WO2015051689A1 - 苯羟基化制苯酚的催化剂及其制备方法 - Google Patents

苯羟基化制苯酚的催化剂及其制备方法 Download PDF

Info

Publication number
WO2015051689A1
WO2015051689A1 PCT/CN2014/086353 CN2014086353W WO2015051689A1 WO 2015051689 A1 WO2015051689 A1 WO 2015051689A1 CN 2014086353 W CN2014086353 W CN 2014086353W WO 2015051689 A1 WO2015051689 A1 WO 2015051689A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
aminosilicone
preparation
sba
Prior art date
Application number
PCT/CN2014/086353
Other languages
English (en)
French (fr)
Inventor
陈日志
包耀辉
姜红
范益群
邢卫红
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US15/028,438 priority Critical patent/US11033884B2/en
Publication of WO2015051689A1 publication Critical patent/WO2015051689A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/58Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a preparation method of a homogeneous-heterogeneous composite catalyst, in particular to a catalyst for preparing phenol by hydroxylation of benzene and a preparation method thereof, and belongs to the technical field of catalysis.
  • Phenol is an important organic chemical raw material, mainly used in the production of phenolic resin, bisphenol A, epoxy resin, caprolactam and aniline. It is used in synthetic fiber, synthetic rubber, plastics, medicine, pesticides, perfumes, dyes and coatings. It also has a wide range of applications.
  • the industrial production method of phenol in the world is mainly cumene method. The process consumes a large amount of energy, has a low phenol yield, and simultaneously generates a large amount of co-product acetone, and a plurality of organic reagents are added in the reaction, resulting in waste of resources, inconvenience in operation, and serious environmental pollution.
  • the phenol is directly catalyzed by oxidation of benzene.
  • the oxidizing agent used generally has oxygen, N 2 0, H 2 0 2 .
  • Oxygen is widely available and inexpensive. Therefore, direct oxidation of benzene to phenol with oxygen as an oxidant is the most valuable development and application prospect.
  • the methods for preparing phenol by oxygen oxidation of benzene are mainly gas phase method and liquid phase method.
  • the gas phase method is a high temperature reaction, and problems such as catalyst deactivation and deep oxidation of the product are apt to occur during the reaction.
  • the liquid phase method has a low reaction temperature and a mild reaction condition, which has caused widespread concern.
  • the key to the liquid phase process is to design a catalyst that activates oxygen molecules.
  • the active component of the catalyst is typically a metal such as copper, vanadium, palladium, iron, and the like.
  • the loss of the catalyst metal component during the reaction is a bottleneck that limits the application of such catalysts. Therefore, the development of high performance catalysts is the research focus of benzene hydroxylation to prepare phenol.
  • the catalysts disclosed in the prior patents are mainly supported catalysts, and the carriers used mainly include SiO 2 , C or A 1 2 3 3 , and the active components are mainly palladium, platinum, copper, vanadium, iron or zinc, etc.
  • the patent CN1102452901 A, CN102463124A mentions the preparation of supported catalysts and the use of hydroxy hydroxylation to produce phenol.
  • the preparation of these catalysts generally requires calcination and is expensive to prepare.
  • the metal component is dissolved and then lost to the reaction liquid, resulting in loss of catalyst, reduced activity, and also affecting the purity of the product.
  • the object of the present invention is to overcome the problem that the phenolic hydroxylation catalyst is easy to be lost and the stability is poor in the reaction system, and a catalyst for preparing phenol by hydroxylation of benzene is proposed.
  • Another object of the present invention is to provide the above catalyst.
  • the active component of the catalyst is connected to the carrier through the aminosilicone to form a homogeneous-heterogeneous composite catalyst, and the interaction between the active component and the carrier is enhanced to improve the catalytic performance of the catalyst.
  • the technical scheme of the invention is as follows: using a mesoporous material as a carrier, the amino silicon germanium is used for grafting functionalization of the pore surface thereof, Then, the active component is loaded onto the aminosilicone-modified mesoporous material by a dipping method to prepare a high-performance homogeneous-heterogeneous composite catalyst.
  • Aminosilicone (such as ⁇ -aminopropyltriethoxysilane 550) has two functional groups, and a functional group of methoxy groups can be condensed with hydroxyl groups on the surface of the mesoporous support to form Si-0-Si or Al.
  • a chemical bond such as -0-Si, and another functional group - ⁇ 2 has a pair of orphaned electrons, which can form a coordination bond with a metal ion or the like, and firmly adsorb the metal active component. Therefore, the surface of the support is functionally modified by using an aminosilicone such as ruthenium 550, and the active component of the metal is supported on the modified support to realize the complexation of the homogeneous catalytically active component with the heterogeneous support, wherein the activity
