WO2023219269A1 - 전해 동박의 물성 제어 방법 및 그 제조 방법 - Google Patents

전해 동박의 물성 제어 방법 및 그 제조 방법 Download PDF

Info

Publication number
WO2023219269A1
WO2023219269A1 PCT/KR2023/004288 KR2023004288W WO2023219269A1 WO 2023219269 A1 WO2023219269 A1 WO 2023219269A1 KR 2023004288 W KR2023004288 W KR 2023004288W WO 2023219269 A1 WO2023219269 A1 WO 2023219269A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
controlling
glossiness
physical properties
Prior art date
Application number
PCT/KR2023/004288
Other languages
English (en)
French (fr)
Inventor
김정환
허세권
허균
Original Assignee
고려아연 주식회사
케이잼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려아연 주식회사, 케이잼 주식회사 filed Critical 고려아연 주식회사
Priority to MX2024001167A priority Critical patent/MX2024001167A/es
Priority to JP2023544706A priority patent/JP2024523079A/ja
Priority to CA3211775A priority patent/CA3211775A1/en
Priority to CN202380013182.3A priority patent/CN117813421A/zh
Publication of WO2023219269A1 publication Critical patent/WO2023219269A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of controlling the physical properties of electrolytic copper foil and a manufacturing method that can easily control other major physical properties such as tensile strength, elongation, and roughness by controlling only the glossiness of the electrolytic copper foil.
  • copper foil a very thin copper thin film used as a negative electrode current collector for secondary batteries, is attracting attention as one of the major materials in the electronic device industry.
  • Such copper foil is usually divided into electrolytic copper foil and rolled copper foil depending on the manufacturing method, and each has its own advantages and disadvantages, so the preferred method differs depending on the intended use.
  • the manufacturing process of electrolytic copper foil is mainly made continuously using the roll-to-roll method, which enables mass production and has the advantage of producing copper foil with a wide width and thin thickness. Therefore, in the case of lithium secondary batteries, electrolytic copper foil is used. This is mainly used. Recently, copper foil with a thickness of 10 ⁇ m or less is required, and in particular, copper foil with a thickness of 8 ⁇ m and 6 ⁇ m is mainly used.
  • electrolytic copper foil In general, the physical properties of electrolytic copper foil, such as tensile strength, elongation, and roughness, are carefully managed. And as the thickness of the electrolytic copper foil becomes thinner, the surface of the copper foil affects the physical properties of the copper foil, such as tensile strength, elongation, and roughness, so the relationship between each physical property becomes more important.
  • Korean Patent Publication No. 1126831 discloses a technology for manufacturing an electrolytic copper foil in which the relative thickness of the discontinuous layer to the continuous layer is minimized by appropriately controlling the composition of the electrolyte solution, current density, or the type and content of additives added to the electrolyte solution.
  • a method of controlling the physical properties of electrolytic copper foil and a manufacturing method that can easily control the physical properties such as elongation, tensile strength, and roughness within the general physical property range of the electrolytic copper foil are required.
  • Patent Document 1 Korean Patent Publication No. 1571064
  • Patent Document 2 Korean Patent Publication No. 1126831
  • the present invention was created to solve the above-mentioned problems, and aims to solve the problem of easily adjusting the physical properties such as elongation, tensile strength, and roughness within the general physical property range of electrolytic copper foil.
  • the present invention solves the problem of having to change the input amount of different additives in a complex way, simplifies the process for controlling the physical properties of electrolytic copper foil, and reduces the resulting process cost and additive cost. do.
  • the method for controlling the physical properties of the electrolytic copper foil of the present invention controls the physical properties including tensile strength, elongation, and roughness by adjusting the glossiness of the electrolytic copper foil by adding a glossiness control agent, and the glossiness range is 35 to 400 GU ( 60°).
  • the elongation rate is adjusted according to Equation 1 below.
  • the tensile strength is adjusted according to Equation 2 below.
  • the illuminance is adjusted according to Equation 3 below.
  • the gloss regulator is sulfonic acid, a compound containing a sulfur atom, or its metal salt, such as thiophosphoric acid-tris-( ⁇ -sulfopropyl) ester trisodium salt, 3-mercapto-1-propanesulfonic acid (MPS) , bis-(3-sulfopropyl)-disulfide disodium salt (SPS), and thioglycolic acid.
  • thiophosphoric acid-tris-( ⁇ -sulfopropyl) ester trisodium salt 3-mercapto-1-propanesulfonic acid (MPS) , bis-(3-sulfopropyl)-disulfide disodium salt (SPS), and thioglycolic acid.
  • the concentration of the gloss regulator is 12 ppm to 40 ppm, preferably 18 ppm to 28 ppm.
  • the method for producing an electrolytic copper foil of the present invention is to prepare an electrolyte solution by dissolving copper ions in sulfate ions, and adding an elongation regulator for maintaining and improving elongation, a tensile strength regulator for maintaining and improving tensile strength, or both to the electrolyte solution.
  • the concentration of the copper ion in the electrolyte solution is 70 g/L to 100 g/L, and the concentration of the sulfate ion is 80 g/L to 150 g/L.
  • the elongation modifier includes at least one of nonionic water-soluble polymers such as carboxymethylcellulose, polyethylene glycol, hydroxyethyl cellulose (HEC), octane diol-bis-polyalkylene glycol ether, and polyglycerin.
  • nonionic water-soluble polymers such as carboxymethylcellulose, polyethylene glycol, hydroxyethyl cellulose (HEC), octane diol-bis-polyalkylene glycol ether, and polyglycerin.
  • the tensile strength regulator is a thiourea-based compound or a compound in which a thiol group is linked to a nitrogen-containing heterocycle, such as diethylthiourea, ethylenethiourea, acetylenethiourea, 2-thiouracil and 2-mercapto.
  • a thiourea-based compound or a compound in which a thiol group is linked to a nitrogen-containing heterocycle, such as diethylthiourea, ethylenethiourea, acetylenethiourea, 2-thiouracil and 2-mercapto.
  • -5-benzoimidazole sulfonic acid sodium salt (2-mercapto-5-benzoimidazole sulfonic acid sodium salt)
  • Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate Sodium 3-(5-mercapto-1) -tetrazolyl)benzene sulfon
  • the gloss regulator is sulfonic acid, a compound containing a sulfur atom, or its metal salt, thiophosphoric acid-tris-( ⁇ -sulfopropyl) ester trisodium salt, 3-mercapto-1-propanesulfonic acid (MPS) ), bis-(3-sulfopropyl)-disulfide disodium salt (SPS), and thioglycolic acid.
  • the concentration of the gloss regulator is 12 to 40 ppm, preferably 18 to 28 ppm.
  • other physical properties of the copper foil can be adjusted to desired values by controlling only one physical property of the electrolytic copper foil, namely glossiness, and therefore, it is necessary to complexly adjust the input amount of various types of additives to control the physical properties of the electrolytic copper foil. disappears. Therefore, the process for controlling the physical properties of the electrolytic copper foil is simplified, and the process cost and additive cost are reduced accordingly.
  • 1 is a graph showing the relationship between elongation and gloss according to the present invention.
  • Figure 2 is a graph showing the relationship between tensile strength and gloss according to the present invention.
  • Figure 3 is a graph showing the relationship between illuminance and gloss according to the present invention.
  • the electrolytic copper foil according to the present invention can be manufactured using the following electrolyte solution.
  • an electrolyte solution is prepared by adjusting copper ions and sulfate ions, and the electrolyte solution includes additives to control the basic physical properties of the copper foil.
