CN113101970B - 一种用于生产甲乙酮的复合催化剂及其制备方法 - Google Patents

一种用于生产甲乙酮的复合催化剂及其制备方法 Download PDF

Info

Publication number
CN113101970B
CN113101970B CN202110434604.7A CN202110434604A CN113101970B CN 113101970 B CN113101970 B CN 113101970B CN 202110434604 A CN202110434604 A CN 202110434604A CN 113101970 B CN113101970 B CN 113101970B
Authority
CN
China
Prior art keywords
mimps
ionic liquid
composite catalyst
methyl ethyl
ethyl ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110434604.7A
Other languages
English (en)
Other versions
CN113101970A (zh
Inventor
史荣会
龚凌诸
潘承芬
李静玲
李玉歧
郑志功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN202110434604.7A priority Critical patent/CN113101970B/zh
Publication of CN113101970A publication Critical patent/CN113101970A/zh
Application granted granted Critical
Publication of CN113101970B publication Critical patent/CN113101970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0282Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aliphatic ring, e.g. morpholinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种用于生产甲乙酮的复合催化剂及其制备方法,该复合催化剂是由SO4 2‑/ZrO2‑MCM‑41与Zr基固态离子液体构成;所述Zr基固态离子液体为Zr0.5[MIMPS]PW12O40、Zr0.25[MIMPS]2PW12O40、Zr0.25[MIMPS]HPW12O40中的任意一种。本发明所得复合催化剂是具有新型结构的Brönsted‑Lewis双酸性杂多酸功能化类离子液体有机‑无机杂化催化材料,其具有较强的酸性,从而可以强化甲乙酮的制备过程,并能有效抑制反应过程中催化剂的中毒失活。

Description

一种用于生产甲乙酮的复合催化剂及其制备方法
技术领域
本发明属于石油化工生产技术领域,具体涉及一种用于2,3-丁二醇脱水制甲乙酮的复合催化剂及其制备方法。
背景技术
甲乙酮是一种重要的有机溶剂,在化工产品生产过程中有着非常广泛的应用。如其可以用作工业溶剂,应用于油墨、涂料、润滑油脱蜡剂等方面,是重要的“三苯”溶剂替代物之一;还可以用于生产医药、染料、洗涤剂以及香料等;此外,其还可以用于制备液体燃料添加剂;同时,甲乙酮还是一种有机合成的中间体,可用于生产丁二酮、过氧化甲乙酮以及抗氧化剂等。目前工业上合成甲乙酮应用较多的方法有正丁烯两步法、正丁烷液相氧化法和异丁苯法,其中正丁烯两步法是最普及的方法。但是其生产工艺路线流程复杂、操作困难且原料来源于不可再生资源。
以生物发酵法制备的2,3-丁二醇作为原料,通过催化剂进行脱水制备甲乙酮的方法是一种极具优势的生产工艺,其与传统的正丁烯两步法相比具有工艺短、设备简单、投资少、生产成本低及操作便捷等优点。但现有技术在反应过程中使用的催化剂不仅易对设备造成腐蚀,反应后需要用强碱对产物进行洗涤处理,容易造成三废,不符合绿色环保的理念。