  • the metal component exists in the reaction system in a homogeneous form, which ensures the high catalytic performance of the catalytic component, and is supported on the carrier by the bridging action of the aminosilicone, which is beneficial to the separation of the catalyst and the product, and the catalyst is used multiple times. It still maintains good catalytic properties.
  • the specific technical scheme of the present invention is: a catalyst for preparing phenol by hydroxylation of benzene, characterized in that: a mesoporous material SBA-15, SBA-16 or MCM- which is functionalized and modified on the surface of the pore by using aminosilicone.
  • the active component 41 is a carrier, and palladium, platinum, copper, vanadium, iron or zinc is used as an active component, and the active component is loaded onto the aminosilicone-modified mesoporous material by impregnation method to prepare a homogeneous-heterogeneous composite Type catalyst, wherein the active metal component is supported on the carrier by the bridging action of the aminosilicone, the interaction between the metal component and the carrier is enhanced, the stability of the catalyst is enhanced, and the separation of the catalyst and the product is facilitated; It exists in a homogeneous form in the reaction system to ensure high catalytic performance of the catalytic component.
  • the active component is copper or vanadium.
  • the invention also provides a method for preparing the above catalyst, the specific steps of which are:
  • A. Surface modification process of the carrier The carrier is immersed in a solution of 0.1 to 2 g/L of aminosilicone, and the surface is modified at a temperature of 20 to 40 ° C, taken out, washed, and dried;
  • the modified carrier is immersed in an acetylacetonate solution containing the active component palladium, platinum, copper, vanadium, iron or zinc, and immersed at a temperature of 20 to 40 ° C for 6 to 36 h;
  • the concentration of the impregnation solution is 0.1 ⁇ 0.25 mol/L;
  • the aminosilicone in step A is ⁇ -aminopropyltriethoxysilane ( ⁇ 550) or ⁇ -( ⁇ -aminoethyl;)- ⁇ -aminopropyltrimethoxysilane ( ⁇ 792) or ⁇ - ⁇ .
  • solvent is dichloromethane, toluene or absolute ethanol
  • modification time is l ⁇ 32 h.
  • the present invention employs the following conditions to evaluate the activity of the catalyst.
  • the reaction was carried out in a 150 ml three-necked flask. 40 ml of glacial acetic acid, 10 ml of distilled water, 2 g of benzene, 4 g of ascorbic acid, 0.5 g of catalyst were sequentially added to the reaction flask to adjust the feed oxygen flow rate to 30 ml/min, and the control temperature was constant at 30 V for 6 h. After sampling, the product was analyzed by high performance liquid chromatography, and the conversion of benzene and the selectivity of phenol were calculated from the standard curve.
  • the invention loads the active component onto the aminosilicone-modified mesoporous material by impregnation method to form a homogeneous-heterogeneous composite
  • the catalyst wherein the active metal component is present in the reaction system in a homogeneous form, ensures the high catalytic performance of the catalytic component, and is supported on the carrier by the bridging action of the aminosilicone, which is beneficial to the separation of the catalyst and the product. And the catalyst still maintains good activity after repeated use.
  • Figure 1 is an X-ray diffraction pattern of a SBA-15 support, a V/NH 2 -SBA-15 (Example 1) catalyst, and a vanadium acetylacetonate (VO(C 5 H 7 0 2 ) precursor.
  • FIG. 2 is an infrared characterization diagram of SBA-15, H 2 -SBA-15 (Example 1), VO(C 5 H 7 0 2 ) 2, and V/NH 2 -SBA-15.
  • Figure 1 shows the results of X-ray diffraction analysis of the V/NH 2 -SBA-15 catalyst.
  • SBA-15 has a strong peak at 22°, corresponding to amorphous Si.
  • V/NH 2 -SBA-15 showed characteristic peaks of VO(C 5 H 7 0 2 ) 2 and Si, indicating that the catalyst component was supported on the SB A-15 carrier.
  • 960 cm- 1 corresponds to Si-OH, and the strength of V/NH 2 -SBA-15 at 960 cm- 1 is significantly weakened due to the silicon germanium functionalization of the carrier and VO(acac) 2 Load.
  • c and a it can be found that at 2930, 2848 cm- 1 there are two more peaks corresponding to CH stretching vibration, and 1557 cm- 1 corresponds to NH bending vibration, indicating that silicon germanium is grafted to SBA by chemical bond. The surface of -15.
  • the catalyst was used for the phenol hydroxylation to prepare a phenol system. After 6 h of reaction, the phenol yield was 3.1%. After five uses of the catalyst, the catalytic effect was reduced to 65% of the new catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种苯羟基化制苯酚的催化剂及其制备方法,其特征在于所述催化剂以介孔材料为载体,首先采用氨基硅烷对载体表面进行改性,然后用金属的乙酰丙酮盐溶液浸渍,最后洗涤、烘干制得催化剂。此发明的优点在于将活性金属负载于硅烷改性的介孔材料上,形成均相-非均相复合型催化剂,其中,活性金属组分以均相形式存在于反应体系中,保证了催化组分高催化性能,同时通过氨基硅烷的架桥作用负载于载体上,提高了金属组分与载体间的作用力,增强了催化剂的稳定性,有利于催化剂与产品的分离。催化剂制备工艺简单,催化性能优异,可应用于苯羟基化制备苯酚反应体系。

