WO2019151719A1 - 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법 - Google Patents

고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법 Download PDF

Info

Publication number
WO2019151719A1
WO2019151719A1 PCT/KR2019/001070 KR2019001070W WO2019151719A1 WO 2019151719 A1 WO2019151719 A1 WO 2019151719A1 KR 2019001070 W KR2019001070 W KR 2019001070W WO 2019151719 A1 WO2019151719 A1 WO 2019151719A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
width
less
electrolytic
Prior art date
Application number
PCT/KR2019/001070
Other languages
English (en)
French (fr)
Inventor
김승민
안중규
김선화
Original Assignee
케이씨에프테크놀로지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이씨에프테크놀로지스 주식회사 filed Critical 케이씨에프테크놀로지스 주식회사
Priority to EP19746706.1A priority Critical patent/EP3748044A4/en
Priority to JP2020539249A priority patent/JP7083029B2/ja
Priority to US16/959,360 priority patent/US11346015B2/en
Priority to CN201980011125.5A priority patent/CN111670269B/zh
Publication of WO2019151719A1 publication Critical patent/WO2019151719A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the present invention relates to an electrolytic copper foil, and more particularly, to an electrolytic copper foil having high dimensional stability and texture stability in a high temperature environment of a Li secondary battery manufacturing process and a manufacturing method thereof.
  • electrolytic copper foil is mainly used as a material of the negative electrode current collector.
  • the electrolytic copper foil is manufactured through an electroplating process by electroplating. If the production conditions are not precisely controlled during the production of the electrolytic copper foil, a large amount of wrinkles or tearing may occur when the thin film is manufactured. The failure of such a copper foil product is a major cause to increase the manufacturing cost in the production of copper foil, curls and wrinkles are a major factor to deteriorate the quality of the Li secondary battery may also be the cause of raising the overall quality cost.
  • wrinkles or tearing may also occur in a process of manufacturing a Li secondary battery using the manufactured electrolytic copper foil, which may be due to the physical properties of the copper foil itself, but is exposed to the manufacturing environment or manufacturing environment of the Li secondary battery. This may be due to changes over time.
  • the present invention relates to an electrolytic copper foil and a method of manufacturing the same, which can prevent problems caused by the above limitations and disadvantages of the related art.
  • One aspect of the present invention is to provide an electrolytic copper foil which reduces the occurrence of wrinkles and / or tears when exposed to a secondary battery manufacturing process.
  • Another aspect of the present invention is to provide a method for producing an electrolytic copper foil which reduces the occurrence of wrinkles and / or tears when exposed to a secondary battery manufacturing process.
  • the thermal expansion coefficient of the electrolytic copper foil measured while raising the temperature from 30 °C to 190 °C at a rate of 5 °C / min 17.1 to 22 ⁇ m / (m ⁇ ° C.), and the half-width variation in the (220) plane was 0.81 to 1.19 after heat treatment at 190 ° C. for 30 minutes, and the half-width variation in the (220) plane was calculated by the following Equation 1.
  • Half-width variation of (220) face half-width of (220) face after heat treatment / half-width of (220) face before heat treatment
  • An electrolytic copper foil is provided, characterized in that the weight deviation in the width direction is 5% or less.
  • the difference in Rz of the said 1st surface and the 2nd surface is 0.65 micrometer or less, and the Ra difference of the said 1st surface and the 2nd surface is 0.18 micrometer or less.
  • the electrolytic copper foil may include a first protective layer forming the first surface and a second protective layer forming the second surface.
  • the thickness of the electrolytic copper foil is preferably 4 ⁇ 30 ⁇ m.
  • Rz of the said 1st surface and Rz of the said 2nd surface are 2.5 micrometers or less.
  • the present invention by controlling the properties of the electrolytic copper foil in the manufacturing process of the electrolytic copper foil it is possible to provide an electrolytic copper foil having a characteristic that can reduce the possibility of wrinkles and / or tearing in the subsequent secondary battery manufacturing environment.
  • FIG. 1 is a schematic diagram showing a cross section of an electrolytic copper foil according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the electrolytic copper foil manufacturing apparatus of the present invention.
  • the electrolytic copper foil In the production of the electrolytic copper foil, various organic additives and metal additives are used to control the properties of the thin film. These organic and metal additives are vacated together with copper in the copper thin film in the electrolytic plating process.
  • the dimensional change according to the temperature change of copper that is, the coefficient of thermal expansion (CTE)
  • CTE coefficient of thermal expansion
  • the coefficient of thermal expansion differs from the theoretical value by the additive component added and vacancies in the production of the copper thin film. Therefore, the type and concentration of the additive added during the production of the electrolytic copper foil need to be appropriately controlled in consideration of the manufacturing process of the subsequent Li secondary battery.
  • FIG. 1 is a schematic diagram showing a cross section of an electrolytic copper foil according to an embodiment of the present invention.
  • the electrolytic copper foil 110 has a first surface 110a and a second surface 110b.
  • the electrolytic copper foil 110 includes a copper film 111.
  • the electrolytic copper foil 110 of the present invention may further include a first passivation layer 112 forming the first surface 110a and a second passivation layer 113 forming the second surface 110b.
  • Each of the first and second passivation layers 112 and 113 may be an antirust layer.
  • the electrolytic copper foil 110 has a predetermined thickness, for example, 4 to 30 ⁇ m thick. If the thickness of the copper foil is less than 4 ⁇ m causes a decrease in workability in the battery manufacturing process, if it exceeds 30 ⁇ m it is difficult to implement a high capacity due to the thick thickness of the copper foil during Li secondary battery manufacturing.
  • the electrolytic copper foil 110 is formed by electroplating in a rotating cathode drum.
  • the surface directly contacting the rotating cathode drum in the electroplating process has a shiny surface (S surface) and a mat surface (M surface) on the opposite side.
  • S surface shiny surface
  • M surface mat surface
  • the first surface 110a may be an S plane
  • the second surface 110b may be an M plane.
  • the electrolytic copper foil 110 of the present invention has a thermal expansion coefficient of a controlled range.
  • the electrolytic copper foil of the present invention has a coefficient of thermal expansion of 17.1 to 22 ⁇ m / (m ⁇ ° C.) in a temperature range of 30 ° C. to 190 ° C. which is a manufacturing process temperature of a Li secondary battery.
  • the coefficient of thermal expansion in the temperature range of 30 °C ⁇ 190 °C can be measured while increasing the temperature from 30 °C to 190 °C at a rate of 5 °C / min. If the coefficient of thermal expansion in this temperature range is less than 17.1 ⁇ m / (m ⁇ °C) is small dimensional change due to the temperature rise may be torn due to heat and external force experienced during the secondary battery manufacturing process.
  • a thermal expansion coefficient exceeds 22 micrometers / (m * degreeC)
  • wrinkles may arise in copper foil by the deformation
  • the change in crystal structure is maintained within a predetermined range at the temperature condition experienced in the secondary battery manufacturing process.
  • a full width at half maximum (hereinafter referred to as "220 surface half width") of a characteristic peak on an XRD pattern corresponding to the (220) surface of the electrolytic copper foil is a value within a predetermined range. To be maintained.
  • the half-width variation of the (220) plane according to the heat treatment expressed by the following formula is 0.81 to 1.19. It is preferable.
  • Half-width variation of (220) face half-width of (220) face after heat treatment / half-width of (220) face before heat treatment
  • the variation rate of the half width of the (220) plane is outside the range of 0.81 to 1.19, the variation of the grains after receiving the heat history is too large, and the workability is significantly reduced in the roll-to-roll process.
  • the half-width variation of the (220) plane is greater than 1.19, the grains become too fine and wrinkles easily occur in the roll-to-roll process, and if less than 0.81, the grains become too large so that when the tension is applied after the thermal history in the roll-to-roll process Torn.
  • the weight variation in the width direction of the electrolytic copper foil is maintained at 5% or less. When the weight deviation exceeds 5% When the copper foil is subjected to a tension in the roll to roll process of the Li secondary battery manufacturing process, wrinkles occur in a large portion of the weight deviation.
  • the surface roughness of the M surface and the S surface of the electrolytic copper foil of the present invention is maintained in a certain range.
  • Surface roughness in the specification of the present invention is a value measured according to the JIS B 0601 (2001) standard.
  • the Rz difference between the first surface 110a and the second surface 110b may be 0.65 ⁇ m or less, and the Ra difference between the first surface 110a and the second surface 110b may be 0.18 ⁇ m or less.
  • the Rz difference exceeds 0.65 ⁇ m or the Ra difference exceeds 0.18 ⁇ m a difference in adhesion between the negative electrode material and the copper foil occurs on the first surface 110a and the second surface 110b after coating the negative electrode material. After the electrode is manufactured, the electrode is bent in a direction of high adhesion.
