WO2017082542A1 - 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 - Google Patents

전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 Download PDF

Info

Publication number
WO2017082542A1
WO2017082542A1 PCT/KR2016/011494 KR2016011494W WO2017082542A1 WO 2017082542 A1 WO2017082542 A1 WO 2017082542A1 KR 2016011494 W KR2016011494 W KR 2016011494W WO 2017082542 A1 WO2017082542 A1 WO 2017082542A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
positive electrode
electrolytic
less
Prior art date
Application number
PCT/KR2016/011494
Other languages
English (en)
French (fr)
Inventor
김승민
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to JP2016571744A priority Critical patent/JP6486392B2/ja
Priority to CN201680002180.4A priority patent/CN106973570B/zh
Priority to PL16864468T priority patent/PL3376574T3/pl
Priority to US15/773,046 priority patent/US20180323438A1/en
Priority to EP16864468.0A priority patent/EP3376574B1/en
Publication of WO2017082542A1 publication Critical patent/WO2017082542A1/ko
Priority to US17/083,824 priority patent/US11355757B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil, an electrode comprising the same, a secondary battery comprising the same, and a manufacturing method thereof.
  • Electrolytic copper foil is used to manufacture a variety of products, such as a negative electrode current collector of the secondary battery, a flexible printed circuit board (FPCB).
  • FPCB flexible printed circuit board
  • electrolytic copper foil is not only manufactured through a roll to roll (RTR) process, but also used to manufacture a negative electrode current collector and a flexible printed circuit board (FPCB) of a secondary battery through a roll to roll (RTR) process.
  • RTR roll to roll
  • FPCB flexible printed circuit board
  • Roll-to-roll (RTR) processes are known to be suitable for mass production of products because they allow for continuous production.
  • RTR Roll-to-roll
  • the roll-to-roll processing equipment has to be stopped and the equipment must be restarted and the equipment restarted. Repeated shutdowns and restarts have led to serious problems of reduced productivity.
  • the present invention relates to an electrolytic copper foil, an electrode comprising the same, a secondary battery comprising the same, and a method of manufacturing the same, which can prevent problems caused by the above limitations and disadvantages of the related art.
  • One aspect of the present invention is to provide an electrolytic copper foil that is prevented or minimized the generation of folds and / or wrinkles during the roll-to-roll (RTR) process.
  • Another aspect of the present invention is to provide an electrode that can be produced by the electrolytic copper foil through a roll-to-roll (RTR) process without the occurrence of folding and / or wrinkles of the electrolytic copper foil to ensure high productivity.
  • RTR roll-to-roll
  • Another aspect of the present invention is to provide a secondary battery capable of ensuring high productivity by being manufactured with an electrolytic copper foil which is prevented or minimized from folding and / or wrinkles during a roll-to-roll (RTR) process.
  • RTR roll-to-roll
  • Yet another aspect of the present invention is to provide a method for producing an electrolytic copper foil in which the occurrence of folds and / or wrinkles is prevented or minimized during a roll-to-roll (RTR) process.
  • RTR roll-to-roll
  • an electrolytic copper foil having a first surface and a second surface opposite to the first surface, comprising: a first protective layer on the first surface side; A second protective layer on the second surface side; And a copper film between the first and second protective layers, wherein the electrolytic copper foil has a longitudinal lift of 30 mm or less and a transverse lift of 25 mm or less, wherein the transverse lift is 8.5 times or less of the longitudinal lift.
  • the longitudinal lifting and the transverse lifting are performed by cutting a central portion of the electrolytic copper foil along an X-type cutting line of 5 cm ⁇ 5 cm, and having a longitudinal direction parallel to a transfer mark formed on the electrolytic copper foil and an angle of 35 ° to 55 °.
  • a pair of first segments arranged side by side along the longitudinal direction by cutting in a first direction constituting a first direction and a second direction perpendicular to the first direction, and a pair disposed side by side along the transverse direction perpendicular to the longitudinal direction When forming the second segments of, the greater of the lifts in the first or second plane direction of the first segments and the lifts in the first or second plane direction of the second segments Each of which means a larger value.
  • the electrolytic copper foil And an active material layer on the electrolytic copper foil, wherein the active material layer comprises carbon; Metals of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe (Me); An alloy comprising the metal (Me); An oxide of the metal (MeO x ); And at least one active material selected from the group consisting of a metal (Me) and a composite of carbon.
  • the active material layer comprises carbon; Metals of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe (Me); An alloy comprising the metal (Me); An oxide of the metal (MeO x ); And at least one active material selected from the group consisting of a metal (Me) and a composite of carbon.
  • a cathode (cathode); An anode; An electrolyte providing an environment in which lithium ions may move between the positive electrode and the negative electrode; And a separator for electrically insulating the anode and the cathode, wherein the cathode comprises: the electrolytic copper foil; And an active material layer on the electrolytic copper foil, wherein the active material layer comprises carbon; Metals of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe (Me); An alloy comprising the metal (Me); An oxide of the metal (MeO x ); And at least one active material selected from the group consisting of a complex of the metal (Me) and carbon.
  • forming a copper film on the rotating cathode drum by energizing the positive electrode plate and the rotating cathode drum disposed spaced apart from each other in the electrolyte in the electrolytic cell; And immersing the copper film in an anticorrosion solution, wherein the positive electrode plate includes a first positive electrode plate and a second positive electrode plate that are electrically insulated from each other, and the forming of the copper film includes the first positive electrode plate and the rotating plate.
  • a seed layer is formed by energization between cathode drums, and then the seed layer is grown by energization between the second positive electrode plate and the rotating cathode drum, wherein the current density provided by the first positive electrode plate is Provided is a method for producing an electrolytic copper foil, which is at least 1.5 times the current density provided by the positive electrode plate.
  • intermediate parts and final products such as flexible printed circuit boards (FPCB), secondary batteries, etc. using an electrolytic copper foil that prevents or minimizes the occurrence of wrinkles and / or wrinkles during the roll-to-roll (RTR) process
  • RTR roll-to-roll
  • FIG. 1 is a cross-sectional view of an electrolytic copper foil according to an embodiment of the present invention
  • Figure 2 shows how the longitudinal direction and the transverse direction of the electrolytic copper foil is defined in the present invention
  • FIG. 4 is a cross-sectional view of an electrode for a secondary battery according to an embodiment of the present invention.
  • FIG 5 shows an apparatus for manufacturing an electrolytic copper foil according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an electrolytic copper foil 110 according to an embodiment of the present invention.
  • the electrolytic copper foil 110 of the present invention has a first surface 110a and a second surface 110b opposite to the first surface 110a, and the first surface 110a side.
  • Electrolytic copper foil 110 has a thickness of 4 to 35 ⁇ m.
  • the production of the electrolytic copper foil 110 having a thickness of less than 4 ⁇ m causes workability deterioration.
  • the secondary battery is manufactured with an electrolytic copper foil 110 exceeding 35 ⁇ m, it is difficult to implement high capacity due to the thick electrolytic copper foil 110.
  • the copper film 111 may be formed on the rotating cathode drum through electroplating, and may be a shiny surface 111a directly opposite the rotating cathode drum during electroplating and a mat surface opposite thereto. surface 111b.
  • the first and second protective layers 112 and 113 are formed by electrodepositing an anticorrosion material on the copper layer 111, respectively.
  • the rust preventive material may include at least one of chromate, benzotriazole (BTA), chromium oxide, and a silane compound.
  • BTA benzotriazole
  • the first and second passivation layers 112 and 113 prevent oxidation and corrosion of the copper film 111 and improve heat resistance to extend the life of the product including the electrolytic copper foil 110.
  • the copper film 111 has a shiny surface 111a and a mat surface 111b having the same or very similar roughness to each other.
  • the term "roughness” as used herein refers to ten-point mean roughness (R zJIS ).
  • the first and second protective layers 112 and 113 formed by electrodepositing the rust-preventing material on the copper film 111 may have only a difference of 2.5 ppm / m 2 or less in the amount of rust-preventing material. desirable.
  • the deposition rate of the rust preventive material of the first protective layer 112 is 0.6 to 4.1 ppm / m 2
  • the deposition rate of the rust preventive material of the second protective layer 113 is 0.6 to 4.1 ppm / m 2 .
  • the electrolytic copper foil 110 of the present invention has a longitudinal lifting (LR) of 30 mm or less and a transverse lifting (TR) of 25 mm or less, and the transverse lifting (TR) is 8.5 times or less of the longitudinal lifting (LR). .
  • the electrolytic copper foil 110 is folded between two adjacent rolls during the roll-to-roll manufacturing process.
  • the transverse lifting TR exceeds 25 mm, wrinkles are caused at the left and right ends of the electrolytic copper foil 110 during the roll-to-roll manufacturing process.
  • the longitudinal lifting (LR) and the transverse lifting (TR) of the electrolytic copper foil 110 satisfy the above range, but the transverse lifting (TR) exceeds 8.5 times the longitudinal lifting (LR), roll-to-roll Since a force in the lateral direction is applied to the electrolytic copper foil 110 during the manufacturing process, wrinkles are caused at the left and right end portions of the electrolytic copper foil 110.
  • the central portion of the electrolytic copper foil 110 is cut along an X-type cutting line of 5 cm ⁇ 5 cm, but has a longitudinal direction (LD) parallel to a transfer mark formed on the electrolytic copper foil 110 and an angle of 35 ° to 55 °.
  • a pair of first segments A and A arranged side by side along the longitudinal direction LD by cutting in a first direction D1 and a second direction D2 perpendicular to the first direction D1.
  • the transfer marks are marks of the rotating cathode drum formed on the shiny surface 111a side of the copper film 111, and can be confirmed by observing the first surface 110a adjacent to the shiny surface 111a under a microscope. Can be.
  • the degree of lifting of the first segments A and A 'in the direction of the first or second surface 110a or 110b is respectively measured, and a larger value of the measured values is measured by the length of the electrolytic copper foil 110.
  • direction lifting LR
  • lifting angles of the second segments B and B 'in the direction of the first or second surface 110a or 110b are respectively measured, and a larger value of the measured values is obtained from the electrolytic copper foil 110. Is considered to be the transverse lifting (TR) of.
  • portions adjacent to the first and second surfaces 110a and 110b of the electrolytic copper foil 110 are the same as each other in order to suppress the folding and / or curling of the electrolytic copper foil 110. It has very similar physical properties.
  • the first and second surfaces 110a and 110b have a ten-point mean roughness (R zJIS ) of 3.5 ⁇ m or less, and is represented by the following equation.
  • the calculated 10-point average roughness deviation of the first and second surfaces 110a and 110b is 70% or less.
  • R D [
  • R 1 is a ten point average roughness of the first surface (110a)
  • R 2 is a ten point average roughness of the second surface (110b)
  • R D is the first and second surfaces (110a, 110b) ) Is a 10 point average roughness deviation
  • is a 10 point average roughness difference of the first and second surfaces (110a, 110b)
  • (R 1 , R 2 ) max is the first and The ten point average roughness of the second surfaces 110a and 110b is relatively larger than the ten point average roughness.
  • the negative electrode active material is coated on both surfaces of the electrolytic copper foil 110 to manufacture a secondary battery.
  • the adhesion between the negative electrode active material and the electrolytic copper foil 110 is insufficient.
  • the present invention will be described in detail based on the embodiment in which the electrolytic copper foil 110 of the present invention is used to manufacture a secondary battery.
