실시예 1 내지 실시예 8은 식 2의 인장강도 및 연신율의 진공건조 전후 비율이 모두 28 내지 50 사이의 범위인 것을 확인할 수 있다. 전해동박 제조시, 진공건조는 100℃ 이상의 고온에서 장시간 진행되기 때문에 고온으로 인하여 전해동박 내 그레인 사이즈 및 결정구조의 변화가 나타날 수 있으며 이러한 전해동박의 물성변화는 전지 수명을 저하시키는 원인이 될 수 있다. TOC는 전해동박의 물성변화를 방지하는 역할을 하여 실시예 1 내지 실시예 8과 같이 TOC를 100ppm 이상으로 유지했을 경우 고온의 진공건조 과정을 거친 후에도 물성변화가 적으며, 이에 따라 전지수명도 우수하게 나타난다는 것을 알 수 있다.
또한, TOC/(아연+철)의 비율이 모두 1.3 미만인 비교예 1 내지 비교예 3을 살펴보면, 진공건조 전후의 물성변화가 실시예 1 내지 실시예 8 보다 크게 나타났으며, 전지수명도 매우 낮게 나타난 것을 확인할 수 있다. TOC/(아연+철)의 비율이 1.3 이하에서는 금속첨가제의 함량이 증가하여 도금액 내의 TOC가 그레인의 이상성장을 방지하는 효과를 일으키는데 문제가 되어 진공건조 후 전해동박의 물성변화가 크게 일어난 것으로 보인다.
또한, 상기 표 3에서 300 싸이클 후 용량을 확인한 실시예 1 내지 8과 비교예 1 내지 3에 따른 전지를 전해동박 (음극판으로 작용한)의 상태를 확인하기 위해서 해체하였다. 이때, 실시예 1 내지 8에 따른 전해동박의 경우에는 외관 불량이 없이 최초와 동일함을 확인할 수 있었다. 반면, 비교예 1 내지 3의 경우에는, 전해동박의 일부가 파단 또는 박리됨을 확인할 수 있었으며, 비교예 1의 경우에는 음극활물질이 전해동박에서 박리되는 부분이 존재함을 확인할 수 있었고, 비교예 2 및 3에서는 전해동박의 외측 부분에 파단된 부분이 형성됨을 확인할 수 있었다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (14)