  • Rz of each of the first surface 110a and the second surface 110b is preferably 2.5 ⁇ m or less. When the Rz exceeds 2.5 ⁇ m, the adhesion with the negative electrode material may decrease.
  • FIG. 2 is a diagram schematically showing the electrolytic copper foil manufacturing apparatus of the present invention.
  • the positive electrode plate 30 and the rotating negative electrode drum 40 are disposed in the electrolyte solution 20 in the electrolytic cell 10 at predetermined intervals from each other.
  • plating is performed by energizing the electrolyte 20.
  • the copper film 110 plated on the surface of the cathode drum 40 may be wound on a winding roll (not shown) via the guide roll 80.
  • a copper sulfate electrolyte solution As the electrolyte solution 20 for depositing the electrolytic copper foil, a copper sulfate electrolyte solution, a copper pyrophosphate electrolyte solution, or a sulfate copper electrolyte solution may be used. In the present invention, as the electrolyte, a copper sulfate electrolyte is preferable.
  • the positive electrode plate 30 may include a first positive electrode plate 31 and a second positive electrode plate 32 electrically insulated from each other.
  • the current density provided by the positive electrode plate 30, that is, the first and second positive electrode plates 31 and 32, respectively, may be 30 to 80 A / dm 2 .
  • the electrolyte solution 20 may include 70 to 100 g / L copper ions and 80 to 130 g / L sulfuric acid.
  • the electrolyte solution 20 may further include an organic additive.
  • organic additive hydroethyl cellulose (HEC), organic sulfide or organic nitride, or a mixture thereof may be used.
  • 4-mercaptopyridine may be preferably used as the organic additive.
  • the total organic carbon (TOC) content including the organic additive in the electrolyte solution 20 of the present invention is limited to 450 ppm or less.
  • the half width of the copper foil 220 surface may be adjusted by adjusting the concentration of the organic additive, particularly 4-mercaptopyridine.
  • concentration of 4-mercaptopyridine is preferably 2 ⁇ 17ppm.
  • the half-width fluctuation rate of the (220) plane due to the heat treatment becomes less than 0.81, and when it exceeds 17 ppm, it exceeds 1.19.
  • the half width of the (220) plane of the copper foil may vary depending on the current density or the flow rate of the electrolyte.
  • the current density applied in the present invention is 30 ⁇ 80 A / dm 2
  • the temperature of the electrolyte solution 20 is maintained at 50 ⁇ 70 °C
  • the flow rate of the electrolyte solution 20 is supplied to the electrolytic cell 10 is 35 It is preferred that it is from 46 m 3 / hour.
  • Pb 2 + concentration in the electrolyte solution 20 in the present invention is preferably not more than 55ppm.
  • the present invention manages the Pb 2 + concentration in the plating liquid in an appropriate range in order to manage the thermal expansion coefficient of the copper foil according to the temperature change during the Li secondary battery manufacturing process.
  • the concentration of Pb 2 + exceeds 55ppm in the plating solution, the electrolytic Pb 2 + is precipitated as a plated copper foil is flexible and increases the thermal expansion coefficient of from 30 °C ⁇ 190 °C temperature range 22 ⁇ m / (m ⁇ °C) Will be exceeded.
  • the distance between the rotating cathode drum 40 and the positive electrode plate 30 should be kept substantially constant within the range of 5-15 mm.
  • the difference between the maximum spacing and the minimum spacing between the rotating cathode drum 40 and the positive electrode plate 30 should be maintained at 0.2 mm or less. When the difference exceeds 0.2 mm, the widthwise weight variation of the manufactured copper foil exceeds 5%.
  • the antirust treatment solution 60 includes chromate.
  • Chromate may be a mixed solution of an alkali hydroxide and an acid in a dichromate such as M 2 Cr 2 O 7 where M is a monovalent metal or a chromic acid such as CrO 3 .
  • the anti-rust treatment solution 60 may further include a zinc salt such as ZnO or ZnSO 4 ⁇ 7H 2 O. If necessary, the anti-rust treatment solution 60 may further include an organic additive such as a silane compound or a nitrogen compound.
  • the rust preventive treatment may be performed by an electrodeposition method instead of the aforementioned immersion method.
  • a copper film was formed on the rotating cathode drum by energizing the positive electrode plate and the rotating cathode drum disposed apart from each other in the electrolytic solution in the electrolytic cell using the apparatus as shown in FIG.
  • the electrolyte was composed of 75 g / L copper ions and 105 g / L sulfuric acid, and 4-mercaptopyridine was added as an additive. In addition, chlorine ions were added to adjust the Pb concentration.
  • Molding conditions of the prepared copper foil are shown in Table 1 below.
  • the characteristics of the prepared electrolytic copper foil specimens (Examples 1 to 5 and 1 to 5 in comparison) were measured.
  • the measuring method for each characteristic was as follows.
  • thermomechanical analyzer TMA
  • An XRD pattern was obtained for the M plane of the copper foil specimen at a Cu target (Cu K ⁇ 1 line), a scan rate of 3 ° / min, and a 2 ⁇ interval of 0.01 °, and the half width of the (220) plane peak was obtained from the obtained XRD pattern.
  • the copper foil specimens were heat-treated at 190 ° C. for 30 minutes, and the half width of (220) planes was determined in the same manner. Subsequently, the half-width variation rate of the (220) plane according to the heat treatment was calculated according to Equation 1 below.
  • Half-width variation of (220) face half-width of (220) face after heat treatment / half-width of (220) face before heat treatment
  • Rz and Ra were measured according to JIS B 0601 (2001) standard, using a Mitutoyo Co. SJ-310 model, a stylus tip having a radius of 2 ⁇ m, and measuring pressure of 0.75 mN. At this time, the measurement length except the cut off length was 4 mm, and the cut off length was 0.8 mm at the beginning and the end, respectively, and the average of three measured values was taken.
  • Weight deviation (%) (standard deviation / arithmetic mean) ⁇ 100
  • the electrode After preparing the negative electrode as in the following example, when the electrode was bent at one side of 5 mm or more, it was determined as defective. After manufacturing the electrode, cut the electrode to 10x10cm, put it on a flat glass plate, and measure the average value of the horizontal glass plate and the four corners, respectively, as the electrode bending value. After the warpage was measured for both surfaces, the higher warpage value of both surfaces was taken as the warpage value of the electrode.
  • a current collector having a width of 10 cm was prepared from the electrolytic copper foils prepared in the above-described examples and comparative examples.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the electrolytic copper foil specimens were unfolded to prevent wrinkles, wrinkles, and the like, and were coated on the copper foil using a bar coater so that the amount of loading of the negative electrode material was 9.0 ⁇ 0.5 mg / cm 2.
  • the speed of the bar coater was carried out at a speed of 10 ⁇ 15mm / s.
  • the negative electrode material coated copper foil was dried at 100 ° C. for 15 minutes, and the dried copper foil specimens were pressed four times to obtain an electrode density of 1.55 ⁇ 0.05 g / cc using a roll press to prepare a negative electrode.
  • LiPF 6 1 M was dissolved as a solute in a non-aqueous organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a ratio of 1: 2.
  • the basic electrolyte was 99.5% by weight of the basic electrolyte and succinic anhydride ( Succinic anhydride) 0.5% by weight to prepare a non-aqueous electrolyte.
  • a lithium manganese oxide of 05 O 4 and a lithium manganese oxide having an orthorhombic crystal structure of o-LiMnO 2 were mixed in a weight ratio of 90:10 to prepare a cathode active material.
  • a slurry was prepared by mixing the positive electrode active material and carbon black with PVDF [Poly (vinylidenefluoride)] as a binder and NMP as an organic solvent in a weight ratio of 85: 10: 5.
  • the prepared slurry was coated on both sides of Al foil having a thickness of 20 ⁇ m, and dried to prepare a positive electrode.
  • a lithium secondary battery cell was manufactured using the prepared positive electrode, negative electrode, and electrolyte solution.
  • Table 2 below is a table showing the measurement results of the physical properties of the electrolytic copper foil specimen prepared according to the embodiment of the present invention.
  • the electrolytic copper foil specimens prepared according to Examples 1 to 5 had a coefficient of thermal expansion of 17.1 to 22.0 ⁇ m / (m ⁇ K), and a half-width variation of 0.82 to 1.19.
  • the specimen having such a coefficient of thermal expansion was maintained in a good state in which no tearing or wrinkles occurred in the secondary battery manufacturing process.
  • the specimen of Comparative Example 1 exhibited a thermal expansion coefficient of 17.00 ⁇ m / (m ⁇ K).
  • the specimen of Comparative Example 2 exhibited a high coefficient of thermal expansion of 22.20 ⁇ m / (m ⁇ K), indicating that wrinkles occurred.
  • the specimens 3 and 4 each have a coefficient of thermal expansion within an appropriate range, but it can be seen that the half-width fluctuation rate (220) is out of a predetermined range, thereby causing tearing or wrinkles, respectively.
  • Comparative Example 5 has a coefficient of thermal expansion similar to that of Example 5 and a half-width width variation rate of the (220) plane, but the wrinkles are exhibited because the specimen has a high weight deviation value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 Li 이차전지 제조 공정의 고온 환경에서 높은 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조 방법에 관한 것이다. 본 발명의 전해동박은 30℃~190℃의 온도 구간에서 열팽창 계수가 17.1~22㎛/(m·℃)이고, 190℃에서 30분간 열처리에 따른 (220)면 반치폭 변동율이 0.81 ~ 1.19이며, 폭방향 중량편차가 5% 이하이다.