  • the electrolytic copper foil 110 of the present invention may be used in the manufacture of various other products, for example, a flexible printed circuit board (FPCB), which may be manufactured through a roll-to-roll (RTR) process using copper foil. Similarly it could be used.
  • FPCB flexible printed circuit board
  • RTR roll-to-roll
  • the lithium ion secondary battery includes a cathode, an anode, an electrolyte that provides an environment in which lithium ions may move between the anode and the cathode, and electrons generated from one electrode may move inside the secondary battery. It includes a separator that electrically insulates the positive electrode and the negative electrode in order to prevent unnecessary consumption by moving to another electrode through.
  • FIG. 4 is a cross-sectional view of an electrode for a secondary battery according to an embodiment of the present invention.
  • the secondary battery electrode 100 includes the electrolytic copper foil 110 and the active material layer 120 of any one of the above-described embodiments of the present invention.
  • FIG. 4 illustrates an active material layer 120 formed on both first and second surfaces 110a and 110b of the electrolytic copper foil 110, but the present invention is not limited thereto. It may be formed only on one surface of the electrolytic copper foil (110).
  • an aluminum foil is used as a positive electrode current collector combined with a positive electrode active material
  • an electrolytic copper foil 110 is generally used as a negative electrode current collector combined with a negative electrode active material.
  • the secondary battery electrode 100 is a negative electrode
  • the electrolytic copper foil 110 is used as a negative electrode current collector
  • the active material layer 120 includes a negative electrode active material.
  • the active material layer 120 is carbon; Metals of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; An alloy comprising the metal; Oxide of the metal; And at least one active material selected from the group consisting of a complex of the metal and the carbon as a negative electrode active material.
  • the active material layer 120 may be formed of a mixture of negative electrode active materials including a predetermined amount of Si.
  • the contraction and expansion of the active material layer 120 occurs alternately, which causes the separation of the active material layer 120 and the electrolytic copper foil 110 to increase the charge and discharge efficiency of the secondary battery. Lowers. Therefore, in order for the secondary battery to secure a capacity retention rate and a lifespan of a predetermined level or more (that is, to suppress a decrease in charge and discharge efficiency of the secondary battery), the electrolytic copper foil 110 has excellent coating property with respect to the active material.
  • the adhesion strength of the 110 and the active material layer 120 should be high.
  • each of the first and second surfaces 110a and 110b of the electrolytic copper foil 110 has a ten point average roughness R zJIS of 3.5 ⁇ m or less. Uniformity of contact between the electrolytic copper foil 110 and the active material layer 120 if the first and second surfaces 110a and 110b of the electrolytic copper foil 110 have a ten-point average roughness R zJIS that exceeds 3.5 ⁇ m . This will not reach a certain level, so the secondary battery will not meet the capacity retention rate of more than 90% required by the industry.
  • the copper film 111 is formed on the rotating cathode drum 40 by energizing the cathode plate 30 and the rotating cathode drum 40 which are spaced apart from each other in the electrolyte 20 in the electrolytic cell 10. Forming and immersing the copper film 111 in an anticorrosion solution 60.
  • the positive electrode plate 30 includes a first positive electrode plate 31 and a second positive electrode plate 32 electrically insulated from each other.
  • a seed layer is formed by energization between the first positive electrode plate 31 and the rotating negative electrode drum 40, and then the second positive electrode plate 32 and the rotating negative electrode drum ( It is carried out by growing the seed layer by energization between 40).
  • Current densities provided by the first and second bipolar plates 31 and 32 may be 40 to 70 A / dm 2 , respectively.
  • the current density provided by the first positive electrode plate 31 is at least 1.5 times the current density provided by the second positive electrode plate 32. That is, the grain size of the seed layer is reduced by applying a relatively high current density when forming the seed layer, and as a result, the grains of the shiny surface 111a and the mat surface 111b of the copper film 111 are reduced. You can make the size the same or similar.
  • the electrolytic copper foil 110 of the present invention has a longitudinal lifting LR of 30 mm or less and a transverse of 25 mm or less. It may have a direction lifting TR, and the transverse lifting TR may be 8.5 times or less of the longitudinal lifting LR.
  • the positive electrode plate 30 may further include a third positive electrode plate between the first and second positive electrode plates 31 and 32.
  • the current density provided by the third bipolar plate is less than the current density provided by the first bipolar plate 31 and greater than the current density provided by the second bipolar plate 32.
  • the electrolyte solution 20 may include 50 to 100 g / L of copper ions, 50 to 150 g / L of sulfuric acid, 50 ppm or less of chlorine ions, and an organic additive.
  • the organic additive may be gelatin, hydroethyl cellulose (HEC), organic sulfide, organic nitride, thiourea-based compound, or a mixture of two or more thereof.
  • the electrolyte solution 20 is maintained at 50 to 60 ° C., and the flow rate of the electrolyte solution 20 supplied into the electrolytic cell 10 is 40 to 46 m 3 / hour days. Can be.
  • the surface of the rotating cathode drum 40 affects the ten-point average roughness R zJIS of the shiny surface 111a of the copper film 111.
  • the surface of the rotary cathode drum 40 may be polished with a polishing brush having a grain size (Grit) of # 800 to # 1500.
  • the rust preventive solution 60 is composed of at least one or more of a compound containing chromium, benzotriazole, and a silane compound.
  • the copper film 111 may be immersed in a 0.2 to 2.5 g / L chromium oxide solution at room temperature for 0.2 to 20 seconds.
  • the method may further include withdrawing the copper film 111 immersed in the rust preventive liquid 60 from the rust preventive liquid 60. As illustrated in FIG. 5, when the immersion step and the withdrawal step are performed, the copper film 111 is guided by a guide roll 70 disposed in the rust preventive liquid 60.
  • the immersion coating is performed as described above, the surface of the copper film 111 in contact with the guide roll 70 (for example, the shiny surface 111a) is the opposite surface exposed to the rust preventive liquid 60.
  • the amount of coating of the rust preventive liquid 60 is inevitably smaller than that of the mat surface 111b.
  • the first and second protective layers 112 and 113 are formed on the shiny surface 111a and the mat surface 111b of the copper film 111, a significant difference is caused in the deposition amount of the rust-preventing material. This difference may cause folding and / or curling of the electrolytic copper foil 110.
  • the method of the present invention on the surface of the copper film 111 in contact with the guide roll 70 during the immersion step immediately after the copper film 111 is withdrawn from the rust preventive solution 60
  • the method may further include spraying the rust preventive liquid 90 using the nozzle 80.
  • spraying of the rust-proof liquid 90 it is possible to eliminate or minimize the difference in electrodeposition amount of the rust-preventing material which may be caused when the first and second protective layers 112 and 113 are formed, respectively.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a lithium secondary battery can be manufactured using a conventional positive electrode, an electrolyte, and a separator together with the secondary battery electrode (cathode) of the present invention manufactured by the above method.
  • a copper film was formed on the rotating cathode drum by energizing a positive electrode plate and a rotating cathode drum disposed apart from each other in the electrolyte in the electrolytic cell.
  • the electrolyte solution is 85 g / L copper ions, 75 g / L sulfuric acid, 20 ppm chlorine ions.
  • organic additives Gelatin, hydroethyl cellulose (HEC), organic sulfide, and organic nitride were used as the organic additive.
  • the electrolyte was maintained at about 55 ° C., and the flow rate of the electrolyte supplied into the electrolytic cell was 40 m 3 / hour.
  • the positive electrode plate was composed of a first positive electrode plate and a second positive electrode plate electrically insulated from each other, the current density provided by the first positive electrode plate was 60 A / dm 2 , and the current density provided by the second positive electrode plate was 40 A. / dm 2 .
  • the copper film was immersed in 2 g / L chromium oxide solution at room temperature for 10 seconds, and then 2 g / L chromium oxide solution was sprayed onto the surface in contact with the guide roll during the immersion process. Subsequently, the chromium oxide solution was dried to form protective layers on both sides of the copper film, thereby completing an electrolytic copper foil having a thickness of 4 ⁇ m.
  • An electrolytic copper foil was manufactured in the same manner as in Example 1 except that the current density provided by the first positive electrode plate was 70 A / dm 2 .
  • a third positive electrode plate was further provided between the first and second positive electrode plates, and an electrolytic copper foil was manufactured in the same manner as in Example 1 except that a current density provided by the third positive electrode plate was 55 A / dm 2 .
  • An electrolytic copper foil was manufactured in the same manner as in Example 1 except that the same current density of 50 A / dm 2 was provided by the first and second positive electrode plates.
  • Electrolytic copper foil was prepared in the same manner as in Example 1 except that the same current density of 50 A / dm 2 was provided by the first and second positive electrode plates and the injection process of the chromium oxide solution was omitted.
  • An electrolytic copper foil was manufactured in the same manner as in Example 1 except that the spraying process of the chromium oxide solution was omitted.
  • a central portion of the electrolytic copper foil is cut along a 5 cm x 5 cm X-shaped cutting line, the first direction being perpendicular to the longitudinal direction parallel to the transfer marks formed on the electrolytic copper foil and having an angle of 35 ° to 55 ° and perpendicular to the first direction.
  • Cutting in one second direction formed a pair of first segments arranged side by side along the longitudinal direction and a pair of second segments arranged side by side along the transverse direction perpendicular to the longitudinal direction.
  • the transfer marks are marks of the rotating cathode drum formed on the shiny surface side of the copper film and confirmed through microscopic observation.
  • the lifting degree of the first and second segments in the direction of the first surface of the electrolytic copper foil (the surface adjacent to the shiny surface of the copper film) or the opposite side thereof was measured by a ruler.
  • the greater of the lifts of the first segments and the greater of the lifts of the second segments were regarded as the longitudinal lift (LR) and the transverse lift (TR) of the electrolytic copper foil, respectively.
  • the ratio (TR / LR) of the transverse lifting TR to the longitudinal lifting LR was obtained by dividing the transverse lifting TR by the longitudinal lifting LR.
  • AAS Automatic Absorption Spectrometry
  • R D [
  • R 1 is a 10-point average roughness of the first surface
  • R 2 is a 10-point average roughness of the second surface
  • R D is a 10-point average roughness deviation of the electrolytic copper foil
  • (R 1 , R 2 ) max means a relatively larger 10-point average roughness among the 10-point average roughnesses of the first and second surfaces.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Current density (A / dm 2 ) First anode plate 60 70 60 50 50 60 Second anode plate 40 40 40 50 50 40 Third anode plate - - 55 - - - Whether to spray chromium oxide solution ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Longitudinal lifting (LR) (mm) 3.5 28.9 * 2.9 31.5 * 3.5 1.3 Transverse Lift (TR) (mm) 2.5 3.1 24.3 * 2.5 25.5 * 11.4 TR / LR 0.7 0.1 8.4 0.1 7.3 8.8 Electrodeposition amount of rust preventive substance (ppm / m 2 ) First side 1.5 2.1 4.1 1.0 4.8 1.2 Second side 2.2 3.9 1.7 4.6 1.1 4.3 Electrodeposition amount difference of rust preventive substance (ppm / m 2 ) 0.7 1.8 2.4 2.8 3.7 3.2 10-point average roughness ( ⁇ m) First side 1.6 1.1 0.6 0.5
  • the electrolytic copper foil has a longitudinal lifting (LR) of 30 mm or less and a transverse lifting (TR) of 25 mm or less
  • the transverse lifting (TR) is the longitudinal lifting (LR).
  • wrinkles may be generated at the left and right ends of the electrolytic copper foil during the roll-to-roll process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