Description

苯羟基化制苯酚的催化剂及其制备方法
技术领域
本发明涉及一种均相-非均相复合型催化剂的制备方法,尤其涉及苯羟基化制备苯酚的催化 剂及其制备方法, 属于催化技术领域。
背景技术
苯酚是一种重要的有机化工原料, 主要用于酚醛树脂、 双酚 A、 环氧树脂、 己内酰胺、 苯 胺的生产, 在合成纤维、 合成橡胶、 塑料、 医药、 农药、 香料、 染料以及涂料等方面也具有广 泛的应用。 目前世界上苯酚的工业生产方法主要是异丙苯法。 该过程能耗大、 苯酚收率低、 同 时生成大量的联产物丙酮, 而且反应中要添加多种有机试剂, 造成资源浪费、操作不便及环境 的严重污染。 近年来, 直接将苯羟基化一步合成苯酚成为研究热点。 该方法具有工艺简单、 环 境污染小等特点, 是一种环境友好型催化过程, 工业开发和应用前景十分广阔。
直接催化氧化苯制备苯酚, 采用的氧化剂一般有氧气、 N20、 H202。 氧气来源广泛、 价格 低廉, 因此, 以氧气为氧化剂直接氧化苯制苯酚是最具开发价值和应用前景的途径。 目前, 氧 气氧化苯制备苯酚的方法主要有气相法和液相法。气相法是高温反应, 反应过程中易出现催化 剂失活和产物深度氧化等问题。 液相法的反应温度较低, 反应条件温和, 引起广泛关注。 液相 法的关键是设计使氧分子活化的催化剂。 催化剂的活性组分一般为金属, 例如铜、 钒、 钯、 铁 等。 在反应过程中, 催化剂金属组份的流失是限制此类催化剂应用的瓶颈问题。 因此, 开发高 性能的催化剂是苯羟基化制备苯酚工艺的研究重点。
目前, 已有专利公开的催化剂主要为负载型催化剂, 所用载体主要有 Si02、 C 或 A1203 等, 活性组分主要采用钯、 铂、 铜、 钒、 铁或锌等, 在专利 CN1102452901 A、 CN102463124A 中提到了负载型催化剂的制备, 并用于苯羟基化制备苯酚。 这些催化剂的制备一般都需煅烧, 制备成本高。 且在反应过程中, 金属组分发生溶解然后流失到反应液中, 导致催化剂流失、 活 性降低, 同时也影响产品的纯度。
发明内容
本发明的目的是为了克服现有苯羟基化制备苯酚催化剂在反应体系中易流失、稳定性差的 问题, 而提出了一种苯羟基化制备苯酚的催化剂,本发明的另一目的是提供上述催化剂的制备 方法, 将催化剂活性组份通过氨基硅垸与载体连接, 形成均相-非均相复合型催化剂, 增强活 性组份与载体之间的作用力, 提高催化剂的催化性能。
本发明的技术方案为: 以介孔材料为载体, 采用氨基硅垸对其孔道表面进行接枝功能化, 然后通过浸渍法将活性组份负载到氨基硅垸改性的介孔材料上, 制备高性能的均相-非均相复 合型催化剂。 氨基硅垸 (如 γ-氨丙基三乙氧基硅垸 ΚΗ550) 具有两个功能团, 一个功能团垸 氧基能与介孔载体表面的羟基进行缩合反应, 形成 Si-0-Si或 Al-0-Si等化学键, 另外一个功 能团 -ΝΗ2具有一对孤对电子, 能与金属离子等形成配位键, 牢固地吸附金属活性组份。 因而, 采用氨基硅垸如 ΚΗ550对载体表面进行功能化改性, 再将金属活性组份担载到改性载体上, 可实现均相催化活性组分与非均相载体的复合,其中, 活性金属组分以均相形式存在于反应体 系中, 保证了催化组分高催化性能, 同时通过氨基硅垸的架桥作用负载于载体上, 有利于催化 剂与产品的分离, 且催化剂在多次使用后仍保持良好的催化性能。