Description

고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법
본 발명은 전해동박에 관한 것으로, 보다 상세하게는 Li 이차전지 제조 공정의 고온 환경에서 높은 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조 방법에 관한 것이다.
휴대폰, 노트북 등 휴대용 가전의 사용 증가와 하이브리드 자동차의 보급과 더불어 Li 이차전지의 수요는 급격히 증가하고 있다.
리튬 이차전지에 있어서 음극 집전체의 소재로는 주로 전해동박이 사용된다. 전해동박은 전기 도금법에 의한 제박공정을 통해 제조되는데, 전해동박 제조시 생산 조건을 정밀하게 제어하지 않으면, 얇은 박막을 제조할 때 생길 수 있는 주름 또는 찢김 불량이 다량 발생하게 된다. 이러한 동박 제품의 불량은 동박 생산시 제조 원가를 상승시키는 주요한 원인이 되며, 컬 및 주름은 Li 이차전지의 품질을 저하시키는 주 요인으로 전체적인 품질 비용을 높이는 원인이 되기도 한다.
한편, 제조된 전해동박으로 Li 이차전지를 제조하는 공정에서도 주름 또는 찢김 현상이 발생할 수 있는데, 이러한 현상은 동박 자체의 물성에 기인할 수도 있지만, Li 이차전지의 제조 환경이나 제조 환경에 노출된 전해동박의 경시적 변화에 기인한 것일 수 있다.
따라서, 본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 방지할 수 있는 전해동박 및 그 제조방법에 관한 것이다.
본 발명의 일 관점은, 이차전지의 제조 공정에 노출시 주름 및/또는 찢김 발생을 감소시키는 전해동박을 제공하는 것이다.
본 발명의 다른 관점은, 이차전지의 제조 공정에 노출시 주름 및/또는 찢김 발생을 감소시키는 전해동박을 제조하는 방법을 제공하는 것이다.
위와 같은 본 발명의 일 관점에 따라, 제1 표면 및 상기 제2 표면을 갖는 전해동박에 있어서, 상기 전해동박은 5 ℃/min의 속도로 30℃에서 190℃까지 승온시키면서 측정되는 열팽창 계수가 17.1 내지 22 ㎛/(m·℃)이고, 190℃에서 30분간 열처리에 따른 (220)면 반치폭 변동율이 0.81 내지 1.19이며 - 상기 (220)면 반치폭 변동율은 다음의 수학식 1에 의해 계산됨 -,
(수학식 1)
(220)면 반치폭 변동율 = 열처리 후 (220)면 반치폭 / 열처리 전 (220)면 반치폭
폭방향 중량편차가 5% 이하인 것을 특징으로 하는 전해동박이 제공된다.
상기 전해동박은 상기 제1 표면 및 제2 표면의 Rz 차가 0.65㎛ 이하이고, 상기 제1 표면 및 제2 표면의 Ra 차가 0.18㎛ 이하인 것이 바람직하다.
본 발명에서 상기 전해동박은 상기 제1 표면을 형성하는 제1 보호층 및 상기 제2 표면을 형성하는 제2 보호층을 포함할 수 있다.
본 발명에서 상기 전해동박의 두께는 4~30㎛인 것이 바람직하다.
또한, 상기 제1 표면의 Rz 및 상기 제2 표면의 Rz는 2.5㎛ 이하인 것이 바람직하다.
본 발명의 다른 관점에 따라, 전해조의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼 사이에 전류를 인가하여 상기 회전 음극드럼 상에 구리막을 전기 도금하여 전해동박을 제조하는 방법에 있어서, 상기 전해액은 70 내지 100 g/L의 구리 이온, 80 내지 130 g/L의 황산, 55 ppm 이하의 Pb2 + 이온, 및 2 내지 17 ppm의 4-mercaptopyridine을 포함하고, 상기 전해액 내 총유기탄소(TOC) 함량은 450 ppm 이하이고, 상기 양극판과 상기 회전 음극드럼 사이의 간격은 5 내지 15 ㎜이며, 상기 양극판과 상기 회전 음극드럼 사이의 최대 간격과 최소 간격의 차이는 0.2mm 이하이다.
본 발명에 따르면, 전해동박의 제조 공정에서 전해동박의 물성을 제어함으로써 후속 이차전지 제조 환경에서 주름 및/또는 찢김 발생 가능성을 감소시킬 수 있는 특성을 갖는 전해동박을 제공할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 전해동박의 단면을 나타낸 모식도이다.
도 2는 본 발명의 전해동박 제박장치를 모식적으로 도시한 도면이다.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
전해동박의 제조에는 박막의 특성을 제어하기 위하여 다양한 유기 첨가제 및 금속 첨가제가 사용된다. 이러한 유기 첨가제 및 금속 첨가제는 전해 도금 공정에서 구리 박막 내에 구리와 함께 공석된다. 일반적으로, 구리의 온도 변화에 따른 치수 변화 즉 열팽창 계수(Coefficient of Thermal Expansion; CTE)는 16.5㎛/(m·℃) 정도로 알려져 있다. 그러나, 구리 박막 제조시 첨가되어 공석되는 첨가제 성분에 의해 열팽창 계수는 이론적인 값과는 차이를 가진다. 따라서, 전해동박의 제조 시 첨가되는 첨가제의 종류 및 농도는 후속 Li 이차전지의 제조공정을 고려하여 적절하게 제어될 필요가 있다.
도 1은 본 발명의 실시예에 따른 전해동박의 단면을 나타낸 모식도이다.
도 1을 참조하면, 전해동박(110)은 제1 표면(110a) 및 제2 표면(110b)을 구비한다.
상기 전해동박(110)은 구리막(111)을 포함한다. 선택적으로, 본 발명의 전해동박(110)은 상기 제1 표면(110a)을 형성하는 제1 보호층(112) 및 상기 제2 표면(110b)을 형성하는 제2 보호층(113)을 더 포함할 수 있다. 상기 제1 및 제2 보호층들(112, 113) 각각은 방청층일 수 있다.
본 발명에서 상기 전해동박(110)은 소정 두께 예컨대 4 내지 30 ㎛의 두께를 갖는다. 동박 두께가 4㎛ 미만인 경우 전지 제조공정에서의 작업성 저하를 초래하고, 30㎛를 초과하는 경우 Li 이차전지 제조시 동박의 두꺼운 두께로 인해 고용량 구현이 어렵게 된다.
상기 전해동박(110)은 회전 음극드럼에서 전기도금에 의해 형성되는데, 전기도금 과정에서 상기 회전 음극 드럼과 직접 접촉하는 표면은 샤이니 면(S면)과 그 반대 편의 매트 면(M면)을 갖는다. 예컨대, 본 발명에서 상기 제1 표면(110a)은 S면이고, 상기 제2 표면(110b)은 M면일 수 있다.
이차전지 제조 공정에서 주름 및 찢김의 발생을 억제하기 위하여, 본 발명의 전해동박(110)은 제어된 범위의 열팽창 계수를 갖는다.
구체적으로, 본 발명의 전해동박은 Li 이차전지의 제조 공정 온도인 30℃∼190℃의 온도 구간에서 열팽창 계수가 17.1~22㎛/(m·℃)의 값을 갖는다. 30℃~190℃ 온도 구간에서의 열팽창 계수는 5 ℃/min의 속도로 30℃에서 190℃까지 승온시키면서 측정될 수 있다. 이 온도 구간에서의 열팽창 계수가 17.1㎛/(m·℃) 미만인 경우 온도 상승에 따른 치수 변화가 작아 이차전지 제조 공정 중 겪는 열 및 외력에 의해 찢김이 발생할 수 있다. 한편, 열팽창 계수가 22㎛/(m·℃)을 초과하는 경우에는 Li 이차전지 제조 공정 중에 받는 열에 의한 변형에 의해 동박에 주름이 발생할 수 있다.
또한, 본 발명의 전해동박은 이차전지 제조공정 상 겪게 되는 온도 조건에서 결정 조직의 변화가 소정 범위 내로 유지된다. 구체적으로, 본 발명은 전해동박의 (220)면에에 대응하는 XRD 패턴 상의 특징 피크(characteristic peak)의 반치폭(full width at half maximum)(이하, "(220)면 반치폭")이 소정 범위 내의 값으로 유지되도록 제어한다.