롤투롤 공정 중에 접힘 및/또는 주름 발생이 방지되거나 최소화된 전해동박 및 그 제조방법, 그리고 이러한 전해동박으로 제조됨으로써 높은 생산성을 담보할 수 있는 전극 및 이차전지가 개시된다. 본 발명의 전해동박은 30mm 이하의 종방향 들림 및 25mm 이하의 횡방향 들림을 가지며, 상기 횡방향 들림은 상기 종방향 들림의 8.5배 이하이다.

Description

전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
본 발명은 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법에 관한 것이다.
전해동박은 이차전지의 음극 집전체, 연성인쇄회로기판(Flexible Printed Circuit Board: FPCB) 등 다양한 제품들을 제조하는데 이용되고 있다.
일반적으로, 전해동박은 롤투롤(Roll To Roll: RTR) 공정을 통해 제조될 뿐만 아니라, 롤투롤(RTR) 공정을 통한 이차전지의 음극 집전체, 연성인쇄회로기판(FPCB) 등의 제조에 이용된다.
롤투롤(RTR) 공정은 연속적 생산을 가능하게 하기 때문에 제품의 대량 생산에 적합한 공정으로 알려져 있다. 그러나, 현실적으로는, 롤투롤(RTR) 공정 중에 빈번히 야기되고 있는 전해동박의 접힘 및/또는 주름 발생으로 인해, 롤투롤 공정 설비를 중단하고 이러한 문제점들을 해결한 후 상기 설비를 재가동시켜야 하고, 이러한 공정 설비의 중단 및 재가동의 반복으로 인해 생산성 저하라는 심각한 문제가 야기되고 있다.
즉, 롤투롤(RTR) 공정 중에 야기되는 전해동박의 접힘 및/또는 주름 발생은 제품의 연속적 생산을 불가능하게 함으로써 롤루롤(RTR) 공정 고유의 장점을 훼손하고, 그 결과, 제품의 생산성 저하를 초래한다.
따라서, 본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 방지할 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법에 관한 것이다.
본 발명의 일 관점은, 롤투롤(RTR) 공정 중에 접힘 및/또는 주름 발생이 방지되거나 최소화된 전해동박을 제공하는 것이다.
본 발명의 다른 관점은, 롤투롤(RTR) 공정을 통해 전해동박으로 제조되되 상기 전해동박의 접힘 및/또는 주름 발생 없이 제조됨으로써 높은 생산성을 담보할 수 있는 전극을 제공하는 것이다.
본 발명의 또 다른 관점은, 롤투롤(RTR) 공정 중에 접힘 및/또는 주름 발생이 방지되거나 최소화된 전해동박으로 제조됨으로써 높은 생산성을 담보할 수 있는 이차전지를 제공하는 것이다.
본 발명의 또 다른 관점은, 롤투롤(RTR) 공정 중에 접힘 및/또는 주름 발생이 방지되거나 최소화된 전해동박을 제조하는 방법을 제공하는 것이다.
위에서 언급된 본 발명의 관점들 외에도, 본 발명의 다른 특징 및 이점들이 이하에서 설명되거나, 그러한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
위와 같은 본 발명의 일 관점에 따라, 제1 면 및 상기 제1 면의 반대 편의 제2 면을 갖는 전해동박으로서, 상기 제1 면 측의 제1 보호층; 상기 제2 면 측의 제2 보호층; 및 상기 제1 및 제2 보호층들 사이의 구리막을 포함하고, 상기 전해동박은 30mm 이하의 종방향 들림 및 25mm 이하의 횡방향 들림을 갖되, 상기 횡방향 들림은 상기 종방향 들림의 8.5배 이하인 전해동박이 제공된다.
상기 종방향 들림 및 상기 횡방향 들림은, 상기 전해동박의 중심부를 5cm×5cm의 X-형 절단라인을 따라 절단하되 상기 전해동박에 형성되어 있는 전사 자국과 평행한 종방향과 35° 내지 55°의 각을 이루는 제1 방향 및 상기 제1 방향과 수직한 제2 방향으로 절단함으로써 상기 종방향을 따라 나란히 배치되는 한 쌍의 제1 세그먼트들 및 상기 종방향과 수직한 횡방향을 따라 나란히 배치되는 한 쌍의 제2 세그먼트들을 형성할 경우, 상기 제1 세그먼트들의 상기 제1 또는 제2 면 방향으로의 들림 정도들 중 더 큰 값 및 상기 제2 세그먼트들의 상기 제1 또는 제2 면 방향으로의 들림 정도들 중 더 큰 값을 각각 의미한다.
본 발명의 다른 관점에 따라, 상기 전해동박; 및 상기 전해동박 상의 활물질층을 포함하되, 상기 활물질층은, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속(Me); 상기 금속(Me)을 포함하는 합금; 상기 금속(Me)의 산화물(MeOx); 및 상기 금속(Me)과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 활물질을 포함하는, 이차전지용 전극이 제공된다.
본 발명의 또 다른 관점에 따라, 양극(cathode); 음극(anode); 상기 양극과 음극 사이에서 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte); 및 상기 양극과 상기 음극을 전기적으로 절연시켜 주는 분리막(separator)을 포함하되, 상기 음극은, 상기 전해동박; 및 상기 전해동박 상의 활물질층을 포함하되, 상기 활물질층은, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속(Me); 상기 금속(Me)을 포함하는 합금; 상기 금속(Me)의 산화물(MeOx); 및 상기 금속(Me)과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 활물질을 포함하는, 이차전지가 제공된다.
본 발명의 또 다른 관점에 따라, 전해조 내의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 통전시킴으로써 상기 회전 음극드럼 상에 구리막을 형성하는 단계; 및 상기 구리막을 방청액(anticorrosion solution)에 침지시키는 단계를 포함하되, 상기 양극판은 서로 전기적으로 절연된 제1 양극판 및 제2 양극판을 포함하고, 상기 구리막 형성 단계는 상기 제1 양극판과 상기 회전 음극드럼 사이의 통전에 의해 씨드층을 형성하고, 이어서 상기 제2 양극판과 상기 회전 음극드럼 사이의 통전에 의해 상기 씨드층을 성장시킴으로써 수행되며, 상기 제1 양극판에 의해 제공되는 전류밀도는 상기 제2 양극판에 의해 제공되는 전류밀도의 1.5배 이상인, 전해동박의 제조방법이 제공된다.
위와 같은 본 발명에 대한 일반적 서술은 본 발명을 예시하거나 설명하기 위한 것일 뿐으로서, 본 발명의 권리범위를 제한하지 않는다.
본 발명에 의하면, 롤투롤(RTR) 공정 중에 접힘 및/또는 주름 발생이 방지되거나 최소화된 전해동박을 이용하여 연성인쇄회로기판(FPCB), 이차전지 등의 중간부품들 및 최종품들을 제조함으로써, 상기 중간부품들은 물론이고 최종품들의 생산성을 향상시킬 수 있다.
첨부된 도면은 본 발명의 이해를 돕고 본 명세서의 일부를 구성하기 위한 것으로서, 본 발명의 실시예들을 예시하며, 발명의 상세한 설명과 함께 본 발명의 원리들을 설명한다.
도 1은 본 발명의 일 실시예에 따른 전해동박의 단면도이고,
도 2는 본 발명에서 전해동박의 종방향과 횡방향이 어떻게 정의되는 지를 보여주고,
도 3은 전해동박의 종방향 들림 및 횡방향 들림을 각각 측정하기 위한 방법을 보여주고,
도 4는 본 발명의 일 실시예에 따른 이차전지용 전극의 단면도이고,
도 5 본 발명의 일 실시예에 따른 전해동박의 제조 장치를 보여준다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다.
본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 본 발명의 다양한 변경 및 변형이 가능하다는 점은 당업자에게 자명할 것이다. 따라서, 본 발명은 특허청구범위에 기재된 발명 및 그 균등물의 범위 내에 드는 변경 및 변형을 모두 포함한다.
도 1은 본 발명의 일 실시예에 따른 전해동박(110)의 단면도이다.