专利“一种2,3-丁二醇高效脱水制甲乙酮的方法”(CN 101580462B)公开了一种将H型ZSM-5分子筛负载SO4 2-/Fe2O3后得到的分子筛型固体酸催化剂应用于2,3-丁二醇脱水制备甲乙酮的工艺,其2,3-丁二醇转化率为94.2~100%,甲乙酮的选择性可达70.1~94.2%。但是其原料要求的浓度为10%~90%,且在200~300℃条件下反应时需要将一部分水汽化,耗能较高。邵园艳等(2,3-丁二醇液相脱水制备甲乙酮反应研究,化学世界,2013,54(4):227-230)以2,3-丁二醇为原料,以对甲苯磺酸作为催化剂,其最佳收率可以达到78.9%。
发明内容
本发明针对现有技术存在的缺陷,提出了一种用于2,3-丁二醇脱水制备甲乙酮的新型复合催化剂及其制备方法,其具有较高催化活性,并可有效抑制甲乙酮生产过程中催化剂的中毒失活。
为实现上述目的,本发明采用如下技术方案:
一种用于生产甲乙酮的复合催化剂,其是以具有强酸性的SO4 2-/ZrO2-MCM-41与Zr基固态离子液体相结合构成,其中Zr基固态离子液体所占重量分数为20~45%;所述Zr基固态离子液体为Zr0.5[MIMPS]PW12O40、Zr0.25[MIMPS]2PW12O40、Zr0.25[MIMPS]HPW12O40中的任意一种。
制备方法包括以下步骤:
(1)SO4 2-/ZrO2-MCM-41的制备:
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为10~12,再将所得混合液转移至水热反应釜中,于100~140℃下晶化处理12~24h,待其自然冷却到室温后,将所得产物经离心、洗涤后于110℃干燥16h,再在500℃、空气气氛中焙烧5h,得到所述SO4 2-/ZrO2-MCM-41;其中所用正硅酸乙酯、乙酰丙酮锆、离子液体M、CTAB、水和乙醇的摩尔比为1.0:(0.2~0.4):0.1:(0.15~0.30):40:40;所述离子液体M的结构式为:
Figure 100002_DEST_PATH_IMAGE002
(2)Zr基离子液体的原位负载
i)离子液体前驱体MIMPS的合成
将1,3-丙烷磺酸内酯溶于乙酸乙酯,随后将N-甲基咪唑以6~8滴/min的速度缓慢加入,室温下搅拌反应6h,然后将得到的乳白色反应液经过滤后,所得沉淀用乙酸乙酯洗涤三次后,于80℃下干燥4h,即得到MIMPS的白色粉末固体;其中所用1,3-丙烷磺酸内酯与N-甲基咪唑的摩尔比为1:1;
ii)Zr基固态离子液体的原位负载
将制备好的SO4 2-/ZrO2-MCM-41、MIMPS与磷钨酸、Zr(SO4)2共同加入到去离子水中,在室温下搅拌30min使其混匀后转移至反应釜中,于100~150℃下回流处理6~12h,然后依次进行离心、洗涤、干燥,得到所述复合催化剂;其中所用MIMPS、Zr(SO4)2与磷钨酸的摩尔比为(1~2): (0.25~0.50):1。
本发明与现有其他技术相比,具有如下优势:
1)本发明所制备的催化剂引入了介孔分子筛MCM-41,其可以大大提高催化剂的比表面积和活性组分的分散度,从而可提高催化剂的催化活性。
2)本发明所制备的催化剂是具有新型结构的Brönsted-Lewis双酸性杂多酸功能化类离子液体有机-无机杂化催化材料,其具有较强的酸性,从而可以强化甲乙酮的制备过程,并能有效抑制反应过程中催化剂的中毒失活。
3)本发明催化剂中SO4 2-/ZrO2-MCM-41固体超强酸上的SO4 2-可以和Zr基固态离子液体上的Zr物种之间发生相互作用产生一类催化活性位点;同时,MCM-41可以和固态离子液体上的PO4 3-之间可以发生协同效应产生二类超强酸催化活性位点,固体超强酸和固态离子液体之间的协同效应,可以弥补在反应过程中一类活性位点的流失或失活而造成的催化剂反应活性降低。
具体实施方式
为了使本技术领域人员更好地理解本发明的技术方案,并使本发明的上述特征、目的及优点更加清晰易懂,现结合实施例对本发明做进一步解释说明,应当指出的是,在此列出的所有实施例仅仅是说明性的,并不意味着对本发明范围进行限定。
为了更清晰地说明本发明,列举以下实施例,但对本发明的范围无任何限制。
所用离子液体M的结构式为:
Figure DEST_PATH_IMAGE003
。其制备方法参照发明专利ZL 201510923379.8。