본 발명에서 전해동박은 190℃에서 30분간 열처리 한 경우, 제1 표면(110a) 및 제2 표면(110b) 모두에서, 다음의 수식으로 표현되는 열처리에 따른 (220)면 반치폭 변동율이 0.81 내지 1.19인 것이 바람직하다.
(수학식 1)
(220)면 반치폭 변동율 = 열처리 후 (220)면 반치폭 / 열처리 전 (220)면 반치폭
상기 (220)면 반치폭의 변동율이 0.81 내지 1.19의 범위를 벗어나면 열 이력을 받은 후 결정립의 변동이 너무 커서, 롤투롤 공정에서 작업성이 현저하게 저하된다. 구체적으로, 상기 (220)면 반치폭 변동율이 1.19보다 커지면 결정립이 너무 미세해져 롤투롤 공정에서 쉽게 주름이 발생하고, 0.81 미만이면 결정립이 너무 커져서 롤투롤 공정에서 열이력을 받은후 장력이 인가되면 쉽게 찢어지게 된다. 본 발명에서 전해동박의 폭방향 중량 편차는 5% 이하로 유지된다. 중량 편차가 5%를 초과하는 경우 Li 이차전지 제조 공정의 롤투롤(Roll to Roll) 공정에서 동박이 장력을 받게 되면 중량 편차가 큰 부분에서 주름이 발생 하게 된다.
또한, 본 발명의 전해동박은 M면 및 S면의 표면조도가 일정 범위에서 유지된다. 본 발명의 명세서에서 표면조도는 JIS B 0601 (2001) 규격을 따라 측정된 값이다.
본 발명의 전해동박은 제1 표면(110a) 및 제2 표면(110b)의 Rz 차이가 0.65㎛ 이하일 수 있고, 제1 표면(110a) 및 제2 표면(110b)의 Ra 차이가 0.18㎛ 이하일 수 있다. 상기 Rz 차이가 0.65㎛를 초과하거나 상기 Ra 차이가 0.18㎛를 초과할 경우 음극재 코팅후 제1 표면(110a) 및 제2 표면(110b)에서 음극재와 동박 간의 밀착력 차이가 발생하며, 이로 인해 전극 제조 후 밀착력이 큰 방향으로 전극이 휘어지게 된다. 또한, 본 발명에서 제1 표면(110a) 및 제2 표면(110b) 각각의 Rz는 2.5㎛ 이하인 것이 바람직하다. 상기 Rz가 2.5㎛를 초과하는 경우 음극재와의 밀착력이 저하될 수 있다.
도 2는 본 발명의 전해동박 제박장치를 모식적으로 도시한 도면이다.
도 2에 도시된 바와 같이, 전해조(10) 내의 전해액(20) 내에 서로 소정간격으로 이격 배치된 양극판(30) 및 회전 음극드럼(40)이 구비된다. 회전 음극드럼(40)은 소정 방향으로 회전하고 회전 음극드럼(40)과 양극판(30) 사이에 전원을 인가하면 전해액(20)을 매개로 하여 통전에 의해 도금이 수행된다. 음극드럼(40) 표면에 도금된 구리막(110)은 가이드 롤(80)을 거쳐 권취 롤(도시하지 않음)에 권취될 수 있다.
상기 전해동박을 석출시키는 전해액(20)으로는 황산 구리 전해액, 피로린산 구리 전해액 또는 슬파민산 구리 전해액 등이 사용될 수 있다. 본 발명에서 전해액으로는 황산 구리 전해액이 바람직하다.
상기 양극판(30)은 서로 전기적으로 절연된 제1 양극판(31) 및 제2 양극판(32)을 포함할 수 있다. 상기 양극판(30), 즉 상기 제1 및 제2 양극판들(31, 32)에 의해 각각 제공되는 전류밀도는 30 내지 80 A/dm2 일 수 있다.
본 발명의 일 실시예에서, 상기 전해액(20)은 70 내지 100 g/L의 구리 이온 및 80 내지 130 g/L의 황산을 포함할 수 있다.
또한, 상기 전해액(20)은 유기 첨가제를 더 포함할 수 있다. 상기 유기 첨가제로는 하이드로에틸 셀룰로오스(HEC), 유기 황화물 또는 유기 질화물 또는 이들의 혼합물이 사용될 수 있다. 본 발명에서는 상기 유기 첨가제로 바람직하게는 4-메르캅토피리딘(4-mercaptopyridine)이 사용될 수 있다. 또한, 본 발명의 상기 전해액(20)에서 상기 유기 첨가제를 포함하는 총 유기탄소(Total Organic Carbon; TOC) 함량은 450 ppm 이하로 제한된다.
본 발명에서는 유기 첨가제 특히 4-mercaptopyridine의 농도를 조절하여 동박 (220)면의 반치폭을 조절할 수 있다. 바람직하게는 4-mercaptopyridine의 농도는 2~17ppm인 것이 좋다. 후술하는 바와 같이, 2ppm 미만의 4-mercaptopyridine 농도에서는 열처리에 따른 (220)면 반치폭 변동율이 0.81 미만이 되고, 17ppm 초과시에는 1.19를 초과하게 된다.
그 밖에도 동박의 (220)면 반치폭은 그 밖에도 전류밀도나 전해액 유량 등에 따라 변동될 수 있다. 본 발명에서 인가되는 전류밀도는 30 ~ 80 A/dm2이고, 상기 전해액(20)의 온도는 50 ~ 70℃로 유지되고, 상기 전해조(10) 내로 공급되는 상기 전해액(20)의 유량은 35 내지 46 m3/hour인 것이 바람직하다.
또한, 본 발명에서 상기 전해액(20) 내의 Pb2 + 농도는 55ppm 이하인 것이 바람직하다. 본 발명은 Li 이차전지 제조 공정 중의 온도 변화에 따른 동박의 열팽창 계수를 관리하기 위하여 도금액 내의 Pb2 + 농도를 적정 범위로 관리한다. 도금액 내에 Pb2 +의 농도가 55ppm을 초과하면, 전해 도금된 동박에 Pb2 +가 같이 석출되어 연성이 증가하게 되고 30℃~190℃ 온도 구간에서의 열팽창 계수가 22㎛/(m·℃)를 초과하게 된다. 이를 위하여, 동선에 Pb가 합유되지 않은 것을 사용하거나, 전해액에 염소를 투입하여 Pb 이온을 PbCl2 형태로 침전시킴으로써 도금액 내에 Pb2 + 농도를 원하는 범위 내로 관리한다. 이에 의해 Pb2+가 전해동박 내로 유입되는 것을 억제할 수 있다.
한편, 동박의 중량 편차를 5% 이하로 관리하기 위해서는 회전 음극드럼(40)과 양극판(30) 사이의 간격은 5∼15㎜ 범위 내에서 실질적으로 일정하게 유지되어야 한다. 또한, 회전 음극드럼(40)과 양극판(30) 사이의 최대 간격과 최소 간격의 차이는 0.2mm 이하로 유지해야 한다. 상기 차이가 0.2mm를 초과하는 경우 제조된 동박의 폭방향 중량 편차가 5%를 초과하게 된다.
도금을 거쳐 제조된 구리막은 가이드 롤(80)에 의해 방청 처리조(50)로 투입된다. 본 발명에서 방청 처리 용액(60)은 크롬산염을 포함한다. 크롬산염은 M2Cr2O7(여기서, M은 1가 금속)와 같은 중크롬산염 또는 CrO3와 같은 크롬산에 수산화알칼리 및 산의 혼합수 용액이 사용될 수 있다. 또한 상기 방청 처리 용액(60)은 ZnO나 ZnSO4·7H2O 등과 같은 아연염을 더 포함할 수 있다. 필요에 따라 상기 방청 처리 용액(60)에는 실란 화합물 또는 질소 화합물과 같은 유기 첨가제가 더 포함될 수 있다.
본 발명에서 방청 처리는 상술한 침지 방식 대신 전착 방식에 의해 수행될 수도 있다.
이하 본 발명의 바람직한 실시예를 상술한다.
<전해동박의 제조>
도 2에 도시된 것과 같은 장치를 사용하여 전해조 내의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼을 통전시킴으로써 상기 회전 음극드럼상에 구리막을 형성하였다.
전해액은 75g/L의 구리 이온 및 105 g/L의 황산으로 구성하고, 첨가제로 4-mercaptopyridine을 첨가하였다. 또한, 염소 이온을 첨가하여 Pb 농도를 조절하였다.
제조된 동박의 제박 조건을 아래 표 1에 나타내었다.
TOC(ppm) Pb2+(ppm) 4-mercaptopyridine(ppm) 최대간격-최소간격(mm)
실시예1 450 22 9 0.07
실시예2 225 55 9 0.07
실시예3 225 22 2 0.07