도 1에 예시된 바와 같이, 본 발명의 전해동박(110)은 제1 면(110a) 및 상기 제1 면(110a)의 반대 편의 제2 면(110b)을 가지며, 상기 제1 면(110a) 측의 제1 보호층(112), 상기 제2 면(110b) 측의 제2 보호층(113), 및 상기 제1 및 제2 보호층들(112, 113) 사이의 구리막(copper film: 111)을 포함한다.
본 발명의 일 실시예에 따른 전해동박(110)은 4 내지 35 ㎛의 두께를 갖는다. 4㎛ 미만의 두께를 갖는 전해동박(110)의 제조는 작업성 저하를 야기한다. 반면, 35㎛를 초과하는 전해동박(110)으로 이차전지를 제조할 경우 두꺼운 전해동박(110)으로 인해 고용량 구현이 어려워진다.
상기 구리막(111)은 전기도금을 통해 회전 음극드럼 상에 형성될 수 있으며, 전기도금 과정에서 상기 회전 음극드럼과 직접 접촉하는 샤이니 면(Shiny surface)(111a)과 그 반대 편의 매트 면(Matte surface)(111b)을 갖는다.
상기 제1 및 제2 보호층들(112, 113)은 방청물질(anticorrosion material)이 상기 구리막(111) 상에 전착됨으로써 각각 형성된다. 상기 방청물질은 크롬산염(chromate), 벤조트리아졸(benzotriazole: BTA), 산화크롬 및 실란 화합물(silane compound) 중 적어도 하나를 포함할 수 있다. 상기 제1 및 제2 보호층들(112, 113)은 상기 구리막(111)의 산화 및 부식을 방지하고 내열성을 향상시킴으로써 상기 전해동박(110)을 포함하는 제품의 수명을 연장시킨다.
한편, 전해동박(110)의 접힘 및/또는 말림을 억제하기 위해서는 상기 전해동박(110)의 상기 제1 및 제2 면들(110a, 110b)에 각각 인접한 부분들이 서로 동일하거나 매우 유사한 물성을 갖는 것이 바람직하다. 따라서, 본 발명의 일 실시예에 의하면, 상기 구리막(111)은 서로 동일하거나 매우 유사한 조도를 갖는 샤이니 면(111a) 및 매트 면(111b)을 갖는다. 여기서 사용되는 용어 "조도"는 10점 평균조도(ten-point mean roughness: RzJIS)를 의미한다. 또한, 상기 구리막(111) 상에 방청물질이 전착됨으로써 각각 형성되는 상기 제1 및 제2 보호층들(112, 113)은 방청물질 전착량에 있어서 2.5 ppm/m2 이하의 차이만을 갖는 것이 바람직하다.
예를 들어, 상기 제1 보호층(112)의 방청물질 전착량은 0.6 내지 4.1 ppm/m2이고, 상기 제2 보호층(113)의 방청물질 전착량은 0.6 내지 4.1 ppm/m2이다. 상기 제1 및 제2 보호층들(112, 113)의 방청물질 전착량 차이가 2.5 ppm/m2 을 초과할 경우, 롤투롤 공정 중에 전해동박(110)의 접힘 및/또는 말림이 야기되어 공정 설비의 중단이 불가피하게 된다.
본 발명의 전해동박(110)은 30mm 이하의 종방향 들림(LR) 및 25mm 이하의 횡방향 들림(TR)을 갖고, 상기 횡방향 들림(TR)은 상기 종방향 들림(LR)의 8.5배 이하이다.
종방향 들림(LR)이 30mm를 초과하면, 롤투롤 제조 공정 중에 2개의 서로 인접한 롤들 사이에서 전해동박(110)의 접힘이 야기된다. 또한, 횡방향 들림(TR)이 25mm를 초과하면, 롤투롤 제조 공정 중에 전해동박(110)의 좌우 말단부에 주름이 야기된다.
또한, 전해동박(110)의 종방향 들림(LR) 및 횡방향 들림(TR)이 상기 범위를 만족하지만 상기 횡방향 들림(TR)이 상기 종방향 들림(LR)의 8.5배를 초과한다면, 롤투롤 제조 공정 중에 전해동박(110)에 횡방향의 힘이 가해짐으로써 전해동박(110)의 좌우 말단부에 주름이 야기된다.
이하에서는, 도 2 및 도 3을 참조하여 상기 종방향 들림(LR) 및 상기 횡방향 들림(TR)의 측정방법을 구체적으로 설명한다.
먼저, 상기 전해동박(110)의 중심부를 5cm×5cm의 X-형 절단라인을 따라 절단하되 상기 전해동박(110)에 형성되어 있는 전사 자국과 평행한 종방향(LD)과 35° 내지 55°의 각을 이루는 제1 방향(D1) 및 상기 제1 방향(D1)과 수직한 제2 방향(D2)으로 절단함으로써 상기 종방향(LD)을 따라 나란히 배치되는 한 쌍의 제1 세그먼트들(A, A') 및 상기 종방향(LD)과 수직한 횡방향(HD)을 따라 나란히 배치되는 한 쌍의 제2 세그먼트들(B, B')을 형성한다. 여기서, 상기 전사 자국은 상기 구리막(111)의 샤이니 면(111a) 측에 형성된 회전 음극드럼의 자국으로서, 상기 샤이니 면(111a)에 인접한 상기 제1 면(110a)을 현미경으로 관찰함으로써 확인될 수 있다.
이어서, 상기 제1 세그먼트들(A, A')의 상기 제1 또는 제2 면(110a 또는 110b) 방향으로의 들림 정도들을 각각 측정하고 이 측정값들 중에서 더 큰 값을 전해동박(110)의 종방향 들림(LR)으로 간주한다. 이와 유사하게, 상기 제2 세그먼트들(B, B')의 상기 제1 또는 제2 면(110a 또는 110b) 방향으로의 들림 정도들을 각각 측정하고 이 측정값들 중에서 더 큰 값을 전해동박(110)의 횡방향 들림(TR)으로 간주한다.
전술한 바와 같이, 본 발명에 의하면, 전해동박(110)의 접힘 및/또는 말림을 억제하기 위하여 상기 전해동박(110)의 상기 제1 및 제2 면들(110a, 110b)에 각각 인접한 부분들이 서로 동일하거나 매우 유사한 물성을 갖는다.
따라서, 본 발명의 일 실시예에 의하면, 상기 제1 및 제2 면들(110a, 110b)은 3.5㎛ 이하의 10점 평균조도(ten-point mean roughness: RzJIS)를 갖고, 하기의 식에 의해 산출되는 상기 제1 및 제2 면들(110a, 110b)의 10점 평균조도 편차가 70% 이하이다.
식: RD = [|R1-R2|/(R1, R2)max] × 100
여기서, R1은 상기 제1 면(110a)의 10점 평균조도이고, R2는 상기 제2 면(110b)의 10점 평균조도이고, RD는 상기 제1 및 제2 면들(110a, 110b)의 10점 평균조도 편차이고, |R1-R2|는 상기 제1 및 제2 면들(110a, 110b)의 10점 평균조도 차이이며, (R1, R2)max는 상기 제1 및 제2 면들(110a, 110b)의 10점 평균조도 중 상대적으로 더 큰 10점 평균조도이다.
상기 전해동박(110)의 제1 및 제2 면들(110a, 110b)의 10점 평균조도(RzJIS)가 3.5㎛를 초과할 경우, 이차전지 제조를 위해 음극 활물질을 전해동박(110)의 양면에 코팅할 때 상기 음극 활물질과 전해동박(110) 사이의 접착력이 불충분하게 된다.
이하에서는, 오직 설명의 편의를 위하여, 본 발명의 전해동박(110)이 이차전지의 제조에 이용되는 실시예를 기초로 본 발명을 구체적으로 설명한다. 그러나, 전술한 바와 같이, 동박을 이용하여 롤투롤(RTR) 공정을 통해 제조될 수 있는 그 밖의 다양한 제품들, 예를 들어 연성인쇄회로기판(FPCB)의 제조에 본 발명의 전해동박(110)이 유사하게 이용될 수 있을 것이다.
리튬 이온 이차전지는, 양극(cathode), 음극(anode), 상기 양극과 음극 사이에서 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte), 및 하나의 전극에서 발생된 전자가 이차전지 내부를 통해 다른 전극으로 이동함으로써 무익하게 소모되는 것을 방지하기 위하여 상기 양극과 음극을 전기적으로 절연시켜 주는 분리막(separator)을 포함한다.
도 4는 본 발명의 일 실시예에 따른 이차전지용 전극의 단면도이다.
도 4에 예시된 바와 같이, 본 발명의 일 실시예에 따른 이차전지용 전극(100)은 상술한 본 발명의 실시예들 중 어느 하나의 전해동박(110) 및 활물질층(120)을 포함한다.
도 4는 상기 전해동박(110)의 제1 및 제2 면들(110a, 110b) 모두 위에 형성된 활물질층(120)을 예시하고 있으나, 본 발명이 이에 국한되는 것은 아니며, 상기 활물질층(120)은 상기 전해동박 (110)의 일 면 상에만 형성될 수도 있다.