  • the concentration of copper ions in the electrolyte solution is 70 to 100 g/L, and the concentration of sulfate ions is 80 to 150 g/L, and the concentrations of copper and sulfate ions vary depending on the manufacturing conditions of the electrolytic copper foil.
  • the raw materials for copper ions are copper-containing raw materials such as Cu Powder, Cu Scrap (waste wire, chopping Cu, etc.), copper sulfate, copper oxide, copper carbonate, etc. Any copper raw material that can be dissolved in sulfuric acid can be used.
  • the electrolyte solution contains additives necessary to control the physical properties of the copper foil, and the additives typically include additives that control one or more of the physical properties of elongation, tensile strength, and gloss.
  • An elongation regulator for controlling the elongation of the copper foil and a tensile strength regulator for controlling the tensile strength of the copper foil are added to the electrolyte solution.
  • the elongation modifier for maintaining and improving elongation includes at least one of nonionic water-soluble polymers: carboxymethyl cellulose, polyethylene glycol, hydroxyethyl cellulose (HEC), octane diol-bis-polyalkylene glycol ether, and polyglycerin. do.
  • Tensile strength regulators for maintaining and improving tensile strength include diethylthiourea, ethylenethiourea, acetylenethiourea, and 2-thiouracil, which are thiourea-based compounds or compounds with a thiol group linked to a nitrogen-containing heterocycle.
  • 2-mercapto-5-benzoimidazole sulfonic acid sodium salt Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate (Sodium 3- It includes at least one of (5-mercapto-1-tetrazolyl)benzene sulfonate) and 2-mercapto benzothiazole.
  • the electrolytic solution contains a glossiness regulator to adjust the glossiness of the copper foil to manufacture electrolytic copper foil, where the glossiness regulator for improving the glossiness is sulfonic acid, a compound containing a sulfur atom, or a metal salt thereof, Thiophosphoric acid-tris-( ⁇ -sulfopropyl)ester trisodium salt, 3-mercapto-1-propanesulfonic acid (MPS), bis-(3-sulfopropyl)-disulfide disodium salt (SPS), and thiophosphoric acid-tris-( ⁇ -sulfopropyl)ester trisodium salt.
  • the glossiness regulator for improving the glossiness is sulfonic acid, a compound containing a sulfur atom, or a metal salt thereof, Thiophosphoric acid-tris-( ⁇ -sulfopropyl)ester trisodium salt, 3-mercapto-1-propanesulfonic acid (MPS), bis-(3-sulf
  • the gloss control agent is added to the electrolyte solution at a concentration of 12 to 40 ppm, or preferably 18 to 28 ppm. If the concentration of the gloss regulator is higher than 40ppm, the tensile strength and elongation of the copper foil may decrease, which may cause the copper foil to break easily. If the concentration of the gloss regulator is less than 12ppm, the curl characteristics of the electrolytic copper foil will worsen. It is not easy to handle copper foil.
  • a rotating cathode drum with a surface made of Ti and an anode using a DSE (Dimentional Stable Electrode) plate containing platinum group elements in Ti are maintained at regular intervals, and the electrolyte solution prepared above is prepared under the conditions below. supply.
  • DSE Dismentional Stable Electrode
  • a gloss modifier is added to adjust the gloss within the range of 35 to 400 GU (60°), or preferably 120 to 250 GU (60°) to increase tensile strength, elongation, and roughness.
  • Control physical properties including.
  • the physical properties of the electrolytic copper foil are adjusted according to the following equations 1 to 3, and the desired values of tensile strength, elongation, and roughness can be obtained by adjusting only the gloss, making it possible to easily control the physical properties of the electrolytic copper foil.
  • G is the glossiness (GU (60°)) of the electrolytic copper foil
  • E”, T”, and R are the elongation (%) and tensile strength (kgf/mm2) of the electrolytic copper foil, respectively. and the value of illuminance ( ⁇ m).
  • the elongation of the electrolytic copper foil which is controlled by adjusting the gloss of the electrolytic copper foil to 120 to 250 GU (60°), is 6.5 to 9%, the tensile strength is 30 to 40 kgf/mm2, and the roughness is 0.8 to 1.5 ⁇ m.
  • an electrolytic copper foil for a negative electrode current collector of a secondary battery can be manufactured.
  • the electrolyte solution contained 80 g/L of copper, 100 g/L of sulfuric acid, 10 ppm of elongation control agent (HEC), and 25 ppm of tensile strength control agent (DTE).
  • the temperature of the electrolyte was maintained at 54°C and supplied to an electrolyzer equipped with a rotating cathode drum (530 ⁇ 280w) at a flow rate of 3,000 L/hr.
  • SPS bis-(3-sulfopropyl)-disulfide disodium salt
  • Experimental Example 2 the experiment was conducted under the same conditions as in Experimental Example 1, except that the concentration of the elongation regulator was changed in the range of 5 to 15 ppm and the concentration of the tensile strength regulator was changed in the range of 20 to 30 ppm.
  • Experimental Example 3 the same conditions were used in Experimental Example 1, except that the concentration of copper ions in the electrolyte was changed in the range of 70 g/L to 100 g/L and the concentration of sulfate ions in the range of 80 g/L to 150 g/L. The experiment was conducted in
  • Experimental Example 4 the experiment was conducted under the same conditions as in Experimental Example 1, except that the current density was changed from 4,500 to 6,500 A/m2 and the rotation speed of the rotating cathode drum was changed within the range of 1.3 to 1.6 (m/min). .
  • the electrolytic copper foils obtained in Experimental Examples 1 to 4 were heat treated at a temperature of 70° C. for 18 hours, and then the gloss, elongation, tensile strength, and roughness of the electrolytic copper foils were measured.
  • the measured values of elongation according to the change in gloss of the electrolytic copper foil are shown in Figure 1, the measured values of the tensile strength according to the change in the gloss of the electrolytic copper foil are shown in Figure 2, and the measured values of the roughness according to the change in the gloss of the electrolytic copper foil are shown in Figure 3. are shown respectively.
  • Figure 1 is a graph showing the relationship between elongation (y-axis) and glossiness (x-axis) by measuring the elongation of the electrolytic copper foil obtained in Experimental Examples 1 to 4.
  • the correlation between gloss and elongation when the gloss is within the range of 35 to 400 GU (60°) can be derived.
  • the correlation between each gloss and elongation was derived by extrapolation (a method of estimating the value outside the region when the function value is known only within the variable region), and the correlation between gloss and elongation is as follows. It is the same as equation 1.
  • G represents the glossiness (GU (60°)) of the electrolytic copper foil
  • E represents the elongation (%) of the electrolytic copper foil.
  • Figure 2 is a graph showing the relationship between tensile strength (y-axis) and glossiness (x-axis) by measuring the tensile strength of the electrolytic copper foil obtained in Experimental Examples 1 to 4.
  • the correlation between gloss and tensile strength when the gloss is within the range of 35 to 400 GU (60°) can be derived.
  • the correlation between each gloss and tensile strength was derived by extrapolation, and the correlation between gloss and tensile strength is shown in Equation 2 below.
  • G represents the glossiness (GU (60°)) of the electrolytic copper foil
  • T represents the tensile strength (kgf/mm2) of the electrolytic copper foil.
  • Figure 3 is a graph showing the relationship between roughness (y-axis) and glossiness (x-axis) by measuring the roughness of the electrolytic copper foil obtained in Experimental Examples 1 to 4.
  • the correlation between glossiness and roughness when the gloss is within the range of 35 to 400 GU (60°) can be derived.