실시예4 225 22 17 0.07
실시예5 225 22 9 0.20
비교예1 455 22 9 0.07
비교예2 225 56 9 0.07
비교예3 225 22 1 0.07
비교예4 225 22 18 0.07
비교예5 225 22 9 0.21
제조된 전해동박 시편(실시예 1 내지 5 및 비교에 1 내지 5)의 특성을 측정하였다. 각 특성에 대한 측정 방법은 다음과 같이 하였다.
열팽창 계수
열기계분석기(TMA)를 사용하여 5℃/min의 속도로 30℃에서 190℃로 승온시키면서 동박 시편의 열팽창 계수를 측정하였다.
( 220)면 반치폭 변동율
Cu 타겟(Cu Kα1선), 스캔 속도 3°/min, 2θ 간격 0.01°로 하여 동박 시편의 M면에 대하여 XRD 패턴을 얻고 얻어진 XRD 패턴에서 (220)면 피크의 반치폭을 구하였다.
상기 동박 시편을 190℃에서 30분간 열처리한 후 동일한 방법으로 (220)면 반치폭을 구하였다. 이어서, 다음의 수학식 1에 따라 열처리에 따른 (220)면 반치폭 변동율을 계산하였다.
[수학식 1]
(220)면 반치폭 변동율 = 열처리 후 (220)면 반치폭 / 열처리 전 (220)면 반치폭
동박 표면 프로파일
미투토요사 SJ-310 모델, 반경 2㎛인 스타일러스 팁을 사용하고, 측정 압력을 0.75mN으로 하여, JIS B 0601 (2001) 규격에 따라 Rz 및 Ra를 측정하였다. 이 때 컷 오프(Cut off) 길이를 제외한 측정 길이는 4mm이며, 컷 오프 길이는 초기와 말기 각각 0.8mm로 하였고, 각각 3회 측정값의 평균을 취하였다.
동박 시편의 M면 및 S면에 대하여 Rz 및 Ra를 각각 측정한 후, 그 차이 값을 계산하였다.
폭방향 중량편차
전해동박의 폭 방향을 따라 위치하는 좌측 지점, 중앙 지점, 및 우측 지점으로부터 5cm×5cm 크기의 샘플을 각각 취한 후 이 3개의 샘플들의 중량을 각각 측정하였다. 이어서, 상기 측정값들의 산술평균 및 표준편차를 구하고 아래의 수학식 2에 의해 중량편차를 산출하였다.
[수학식 2]
중량편차(%) = (표준편차/산술평균)×100
찢김/주름 발생 여부
하기 실시예와 같은 음극 제조 조건으로 이차전지 제조 공정 중 롤투롤 공정에서 음극의 찢김과 주름이 발생하는지를 육안으로 관찰하였다.
전극 휨
하기 실시예와 같이 음극을 제조한 후 전극이 5mm 이상 일면으로 휘는 경우 불량으로 판정하였다. 전극 제조후 10x10cm로 전극을 절단하여 평평한 유리판에 올려 놓고 수평한 유리판과 4 모서리의 높이를 각각 측정한 평균 값을 전극 휨 값으로 한다. 이렇게 양면에 대해 휨을 측정한 후, 양면 중 더 높은 휨 값을 해당 전극의 휨 값으로 하였다.
<음극의 제조>
전술한 실시예 및 비교예에서 제조된 전해동박으로 10cm 폭의 집전체를 준비하였다. 집전체 상에 음극활물질용으로 시판되는 인조 흑연 및 SiO2 100 중량부에 대해 SBR(스티렌부타디엔고무) 2 중량부 및 CMC(카르복시메틸 셀룰로오스) 2 중량부를 혼합하고 증류수를 용제로 하여 슬러리를 제조하였다.
이어서, 전해동박 시편을 올려 놓은 후 주름, 구겨짐 등이 없도록 펼쳐 놓고, 동박 위에 바코터(Bar coater)를 사용하여 음극재 로딩(Loading)양이 9.0±0.5mg/㎠가 되도록 코팅하였다. 이 때, 바코터의 속도는 10~15mm/s의 속도로 실시하였다. 음극재가 코팅 된 동박을 100℃로 15분 동안 건조하고, 건조된 동박 시편을 롤 프레스를 사용하여 전극 밀도 1.55±0.05g/㏄가 되도록 4단 프레스하여 음극을 제조하였다.
<Li 이차전지의 제조>
에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)를 1:2의 비율로 혼합한 비수성 유기용매에 용질로서 LiPF6을 1M 용해시킨 것을 기본 전해액으로 하고, 이 기본 전해액 99.5중량%와 숙신산 무수물(Succinic anhydride) 0.5중량%를 혼합하여 비수전해액을 제조하였다.
 Li1 . 1Mn1 . 85Al0 . 05O4인 리튬 망간 산화물과 o-LiMnO2인 사방정(orthorhombic) 결정구조의 리튬 망간 산화물을 중량비 90:10으로 혼합하여, 양극 활물질을 제조하였다. 상기 양극 활물질과 카본 블랙을 결착제인 PVDF[Poly(vinylidenefluoride)]와 85:10:5의 중량비로 유기 용매인 NMP와 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 두께 20 ㎛인 Al 박(foil) 양면에 도포한 후 건조하여 양극을 제작하였다. 제조된 양극, 음극 및 전해액으로 Li 이차전지 셀을 제조하였다.
아래 표 2는 본 발명의 실시예에 따라 제조된 전해동박 시편의 물성 측정 결과를 나타낸 표이다.
열팽창계수(㎛/(mK)) (220)면 반치폭 변동율 중량편차(%) Rz 차이(㎛) Ra 차이(㎛) 찢김 주름 전극휨
실시예1 17.10 0.98 2.5 0.65 0.18 no no 양호
실시예2 22.00 0.99 2.5 0.64 0.15 no no 양호
실시예3 19.2 0.81 2.5 0.31 0.18 no no 양호
실시예4 19.2 1.19 2.5 0.31 0.05 no no 양호
실시예5 19.2 0.98 5.0 0.31 0.05 no no 양호
비교예1 17.00 0.99 2.5 0.66 0.19 yes no 불량
비교예2 22.20 0.99 2.5 0.67 0.20 no yes 불량
비교예3 19.2 0.79 2.5 0.67 0.20 yes no 불량
비교예4 19.2 1.22 2.5 0.68 0.21 no yes 불량
비교예5 19.2 0.98 5.2 0.71 0.21 no yes 불량
표 2를 참조하면, 실시예 1 내지 5에 따라 제조된 전해동박 시편은 열팽창 계수가 17.1 ~ 22.0㎛/(m·K)이고, (220)면 반치폭 변동율이 0.81~1.19이었다. 이러한 열팽창 계수를 갖는 시편은 이차전지 제조 공정에서 찢김 또는 주름이 발생하지 않는 양호한 상태를 유지하였다. 이에 반해, 비교예 1의 시편은 17.00㎛/(m·K)의 열팽창 계수를 나타냈는데, 이와 같은 낮은 열팽창 계수로 인해 이차전지 제조 공정에서 찢김 현상이 발생하였다. 비교예 2의 시편은 22.20㎛/(m·K)의 높은 열팽창 계수를 나타냈는데 이로 인해 주름 현상이 발생함을 알 수 있다. 또, 비교에 3 및 4의 시편은 각각 적정 범위의 열팽창 계수를 갖지만 (220)면 반치폭 변동율이 소정 범위를 이탈하여 각각 찢김 또는 주름 현상이 발생하고 있음을 알 수 있다.
또한, 비교예 5의 경우 실시예 5와 유사한 값의 열팽창 계수 및 (220)면 반치폭 변동율을 가지지만, 시편이 높은 중량편차 값을 가짐으로 인해 주름 현상을 보이고 있다.
한편, 비교예 1 내지 5의 동박 시편은 M면 및 S면의 Rz차가 소정 범위(0.3~0.65)를 이탈하거나 M면 및 S면의 Rz차가 소정 범위(0.05~0.18)를 이탈하는데, 이것은 전극 휨 현상을 유발하게 됨을 알 수 있다.
이상, 본 발명의 실시예를 통해 본 발명을 상술하였지만, 전술한 실시예는 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능함을 알 수 있을 것이다. 따라서, 본 발명에 개시된 실시 예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되고, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (6)