리튬 이차전지에 있어서, 양극 활물질과 결합되는 양극 집전체로서는 알루미늄 호일(foil)이 사용되고 음극 활물질과 결합되는 음극 집전체로서는 전해동박(110)이 사용되는 것이 일반적이다.
본 발명의 일 실시예에 의하면, 상기 이차전지용 전극(100)은 음극이고, 상기 전해동박(110)은 음극 집전체로 사용되며, 상기 활물질층(120)은 음극 활물질을 포함한다.
상기 활물질층(120)은, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속; 상기 금속을 포함하는 합금; 상기 금속의 산화물; 및 상기 금속과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 활물질을 음극 활물질로서 포함한다.
이차전지의 충방전 용량을 증가시키기 위하여, Si를 소정량 포함한 음극 활물질들의 혼합물로 상기 활물질층(120)이 형성될 수 있다.
한편, 이차전지의 충방전이 반복됨에 따라 활물질층(120)의 수축 및 팽창이 번갈아 발생하고, 이것은 상기 활물질층(120)과 상기 전해동박(110)의 분리를 유발하여 이차전지의 충방전 효율을 저하시킨다. 따라서, 이차전지가 일정 수준 이상의 용량 유지율 및 수명을 확보하기 위해서는(즉, 이차전지의 충방전 효율 저하를 억제하기 위해서는), 상기 전해동박(110)이 상기 활물질에 대하여 우수한 코팅성을 가짐으로써 상기 전해동박(110)과 활물질층(120)의 접착 강도가 높아야 한다.
거시적 관점에서 볼 때, 상기 전해동박(110)의 제1 및 제2 면들(110a, 110b)의 10점 평균조도(RzJIS)가 작을수록, 이차전지의 충방전 효율이 대체로 덜 저하되는 경향이 있다.
따라서, 본 발명의 일 실시예에 따른 전해동박(110)의 제1 및 제2 면들(110a, 110b) 각각은 3.5㎛ 이하의 10점 평균조도(RzJIS)를 갖는다. 상기 전해동박(110)의 제1 및 제2 면들(110a, 110b)이 3.5㎛를 초과하는 10점 평균조도(RzJIS)를 갖는다면 상기 전해동박(110)과 활물질층(120) 사이의 접촉 균일성이 일정 수준에 미치지 못할 것이고, 따라서 이차전지가 업계에서 요구되는 90% 이상의 용량 유지율을 만족하지 못할 것이다.
이하에서는, 도 5를 참조하여 본 발명의 전해동박(110)의 제조방법을 구체적으로 설명한다.
본 발명의 방법은, 전해조(10) 내의 전해액(20) 내에 서로 이격되게 배치된 양극판(30) 및 회전 음극드럼(40)을 통전시킴으로써 상기 회전 음극드럼(40) 상에 구리막(111)을 형성하는 단계, 및 상기 구리막(111)을 방청액(anticorrosion solution)(60)에 침지시키는 단계를 포함한다.
도 5에 예시된 바와 같이, 상기 양극판(30)은 서로 전기적으로 절연된 제1 양극판(31) 및 제2 양극판(32)을 포함한다.
상기 구리막(111) 형성 단계는, 상기 제1 양극판(31)과 상기 회전 음극드럼(40) 사이의 통전에 의해 씨드층을 형성하고, 이어서 상기 제2 양극판(32)과 상기 회전 음극드럼(40) 사이의 통전에 의해 상기 씨드층을 성장시킴으로써 수행된다.
상기 제1 및 제2 양극판들(31, 32)에 의해 각각 제공되는 전류밀도는 40 내지 70 A/dm2일 수 있다.
본 발명에 의하면, 상기 제1 양극판(31)에 의해 제공되는 전류밀도는 상기 제2 양극판(32)에 의해 제공되는 전류밀도의 1.5배 이상이다. 즉, 씨드층 형성 시 상대적으로 높은 전류밀도를 가함으로써 상기 씨드층의 그레인 사이즈(grain size)를 감소시키고, 결과적으로 상기 구리막(111)의 샤이니 면(111a)과 매트 면(111b)의 그레인 사이즈를 동일 또는 비슷하게 만들 수 있다.
상기 구리막(111)의 샤이니 면(111a)과 매트 면(111b)이 동일 또는 비슷한 그레인 사이즈를 가짐으로써, 본 발명의 전해동박(110)이 30mm 이하의 종방향 들림(LR) 및 25mm 이하의 횡방향 들림(TR)을 가질 수 있고, 상기 횡방향 들림(TR)이 상기 종방향 들림(LR)의 8.5배 이하가 될 수 있다.
본 발명의 다른 실시예에 의하면, 상기 양극판(30)은 상기 제1 및 제2 양극판들(31, 32) 사이에 제3 양극판을 더 포함할 수 있다. 이 경우, 제3 양극판에 의해 제공되는 전류밀도는 상기 제1 양극판(31)에 의해 제공되는 전류밀도보다 작고 상기 제2 양극판(32)에 의해 제공되는 전류밀도보다 크다.
본 발명의 일 실시예에 의하면, 상기 전해액(20)은 50 내지 100 g/L의 구리 이온, 50 내지 150 g/L의 황산, 50 ppm 이하의 염소 이온, 및 유기 첨가제를 포함할 수 있다. 상기 유기 첨가제는 젤라틴, 하이드로에틸 셀룰로오스(HEC), 유기 황화물, 유기 질화물, 티오요소(thiourea)계 화합물, 또는 이들 중 2 이상의 혼합물일 수 있다. 또한, 상기 구리막(111) 형성 단계 중에, 상기 전해액(20)은 50 내지 60 ℃로 유지되고, 상기 전해조(10) 내로 공급되는 상기 전해액(20)의 유량은 40 내지 46 m3/hour일 수 있다. 상기 전해액(20)의 유량이 40 m3/hour 미만인 경우 회전 음극드럼(40) 표면에 구리 이온이 원활히 공급되지 못해 도금 박막이 불균일하게 형성된다. 반면, 상기 전해액(20)의 유량이 46 m3/hour를 초과할 경우 필터를 통과하는 전해액(20)의 유속이 너무 빨라서 필터의 수명이 급격히 단축되는 원인이 된다.
상기 회전 음극드럼(40)의 표면은 상기 구리막(111)의 샤이니 면(111a)의 10점 평균조도(RzJIS)에 영향을 미친다. 본 발명의 일 실시예에 의하면, #800 내지 #1500의 입도(Grit)를 갖는 연마 브러시로 상기 회전 음극드럼(40)의 표면이 연마될 수 있다.
전술한 바와 같이, 상기 방청액(60)은 크롬을 포함하는 화합물, 벤조트리아졸, 실란계 화합물 중 적어도 1종 이상으로 구성된다. 예를 들어, 0.2 내지 2.5 g/L의 산화크롬 용액에 상기 구리막(111)을 상온에서 0.2 내지 20초 침지시킬 수 있다.
본 발명의 방법은 상기 방청액(60)에 침지된 상기 구리막(111)을 상기 방청액(60)으로부터 인출하는 단계를 더 포함할 수 있다. 도 5에 예시된 바와 같이, 상기 침지 단계 및 상기 인출 단계가 수행될 때, 상기 구리막(111)은 상기 방청액(60) 내에 배치된 가이드 롤(guide roll)(70)에 의해 안내된다.
다만, 위와 같은 침지 코팅이 실시될 때 상기 가이드 롤(70)에 접촉하는 상기 구리막(111)의 면[예를 들어, 샤이니 면(111a)]은 상기 방청액(60)에 노출되는 반대 면[예를 들어, 매트 면(111b)]에 비해 방청액(60)의 코팅량이 적을 수밖에 없다. 그 결과, 구리막(111)의 샤이니 면(111a)과 매트 면(111b) 상에 제1 및 제2 보호층들(112, 113)을 각각 형성할 때 방청물질 전착량에 심각한 차이가 야기되며, 이와 같은 차이는 전해동박(110)의 접힘 및/또는 말림(주름)의 원인이 될 수 있다.
따라서, 본 발명의 방법은, 상기 구리막(111)이 상기 방청액(60)으로부터 인출된 직후에, 상기 침지 단계 중에 상기 가이드 롤(70)과 접촉한 상기 구리막(111)의 면 상에 노즐(80)을 이용하여 방청액(90)을 분사하는 단계를 더 포함할 수 있다. 이와 같은 방청액(90) 분사 단계를 통해, 상기 제1 및 제2 보호층들(112, 113)을 각각 형성할 때 야기될 수 있는 방청물질 전착량의 차이를 없애거나 최소화할 수 있다.
위와 같은 방법을 통해 제조된 본 발명의 전해동박(110)의 제1 면(110a) 및/또는 제2 면(110b) 상에, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속(Me); 상기 금속(Me)을 포함하는 합금; 상기 금속(Me)의 산화물(MeOx); 및 상기 금속(Me)과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 음극 활물질을 코팅함으로써 본 발명의 이차전지용 전극(즉, 음극)이 제조될 수 있다.