  1. TOC(Total organic carbon), 아연 및 철이 포함된 도금액에서 드럼을 이용하여 제조된 이차전지용 전해동박으로,
    상기 전해동박에 함유된 TOC와 아연 및 철의 비율은 하기 식 1에 따르는 이차전지용 전해동박.
    식 1 : TOC / (아연+철) = 1.3 ~ 1.5
  2. 제 1항에 있어서,
    상기 전해동박은 음극활물질 도포 후 진공건조되고, 진공건조 전후의 인장강도 및 연신율의 비율은 하기 식 2에 따르는 이차전지용 전해동박.
    식 2 : ((진공건조 후 인장강도/ 진공건조 전 인장강도) / (진공건조 후 연신율/ 진공건조 전 연신율)) X 진공건조 후 인장강도 = 28 ~ 50
  3. 제 1항에 있어서,
    상기 진공건조 전후의 인장강도는 하기 식 3에 따르는 이차전지용 전해동박.
    식 3 : 진공건조 후 인장강도 / 진공건조 전 인장강도 = 0.8 ~ 1.01
  4. 제 1항에 있어서,
    상기 진공건조 전후의 연신율은 하기 식 4에 따르는 이차전지용 전해동박.
    식 4 : 진공건조 후 연신율/ 진공건조 전 연신율 = 0.9 ~ 1.4
  5. 제 1항에 있어서,
    상기 도금액 중에 포함된 TOC의 농도는 100ppm 이상인 이차전지용 전해동박.
  6. 제 1항에 있어서,
    상기 전해동박의 상온 인장강도는 40kgf/mm2 내지 51kgf/mm2인 이차전지용 전해동박.
  7. 제 1항에 있어서,
    상기 전해동박의 두께는 4㎛ 내지 12 ㎛인 이차전지용 전해동박.
  8. 제 1항에 있어서,
    상기 전해동박의 연신율은 2% 내지 18%인 이차전지용 전해동박.
  9. (1) 구리, TOC, 아연 및 철이 포함된 도금액을 준비하는 단계;
    (2) 온도가 30℃ 내지 70℃인 조건에서 전류밀도 30 ASD 내지 150 ASD를 가하고, 드럼을 이용하여 전해도금을 수행하는 단계; 및
    (3) 상기 전해도금에 의하여 형성된 전해동박을 진공건조하는 단계;를 포함하고,
    상기 전해동박에 함유된 TOC와 아연 및 철의 비율은 하기 식 1에 따르는 이차전지용 전해동박의 제조방법.
    식 1 : TOC / (아연+철) = 1.3 ~ 1.5
  10. 제 9항에 있어서,
    상기 진공건조 전후의 인장강도 및 연신율의 비율은 하기 식 2인 이차전지용 전해동박의 제조방법.
    식 2 : ((진공건조 후 인장강도/ 진공건조 전 인장강도) / (진공건조 후 연신율/ 진공건조 전 연신율)) X 진공건조 후 인장강도 = 28 ~ 50
  11. 제 9항에 있어서,
    상기 도금액 중에 포함된 TOC의 농도는 100ppm 이상인 이차전지용 전해동박의 제조방법.
  12. 제 9항에 있어서,
    상기 전해동박의 상온 인장강도는 40kgf/mm2 내지 51kgf/mm2인 이차전지용 전해동박의 제조방법.
  13. 제 9항에 있어서,
    상기 전해동박의 두께는 4㎛ 내지 12 ㎛인 이차전지용 전해동박의 제조방법.
  14. 제 9항에 있어서,
    상기 전해동박의 연신율은 2% 내지 18%인 이차전지용 전해동박의 제조방법.
PCT/KR2017/003360 2016-11-11 2017-03-28 이차전지용 전해동박 및 그의 제조방법 WO2018088642A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019524170A JP6975782B2 (ja) 2016-11-11 2017-03-28 二次電池用電解銅箔及びその製造方法
EP17869658.9A EP3540833A4 (en) 2016-11-11 2017-03-28 ELECTROLYTIC COPPER SHEET FOR SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
US16/343,500 US11380898B2 (en) 2016-11-11 2017-03-28 Electrolytic copper foil for secondary battery and method for producing the same
CN201780068777.3A CN109923712B (zh) 2016-11-11 2017-03-28 二次电池用电解铜箔及其制造方法
US17/145,383 US11508967B2 (en) 2016-11-11 2021-01-10 Electrolytic copper foil for secondary battery and method for producing the same
JP2021163961A JP2022008856A (ja) 2016-11-11 2021-10-05 二次電池用電解銅箔及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0150350 2016-11-11
KR1020160150350A KR101733408B1 (ko) 2016-11-11 2016-11-11 이차전지용 전해동박 및 그의 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/343,500 A-371-Of-International US11380898B2 (en) 2016-11-11 2017-03-28 Electrolytic copper foil for secondary battery and method for producing the same
US17/145,383 Division US11508967B2 (en) 2016-11-11 2021-01-10 Electrolytic copper foil for secondary battery and method for producing the same

Publications (1)

Publication Number Publication Date
WO2018088642A1 true WO2018088642A1 (ko) 2018-05-17

Family

ID=58743567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003360 WO2018088642A1 (ko) 2016-11-11 2017-03-28 이차전지용 전해동박 및 그의 제조방법

Country Status (7)

Country Link
US (2) US11380898B2 (ko)
EP (1) EP3540833A4 (ko)
JP (2) JP6975782B2 (ko)
KR (1) KR101733408B1 (ko)
CN (1) CN109923712B (ko)
TW (1) TWI613301B (ko)
WO (1) WO2018088642A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210002342A (ko) * 2019-06-27 2021-01-07 장 춘 페트로케미컬 컴퍼니 리미티드 전착된 구리 호일
US20220013761A1 (en) * 2018-10-25 2022-01-13 Panasonic Corporation Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439621B1 (ko) * 2017-09-01 2022-09-01 에스케이넥실리스 주식회사 전해동박, 그 제조방법 및 이를 포함하는 고용량 Li 이차전지용 음극
KR102103765B1 (ko) * 2018-05-16 2020-04-28 일진머티리얼즈 주식회사 전해동박 및 이를 이용한 이차전지
KR20230062081A (ko) 2021-10-29 2023-05-09 롯데에너지머티리얼즈 주식회사 이차전지 집전체용 전해동박
KR20230062099A (ko) 2021-10-29 2023-05-09 롯데에너지머티리얼즈 주식회사 이차전지 집전체용 전해동박
KR20230062105A (ko) 2021-10-29 2023-05-09 롯데에너지머티리얼즈 주식회사 고강도 고연신 전해동박