  1. 제1 표면 및 상기 제2 표면을 갖는 전해동박에 있어서,
    상기 전해동박은 5 ℃/min의 속도로 30℃에서 190℃까지 승온시키면서 측정되는 열팽창 계수가 17.1 내지 22 ㎛/(m·℃)이고,
    190℃에서 30분간 열처리에 따른 (220)면 반치폭 변동율이 0.81 내지 1.19이며 - 상기 (220)면 반치폭 변동율은 다음의 수학식 1에 의해 계산됨 -,
    (수학식 1)
    (220)면 반치폭 변동율 = 열처리 후 (220)면 반치폭 / 열처리 전 (220)면 반치폭
    폭방향 중량편차가 5% 이하인 것을 특징으로 하는 전해동박.
  2. 제1항에 있어서,
    상기 전해동박은 상기 제1 표면 및 상기 제2 표면의 Rz 차가 0.65㎛ 이하이고, 상기 제1 표면 및 상기 제2 표면의 Ra 차가 0.18㎛ 이하인 것을 특징으로 하는 전해동박.
  3. 제1항에 있어서,
    상기 전해동박은 상기 제1 표면을 형성하는 제1 보호층 및 상기 제2 표면을 형성하는 제2 보호층을 포함하는 것을 특징으로 하는 전해동박.
  4. 제1항에 있어서,
    상기 전해동박의 두께는 4~30㎛인 것을 특징으로 하는 전해동박.
  5. 제1항에 있어서,
    상기 제1 표면의 Rz 및 제2 표면의 Rz는 2.5㎛ 이하인 것을 특징으로 하는 전해동박.
  6. 전해조의 전해액 내에 서로 이격되게 배치된 양극판 및 회전 음극드럼 사이에 전류를 인가하여 상기 회전 음극드럼 상에 구리막을 전기 도금하여 전해동박을 제조하는 방법에 있어서;
    상기 전해액은 70 내지 100 g/L의 구리 이온, 80 내지 130 g/L의 황산, 55 ppm 이하의 Pb2 + 이온, 및 2 내지 17 ppm의 4-mercaptopyridine을 포함하고,
    상기 전해액 내 총유기탄소(TOC) 함량이 450 ppm 이하이고,
    상기 양극판과 상기 회전 음극드럼 사이의 간격은 5 내지 15 mm이며,
    상기 양극판과 상기 회전 음극드럼 사이의 최대 간격과 최소 간격의 차이는 0.2 mm 이하인 것을 특징으로 하는 전해동박의 제조 방법.
PCT/KR2019/001070 2018-02-01 2019-01-25 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법 WO2019151719A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19746706.1A EP3748044A4 (en) 2018-02-01 2019-01-25 ELECTROLYTIC COPPER FOIL WITH DIMENSIONAL STABILITY AND STRUCTURAL STABILITY AT HIGH TEMPERATURE AND MANUFACTURING PROCESS FOR IT
JP2020539249A JP7083029B2 (ja) 2018-02-01 2019-01-25 高温寸法安全性及び集合組職安全性を有する電解銅箔及びその製造方法
US16/959,360 US11346015B2 (en) 2018-02-01 2019-01-25 Electrolytic copper foil having high-temperature dimensional stability and texture stability, and manufacturing method therefor
CN201980011125.5A CN111670269B (zh) 2018-02-01 2019-01-25 具有高温尺寸稳定性和织构稳定性的电解铜箔及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180013092A KR102302184B1 (ko) 2018-02-01 2018-02-01 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법
KR10-2018-0013092 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019151719A1 true WO2019151719A1 (ko) 2019-08-08