本发明的具体技术方案为: 一种苯羟基化制备苯酚的催化剂, 其特征在于: 以采用氨基硅 垸对其孔道表面进行功能化改性的介孔材料 SBA-15、 SBA-16或 MCM-41为载体, 以钯、 铂、 铜、 钒、 铁或锌为活性组分, 通过浸渍法将活性组份负载到氨基硅垸改性的介孔材料上, 制备 的均相-非均相复合型催化剂, 其中, 活性金属组分通过氨基硅垸的架桥作用负载于载体上, 提高了金属组分与载体间的作用力, 增强了催化剂的稳定性, 有利于催化剂与产品的分离; 而 且以均相形式存在于反应体系中, 保证了催化组分高催化性能。 优选活性组分为铜或钒。
本发明还提供了制备上述催化剂的方法, 其具体步骤为:
A. 载体表面改性过程: 将载体浸入浓度为 0.1〜2 g/L氨基硅垸溶液中, 在 20〜40 °C温度 条件下进行表面改性, 取出洗涤、 晾干;
B . 浸渍过程: 将改性后的载体浸入含活性组份钯、 铂、 铜、 钒、 铁或锌的乙酰丙酮盐溶液 中, 在温度为 20〜40 °C条件下浸渍 6〜36 h; 其中浸渍溶液浓度为 0.1〜0.25 mol/L;
C. 洗涤干燥过程: 使用无水乙醇或二氯甲垸洗涤催化剂并干燥。
优选步骤 A中氨基硅垸为 γ-氨丙基三乙氧基硅垸 (ΚΗ550) 或 Ν-(β-氨乙基;) -γ-氨丙基三 甲氧基硅 (ΚΗ792) 或 Ν-β- (氨乙基;) -γ-氨丙基甲基二甲氧基硅垸 (硅垸偶联剂 602); 溶剂为 二氯甲垸、 甲苯或无水乙醇; 改性时间为 l〜32 h。
本发明采用以下条件进行催化剂的活性评价。
反应在 150 ml的三口烧瓶中进行。将 40 ml冰醋酸、 10 ml蒸熘水、 2 g苯、 4 g抗坏血酸、 0.5 g催化剂依次加入反应烧瓶中, 调节进料氧气流速为 30 ml/min, 控制温度恒定为 30 V , 反应 6 h后取样, 用高效液相色谱分析产物, 根据标准曲线计算苯的转化率和苯酚选择性。
有益效果:
本发明通过浸渍法将活性组份负载到氨基硅垸改性的介孔材料上, 形成均相 -非均相复合 型催化剂, 其中, 活性金属组分以均相形式存在于反应体系中, 保证了催化组分高催化性能, 同时通过氨基硅垸的架桥作用负载于载体上,有利于催化剂与产品的分离, 且催化剂在多次使 用后仍保持良好的活性。
附图说明
图 1为 SBA-15载体、 V/NH2-SBA-15 (实施例 1 )催化剂以及乙酰丙酮氧钒 (VO(C5H702 ) 前躯体的 X射线衍射图。
图 2为 SBA-15、 H2-SBA-15 (实施例 1 )、 VO(C5H702)2以及 V/NH2-SBA-15的红外表征 图。
具体实施方式
下面通过实施例进一步说明本发明方法及催化剂的使用效果。
实施例 1 V/NH2-SBA-15催化剂的制备
将 2 g SBA-15分散于 50 ml二氯甲垸溶剂中,加入 0.05 g氨基硅垸 KH550, 25 °〇下搅拌, 浸渍 l h, 无水乙醇洗涤, 过滤后烘干, 得到 H2-SBA-15粉末。 将 1.33 g VOCC5H702;)2 (分 子量为 265.15 )加入至 50 ml CH2C12,搅拌,待固体完全溶解后,加入 1.5 g H2-SBA-15粉末, 40 下搅拌,浸渍 12 h后过滤, 无水乙醇洗涤, 于 90°C下烘干,得到 V/NH2-SBA-15催化剂。