  • the correlation between glossiness and roughness was derived by extrapolation, and the correlation between glossiness and roughness is shown in Equation 3 below.
  • G represents the glossiness (GU (60°)) of the electrolytic copper foil
  • R represents the roughness ( ⁇ m) of the electrolytic copper foil.
  • the electrolyte solution contained 80 g/L of copper, 100 g/L of sulfuric acid, 10 ppm of elongation control agent (HEC), and 25 ppm of tensile strength control agent (DTE). Additionally, a glossiness control agent (SPS) was added to the electrolyte solution at a concentration of 12 to 40 ppm.
  • SPS glossiness control agent
  • the temperature of the electrolyte was maintained at 54°C and supplied to an electrolytic cell equipped with a rotating cathode drum (530 ⁇ 280w) at a flow rate of 3,000 L/hr.
  • An electrolytic copper foil with a thickness of 8 ⁇ m was manufactured under the same conditions as in Example 1, except that the concentrations of the elongation regulator (HEC) and tensile strength regulator (DTE) of the electrolyte solution were changed as shown in Table 1.
  • HEC elongation regulator
  • DTE tensile strength regulator
  • An electrolytic copper foil with a thickness of 8 ⁇ m was manufactured under the same conditions as Example 1, except that the copper and sulfuric acid concentrations of the electrolyte solution were changed as shown in Table 1.
  • An electrolytic copper foil with a thickness of 8 ⁇ m was manufactured under the same conditions as in Example 1, except that the current density and rotational speed of the rotating cathode drum were changed as shown in Table 1 during the electrolytic process of the copper foil.
  • Example 1 80 100 10 25 12 5,769 1.47
  • Example 2 80 100 10 25 16 5,769 1.47
  • Example 3 80 100 10 25 22 5,769 1.47
  • Example 4 80 100 10 25 23 5,769 1.47
  • Example 5 80 100 10 25 24 5,769 1.47
  • Example 6 80 100 10 25 25 25, 5,769 1.47
  • Example 7 80 100 10 25 25.5 5,769 1.47
  • Example 8 80 100 10 25 26 5,769 1.47
  • Example 9 80 100 10 25 34 5,769 1.47
  • Example 10 80 100 12 28 18 5,769 1.47
  • Example 11 80 100 12 28 28 5,769 1.47
  • Example 12 80 100 8 23 20 5,769 1.47
  • Example 13 80 100 8 23 27 5,769 1.47
  • Example 14 75 95 10 25 19 5,769 1.47
  • Example 15 85 105 10 25 26.5 5,769 1.47
  • Example 17 85 105 10 25 28.5 5,769 1.47
  • Example 15 85 105 10 25 26.5
  • Tensile strength and elongation were measured in accordance with JIS C 6511 and were measured using an electrolytic copper foil tensile tester (MINOS-005: MTDI). The measurement conditions were at room temperature (25°C ⁇ 10°C), a distance between chucks of 50 mm, and a displacement speed of 50 mm/min.
  • the roughness was measured in accordance with JIS B 0601 (JIS 1994), a roughness measurement method, and measured in a direction perpendicular to the flow direction (MD direction) of the copper foil using a roughness meter (SJ-411: MITUTOYO).
  • Example 2 98 7.475 7.52 -0.59 40.81 40.50 0.76 1.383 1.39 -0.51
  • Example 6 182 7.239 7.30 -0.84 35.01 35.60 -1.65 1.141 1.11 2.83
  • the additive bis-(3-sulfopropyl)-disulfide disodium salt (SPS) was added to increase the gloss to 35 to 400 GU (60°), preferably 120 to 250 GU (60°).
  • the electrolytic copper foil physical properties such as elongation, tensile strength, and roughness can be calculated using Equations 1 to 3.
  • Equations 1 to 3 can be used even if the conditions of the concentration of the tensile strength regulator or elongation regulator, the concentration of copper and sulfate ions in the electrolyte, or the current density in the electrolysis process and the rotation speed of the rotating cathode drum are different, and the results are Since the error is within ⁇ 5% of the actual measured value, it can be used in actual production.
  • the present invention by adjusting only one physical property of the electrolytic copper foil, namely gloss, other physical properties can be adjusted to a desired value, so there is no need to complexly adjust the input amount of various types of additives to adjust the physical properties of the electrolytic copper foil. . Since other physical properties of the electrolytic copper foil can be appropriately controlled by controlling only the gloss, the process for controlling the physical properties of the electrolytic copper foil is simplified, and the process cost and additive cost are reduced accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명의 일 실시예에 따른 전해 동박의 물성 제어 방법은, 광택도 조절제를 첨가하여 전해 동박의 광택도를 조절함으로써 인장강도, 연신율, 및 조도를 포함하는 물성을 제어하는 방법으로, 상기 광택도의 범위는 35 내지 400 GU(60°)으로 조절된다.

Description

전해 동박의 물성 제어 방법 및 그 제조 방법
본 발명은 전해 동박의 광택도만 조절함으로써 다른 주요 물성인 인장강도, 연신율 및 조도를 쉽게 제어할 수 있는 전해 동박의 물성 제어 방법 및 제조 방법에 관한 것이다.
최근에는 전기 자동차, 휴대 전화 등 모바일 기기 산업에 필요한 이차전지 수요가 폭발적으로 증가하면서 높은 에너지 밀도와 안정성을 가지는 리튬 이차전지에 필요한 동박의 수요 또한 급증하고 있다. 이에 따라, 이차전지 음극 집전체로 사용되는 매우 얇은 구리 박막인 동박은 전자기기산업에 있어 매우 주요한 소재 중 하나로 주목받고 있다. 이러한 동박은 통상 제조 방법에 따라 전해 동박과 압연 동박으로 나뉘며 각기 장단점이 있어 사용처에 따라 선호되는 방식이 다르다.
특히, 전해 동박의 제조공정은 주로 롤투롤(Roll To Roll) 방식으로 연속적으로 생산함으로써 대량 생산이 가능하고, 폭이 넓고 두께가 얇은 동박을 생산할 수 있는 장점이 있으므로 리튬 이차전지의 경우에는 전해 동박이 주로 사용된다. 최근에는 두께 10 ㎛ 이하 두께의 동박이 요구되고 있고, 특히 통상적으로 8 ㎛ 및 6 ㎛ 두께의 동박이 주로 사용된다.
일반적으로 전해 동박은 인장강도, 연신율, 조도 등의 물성이 중요하게 관리되고 있다. 그리고 전해 동박의 두께가 얇을수록 동박의 표면이 인장강도, 연신율, 조도 등의 동박의 물성에 영향을 주게 되기 때문에 각 물성들의 관계가 중요시되고 있다.
종래 동박의 기본 물성을 구현하기 위한 물성 제어 방법 및 기술이 다양하게 보고된 바 있다. 특히 이러한 물성들을 조절하는 방법으로 유기 화합물 계열의 첨가제 하나 또는 그 이상의 다양한 종류의 첨가제를 투입하였으며, 첨가제의 총 투입량을 복합적으로 변경하는 방법을 사용하고 있다. 예를 들어, 물성들을 조절하여 전해 동박을 제조하는 방법으로 한국 특허공보 제1571064호에서는 티오우레아계 화합물인 첨가제를 사용하여 제조 안정화를 향상시키고 전해 동박의 강도를 향상시키며, 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염을 사용하여 전해 동박의 표면 광택을 향상시키는 기술을 개시한다. 또한 한국 특허공보 제1126831호에서는 전해액의 조성, 전류 밀도 또는 전해액에 첨가되는 첨가제의 종류 및 함량을 적절히 조절하여 연속층에 대한 불연속층의 상대적인 두께가 최소화된 전해 동박을 제조하는 기술을 개시한다.