예를 들어, 탄소 100 중량부의 음극 활물질용 탄소에 1 내지 3 중량부의 스티렌부타디엔 고무(SBR) 및 1 내지 3 중량부의 카르복시메틸 셀룰로오스(CMC)를 혼합한 후 증류수를 용제로 사용하여 슬러리를 조제한다. 이어서, 닥터 블레이드를 이용하여 상기 전해동박(110) 상에 20 내지 60㎛ 두께로 상기 슬러리를 도포하고, 110 내지 130℃에서 0.5 내지 1.5 ton/cm2의 압력으로 프레스한다.
이상의 방법으로 제조된 본 발명의 이차전지용 전극(음극)과 함께 통상의 양극, 전해질, 및 분리막을 이용하여 리튬 이차전지를 제조할 수 있다.
이하에서는, 실시예들 및 비교예들을 통해 본 발명을 구체적으로 설명한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐으로, 본 발명의 권리범위가 이들 실시예들로 제한되지 않는다.
실시예 1
전해조 내의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 통전시킴으로써 상기 회전 음극드럼 상에 구리막을 형성하였다. 상기 전해액은 85g/L의 구리 이온, 75 g/L의 황산, 20 ppm의 염소 이온. 및 유기 첨가제를 포함하였다. 상기 유기 첨가제로는 젤라틴, 하이드로에틸 셀룰로오스(HEC), 유기 황화물, 및 유기 질화물이 사용되었다. 상기 구리막(111) 형성 단계 중에, 상기 전해액은 약 55℃로 유지되고, 상기 전해조 내로 공급되는 상기 전해액의 유량은 40 m3/hour이었다.
상기 양극판은 서로 전기적으로 절연된 제1 양극판 및 제2 양극판으로 구성되었으며, 상기 제1 양극판에 의해 제공되는 전류밀도는 60 A/dm2이었고, 상기 제2 양극판에 의해 제공되는 전류밀도는 40 A/dm2이었다.
상기 구리막을 2 g/L의 산화크롬 용액에 상온에서 10초 동안 침지시킨 후, 상기 침지 과정에서 가이드 롤과 접촉한 면에 2 g/L의 산화크롬 용액을 분사하였다. 이어서, 상기 산화크롬 용액을 건조시켜 상기 구리막의 양 면들 상에 보호층들을 형성함으로써 4㎛의 두께를 갖는 전해동박을 완성하였다.
실시예 2
상기 제1 양극판에 의해 제공되는 전류밀도는 70 A/dm2이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다.
실시예 3
상기 제1 및 제2 양극판들 사이에 제3 양극판이 더 제공되었고, 상기 제3 양극판에 의해 제공되는 전류밀도는 55A/dm2이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다.
비교예 1
상기 제1 및 제2 양극판들에 의해 50 A/dm2의 동일한 전류밀도가 제공되었다는 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다.
비교예 2
상기 제1 및 제2 양극판들에 의해 50 A/dm2의 동일한 전류밀도가 제공되었고 산화크롬 용액의 분사 과정을 생략하였다는 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다.
비교예 3
산화크롬 용액의 분사 과정을 생략하였다는 것을 제외하고는 실시예 1과 동일한 방법으로 전해동박을 제조하였다.
위 실시예들 및 비교예에 의해 제조된 전해동박들의 종방향 들림, 횡방향 들림, 상기 종방향 들림에 대한 상기 횡방향 들림의 비율, 방청물질(크롬) 전착량, 10점 평균조도(RzJIS), 및 10점 평균조도 편차를 아래의 방법들에 의해 각각 측정 또는 산출하였고, 그 결과를 표 1에 나타내었다.
* 종방향 들림(LR), 횡방향 들림(TR), 및 상기 종방향 들림(LR)에 대한 상기 횡방향 들림(TR)의 비율(TR/LR)
전해동박의 중심부를 5cm×5cm의 X-형 절단라인을 따라 절단하되 상기 전해동박에 형성되어 있는 전사 자국과 평행한 종방향과 35° 내지 55°의 각을 이루는 제1 방향 및 상기 제1 방향과 수직한 제2 방향으로 절단함으로써 상기 종방향을 따라 나란히 배치되는 한 쌍의 제1 세그먼트들 및 상기 종방향과 수직한 횡방향을 따라 나란히 배치되는 한 쌍의 제2 세그먼트들을 형성하였다. 여기서, 상기 전사 자국은 구리막의 샤이니 면 측에 형성된 회전 음극드럼의 자국으로서, 현미경 관찰을 통해 확인되었다.
이어서, 전해동박의 제1 면(상기 구리막의 샤이니 면에 인접한 면) 또는 그 반대 측의 제2면 방향으로 상기 제1 및 제2 세그먼트들의 들림 정도를 자(ruler)로 각각 측정하였다. 상기 제1 세그먼트들의 들림 정도들 중 더 큰 값 및 상기 제2 세그먼트들의 들림 정도들 중 더 큰 값을 전해동박의 종방향 들림(LR) 및 횡방향 들림(TR)으로 각각 간주하였다. 이어서, 상기 횡방향 들림(TR)을 상기 종방향 들림(LR)으로 나눔으로써 상기 종방향 들림(LR)에 대한 상기 횡방향 들림(TR)의 비율(TR/LR)을 구하였다.
* 방청물질(크롬) 전착량
AAS(Atomic Absorption Spectrometry) 분석을 통해 전해동박의 제1 면(구리막의 샤이니 면에 인접한 면) 및 그 반대 측의 제2면의 크롬 전착량을 각각 측정하였다.
* 10점 평균조도(RzJIS) 및 10점 평균조도 편차
JIS B 0601-1994 규정에 따라 접촉식 표면조도 측정기를 이용하여 전해동박의 제1 면(구리막의 샤이니 면에 인접한 면) 및 그 반대 측의 제2면의 10점 평균조도(RzJIS)를 각각 측정하였다.
이어서, 하기의 식에 의해 전해동박의 10점 평균조도 편차(%)를 산출하였다.
식: RD = [|R1-R2|/(R1, R2)max] × 100
여기서, R1은 상기 제1 면의 10점 평균조도이고, R2는 상기 제2 면의 10점 평균조도이고, RD는 상기 전해동박의 10점 평균조도 편차이고, |R1-R2|는 상기 제1 및 제2 면들의 10점 평균조도 차이이며, (R1, R2)max는 상기 제1 및 제2 면들의 10점 평균조도 중 상대적으로 더 큰 10점 평균조도를 의미한다.
실시예1 실시예2 실시예3 비교예1 비교예2 비교예3
전류밀도(A/dm2) 제1양극판 60 70 60 50 50 60
제2양극판 40 40 40 50 50 40
제3양극판 - - 55 - - -
산화크롬 용액 분사 여부 × ×
종방향 들림(LR) (mm) 3.5 28.9* 2.9 31.5* 3.5 1.3
횡방향 들림(TR) (mm) 2.5 3.1 24.3* 2.5 25.5* 11.4
TR/LR 0.7 0.1 8.4 0.1 7.3 8.8
방청물질 전착량 (ppm/m2) 제1 면 1.5 2.1 4.1 1.0 4.8 1.2
제2 면 2.2 3.9 1.7 4.6 1.1 4.3
방청물질 전착량 차이 (ppm/m2) 0.7 1.8 2.4 2.8 3.7 3.2
10점 평균조도 (㎛) 제1 면 1.6 1.1 0.6 0.5 2.1 2.7
제2 면 1.3 1.2 1.9 1.9 0.5 0.6
10점 평균조도 편차 (%) 19 8 68 74 76 78
접힘 발생 여부 No No No Yes No No
주름 발생 여부 No No No No Yes Yes
Note: 종방향 들림 및 횡방향 들림에서 * 표시는 전해동박의 제1 면(구리막의 샤이니 면에 인접한 면) 방향으로의 들림을 의미하고, * 표시가 없는 것은 전해동박의 제2 면 방향으로의 들림을 의미함.
위 표 1로부터, 전해동박의 종방향 들림(LR)이 30mm를 초과할 경우(비교예 1)에는, 롤투롤 공정 중에 인접 롤들 사이에서 전해동박의 접힘 현상이 발생하고, 전해동박의 횡방향 들림(TR)이 25mm를 초과할 경우(비교예 2)에는, 롤투롤 공정 중에 전해동박의 좌우 말단부에 주름이 발생함을 알 수 있다.
또한, 비교예 3의 경우와 같이, 전해동박이 30mm 이하의 종방향 들림(LR) 및 25mm 이하의 횡방향 들림(TR)을 갖는다고 하더라도, 상기 횡방향 들림(TR)이 상기 종향향 들림(LR)의 8.5배를 초과할 경우에는 롤투롤 공정 중에 전해동박의 좌우 말단부에 주름이 발생함을 알 수 있다.