图 1显示了 V/NH2-SBA-15催化剂的 X射线衍射分析结果。 SBA-15在 22° 处有一强峰, 对应于无定型 Si。 V/NH2-SBA-15出现了 VO(C5H702)2以及 Si的特征峰, 说明催化剂组分已负 载于 SB A- 15载体上。
从图 2可以看出: 960 cm—1对应 Si-OH, V/NH2-SBA-15在 960 cm—1处的强度明显减弱, 这是由于载体的硅垸官能化和 VO(acac)2的负载。 此外, 比较 c和 a可以发现, 在 2930, 2848 cm—1处多出了两个峰, 其对应 C-H伸缩振动, 而 1557 cm—1对应了 N-H弯曲振动, 说明硅垸通 过化学键接枝到 SBA-15的表面。
将催化剂用于苯羟基化制备苯酚体系中, 反应 6 h后, 苯酚收率为 4.5%。催化剂经五次使 用后, 催化效果降低为新催化剂的 70%。 实施例 2 V/NH2-MCM-41催化剂的制备
将 2 g SBA-15分散于 50 ml二氯甲垸溶剂中, 加入 0.1 g氨基硅垸 KH792, 20 °。下搅拌, 浸渍 8h, 无水乙醇洗涤, 过滤后烘干, 得到 H2-MCM-41粉末。 取 3.31 g VO(C5H702)2 (分 子量为 265.15 )加入至 50 ml CH2C12,搅拌,待固体完全溶解后,加入 1.5 g H2-SBA-15粉末, 20 下搅拌,浸渍 6 h后过滤, 无水乙醇洗涤, 于 90°C下烘干,得到 V/NH2-MCM-41催化剂。 将催化剂用于苯羟基化制备苯酚体系中, 反应 6 h后, 苯酚收率为 3.9 %。 催化剂经五次 使用后, 催化效果降低为新催化剂的 62%。 实施例 3 Pd/NH2-SBA-15催化剂的制备
将 2 g SBA-15分散于 50 ml二氯甲垸溶剂中,加入 0.05 g氨基硅垸 KH550, 40 °。下搅拌, 浸渍 24 h, 无水乙醇洗涤, 过滤后烘干, 得到 H2-SBA-15粉末。 取 3.05 g PdCC5H702)2 (分子 量为 304.64) 加入至 50 ml CH2C12, 搅拌, 待固体完全溶解后, 加入 1.5 g NH2-SBA-15粉末, 40 下搅拌, 浸渍 36 h后过滤, 无水乙醇洗涤, 于 90°C下烘干, 得到 Pd/NH2-SBA-15催化 剂。
将催化剂用于苯羟基化制备苯酚体系中, 反应 6 h后, 苯酚收率为 2.5 %。 催化剂经五次 使用后, 催化效果降低为新催化剂的 60%。 实施例 4 Cu/ H2-SBA-16催化剂的制备
将 2 g SBA-16分散于 50 ml二氯甲垸溶剂中,加入 0.005 g硅垸偶联剂 602, 30 °。下搅拌, 浸渍 32 h, 无水乙醇洗涤, 过滤后烘干, 得到 H2-SBA-16粉末。 取 1.96 g CuCC5H702;)2 (分 子量为 261.76)加入至 50 ml CH2C12,搅拌,待固体完全溶解后,加入 1.5 g H2-SBA-16粉末, 25 下搅拌, 浸渍 12 h后过滤, 无水乙醇洗涤, 于 90°C下烘干, 得到 Cu/NH2-SBA-16催化 剂。
将催化剂用于苯羟基化制备苯酚体系中, 反应 6 h后, 苯酚收率为 3.1 %。 催化剂经五次 使用后, 催化效果降低为新催化剂的 65%。