그러나 이러한 첨가제를 사용하게 되는 경우, 동박의 한가지 물성만을 선택적으로 제어할 수 없다는 문제가 있었다. 예를 들어, 물성 중 연신율을 조절하는 첨가제를 사용하게 되는 경우, 연신율을 유지 또는 향상시킬 수 있을 뿐만 아니라 그 외의 물성인 조도 또는 광택도의 변화에도 영향을 미치기 때문에 조도 또는 광택도와 관련된 다른 첨가제의 투입량 역시 변경시켜야 하는 문제가 발생한다.
이러한 문제를 해결하기 위하여 전해 동박의 일반적인 물성 범위 내에서 연신율, 인장강도 및 조도 등의 물성을 쉽게 조절할 수 있는 전해 동박의 물성 제어 방법 및 그 제조 방법이 요구된다.
[선행기술문헌]
(특허문헌 1) 한국 특허공보 제1571064호
(특허문헌 2) 한국 특허공보 제1126831호
본 발명은 상술한 문제점을 해결하기 위하여 창안되었으며, 전해 동박의 일반적인 물성 범위 내에서 연신율, 인장강도 및 조도 등의 물성을 쉽게 조절할 수 있는 것을 해결하고자 하는 과제로 한다. 또한, 본 발명은 다른 첨가제의 투입량을 복합적으로 변경시켜야 하는 문제를 해결하여, 전해 동박의 물성 제어를 위한 공정을 간소화시키고, 그에 따른 공정 비용 및 첨가제에 들어가는 비용을 감소시키는 것을 해결하고자 하는 과제로 한다.
본 발명의 전해 동박의 물성 제어 방법은, 광택도 조절제를 첨가하여 전해 동박의 광택도를 조절함으로써 인장강도, 연신율 및 조도를 포함하는 물성을 제어하고, 상기 광택도의 범위는 35 내지 400 GU(60°) 이다.
상기 광택도를 조절하여 하기 식 1에 따라 연신율을 조절한다.
식 1: E = -3.15×10-5×G2 + 0.006×G + 7.19
(G: 광택도(GU(60°)), E: 연신율(%))
상기 광택도를 조절하여 하기 식 2에 따라 인장강도를 조절한다.
식 2: T = 1.25×10-4×G2 - 0.104×G + 49.8
(G: 광택도(GU(60°)), T: 인장강도(kgf/㎟))
상기 광택도를 조절하여 하기 식 3에 따라 조도를 조절한다.
식 3: R = 7.59×10-6×G2 - 0.005×G + 1.80
(G: 광택도(GU(60°)), R: 조도(㎛))
상기 광택도 조절제는 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염으로 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염, 3-머캅토-1-프로판술폰산(MPS), 비스-(3-술포프로필)-디설파이드 디소듐염(SPS) 및 티오글리콜릭산 중 적어도 어느 하나를 포함한다.
상기 광택도 조절제의 농도는 12 ppm 내지 40 ppm 이고, 바람직하게는 18 ppm 내지 28 ppm 이다.
본 발명의 전해 동박의 제조 방법은, 구리 이온을 황산 이온에 녹여 전해액을 준비하고, 상기 전해액에 연신율 유지와 향상을 위한 연신율 조절제, 인장강도 유지와 향상을 위한 인장강도 조절제, 또는 둘 다를 첨가하는 단계; 광택도 향상을 위한 광택도 조절제를 첨가하여 상기 전해 동박의 물성 제어 방법에 따라 전해 동박의 물성을 제어하는 단계; 첨가제가 첨가된 전해액을 회전식 음극 드럼과 양극이 일정한 간격을 유지하고 있는 제박기에 공급하면서 전류를 공급하여 전해 동박을 형성하는 단계를 포함한다.
상기 전해액에서의 상기 구리 이온의 농도는 70 g/L 내지 100 g/L 이고, 상기 황산 이온의 농도는 80 g/L 내지 150 g/L 이다.
상기 연신율 조절제는 비이온성 수용성 고분자인, 카르복시메틸셀룰로오스, 폴리에틸렌글리콜, 하이드록시에틸 셀룰로오스(HEC), 옥탄 디올-비스-폴리알킬렌 글리콜 에테르 및 폴리글리세린 중 적어도 어느 하나를 포함한다.
상기 인장강도 조절제는 티오우레아계 화합물 또는 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물인, 디에틸티오우레아, 에틸렌티오우레아, 아세틸렌티오우레아, 2-티오우라실(2-thiouracil) 와 2-머캅토-5-벤조이미다졸 술폰산 소듐염(2-mercapto-5-benzoimidazole sulfonic acid sodium salt), 소듐 3-(5-머캅토-1-테트라졸릴)벤젠 술포네이트(Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate) 및 2-머캅토 벤조티아졸(2-mercapto benzothiazole) 중 적어도 어느 하나를 포함한다.
상기 광택도 조절제는 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염인, 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염, 3-머캅토-1-프로판술폰산(MPS), 비스-(3-술포프로필)-디설파이드 디소듐염(SPS) 및 티오글리콜릭산 중 적어도 어느 하나를 포함한다.
상기 광택도 조절제의 농도는 12 내지 40 ppm, 바람직하게는 18 내지 28 ppm 이다.
본 발명에 따르면, 전해 동박의 광택도만을 조절하여 전해 동박의 인장강도, 연신율 및 조도 등의 물성을 용이하게 조절할 수 있다.
또한, 본 발명에 따르면, 광택도라는 전해 동박의 하나의 물성만을 조절함으로써 동박의 다른 물성들을 원하는 값으로 조절할 수 있으므로, 전해 동박의 물성을 조절하기 위해 여러 종류의 첨가제의 투입량을 복합적으로 조절할 필요가 없어진다. 따라서, 전해 동박의 물성 제어를 위한 공정이 간소화되고, 그에 따른 공정 비용 및 첨가제에 들어가는 비용도 감소된다.
도 1은, 본 발명에 따른 광택도에 대한 연신율의 관계를 나타내는 그래프이다.
도 2는, 본 발명에 따른 광택도에 대한 인장강도의 관계를 나타내는 그래프이다.
도 3은, 본 발명에 따른 광택도에 대한 조도의 관계를 나타내는 그래프이다.
이하, 본 발명에 따른 전해 동박의 물성의 제어 방법 및 동박의 제조 방법에 관하여 도면과 함께 더욱 상세히 설명한다.
본 발명에 따른 전해 동박은 하기의 전해액을 이용하여 제조될 수 있다.
(전해액 제조)
전해에 의한 전해 동박을 제조하기 위해서는, 구리 이온과 황산 이온을 조절하여 전해액을 제조하고, 상기 전해액에는 동박의 기본적인 물성 조절을 위하여 첨가제를 포함한다.
상기 전해액의 구리 이온의 농도는 70 내지 100 g/L, 황산 이온의 농도는 80 내지 150g/L 이며, 구리와 황산 이온의 농도는 전해 동박의 제조 조건에 따라 달라진다.
여기서 구리 이온의 원료는 Cu Powder, Cu Scrap (폐전선, Chopping Cu 등), 황산동, 산화동, 탄산동 등과 같이 구리를 함유한 원료이며 황산에 용해될 수 있는 구리 원료는 모두 사용 가능할 수 있다.