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070117465A (ko) * 2006-06-07 2007-12-12 후루카와서키트호일가부시끼가이샤 표면 처리 전해 동박 및 그 제조 방법, 및 회로 기판
WO2012002380A1 (ja) * 2010-06-28 2012-01-05 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
KR20140041804A (ko) * 2011-06-30 2014-04-04 후루카와 덴키 고교 가부시키가이샤 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지
KR20160102147A (ko) * 2016-08-19 2016-08-29 엘에스엠트론 주식회사 전해 동박과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432124B (en) * 1996-05-13 2001-05-01 Mitsui Mining & Amp Smelting C Electrolytic copper foil with high post heat tensile strength and its manufacturing method
JPH11339811A (ja) * 1998-05-25 1999-12-10 Nippaku Sangyo Kk 二次電池用銅合金箔製集電体
KR100346542B1 (ko) * 1999-01-25 2002-07-26 삼성에스디아이 주식회사 리튬 이차 전지
JP2006049237A (ja) * 2004-08-09 2006-02-16 Hitachi Cable Ltd リチウムイオン電池用負極材
JP5722813B2 (ja) * 2012-03-02 2015-05-27 Jx日鉱日石金属株式会社 電解銅箔及び二次電池用負極集電体
JP5698196B2 (ja) * 2012-08-17 2015-04-08 Jx日鉱日石金属株式会社 電解銅箔、並びにこれを用いた二次電池集電体及び二次電池
WO2014119583A1 (ja) * 2013-01-29 2014-08-07 古河電気工業株式会社 電解銅箔、該電解銅箔を用いた電池用集電体、該集電体を用いた二次電池用電極、該電極を用いた二次電池
JP2015134953A (ja) * 2014-01-17 2015-07-27 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
US20150318530A1 (en) * 2014-05-01 2015-11-05 Sila Nanotechnologies, Inc. Aqueous electrochemical energy storage devices and components
KR101737028B1 (ko) * 2014-07-10 2017-05-17 엘에스엠트론 주식회사 전해 동박의 제조 방법
JP5916904B1 (ja) * 2015-01-07 2016-05-11 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池並びにリジッドプリント配線板及びフレキシブルプリント配線板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070117465A (ko) * 2006-06-07 2007-12-12 후루카와서키트호일가부시끼가이샤 표면 처리 전해 동박 및 그 제조 방법, 및 회로 기판
WO2012002380A1 (ja) * 2010-06-28 2012-01-05 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
KR20160119269A (ko) * 2010-06-28 2016-10-12 후루카와 덴키 고교 가부시키가이샤 전해 동박, 리튬 이온 이차 전지용 전해 동박, 상기 전해 동박을 이용한 리튬 이온 이차 전지용 전극, 상기 전극을 사용한 리튬 이온 이차 전지
KR20140041804A (ko) * 2011-06-30 2014-04-04 후루카와 덴키 고교 가부시키가이샤 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지
KR20160102147A (ko) * 2016-08-19 2016-08-29 엘에스엠트론 주식회사 전해 동박과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013761A1 (en) * 2018-10-25 2022-01-13 Panasonic Corporation Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
KR20210002342A (ko) * 2019-06-27 2021-01-07 장 춘 페트로케미컬 컴퍼니 리미티드 전착된 구리 호일
KR102223003B1 (ko) * 2019-06-27 2021-03-05 장 춘 페트로케미컬 컴퍼니 리미티드 전착된 구리 호일

Also Published As

Publication number Publication date
JP6975782B2 (ja) 2021-12-01
US20210135234A1 (en) 2021-05-06
EP3540833A4 (en) 2020-05-13
US11508967B2 (en) 2022-11-22
US20190334177A1 (en) 2019-10-31
JP2019536209A (ja) 2019-12-12
CN109923712B (zh) 2021-11-30
CN109923712A (zh) 2019-06-21
EP3540833A1 (en) 2019-09-18
TWI613301B (zh) 2018-02-01
US11380898B2 (en) 2022-07-05
KR101733408B1 (ko) 2017-05-10
JP2022008856A (ja) 2022-01-14
TW201817887A (zh) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2018088642A1 (ko) 이차전지용 전해동박 및 그의 제조방법
WO2018088643A1 (ko) 이차전지용 전해동박 및 그의 제조방법
WO2011129633A2 (en) Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
KR20090125823A (ko) 리튬 2차 전지용 전해 구리박 및 그 구리박의 제조 방법
US11866843B2 (en) Electrolytic copper foil for secondary battery, having enhanced physical properties at low temperature, and method for producing same
WO2018088646A1 (ko) 이차전지용 전해동박 및 그의 제조방법
US20210230761A1 (en) Electrolytic copper foil for secondary battery, having enhanced flexural resistance, and method for producing same
WO2023219269A1 (ko) 전해 동박의 물성 제어 방법 및 그 제조 방법
WO2023075197A1 (ko) 이차전지 집전체용 전해동박
WO2023075195A1 (ko) 고강도 고연신 전해동박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017869658

Country of ref document: EP

Effective date: 20190611