Family

ID=67478788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001070 WO2019151719A1 (ko) 2018-02-01 2019-01-25 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법

Country Status (7)

Country Link
US (1) US11346015B2 (ko)
EP (1) EP3748044A4 (ko)
JP (1) JP7083029B2 (ko)
KR (1) KR102302184B1 (ko)
CN (1) CN111670269B (ko)
TW (1) TWI687552B (ko)
WO (1) WO2019151719A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070872A (ja) * 2019-10-30 2021-05-06 長春石油化學股▲分▼有限公司 優れた耐熱性を有する銅箔

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056073A (ko) * 2019-11-08 2021-05-18 에스케이넥실리스 주식회사 찢김 또는 주름 불량을 방지할 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679983B2 (en) * 2000-10-13 2004-01-20 Shipley Company, L.L.C. Method of electrodepositing copper
KR101673472B1 (ko) * 2015-09-08 2016-11-09 한국기계연구원 금속메쉬층을 포함하는 전지용 집전체 및 이의 제조방법
KR20170036262A (ko) * 2015-09-24 2017-04-03 엘에스엠트론 주식회사 초고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20170046328A (ko) * 2015-10-21 2017-05-02 엘에스엠트론 주식회사 전해 동박, 그리고 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
KR20170048754A (ko) * 2015-10-27 2017-05-10 엘에스엠트론 주식회사 연성인쇄회로기판의 치수안정성을 향상시킬 수 있는 동박, 그 제조방법, 및 그것을 포함하는 연성동박적층필름