상기 전해액에는 동박의 물성을 조절하기 위해 필요한 첨가제를 포함하며, 첨가제는 통상적으로 연신율, 인장강도, 광택도 중 어느 하나 또는 그 이상의 물성을 조절하는 첨가제가 포함된다.
상기 전해액에는 동박의 연신율을 조절하기 위한 연신율 조절제 및 동박의 인장강도를 조절하기 위한 인장강도 조절제를 첨가한다.
여기서 연신율 유지와 향상을 위한 연신율 조절제는 비이온성 수용성 고분자인, 카르복시메틸셀룰로오스, 폴리에틸렌글리콜, 하이드록시에틸 셀룰로오스(HEC), 옥탄 디올-비스-폴리알킬렌 글리콜 에테르 및 폴리글리세린 중 적어도 어느 하나를 포함한다.
인장강도 유지와 향상을 위한 인장강도 조절제는 티오우레아계 화합물 또는 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물인, 디에틸티오우레아, 에틸렌티오우레아, 아세틸렌티오우레아, 2-티오우라실(2-thiouracil) 와 2-머캅토-5-벤조이미다졸 술폰산 소듐염(2-mercapto-5-benzoimidazole sulfonic acid sodium salt), 소듐 3-(5-머캅토-1-테트라졸릴)벤젠 술포네이트(Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate) 및 2-머캅토 벤조티아졸(2-mercapto benzothiazole)중 적어도 어느 하나를 포함한다.
이어서 상기 전해액에는 동박의 광택도를 조절하기 위하여 광택도 조절제를 포함하여 전해 동박을 제조하며, 여기서 광택도 향상을 위한 광택도 조절제는 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염인, 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염, 3-머캅토-1-프로판술폰산(MPS), 비스-(3-술포프로필)-디설파이드 디소듐염(SPS), 및 티오글리콜릭산 중 적어도 어느 하나를 포함한다.
광택도 조절제는 전해액에 12 내지 40 ppm, 또는 바람직하게는 18 내지 28 ppm의 농도로 조절하여 첨가한다. 광택도 조절제의 농도가 40ppm 보다 높으면, 동박의 인장강도와 연신율이 낮아져 동박이 쉽게 파단되는 문제가 발생할 수 있으며, 광택도 조절제의 농도가 12ppm보다 적으면, 전해 동박의 컬(curl) 특성이 심해져 동박 취급시 용이하지 않다.
(전해 동박의 제조 방법)
전해 동박의 제조 방법에서는, 표면이 Ti 재질인 회전식 음극 드럼과 Ti에 백금족 원소가 함유된 DSE(Dimentional Stable Electrode) 극판을 사용한 양극이 일정한 간격을 유지하고 있는 제박기에 아래 조건으로 상기 제조된 전해액을 공급한다.
전해액의 온도: 45 내지 55 ℃
전해액의 유량: 1,800 내지 3,500 L/hr
전류 밀도: 4,500 내지 6,500 A/㎡
(전해 동박의 물성을 제어하는 방법)
본 발명의 일 실시예에 따르면, 광택 조절제를 첨가하여 광택도를 35 내지 400 GU(60°), 또는 바람직하게는 120 내지 250 GU(60°)의 범위 내로 조절하여 인장강도, 연신율, 및 조도를 포함하는 물성을 제어한다.
이 경우 전해 동박의 물성은 하기 식 1 내지 3에 따라 조절되며, 광택도만을 조절하여 원하는 인장강도, 연신율, 및 조도의 값을 얻을 수 있어, 전해 동박의 물성들을 쉽게 제어할 수 있다.
식 1: E = -3.15×10-5×G2 + 0.006×G + 7.19
식 2: T = 1.25×10-4×G2 - 0.104×G + 49.8
식 3: R = 7.59×10-6×G2 - 0.005×G + 1.80
(여기서, 「G」는 전해 동박의 광택도(GU(60°))를, 「E」, 「T」, 「R」는 각각 전해 동박의 연신율(%), 인장강도(kgf/㎟), 및 조도(㎛)의 값을 나타낸다.)
전해 동박의 광택도를 120 내지 250 GU(60°)로 조절함으로써 제어되는 전해 동박의 연신율은 6.5 내지 9 % 이고, 인장강도는 30 내지 40 kgf/㎟ 이며, 조도는 0.8 내지 1.5 ㎛ 이다.
본 발명의 일 실시예에 따르면, 이차전지 음극 집전체용 전해 동박을 제조할 수 있다.
이하에서는, 실험 조건을 달리하는 각 실험예들의 결과에 따른 전해 동박의 광택도와 다른 물성들 간의 상관관계 식을 도출하는 과정에 대해 상세히 설명한다.
<실험예 1>
전해액은 구리 80g/L, 황산 100g/L 및 연신율 조절제(HEC) 10ppm, 인장강도 조절제 (DTE) 25ppm을 포함한 조성으로 하였다. 전해액의 온도는 54℃를 유지하면서 3,000L/hr의 유량으로 회전식 음극 드럼(530ø×280w)이 장착된 전해조로 공급하였다. 또한, 전해액에 광택도 조절제인 비스-(3-술포프로필)-디설파이드 디소듐염(SPS)을 12 내지 40 ppm 농도로 조절해 가며 투입하였다.
동박의 전해 과정에서는 전류를 5,769A/㎡의 전류 밀도로 정전류법(Constant Current Method)으로 공급하고 회전식 음극 드럼을 1.47m/min의 속도로 회전하면서 연속적으로 두께 8㎛의 전해 동박을 제조하였다.
<실험예 2>
실험예 2에서는 실험예 1에서 연신율 조절제의 농도를 5 내지 15 ppm 및 인장강도 조절제의 농도를 20 내지 30 ppm 범위 내에서 변경한 것을 제외하고는 동일한 조건에서 실험을 진행하였다.
<실험예 3>
실험예 3에서는 실험예 1에서 전해액 중의 구리 이온의 농도는 70g/L 내지 100g/L 및 상기 황산 이온의 농도는 80 g/L 내지 150 g/L의 범위 내에서 변경한 것을 제외하고는 동일한 조건에서 실험을 진행하였다.
<실험예 4>
실험예 4에서는 실험예 1에서 전류 밀도를 4,500 내지 6,500 A/㎡ 및 회전식 음극 드럼의 회전 속도를 1.3 내지 1.6 (m/min)의 범위 내에서 변경한 것을 제외하고는 동일한 조건에서 실험을 진행하였다.
(광택도 변화에 따른 연신율, 인장강도 및 조도 측정)
실험예 1 내지 4에서 얻어진 전해 동박들을 온도 70℃ 에서 18hr 동안 열처리한 후, 전해 동박의 광택도, 연신율, 인장강도 및 조도를 측정하였다.
전해 동박의 광택도 변화에 따른 연신율의 측정값은 도 1에, 전해 동박의 광택도 변화에 따른 인장강도의 측정값은 도 2에, 전해 동박의 광택도 변화에 따른 조도의 측정값은 도 3에 각각 나타내었다.
도 1은 상기 실험예 1 내지 4에서 얻어진 전해 동박의 연신율을 측정하여, 광택도(x축)에 대한 연신율(y축)의 관계를 나타낸 그래프이다. 광택도와 연신율의 물성 데이터를 플로팅한 그래프에 의해, 광택도가 35 내지 400 GU(60°)의 범위 내에 있을 때의 광택도와 연신율의 상관관계를 도출할 수 있다. 구체적으로는 각 광택도와 연신율의 상관관계를 외삽법(extrapolation: 함수값이 변수가 있는 영역 내에서만 알려져 있을 때에 영역 밖에서의 값을 추정하는 방법)에 의해 도출해 냈으며, 광택도와 연신율의 상관 관계는 하기 식 1과 같다.