催化剂的评价条件如下:
将1.0g的催化剂样品装入常压固定床反应器中,在N2保护下将催化剂床层升高到一定温度,将一定浓度的2,3-丁二醇溶液注入到反应器,经预热气化后进入催化剂床层进行催化脱水反应,反应器出口物料经气液分离后获得甲乙酮。其中2,3-丁二醇的浓度适用范围:70wt%~100wt%; 2,3-丁二醇的质量空速6.0~8.0h-1;原料及所得产物用气相色谱仪进行分析。
实施例1
(1)SO4 2-/ZrO2-MCM-41的制备
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为11,将所得混合液转移至水热反应釜中,于120℃下晶化处理18h,待其自然冷却到室温后,将所得产物经离心、洗涤后于110℃干燥16h,再在500℃、空气气氛中焙烧处理5h,即可得到SO4 2-/ZrO2-MCM-41;其中各原料的摩尔比为:nSiO2:nZrC20H28O8:n离子液体M:nCTAB:nH2O:n乙醇=1.0:0.3:0.1:0.25:40:40;
(2)Zr基离子液体的原位负载
i)离子液体前驱体MIMPS的合成
称取0.10 moL 1,3-丙烷磺酸内酯,加入三口烧瓶中,然后向其中加入100mL乙酸乙酯使其溶解,随后将0.10 moL N-甲基咪唑以6滴/min的速度缓慢加入,室温下搅拌反应6h,所得乳白色反应液经过滤后,所得沉淀用乙酸乙酯洗涤三次,再于80℃下干燥4h,得到的白色粉末固体即为MIMPS;
ii)Zr基固态离子液体的原位负载
将SO4 2-/ZrO2-MCM-41、磷钨酸、Zr(SO4)2、MIMPS加入到去离子水中得到混合物,在室温下搅拌30min使其混匀后转移至反应釜中,于120℃下回流处理10 h,然后依次进行离心、洗涤、干燥,得到SO4 2-/ZrO2-MCM-41与Zr基固态离子液体Zr0.5[MIMPS]PW12O40构成的复合催化剂;其中MIMPS与磷钨酸的物质的量之比为1:1,Zr(SO4)2与磷钨酸的物质的量之比为0.50:1,复合催化剂中Zr基固态离子液体所占质量分数为35wt%。
该催化剂在反应温度250℃,2,3-丁二醇的浓度为99.8wt%,2,3-丁二醇的质量空速为6.0h-1时反应48h后,2,3-丁二醇的转化率达到99.5%,甲乙酮的选择性达到98.2%。
实施例2
(1)SO4 2-/ZrO2-MCM-41的制备
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为12,将所得混合液转移至水热反应釜中,于100℃下晶化处理24h,待其自然冷却到室温后,将所得产物经离心、洗涤后于110℃干燥16h,再在500℃、空气气氛中焙烧处理5h,即可得到SO4 2-/ZrO2-MCM-41;其中各原料的摩尔比为:nSiO2:nZrC20H28O8:n离子液体M:nCTAB:nH2O:n乙醇=1.0:0.4:0.1:0.3:40:40;
(2)Zr基离子液体的原位负载
i)离子液体前驱体MIMPS的合成
称取0.10 moL 1,3-丙烷磺酸内酯,加入三口烧瓶中,然后向其中加入100mL乙酸乙酯使其溶解,随后将0.10 moL N-甲基咪唑以6滴/min的速度缓慢加入,室温下搅拌反应6h,所得乳白色反应液经过滤后,所得沉淀用乙酸乙酯洗涤三次,再于80℃下干燥4h,得到的白色粉末固体即为MIMPS;
ii)Zr基固态离子液体的原位负载
将SO4 2-/ZrO2-MCM-41、磷钨酸、Zr(SO4)2、MIMPS加入到去离子水中得到混合物,在室温下搅拌30min使其混匀后转移至反应釜中,于100℃下回流处理12 h,然后依次进行离心、洗涤、干燥,得到SO4 2-/ZrO2-MCM-41与Zr基固态离子液体Zr0.25[MIMPS]2PW12O40构成的复合催化剂;其中MIMPS与磷钨酸的物质的量之比为2:1,Zr(SO4)2与磷钨酸的物质的量之比为0.25:1,复合催化剂中Zr基固态离子液体所占质量分数为45wt%。
该催化剂在反应温度250℃,2,3-丁二醇的浓度为72.4 wt%,2,3-丁二醇的质量空速为8.0h-1时反应36h后,2,3-丁二醇的转化率达到98.5%,甲乙酮的选择性达到96.4%。
实施例3
(1)SO4 2-/ZrO2-MCM-41的制备