Claims (15)

  1. 제1 면 및 상기 제1 면의 반대 편의 제2 면을 갖는 전해동박(electrolytic copper foil)에 있어서,
    상기 제1 면 측의 제1 보호층;
    상기 제2 면 측의 제2 보호층; 및
    상기 제1 및 제2 보호층 사이의 구리막(copper film)을 포함하고,
    상기 전해동박은 30mm 이하의 종방향 들림 및 25mm 이하의 횡방향 들림을 갖되, 상기 횡방향 들림은 상기 종방향 들림의 8.5배 이하인 전해동박:
    여기서, 상기 종방향 들림 및 상기 횡방향 들림은, 상기 전해동박의 중심부를 5cm×5cm의 X-형 절단라인을 따라 절단하되 상기 전해동박에 형성되어 있는 전사 자국과 평행한 종방향과 35° 내지 55°의 각을 이루는 제1 방향 및 상기 제1 방향과 수직한 제2 방향으로 절단함으로써 상기 종방향을 따라 나란히 배치되는 한 쌍의 제1 세그먼트들 및 상기 종방향과 수직한 횡방향을 따라 나란히 배치되는 한 쌍의 제2 세그먼트들을 형성할 경우, 상기 제1 세그먼트들의 상기 제1 또는 제2 면 방향으로의 들림 정도들 중 더 큰 값 및 상기 제2 세그먼트들의 상기 제1 또는 제2 면 방향으로의 들림 정도들 중 더 큰 값을 각각 의미함.
  2. 제1항에 있어서,
    상기 제1 및 제2 보호층들은 방청물질(anticorrosion material)이 상기 구리막 상에 전착됨으로써 각각 형성된 것이며,
    상기 제1 및 제2 보호층들의 상기 방청물질의 전착량 차이는 2.5 ppm/m2 이하인,
    전해동박.
  3. 제2항에 있어서,
    상기 방청물질은 크롬산염, 벤조트리아졸, 산화크롬 및 실란 화합물 중 적어도 하나를 포함하는,
    전해동박.
  4. 제1항에 있어서,
    상기 전해동박은 4 내지 35 ㎛의 두께를 갖는,
    전해동박.
  5. 제1항에 있어서,
    상기 제1 및 제2 면들은 3.5㎛ 이하의 10점 평균조도(ten-point mean roughness: RzJIS)를 갖고,
    하기의 식에 의해 산출되는 상기 제1 및 제2 면들의 10점 평균조도 편차가 70% 이하인 전해동박:
    식: RD = [|R1-R2|/(R1, R2)max] × 100
    여기서, R1은 상기 제1 면의 10점 평균조도이고, R2는 상기 제2 면의 10점 평균조도이고, RD는 상기 제1 및 제2 면들의 10점 평균조도 편차이고, |R1-R2|는 상기 제1 및 제2 면들의 10점 평균조도 차이이며, (R1, R2)max는 상기 제1 및 제2 면들의 10점 평균조도 중 상대적으로 더 큰 10점 평균조도임.
  6. 제1항의 전해동박; 및
    상기 전해동박 상의 활물질층을 포함하되,
    상기 활물질층은, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속; 상기 금속을 포함하는 합금; 상기 금속의 산화물; 및 상기 금속과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 활물질을 포함하는,
    이차전지용 전극.
  7. 양극(cathode);
    음극(anode);
    상기 양극과 음극 사이에서 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte); 및
    상기 양극과 상기 음극을 전기적으로 절연시켜 주는 분리막(separator)을 포함하되,
    상기 음극은,
    제1항의 전해동박; 및
    상기 전해동박 상의 활물질층을 포함하되,
    상기 활물질층은, 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속; 상기 금속을 포함하는 합금; 상기 금속의 산화물; 및 상기 금속과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 활물질을 포함하는,
    이차전지.
  8. 전해조 내의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 통전시킴으로써 상기 회전 음극드럼 상에 구리막을 형성하는 단계; 및
    상기 구리막을 방청액(anticorrosion solution)에 침지시키는 단계를 포함하되,
    상기 양극판은 서로 전기적으로 절연된 제1 양극판 및 제2 양극판을 포함하고,
    상기 구리막 형성 단계는 상기 제1 양극판과 상기 회전 음극드럼 사이의 통전에 의해 씨드층을 형성하고, 이어서 상기 제2 양극판과 상기 회전 음극드럼 사이의 통전에 의해 상기 씨드층을 성장시킴으로써 수행되며,
    상기 제1 양극판에 의해 제공되는 전류밀도는 상기 제2 양극판에 의해 제공되는 전류밀도의 1.5배 이상인,
    전해동박의 제조방법.
  9. 제8항에 있어서,
    상기 양극판은 상기 제1 및 제2 양극판들 사이에 제3 양극판을 더 포함하고,
    상기 제3 양극판에 의해 제공되는 전류밀도는 상기 제1 양극판에 의해 제공되는 전류밀도보다 작고 상기 제2 양극판에 의해 제공되는 전류밀도보다 큰,
    전해동박의 제조방법.
  10. 제8항 또는 제9항에 있어서,
    상기 양극판에 의해 제공되는 전류밀도는 40 내지 70 A/dm2인,
    전해동박의 제조방법.
  11. 제8항에 있어서,
    상기 방청액에 침지된 상기 구리막을 상기 방청액으로부터 인출하는 단계를 더 포함하고,
    상기 침지 단계 및 상기 인출 단계가 수행될 때, 상기 구리막은 상기 방청액 내에 배치된 가이드 롤(guide roll)에 의해 안내되는,
    전해동박의 제조방법.
  12. 제11항에 있어서,
    상기 구리막이 상기 방청액으로부터 인출된 후에, 상기 침지 단계 중에 상기 가이드 롤과 접촉한 상기 구리막의 면 상에 방청액을 분사하는 단계를 더 포함하는,
    전해동박의 제조방법.
  13. 제8항에 있어서,
    상기 전해액은 50 내지 100 g/L의 구리 이온, 50 내지 150 g/L의 황산, 50 ppm 이하의 염소 이온, 및 유기 첨가제를 포함하는,
    전해동박의 제조방법.
  14. 제13항에 있어서,
    상기 유기 첨가제는 젤라틴, 하이드로에틸 셀룰로오스(HEC), 유기 황화물, 유기 질화물, 티오요소(thiourea)계 화합물, 또는 이들 중 2 이상의 혼합물인,
    전해동박의 제조방법.
  15. 제8항에 있어서,
    상기 구리막 형성 단계 중에 상기 전해조 내로 공급되는 상기 전해액의 유량은 40 내지 46 m3/hour인,
    전해동박의 제조방법.
PCT/KR2016/011494 2015-11-09 2016-10-13 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 WO2017082542A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016571744A JP6486392B2 (ja) 2015-11-09 2016-10-13 電解銅箔、それを含む電極、それを含む二次電池、及びその製造方法
CN201680002180.4A CN106973570B (zh) 2015-11-09 2016-10-13 电解铜箔、包括该电解铜箔的电极、包括该电解铜箔的二次电池以及该电解铜箔的制造方法
PL16864468T PL3376574T3 (pl) 2015-11-09 2016-10-13 Sposób wytwarzania folii z miedzi elektrolitycznej, folia z miedzi elektrolitycznej otrzymywana tym sposobem, elektroda zawierającej tę folię oraz akumulator zawierający tę folię
US15/773,046 US20180323438A1 (en) 2015-11-09 2016-10-13 Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
EP16864468.0A EP3376574B1 (en) 2015-11-09 2016-10-13 Method for manufacturing an electrolytic copper foil, electrolytic copper foil obtainable by the method, electrode comprising the same, and secondary battery comprising the same
US17/083,824 US11355757B2 (en) 2015-11-09 2020-10-29 Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150156349A KR102029139B1 (ko) 2015-11-09 2015-11-09 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR10-2015-0156349 2015-11-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/773,046 A-371-Of-International US20180323438A1 (en) 2015-11-09 2016-10-13 Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
US17/083,824 Division US11355757B2 (en) 2015-11-09 2020-10-29 Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017082542A1 true WO2017082542A1 (ko) 2017-05-18