식 1: E = -3.15×10-5×G2 + 0.006×G + 7.19
(여기서, 「G」는 전해 동박의 광택도(GU(60°))를, 「E」는 전해 동박의 연신율(%)을 나타낸다.)
도 2는 상기 실험예 1 내지 4에서 얻어진 전해 동박의 인장강도를 측정하여, 광택도(x축)에 대한 인장강도(y축)의 관계를 표시한 그래프다. 광택도와 인장강도의 물성 데이터를 플로팅한 그래프에 의해, 광택도가 35 내지 400 GU(60°)의 범위 내에 있을 때의 광택도와 인장강도의 상관관계를 도출할 수 있다. 구체적으로는 각 광택도와 인장강도의 상관관계를 외삽법에 의해 도출해 냈으며, 광택도와 인장강도의 상관 관계는 하기 식 2와 같다.
식 2: T = 1.25×10-4×G2 - 0.104×G + 49.8
(여기서, 「G」는 전해 동박의 광택도(GU(60°))를, 「T」는 전해 동박의 인장강도(kgf/㎟)를 나타낸다.)
도 3은 상기 실험예 1 내지 4에서 얻어진 전해 동박의 조도를 측정하여, 광택도(x축)에 대한 조도 (y축)의 관계를 표시한 그래프다. 광택도와 조도의 물성 데이터를 플로팅한 그래프에 의해, 광택도가 35 내지 400 GU(60°)의 범위 내에 있을 때의 광택도와 조도의 상관 관계를 도출할 수 있다. 구체적으로는 각 광택도와 조도의 상관관계를 외삽법에 의해 도출해 냈으며, 광택도와 조도의 상관관계는 하기 식 3과 같다.
식 3: R = 7.59×10-6×G2 - 0.005×G + 1.80
(여기서, 「G」는 전해 동박의 광택도(GU(60°))를, 「R」은 전해 동박의 조도(㎛)를 나타낸다.)
전해 동박의 물성이 상기 식 1 내지 3을 따라 조절될 수 있는지 평가하기 위해 다음과 같이 실험하였다.
(전해 동박 제조)
<실시예 1~9>
전해액은 구리 80g/L, 황산 100g/L 및 연신율 조절제(HEC) 10ppm, 인장강도 조절제(DTE) 25ppm를 포함한 조성으로 하였다. 또한, 전해액에 광택도 조절제(SPS)를 12 내지 40 ppm 농도로 조절해가며 투입하였다.
상기 전해액의 온도는 54℃를 유지하면서 3,000L/hr의 유량으로 회전식 음극 드럼(530ø×280w)이 장착된 전해조로 공급하였다.
동박의 전해 과정은 전류를 5,769A/㎡의 전류 밀도로 정전류법(Constant Current Method)으로 공급하고 회전식 음극 드럼을 1.47m/min의 속도로 회전하면서 연속적으로 두께 8㎛의 전해 동박을 제조하였다.
<실시예 10~13>
실시예 1에서 전해액의 연신율 조절제(HEC), 인장강도 조절제(DTE)의 농도가 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 두께 8㎛의 전해 동박을 제조하였다.
<실시예 14~17>
실시예 1에서 전해액의 구리와 황산 농도가 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 두께 8㎛의 전해 동박을 제조하였다.
<실시예 18~21>
실시예 1에서 동박의 전해 과정에서 전류 밀도와 회전식 음극 드럼의 회전 속도가 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 두께 8㎛의 전해 동박을 제조하였다.
구분 Cu (g/L) H2SO4 (g/L) HEC (ppm) DTE (ppm) SPS
(ppm)
전류 밀도(A/㎡) Speed
(m/min)
실시예1 80 100 10 25 12 5,769 1.47
실시예2 80 100 10 25 16 5,769 1.47
실시예3 80 100 10 25 22 5,769 1.47
실시예4 80 100 10 25 23 5,769 1.47
실시예5 80 100 10 25 24 5,769 1.47
실시예6 80 100 10 25 25 5,769 1.47
실시예7 80 100 10 25 25.5 5,769 1.47
실시예8 80 100 10 25 26 5,769 1.47
실시예9 80 100 10 25 34 5,769 1.47
실시예10 80 100 12 28 18 5,769 1.47
실시예11 80 100 12 28 28 5,769 1.47
실시예12 80 100 8 23 20 5,769 1.47
실시예13 80 100 8 23 27 5,769 1.47
실시예14 75 95 10 25 19 5,769 1.47
실시예15 85 105 10 25 26.5 5,769 1.47
실시예16 75 95 10 25 17 5,769 1.47
실시예17 85 105 10 25 28.5 5,769 1.47
실시예18 80 100 10 25 15 6,154 1.57
실시예19 80 100 10 25 27.5 5,384 1.37
실시예20 80 100 10 25 21 6,154 1.57
실시예21 80 100 10 25 31 5,384 1.37
- HEC: 하이드록시에틸 셀룰로오스(HydroxyEthyl Cellulose)
- DTE: 디에틸티오우레아(Diethylthiourea)
- SPS: 비스-(3-술포프로필)-디설파이드 디소듐염(Bis-(3-Sulfopropyl)-disulfide-disodium salt)
(전해 동박의 물성 측정)
실시예 1~21에서 제조된 전해 동박을 온도 70℃에서 18hr 동안 열처리한 후, 전해 동박의 광택도, 연신율, 인장강도 및 조도 물성을 측정하여 표 2에 나타내었다.
(광택도 측정)
광택도의 측정은 전해 동박을 10㎝×10㎝로 제간 후 동박의 흐름 방향(MD 방향)을 따라 동박의 표면에 입사각 60°로 측정광을 조사하고, 반사각 60°로 반사된 빛의 강도를 측정한 것으로 광택도 측정 방법인 JIS B 0601에 준거하여 측정하였다.
(인장강도/연신율 측정)
인장 강도 및 연신율 측정은, JIS C 6511에 준거하여 측정하였으며, 전해 동박 인장 시험기(MINOS-005: MTDI)를 사용하여 측정하였다. 측정 시 조건은 실온(25℃±10℃)에서, 척 간 거리 50㎜, 변위 속도 50㎜/min으로 측정하였다.
(조도 측정)
조도 측정 방법인 JIS B 0601(JIS 1994)에 준거하여 측정하였으며, 조도계(SJ-411: MITUTOYO)를 사용하여 동박의 흐름 방향(MD 방향)과 수직 방향으로 측정하였다.
위 측정을 통해 광택도의 변화에 따른 연신율, 인장강도, 및 조도를 측정하였으며, 식 1 내지 3을 이용하여 광택도의 변화에 따른 연신율, 인장강도, 및 조도를 계산하였다. 그리고 상기 측정치와 계산치 간의 오차를 계산하였으며, 그 결과를 아래 표 2에 나타내었다. 여기서 각 물성의 계산치와 측정치 간의 오차 값은 ((계산치/측정치)×100-100)(%)으로 계산하였다.