Claims

权利要求
1. 一种苯羟基化制备苯酚的催化剂, 其特征在于: 以采用氨基硅垸对其孔道表面进行功 能化改性的介孔材料 SBA-15、 SBA-16或 MCM-41为载体, 以钯、 铂、 铜、 钒、 铁或锌为活 性组分, 通过浸渍法将活性组份负载到氨基硅垸改性的介孔材料上, 制备的均相 -非均相复合 型催化剂, 其中, 活性金属组分通过氨基硅垸的架桥作用负载于载体上。
2. 根据权利要求 1 所述的催化剂, 其特征在于活性组分为铜或钒。
3. 一种制备如权利要求 1 所述催化剂的方法, 其具体步骤为:
A. 载体表面改性过程: 将载体浸入浓度为 0.1〜2 g/L氨基硅垸溶液中, 在 20〜40 °〇温 度条件下进行表面改性, 取出洗涤、 晾干;
B. 浸渍过程: 将改性后的载体浸入含活性组份钯、 铂、 铜、 钒、 铁或锌的乙酰丙酮盐溶 液中, 在温度为 20〜40 °C条件下浸渍 6〜36 h; 其中浸渍溶液浓度为 0.1〜0.25 mol/L;
C. 洗涤干燥过程: 使用无水乙醇或二氯甲垸洗涤催化剂并干燥。
4. 根据权利要求 3 所述的制备方法,其特征在于步骤 A中氨基硅垸为 γ-氨丙基三乙氧基 硅垸 (ΚΗ550) 或 Ν-(β-氨乙基) -γ-氨丙基三甲氧基硅 (ΚΗ792) 或 Ν-β- (氨乙基) -γ-氨丙基甲基 二甲氧基硅垸 (硅垸偶联剂 602); 溶剂为二氯甲垸、 甲苯或无水乙醇; 改性时间为 l〜32 h。
PCT/CN2014/086353 2013-10-11 2014-09-12 苯羟基化制苯酚的催化剂及其制备方法 WO2015051689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/028,438 US11033884B2 (en) 2013-10-11 2014-09-12 Catalyst for benzene hydroxylation for preparation of phenol and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310474635.0 2013-10-11
CN201310474635.0A CN103537313B (zh) 2013-10-11 2013-10-11 苯羟基化制苯酚的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2015051689A1 true WO2015051689A1 (zh) 2015-04-16

Family

ID=49961397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086353 WO2015051689A1 (zh) 2013-10-11 2014-09-12 苯羟基化制苯酚的催化剂及其制备方法