Family

ID=58695702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011494 WO2017082542A1 (ko) 2015-11-09 2016-10-13 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Country Status (9)

Country Link
US (2) US20180323438A1 (ko)
EP (1) EP3376574B1 (ko)
JP (2) JP6486392B2 (ko)
KR (1) KR102029139B1 (ko)
CN (1) CN106973570B (ko)
HU (1) HUE054913T2 (ko)
PL (1) PL3376574T3 (ko)
TW (1) TWI651421B (ko)
WO (1) WO2017082542A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697077B1 (en) 2019-04-19 2020-06-30 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184170B1 (ko) * 2017-07-25 2020-11-27 주식회사 엘지화학 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
WO2019022408A1 (ko) * 2017-07-25 2019-01-31 주식회사 엘지화학 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
KR102399930B1 (ko) * 2017-08-29 2022-05-18 에스케이넥실리스 주식회사 노듈층을 갖는 동박의 제조방법, 이 방법으로 제조된 동박, 이를 포함하는 이차전지용 전극 및 이차전지
KR102439621B1 (ko) 2017-09-01 2022-09-01 에스케이넥실리스 주식회사 전해동박, 그 제조방법 및 이를 포함하는 고용량 Li 이차전지용 음극
CN109183081B (zh) * 2018-08-24 2020-03-31 邵武永太高新材料有限公司 一种电解铜箔用添加剂及双面光电解铜箔的制备方法
CN111233107A (zh) * 2018-11-29 2020-06-05 同济大学 一种镀铜铁、其制备方法及应用
CN110042438B (zh) * 2019-04-24 2021-02-05 福建清景铜箔有限公司 电解铜箔的制备方法
CN114161787A (zh) * 2021-12-08 2022-03-11 江西明冠锂膜技术有限公司 软包锂电池用负极铜箔及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898647A (en) * 1985-12-24 1990-02-06 Gould, Inc. Process and apparatus for electroplating copper foil
US5215646A (en) * 1992-05-06 1993-06-01 Circuit Foil Usa, Inc. Low profile copper foil and process and apparatus for making bondable metal foils
KR100661456B1 (ko) * 2005-08-03 2006-12-27 한국생산기술연구원 Fccl 필름 제조 장치 및 fccl 필름 제조 방법
KR101126831B1 (ko) * 2009-09-02 2012-03-23 엘에스엠트론 주식회사 전해 동박 및 그 제조 방법
KR20130027484A (ko) * 2010-03-01 2013-03-15 후루카와 덴키 고교 가부시키가이샤 동박의 표면처리방법, 표면처리된 동박, 및 리튬 이온 2차 전지의 음극 컬렉터용 동박

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158652A (ja) * 1997-11-25 1999-06-15 Furukawa Circuit Foil Kk 二次電池用電極材料の製造方法
TW200424359A (en) * 2003-02-04 2004-11-16 Furukawa Circuit Foil Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil
JP5116943B2 (ja) * 2003-02-04 2013-01-09 古河電気工業株式会社 高周波回路用銅箔及びその製造方法
TW200738913A (en) * 2006-03-10 2007-10-16 Mitsui Mining & Smelting Co Surface treated elctrolytic copper foil and process for producing the same
KR20080090154A (ko) * 2007-04-04 2008-10-08 엘에스엠트론 주식회사 전지용 동박의 표면처리방법
JP2009185384A (ja) * 2008-02-01 2009-08-20 Ls Mtron Ltd 低粗度を持つ高屈曲性銅箔及びその製造方法
JP2011134651A (ja) * 2009-12-25 2011-07-07 Furukawa Electric Co Ltd:The 非水溶媒二次電池負極集電体用銅箔その製造方法及び非水溶媒二次電池負極電極の製造方法
CN101906630B (zh) * 2010-08-03 2011-08-10 山东金宝电子股份有限公司 电解铜箔的黑色表面处理工艺
TWI466367B (zh) * 2010-12-27 2014-12-21 Furukawa Electric Co Ltd A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
JP2012172198A (ja) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp 電解銅箔及びその製造方法
WO2013002273A1 (ja) * 2011-06-28 2013-01-03 古河電気工業株式会社 リチウムイオン二次電池、該二次電池の負極電極を構成する集電体、並びに該負極電極集電体を構成する電解銅箔
TWI539032B (zh) * 2013-08-01 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil, cleaning fluid composition and cleaning copper foil method
CN103469267B (zh) * 2013-08-07 2015-11-25 江西省江铜-耶兹铜箔有限公司 一种表面处理电解铜箔的工艺方法及其处理的铜箔
JP5810197B2 (ja) * 2013-09-11 2015-11-11 古河電気工業株式会社 電解銅箔、フレキシブル配線板及び電池
CN104419959B (zh) * 2013-09-11 2018-08-21 古河电气工业株式会社 电解铜箔、挠性线路板以及电池
US9287566B1 (en) * 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898647A (en) * 1985-12-24 1990-02-06 Gould, Inc. Process and apparatus for electroplating copper foil
US5215646A (en) * 1992-05-06 1993-06-01 Circuit Foil Usa, Inc. Low profile copper foil and process and apparatus for making bondable metal foils
KR100661456B1 (ko) * 2005-08-03 2006-12-27 한국생산기술연구원 Fccl 필름 제조 장치 및 fccl 필름 제조 방법
KR101126831B1 (ko) * 2009-09-02 2012-03-23 엘에스엠트론 주식회사 전해 동박 및 그 제조 방법
KR20130027484A (ko) * 2010-03-01 2013-03-15 후루카와 덴키 고교 가부시키가이샤 동박의 표면처리방법, 표면처리된 동박, 및 리튬 이온 2차 전지의 음극 컬렉터용 동박

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376574A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697077B1 (en) 2019-04-19 2020-06-30 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil

Also Published As

Publication number Publication date
US20210050598A1 (en) 2021-02-18
TW201716595A (zh) 2017-05-16
JP2017538858A (ja) 2017-12-28
JP6722266B2 (ja) 2020-07-15
EP3376574A1 (en) 2018-09-19
TWI651421B (zh) 2019-02-21
US20180323438A1 (en) 2018-11-08
CN106973570B (zh) 2021-03-19
JP6486392B2 (ja) 2019-03-20
EP3376574B1 (en) 2021-03-31
CN106973570A (zh) 2017-07-21
US11355757B2 (en) 2022-06-07
KR20170053888A (ko) 2017-05-17
PL3376574T3 (pl) 2021-10-25
JP2019065400A (ja) 2019-04-25
EP3376574A4 (en) 2019-05-08
KR102029139B1 (ko) 2019-10-07
HUE054913T2 (hu) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2017082542A1 (ko) 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2016208858A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR20170036262A (ko) 초고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
US10658655B2 (en) Copper foil having improved workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
WO2019045374A2 (ko) 전해동박, 그 제조방법 및 이를 포함하는 고용량 Li 이차전지용 음극
KR101992841B1 (ko) 울음, 주름 및 찢김이 최소화된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조 방법
KR20180090532A (ko) 주름 및 말림이 최소화된 고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20230038679A (ko) 고용량 이차전지 제조를 가능하게 하는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
EP3588640A2 (en) Copper foil having excellent adhesive strength, electrode comprising same, secondary battery comprising same, and manufacturing method therefor
KR20170085425A (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지
WO2023219264A1 (ko) 전해 동박의 제조방법
WO2019151719A1 (ko) 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법
WO2019045387A1 (ko) 전해동박, 그의 제조방법 및 그것을 포함하는 고용량 Li 이차전지용 음극
WO2021125410A1 (ko) 표면처리 동박, 이의 제조방법 및 이를 포함한 이차전지용 음극
KR20180009226A (ko) 높은 인장강도를 갖는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2017123034A1 (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지
KR102429088B1 (ko) 이미다졸 화합물층을 포함하여 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
JP6721547B2 (ja) 高い引張強度を有する電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
EP3608447B1 (en) Copper foil with minimized bagginess, wrinkle and tear, electrode including the same, secondary battery including the same and method for manufacturing the same
KR102424266B1 (ko) 친수성 고분자층을 가져 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019022408A1 (ko) 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
CN110880602A (zh) 具有最小化膨胀、起皱或撕裂的铜箔,包括其的电极,包括其的二次电池,及其制造方法
WO2017018655A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
EP3608446B1 (en) Copper foil having workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
KR102518398B1 (ko) 고신뢰성 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571744

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15773046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864468

Country of ref document: EP