실시예 광택도
[GU(60°)]
연신율(%) 인장강도(kgf/mm2) 조도(㎛)
계산치 측정치 오차 (%) 계산치 측정치 오차 (%) 계산치 측정치 오차 (%)
실시예 1 37 7.369 7.48 -1.49 46.12 47.80 -3.51 1.625 1.66 -2.08
실시예 2 98 7.475 7.52 -0.59 40.81 40.50 0.76 1.383 1.39 -0.51
실시예 3 138 7.418 7.46 -0.56 37.83 37.00 2.24 1.255 1.26 -0.43
실시예 4 163 7.331 7.39 -0.80 36.17 35.60 1.60 1.187 1.18 0.56
실시예 5 174 7.280 7.40 -1.62 35.49 36.90 -3.83 1.160 1.17 -0.87
실시예 6 182 7.239 7.30 -0.84 35.01 35.60 -1.65 1.141 1.11 2.83
실시예 7 209 7.068 7.19 -1.70 33.52 33.90 -1.11 1.087 1.10 -1.22
실시예 8 223 6.962 6.81 2.23 32.82 33.70 -2.60 1.062 1.08 -1.63
실시예 9 354 5.367 5.64 -4.85 28.65 28.30 1.23 0.981 0.98 0.12
실시예 10 121.8 7.453 7.47 -0.22 38.99 38.9 0.22 1.304 1.28 1.84
실시예 11 251.0 6.711 6.54 2.62 31.57 32.5 -2.86 1.023 1.01 1.30
실시예 12 127.6 7.443 7.42 0.31 38.56 38.6 -0.09 1.286 1.26 2.03
실시예 13 248.0 6.741 6.67 1.06 31.70 33.0 -3.95 1.027 1.06 -3.13
실시예 14 123.4 7.451 7.45 0.01 38.87 38.8 0.18 1.299 1.27 2.25
실시예 15 247 6.750 6.54 3.21 31.74 33.4 -4.98 1.028 1.05 -2.09
실시예 16 110.0 7.469 7.50 -0.42 39.87 39.2 1.72 1.342 1.34 0.14
실시예 17 254.0 6.682 6.54 2.17 31.45 30.3 3.79 1.020 1.05 -2.89
실시예 18 54.8 7.424 7.45 -0.35 44.48 46.5 -4.35 1.549 1.59 -2.59
실시예 19 249.0 6.731 6.64 1.37 31.65 32.9 -3.79 1.026 1.03 -0.43
실시예 20 129.8 7.438 7.41 0.38 38.41 38.4 0.02 1.279 1.25 2.31
실시예 21 265 6.568 6.43 2.14 31.02 29.4 4.79 1.008 1.04 -3.08
표 2에 의하면, 전해액 제조 시에 첨가제 비스-(3-술포프로필)-디설파이드 디소듐염(SPS)를 첨가하여 광택도를 35 내지 400 GU(60°), 바람직하게는 120 내지 250 GU(60°)의 범위 내에서 조절하면, 식 1 내지 3을 이용하여 전해 동박 물성인 연신율, 인장강도, 및 조도를 계산할 수 있다. 특히, 인장강도 조절제 또는 연신율 조절제의 농도, 전해액의 구리와 황산 이온 농도, 또는 전해 과정에서의 전류 밀도와 회전식 음극 드럼의 회전 속도의 조건을 달리하더라도 식 1 내지 3을 이용할 수 있으며, 그 결과가 실제 측정한 수치와 오차 ±5% 범위 내이므로 실 조업에 활용 가능하다.
따라서, 본 발명에 따르면, 광택도라는 전해 동박의 하나의 물성만을 조절함으로써 다른 물성들을 원하는 값으로 조절할 수 있으므로, 전해 동박의 물성을 조절하기 위해 여러 종류의 첨가제의 투입량을 복합적으로 조절할 필요가 없다. 광택도 만을 조절함으로써 전해 동박의 다른 물성들을 적절하게 제어할 수 있으므로 전해 동박의 물성 제어를 위한 공정이 간소화되고, 그에 따른 공정 비용 및 첨가제에 들어가는 비용도 감소된다.
본 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것으로 해석되지 않아야 한다. 본 발명의 범위는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 광택도 조절제를 첨가하여 전해 동박의 광택도를 조절함으로써 인장강도, 연신율 및 조도를 포함하는 물성을 제어하고,
    상기 광택도의 범위는 35 내지 400 GU(60°)인, 전해 동박의 물성 제어 방법.
  2. 제1항에 있어서,
    상기 광택도를 조절하여 하기 식 1에 따라 연신율을 조절하는 전해 동박의 물성 제어 방법.
    식 1: E = -3.15×10-5×G2 + 0.006×G + 7.19 (G: 광택도(GU(60°)), E: 연신율(%))
  3. 제1항 또는 제2항에 있어서,
    상기 광택도를 조절하여 하기 식 2에 따라 인장강도를 조절하는 전해 동박의 물성 제어 방법.
    식 2: T = 1.25×10-4×G2 - 0.104×G + 49.8 (G: 광택도(GU(60°)), T: 인장강도(kgf/㎟))
  4. 제1항 또는 제2항에 있어서,
    상기 광택도를 조절하여 하기 식 3에 따라 조도를 조절하는 전해 동박의 물성 제어 방법.
    식 3: R = 7.59×10-6×G2 - 0.005×G + 1.80 (G: 광택도(GU(60°)), R: 조도(㎛))
  5. 제3항에 있어서,
    상기 광택도를 조절하여 하기 식 3에 따라 조도를 조절하는 전해 동박의 물성 제어 방법.
    식 3: R = 7.59×10-6×G2 - 0.005×G + 1.80 (G: 광택도(GU(60°)), R: 조도(㎛))
  6. 제1항에 있어서, 상기 광택도 조절제는 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염으로 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염, 3-머캅토-1-프로판술폰산(MPS), 비스-(3-술포프로필)-디설파이드 디소듐염(SPS) 및 티오글리콜릭산 중 적어도 어느 하나를 포함하는, 전해 동박의 물성 제어 방법.
  7. 제1항에 있어서,
    상기 광택도 조절제의 농도는 12 내지 40 ppm 인, 전해 동박의 물성 제어 방법.
  8. 제7항에 있어서,
    상기 광택도 조절제의 농도는 18 내지 28 ppm 인, 전해 동박의 물성 제어 방법.
  9. 구리 이온을 황산 이온에 녹여 전해액을 준비하고, 상기 전해액에 연신율 유지와 향상을 위한 연신율 조절제, 인장강도 유지와 향상을 위한 인장강도 조절제, 또는 둘 다를 첨가하는 단계;
    광택도 향상을 위한 광택도 조절제를 첨가하여 제1항에 따른 전해 동박의 물성 제어 방법에 따라 전해 동박의 물성을 제어하는 단계;
    첨가제가 첨가된 전해액을 회전식 음극 드럼과 양극이 일정한 간격을 유지하고 있는 제박기에 공급하면서 전류를 공급하여 전해 동박을 형성하는 단계를 포함하는, 전해 동박의 제조 방법.
  10. 제9항에 있어서, 상기 전해액에서의 상기 구리 이온의 농도는 70 g/L 내지 100 g/L 이고, 상기 황산 이온의 농도는 80 g/L 내지 150 g/L 인, 전해 동박의 제조 방법.
  11. 제9항 또는 제10항에 있어서, 상기 연신율 조절제는 비이온성 수용성 고분자인, 카르복시메틸셀룰로오스, 폴리에틸렌글리콜, 하이드록시에틸 셀룰로오스(HEC), 옥탄 디올-비스-폴리알킬렌 글리콜 에테르 및 폴리글리세린 중 적어도 어느 하나를 포함하는, 전해 동박의 제조 방법.