Country Status (3)

Country Link
US (1) US11033884B2 (zh)
CN (1) CN103537313B (zh)
WO (1) WO2015051689A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537313B (zh) * 2013-10-11 2016-04-13 南京工业大学 苯羟基化制苯酚的催化剂及其制备方法
CN104624239A (zh) * 2015-01-30 2015-05-20 常州大学 一种用于苯羟基化合成苯酚的催化剂及其制备方法
CN105602612B (zh) * 2015-10-21 2017-05-10 清华大学 一种利用高温气冷堆对生物原油进行加氢精制的方法
CN106881134A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 介孔碳氮材料的制备及介孔碳氮材料和应用
CN105664994B (zh) * 2016-02-29 2017-12-12 暨南大学 一种氨基功能化磁性光催化剂及其制备方法与应用
CN106187718B (zh) * 2016-06-28 2019-05-31 上海应用技术学院 一种香兰素的制备方法
CN107537560A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 脱氢催化剂、制备方法及其使用方法
CN110590715B (zh) * 2018-06-12 2021-05-14 中科合成油技术有限公司 一种表面修饰的Pd基催化剂及其制备方法与应用
CN108940370A (zh) * 2018-08-01 2018-12-07 常州大学 一种用于苯直接羟基化合成苯酚的介孔催化剂的合成
CN111992218A (zh) * 2020-03-17 2020-11-27 武汉纺织大学 一种用于降解抗生素的铜基催化剂及其制备方法
CN111760594B (zh) * 2020-07-30 2022-10-25 四川福思达生物技术开发有限责任公司 一种催化氧化制备2,5-二氯苯酚的钒吡啶/ts-1催化剂及其合成方法和应用
CN111889134A (zh) * 2020-08-21 2020-11-06 四川福思达生物技术开发有限责任公司 一种催化氧化制备2,5-二氯苯酚的负载型催化剂及其应用
CN112570001B (zh) * 2020-11-30 2022-09-16 万华化学集团股份有限公司 一种氨基功能化催化剂和制备方法以及一种牛磺酸母液中脱除乙二醇及其衍生物杂质的方法
CN112973759B (zh) * 2021-03-10 2022-11-25 中国石油大学(华东) 金属单原子催化剂的制备方法、金属单原子催化剂和应用
CN113304782A (zh) * 2021-05-18 2021-08-27 昆明理工大学 一种用于催化氧化四氢萘的催化剂的制备方法及应用
CN113683488B (zh) * 2021-08-09 2023-08-25 三峡大学 一种4,4`-二羟基联苯的制备方法
CN113912478B (zh) * 2021-11-15 2023-06-23 宁夏清研高分子新材料有限公司 一种4,4’-联苯二酚的合成方法
CN114289042B (zh) * 2022-01-10 2023-05-30 万华化学集团股份有限公司 一种介孔固体酸催化剂、制备方法及其应用
CN114797945A (zh) * 2022-04-11 2022-07-29 中国石油大学胜利学院 一种键合相类芬顿催化剂及其制备方法
CN115624985A (zh) * 2022-10-13 2023-01-20 陕西泰合利华工业有限公司 一种高效催化剂Pd/N-SBA-15的制备方法及应用
CN115466167B (zh) * 2022-10-13 2024-01-23 常州大学 一种低温等离子体耦合疏水性催化剂一步转化苯和co2制苯酚的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219959A (ja) * 2004-02-05 2005-08-18 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
JP2010265174A (ja) * 2010-07-27 2010-11-25 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
CN102302946A (zh) * 2011-06-07 2012-01-04 李伟 一种介孔分子筛负载贵金属催化剂的制备及应用
CN102698788A (zh) * 2012-05-16 2012-10-03 浙江大学 用于苯酚加氢脱氧的高分散双功能催化剂及其制备方法
CN103537313A (zh) * 2013-10-11 2014-01-29 南京工业大学 苯羟基化制苯酚的催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767004B2 (en) * 2005-03-11 2010-08-03 University Of Ottawa Functionalized adsorbent for removal of acid gases and use thereof
US10464811B2 (en) * 2009-04-06 2019-11-05 Nanyang Technological University Method of forming a particulate porous metal oxide or metalloid oxide
CN102276422B (zh) * 2011-06-27 2013-06-12 湖南科技大学 一种用负载Cu希夫碱催化苯与过氧化氢合成苯酚的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219959A (ja) * 2004-02-05 2005-08-18 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
JP2010265174A (ja) * 2010-07-27 2010-11-25 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
CN102302946A (zh) * 2011-06-07 2012-01-04 李伟 一种介孔分子筛负载贵金属催化剂的制备及应用
CN102698788A (zh) * 2012-05-16 2012-10-03 浙江大学 用于苯酚加氢脱氧的高分散双功能催化剂及其制备方法
CN103537313A (zh) * 2013-10-11 2014-01-29 南京工业大学 苯羟基化制苯酚的催化剂及其制备方法