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为10,将所得混合液转移至水热反应釜中,于100℃下晶化处理24h,待其自然冷却到室温后,将所得产物经离心、洗涤后于110℃干燥16h,再在500℃、空气气氛中焙烧处理5h,即可得到SO4 2-/ZrO2-MCM-41;其中各原料的摩尔比为:nSiO2:nZrC20H28O8:n离子液体M:nCTAB:nH2O:n乙醇=1.0:0.2:0.1:0.15:40:40;
(2)Zr基离子液体的原位负载
i)离子液体前驱体MIMPS的合成
称取0.10 moL 1,3-丙烷磺酸内酯,加入三口烧瓶中,然后向其中加入100mL乙酸乙酯使其溶解,随后将0.10 moL N-甲基咪唑以8滴/min的速度缓慢加入,室温下搅拌反应6h,所得乳白色反应液经过滤后,所得沉淀用乙酸乙酯洗涤三次,再于80℃下干燥4h,得到的白色粉末固体即为MIMPS;
ii)Zr基固态离子液体的原位负载
将SO4 2-/ZrO2-MCM-41、磷钨酸、Zr(SO4)2、MIMPS加入到去离子水中得到混合物,在室温下搅拌30min使其混匀后转移至反应釜中,于150℃下回流处理6 h,然后依次进行离心、洗涤、干燥,得到SO4 2-/ZrO2-MCM-41与Zr基固态离子液体Zr0.25[MIMPS]2PW12O40构成的复合催化剂;其中MIMPS与磷钨酸的物质的量之比为1:1,Zr(SO4)2与磷钨酸的物质的量之比为0.25:1,复合催化剂中Zr基固态离子液体所占质量分数为20wt%。
该催化剂在反应温度250℃,2,3-丁二醇的浓度为85.6wt%,2,3-丁二醇的质量空速为7.0h-1时反应36h后,2,3-丁二醇的转化率达到96.8%,甲乙酮的选择性达到95.1%。
对比例1
SO4 2-/ZrO2-MCM-41的制备
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为11,将所得混合液转移至水热反应釜中,于120℃下晶化处理18h,待其自然冷却到室温后,将所得产物经离心、洗涤后于110℃干燥16h,再在500℃、空气气氛中焙烧处理5h,即可得到SO4 2-/ZrO2-MCM-41;其中各原料的物质的量之比为:nSiO2:nZrC20H28O8:n离子液体M:nCTAB:nH2O:n乙醇=1.0:0.3:0.1:0.25:40:40;
所制备的SO4 2-/ZrO2-MCM-41在反应温度250℃,2,3-丁二醇的浓度为99.8wt%,2,3-丁二醇的质量空速为6.0h-1时反应48h后,2,3-丁二醇的转化率达到76.5%,甲乙酮的选择性达到80.2%。
对比例2
Zr基离子液体的合成
i)离子液体前驱体MIMPS的合成
称取0.10 moL 1,3-丙烷磺酸内酯,加入三口烧瓶中,然后向其中加入100mL乙酸乙酯使其溶解,随后将0.10 moL N-甲基咪唑以6滴/min的速度缓慢加入,室温下搅拌反应6h,所得乳白色反应液用乙酸乙酯洗涤三次,所得沉淀于80℃下干燥4h,得到的白色粉末固体即为MIMPS;
ii)Zr基固态离子液体的原位负载
将磷钨酸、Zr(SO4)2、MIMPS加入到去离子水中得到混合物,在室温下搅拌30min使其混匀后转移至反应釜中,于120℃下回流处理10 h,然后依次进行离心、洗涤、干燥,得到Zr基固态离子液体Zr0.5[MIMPS]PW12O40;其中MIMPS与磷钨酸的物质的量之比为1:1,Zr(SO4)2与磷钨酸的物质的量之比为0.50:1。
所制备的Zr0.5[MIMPS]PW12O40在反应温度250℃,2,3-丁二醇的浓度为99.8wt%,2,3-丁二醇的质量空速为6.0h-1时反应48h后,2,3-丁二醇的转化率达到63.8%,甲乙酮的选择性达到86.3%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种用于生产甲乙酮的复合催化剂的制备方法,其特征在于:所述复合催化剂是由SO4 2-/ZrO2-MCM-41与Zr基固态离子液体构成;所述Zr基固态离子液体为Zr0.5[MIMPS]PW12O40、Zr0.25[MIMPS]2PW12O40、Zr0.25[MIMPS]HPW12O40中的任意一种;