  12. 제9항 또는 제10항에 있어서, 상기 인장강도 조절제는 티오우레아계 화합물 또는 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물인, 디에틸티오우레아, 에틸렌티오우레아, 아세틸렌티오우레아, 2-티오우라실(2-thiouracil) 와 2-머캅토-5-벤조이미다졸 술폰산 소듐염(2-mercapto-5-benzoimidazole sulfonic acid sodium salt), 소듐 3-(5-머캅토-1-테트라졸릴)벤젠 술포네이트(Sodium 3-(5-mercapto-1-tetrazolyl)benzene sulfonate) 및 2-머캅토 벤조티아졸(2-mercapto benzothiazole) 중 적어도 어느 하나를 포함하는, 전해 동박의 제조 방법.
  13. 제9항 또는 제10항에 있어서, 상기 광택도 조절제는 황원자를 포함하는 화합물인 술폰산(sulfonic acid) 또는 그의 금속염인, 티오포스포릭산-트리스-(ω-술포프로필)에스테르 트리소듐염, 3-머캅토-1-프로판술폰산(MPS), 비스-(3-술포프로필)-디설파이드 디소듐염(SPS) 및 티오글리콜릭산 중 적어도 어느 하나를 포함하는, 전해 동박의 제조 방법.
  14. 제9항 또는 제10항에 있어서, 상기 광택도 조절제의 농도는 12 내지 40 ppm 인, 전해 동박의 제조 방법.
  15. 제14항에 있어서, 상기 광택도 조절제의 농도는 18 내지 28 ppm 인, 전해 동박의 제조 방법.
PCT/KR2023/004288 2022-05-11 2023-03-30 전해 동박의 물성 제어 방법 및 그 제조 방법 WO2023219269A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2024001167A MX2024001167A (es) 2022-05-11 2023-03-30 Metodo de control de las propiedades de las laminas de cobre electrolitico y metodo de fabricacion de las mismas.
JP2023544706A JP2024523079A (ja) 2022-05-11 2023-03-30 電解銅箔の物性制御方法及びその製造方法
CA3211775A CA3211775A1 (en) 2022-05-11 2023-03-30 Method of controlling properties of electrolytic copper foil and manufacturing the same
CN202380013182.3A CN117813421A (zh) 2022-05-11 2023-03-30 控制电解铜箔特性的方法及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0057727 2022-05-11
KR1020220057727A KR102440711B1 (ko) 2022-05-11 2022-05-11 전해 동박의 물성 제어 방법 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2023219269A1 true WO2023219269A1 (ko) 2023-11-16

Family

ID=83278566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004288 WO2023219269A1 (ko) 2022-05-11 2023-03-30 전해 동박의 물성 제어 방법 및 그 제조 방법

Country Status (6)

Country Link
JP (1) JP2024523079A (ko)
KR (1) KR102440711B1 (ko)
CN (1) CN117813421A (ko)
CA (1) CA3211775A1 (ko)
MX (1) MX2024001167A (ko)
WO (1) WO2023219269A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440711B1 (ko) * 2022-05-11 2022-09-07 고려아연 주식회사 전해 동박의 물성 제어 방법 및 그 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068855A (ko) * 2007-12-24 2009-06-29 주식회사 삼양사 내굴곡성이 우수한 연성 동박 적층판의 제조 방법
KR101126831B1 (ko) 2009-09-02 2012-03-23 엘에스엠트론 주식회사 전해 동박 및 그 제조 방법
KR20140050541A (ko) * 2012-10-18 2014-04-29 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR101571064B1 (ko) 2013-11-28 2015-11-24 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR20180104269A (ko) * 2018-05-30 2018-09-20 유진인스텍코어 주식회사 광택도를 이용한 금속박 품질관리방법
KR20190012922A (ko) * 2017-07-31 2019-02-11 케이씨에프테크놀로지스 주식회사 주름 발생이 방지된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20210013059A (ko) * 2019-07-22 2021-02-03 텍크스 테크놀로지 가부시키가이샤 전해 구리박의 제조 방법
KR102440711B1 (ko) * 2022-05-11 2022-09-07 고려아연 주식회사 전해 동박의 물성 제어 방법 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068855A (ko) * 2007-12-24 2009-06-29 주식회사 삼양사 내굴곡성이 우수한 연성 동박 적층판의 제조 방법
KR101126831B1 (ko) 2009-09-02 2012-03-23 엘에스엠트론 주식회사 전해 동박 및 그 제조 방법
KR20140050541A (ko) * 2012-10-18 2014-04-29 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR101571064B1 (ko) 2013-11-28 2015-11-24 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR20190012922A (ko) * 2017-07-31 2019-02-11 케이씨에프테크놀로지스 주식회사 주름 발생이 방지된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20180104269A (ko) * 2018-05-30 2018-09-20 유진인스텍코어 주식회사 광택도를 이용한 금속박 품질관리방법
KR20210013059A (ko) * 2019-07-22 2021-02-03 텍크스 테크놀로지 가부시키가이샤 전해 구리박의 제조 방법
KR102440711B1 (ko) * 2022-05-11 2022-09-07 고려아연 주식회사 전해 동박의 물성 제어 방법 및 그 제조 방법

Also Published As

Publication number Publication date
JP2024523079A (ja) 2024-06-28
CA3211775A1 (en) 2023-11-11
MX2024001167A (es) 2024-02-27
KR102440711B1 (ko) 2022-09-07
CN117813421A (zh) 2024-04-02
TW202346660A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023219269A1 (ko) 전해 동박의 물성 제어 방법 및 그 제조 방법
WO2015069075A1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지
WO2018088642A1 (ko) 이차전지용 전해동박 및 그의 제조방법
WO2011129633A2 (en) Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
WO2015142101A1 (ko) 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지
WO2015142100A1 (ko) 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지
WO2020096177A1 (ko) 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
WO2021101177A1 (ko) 주름 발생이 방지된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019045374A2 (ko) 전해동박, 그 제조방법 및 이를 포함하는 고용량 Li 이차전지용 음극
JP2022008857A (ja) 二次電池用電解銅箔及びその製造方法
WO2020096164A1 (ko) 리튬 금속 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
KR20040047263A (ko) 저조도 전해동박의 제조방법 및 전해동박
WO2023219264A1 (ko) 전해 동박의 제조방법
WO2018088646A1 (ko) 이차전지용 전해동박 및 그의 제조방법
WO2019151719A1 (ko) 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법
WO2015190889A1 (ko) 바나듐 용액, 이를 포함하는 전해액, 이를 포함하는 이차전지 및 이의 제조방법
WO2023249360A1 (ko) 산화 그래핀-세륨 폴리인산염 나노복합체 기반 산화방지제 및 그의 제조 방법
WO2018088645A1 (ko) 내굴곡성이 우수한 이차전지용 전해동박 및 그의 제조방법
WO2019151718A1 (ko) 후속 공정에서 핸들링 특성이 우수한 전해동박 및 그 제조방법
WO2018190559A1 (ko) 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법
WO2019124696A1 (ko) 내굴곡성이 우수한 철-니켈 합금박
WO2022191402A1 (ko) 낮은 휨 변형을 갖는 저조도 표면처리동박, 이를 포함하는 동박적층판 및 프린트 배선판
WO2016208869A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
WO2020009313A1 (ko) 리튬-전해질 용매의 공삽입을 통해 전기화학특성이 향상된 몰리브덴 설파이드 전극을 포함하는 이차전지 시스템
WO2023075197A1 (ko) 이차전지 집전체용 전해동박

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023544706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18548195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001167

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202380013182.3

Country of ref document: CN