Also Published As

Publication number Publication date
CN103537313B (zh) 2016-04-13
US11033884B2 (en) 2021-06-15
US20160250623A1 (en) 2016-09-01
CN103537313A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2015051689A1 (zh) 苯羟基化制苯酚的催化剂及其制备方法
Wang et al. Pd nanoparticles encapsulated into mesoporous ionic copolymer: Efficient and recyclable catalyst for the oxidation of benzyl alcohol with O2 balloon in water
US9433926B2 (en) Platinum/carbon nanotube catalyst, the preparation process and use thereof
CN110560170B (zh) 一种Pd@MOF材料及其制备方法和其在联苯制备中的应用
CN107188849B (zh) 用于苯羟基化反应的介孔离子液体杂多酸盐催化剂及其制备方法和应用
CN107442177A (zh) 5‑羟甲基糠醛选择性加氢合成2,5‑呋喃二甲醇的方法
CN103785451A (zh) 环己烯水合制备环己醇的催化剂及应用
CN112934267A (zh) 一种烷基化疏水MOFs材料及其在环己烯水合中的应用
CN101116810A (zh) 改性煤基活性炭固体催化剂及其制备方法和用于缩醛/酮合成反应
CN111790440A (zh) 一种利用酰亚胺键接枝的nhpi催化剂及其制备方法与应用
CN101786943A (zh) 甲苯一步羟基化反应制备甲酚的催化合成方法
CN102259025A (zh) 环己烯水合制备环己醇用催化剂及其制备和应用方法
CN112121859B (zh) 一种催化剂及其制备方法,及1,1,4,4-四甲氧基-2-丁烯的制备方法
CN106378189B (zh) 用于合成聚甲氧基二甲醚的催化剂及其制备方法和应用
Yang et al. Grafted polyethylene glycol–graphene oxide as a novel triphase catalyst for carbenes and nucleophilic substitution reactions
CN107376999A (zh) 多酸@氧化铝后修饰有机官能团复合催化材料及其制备方法和用途
CN115092897B (zh) 一种乙烯基改性二氧化硅接枝酸性聚合离子液体催化环己酮肟水解制备羟胺的方法
CN101139332B (zh) 用负载型纳米金催化剂催化制备γ-丁内酯的方法
CN114029072B (zh) 一种固体超强酸催化剂及用其制备对甲氧基肉桂酸异辛酯的方法
CN113101970B (zh) 一种用于生产甲乙酮的复合催化剂及其制备方法
Motokura et al. Creation of acid–base bifunctional catalysis for efficient CC coupling reactions by amines immobilization on SiO2, silica-alumina, and nano-H-ZSM-5
CN109251125B (zh) 一种环己烷氧化制环己醇的方法
CN102814196B (zh) 一种葡聚糖凝胶负载纳米金催化剂的制备方法及应用
CN113304775B (zh) 一种表面化学接枝的氧化石墨烯负载型钼催化剂及制备与应用
CN101161649A (zh) 催化氧化环酮合成内酯化合物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15028438

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14851810

Country of ref document: EP

Kind code of ref document: A1