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124848B2 (ja) * 1992-11-11 2001-01-15 ペルメレック電極株式会社 金属箔の電解による製造方法
JP2000256866A (ja) * 1999-03-10 2000-09-19 Hideo Honma 無電解ニッケルめっき浴
JP3670179B2 (ja) * 1999-11-11 2005-07-13 三井金属鉱業株式会社 キャリア箔付電解銅箔及びそのキャリア箔付電解銅箔を用いた銅張積層板
US20020015833A1 (en) * 2000-06-29 2002-02-07 Naotomi Takahashi Manufacturing method of electrodeposited copper foil and electrodeposited copper foil
JP4899280B2 (ja) * 2001-09-26 2012-03-21 日立化成工業株式会社 配線板用複合材料とその製造方法
KR100688824B1 (ko) * 2004-12-15 2007-03-02 삼성전기주식회사 접착강도가 개선된 동박적층판의 제조 장치 및 그 방법
KR20080019530A (ko) * 2006-08-28 2008-03-04 유티 테크놀로지 가부시키가이샤 전착 드럼
JP4477665B2 (ja) * 2007-12-10 2010-06-09 古河電気工業株式会社 電解銅箔および配線板
EP2302103A4 (en) * 2008-06-12 2014-05-28 Furukawa Electric Co Ltd COPPER ELECTROLYTIC COATING AND MANUFACTURING METHOD THEREOF, AND COPPER ELECTROLYTE FOR THE MANUFACTURE OF COPPER ELECTROLYTIC COATINGS
JP5352542B2 (ja) 2010-07-15 2013-11-27 エル エス エムトロン リミテッド リチウム二次電池の集電体用銅箔
JP5929219B2 (ja) 2011-01-26 2016-06-01 住友ベークライト株式会社 プリント配線板およびプリント配線板の製造方法
EP2568063A1 (en) * 2011-09-09 2013-03-13 Rohm and Haas Electronic Materials LLC Low internal stress copper electroplating method
KR20140026856A (ko) * 2012-08-23 2014-03-06 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR101716988B1 (ko) * 2012-09-10 2017-03-15 제이엑스금속주식회사 표면 처리 동박 및 그것을 사용한 적층판
CN110863221A (zh) * 2012-11-20 2020-03-06 Jx日矿日石金属株式会社 附载体铜箔
KR101571064B1 (ko) 2013-11-28 2015-11-24 일진머티리얼즈 주식회사 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
EP3067442A1 (en) 2015-03-09 2016-09-14 Iljin Materials Co., Ltd. Electrolytic copper foil, electric component and battery including the same
WO2016208869A1 (ko) * 2015-06-23 2016-12-29 엘에스엠트론 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
US20170067173A1 (en) * 2015-09-09 2017-03-09 Rohm And Haas Electronic Materials Llc Acid copper electroplating bath and method for electroplating low internal stress and good ductility copper deposits
US10988852B2 (en) * 2015-10-27 2021-04-27 Rohm And Haas Electronic Materials Llc Method of electroplating copper into a via on a substrate from an acid copper electroplating bath
US9711799B1 (en) 2016-10-03 2017-07-18 Chang Chun Petrochemical Co., Ltd. Copper foil having uniform thickness and methods for manufacturing the copper foil
KR20180040754A (ko) * 2016-10-12 2018-04-23 케이씨에프테크놀로지스 주식회사 핸들링이 용이한 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679983B2 (en) * 2000-10-13 2004-01-20 Shipley Company, L.L.C. Method of electrodepositing copper
KR101673472B1 (ko) * 2015-09-08 2016-11-09 한국기계연구원 금속메쉬층을 포함하는 전지용 집전체 및 이의 제조방법
KR20170036262A (ko) * 2015-09-24 2017-04-03 엘에스엠트론 주식회사 초고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR20170046328A (ko) * 2015-10-21 2017-05-02 엘에스엠트론 주식회사 전해 동박, 그리고 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
KR20170048754A (ko) * 2015-10-27 2017-05-10 엘에스엠트론 주식회사 연성인쇄회로기판의 치수안정성을 향상시킬 수 있는 동박, 그 제조방법, 및 그것을 포함하는 연성동박적층필름

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748044A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070872A (ja) * 2019-10-30 2021-05-06 長春石油化學股▲分▼有限公司 優れた耐熱性を有する銅箔
JP7402780B2 (ja) 2019-10-30 2023-12-21 長春石油化學股▲分▼有限公司 優れた耐熱性を有する銅箔

Also Published As

Publication number Publication date
CN111670269A (zh) 2020-09-15
TWI687552B (zh) 2020-03-11
US11346015B2 (en) 2022-05-31
JP7083029B2 (ja) 2022-06-09
JP2021512214A (ja) 2021-05-13
EP3748044A1 (en) 2020-12-09
TW201934808A (zh) 2019-09-01
EP3748044A4 (en) 2021-11-10
CN111670269B (zh) 2022-10-18
KR102302184B1 (ko) 2021-09-13
KR20190093448A (ko) 2019-08-09
US20210025067A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2015142101A1 (ko) 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지
WO2015142100A1 (ko) 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지
WO2019045374A2 (ko) 전해동박, 그 제조방법 및 이를 포함하는 고용량 Li 이차전지용 음극
US20120258348A1 (en) Binder for Separator of Non-Aqueous Electrolyte Battery Comprising 2-Cyanoethyl Group-Containing Polymer and Separator and Battery Using the Same
WO2017082542A1 (ko) 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2020149682A1 (ko) 음극 및 이를 포함하는 리튬 이차 전지
WO2019151719A1 (ko) 고온 치수 안정성 및 집합조직 안정성을 갖는 전해동박 및 그 제조방법
WO2019045387A1 (ko) 전해동박, 그의 제조방법 및 그것을 포함하는 고용량 Li 이차전지용 음극
KR20210072691A (ko) 전극 활물질 슬러리 도포 전 시트형 집전체의 열처리를 위한 열처리부를 포함하는 이차전지용 전극 제조장치, 및 열처리 과정을 포함하는 이차전지용 전극 제조방법
KR20190043275A (ko) 고용량 이차전지용 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019151718A1 (ko) 후속 공정에서 핸들링 특성이 우수한 전해동박 및 그 제조방법
KR20180038690A (ko) 전해동박, 이 전해동박을 포함하는 이차전지용 집전체 및 이차전지
KR20190030987A (ko) 핸들링성이 우수한 고용량 이차전지용 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2023219269A1 (ko) 전해 동박의 물성 제어 방법 및 그 제조 방법
WO2023219264A1 (ko) 전해 동박의 제조방법
WO2016208869A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
WO2021125410A1 (ko) 표면처리 동박, 이의 제조방법 및 이를 포함한 이차전지용 음극
WO2021118141A1 (ko) 전극 활물질 슬러리 도포 전 시트형 집전체의 열처리를 위한 열처리부를 포함하는 이차전지용 전극 제조장치, 및 열처리 과정을 포함하는 이차전지용 전극 제조방법
WO2017123034A1 (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지
WO2019022408A1 (ko) 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
WO2017018655A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
WO2024029902A1 (ko) 이차전지용 전극 및 이의 제조방법
WO2016204405A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
WO2024010337A1 (ko) 복합 고체 전해질 및 이를 포함하는 전고체 전지
CN117344356A (zh) 电解铜箔及包含其的电极和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019746706

Country of ref document: EP

Effective date: 20200901