其制备包括以下步骤:
(1)SO4 2-/ZrO2-MCM-41的制备:
将正硅酸乙酯溶于乙醇水溶液后,向其中加入CTAB、离子液体M和乙酰丙酮锆,搅拌处理60 min,然后向其中加入氨水调节pH为10~12,再将所得混合液转移至水热反应釜中,于100~140℃下晶化处理12~24h,待其自然冷却到室温后,将所得产物经离心、洗涤、干燥后,再在500℃、空气气氛中焙烧5h,得到所述SO4 2-/ZrO2-MCM-41;
其中所述离子液体M的结构式为:
Figure DEST_PATH_IMAGE002
(2)Zr基离子液体的原位负载
i)离子液体前驱体MIMPS的合成
将1,3-丙烷磺酸内酯溶于乙酸乙酯,随后将N-甲基咪唑以6~8滴/min的速度缓慢加入,室温下搅拌反应6h,然后将得到的乳白色反应液经过滤后,所得沉淀用乙酸乙酯洗涤三次,经干燥,即得到MIMPS的白色粉末固体;
ii)Zr基固态离子液体的原位负载
将制备好的SO4 2-/ZrO2-MCM-41、MIMPS与磷钨酸、Zr(SO4)2共同加入到去离子水中,在室温下搅拌30min使其混匀后转移至反应釜中,于100~150℃下回流处理6~12h,然后依次进行离心、洗涤、干燥,得到所述复合催化剂。
2.根据权利要求1所述的用于生产甲乙酮的复合催化剂的制备方法,其特征在于:所述复合催化剂中Zr基固态离子液体所占重量分数为20~45%。
3.根据权利要求1所述的用于生产甲乙酮的复合催化剂的制备方法,其特征在于:步骤(1)中所用正硅酸乙酯、乙酰丙酮锆、离子液体M、CTAB、水和乙醇的摩尔比为1.0:(0.2~0.4):0.1:(0.15~0.30):40:40。
4.根据权利要求1所述的用于生产甲乙酮的复合催化剂的制备方法,其特征在于:步骤(2)中所用1,3-丙烷磺酸内酯与N-甲基咪唑的摩尔比为1:1。
5.根据权利要求1所述的用于生产甲乙酮的复合催化剂的制备方法,其特征在于:步骤(3)中所用MIMPS、Zr(SO4)2与磷钨酸的摩尔比为(1~2):(0.25~0.50):1。
CN202110434604.7A 2021-04-22 2021-04-22 一种用于生产甲乙酮的复合催化剂及其制备方法 Active CN113101970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110434604.7A CN113101970B (zh) 2021-04-22 2021-04-22 一种用于生产甲乙酮的复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110434604.7A CN113101970B (zh) 2021-04-22 2021-04-22 一种用于生产甲乙酮的复合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113101970A CN113101970A (zh) 2021-07-13
CN113101970B true CN113101970B (zh) 2022-08-16

Family

ID=76719526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110434604.7A Active CN113101970B (zh) 2021-04-22 2021-04-22 一种用于生产甲乙酮的复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113101970B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116586107A (zh) * 2023-05-19 2023-08-15 湖南聚仁化工新材料科技有限公司 一种磺酸功能化杂多酸离子液体催化剂及其制备方法和用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975898B2 (en) * 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
CN102698812B (zh) * 2012-06-04 2014-03-12 大连理工大学 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN103394372B (zh) * 2013-07-17 2015-02-04 青岛科技大学 一种具有Br*nsted-Lewis双酸性的杂多离子液体催化剂
CN104971770B (zh) * 2015-06-27 2017-11-07 湘潭大学 一种含锆固体超强酸的制备方法
CN104959162A (zh) * 2015-06-27 2015-10-07 湘潭大学 一种原位掺锆的分子筛固体超强酸的制备方法
CN108479851B (zh) * 2018-03-22 2020-09-11 南京阿莫尼智能科技有限公司 一种绿色低温脱硝催化剂及其制备方法
CN111715280A (zh) * 2020-07-04 2020-09-29 闫英辉 一种用于生产环保型柴油添加剂的催化剂及其制备方法

Also Published As

Publication number Publication date
CN113101970A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN102698812B (zh) 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN105347359B (zh) 一种孔道内含固体酸的沸石分子筛的合成及其应用
CN110372483B (zh) 一种环戊烯催化氧化制备戊二醛的工艺方法
CN111377890B (zh) 由5-羟甲基糠醛生产2,5-呋喃二甲酸的方法
CN107694603B (zh) 固载离子液体催化剂及其制备方法和应用
CN105854942A (zh) 一种磺酸基修饰介孔材料负载杂多酸催化剂的制备方法及其在酯化反应中的应用
CN103708496A (zh) 一种HZSM-5@silicalite-1核壳结构分子筛及其制备方法与应用
CN113101970B (zh) 一种用于生产甲乙酮的复合催化剂及其制备方法
CN107185594A (zh) 一种Ni‑Zn‑K‑Ru/MOF催化剂的制备方法
Wang et al. Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium
CN106905271A (zh) 一种含mcm‑41介孔材料非均相催化剂的制备及应用
CN102786499B (zh) 一种制备环氧环己烷的方法
CN113813953A (zh) 一种铈锆复合氧化物固溶体催化剂的制备及应用方法
CN112871205A (zh) 一种高活性低副产丙烯气相环氧化催化剂的制备方法
CN102295524A (zh) 一种环己烷选择氧化制环己醇和环己酮的方法
CN109876804B (zh) 一种用于苯选择性加氢制环己烯的二氧化钛负载钌催化剂及其制备方法
CN107999124B (zh) 一种核壳结构Ti-MWW@Si分子筛及其制备和应用
CN111116321B (zh) 苯羟基化制备苯酚的绿色合成方法
CN107376988B (zh) 一种高活性的丙烯气相环氧化催化剂及其制备方法和应用
WO2022160177A1 (zh) 催化氧化制备6-羟基-6(羟基甲基)-2h-吡喃-3(6h)-酮的方法
CN113578380B (zh) 一种基于丙基咪唑官能团化的柱[5]芳烃离子液体催化剂及其制备方法
Li et al. Brønsted acidic Heteropolyanion-Based ionic liquid: A highly efficient reaction-induced self-separation catalyst for Baeyer-Villiger reaction
CN112791744B (zh) 一种改性钛硅分子筛及其制备方法和应用
CN106378161B (zh) 二甲醚制备聚甲氧基二甲醚的含碳多孔材料催化剂及制法和应用
CN111203267B (zh) 一种催化γ-戊内酯脱羧制丁烯的固体酸催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant