WO2015050125A1 - 超純水製造装置 - Google Patents

超純水製造装置 Download PDF

Info

Publication number
WO2015050125A1
WO2015050125A1 PCT/JP2014/076109 JP2014076109W WO2015050125A1 WO 2015050125 A1 WO2015050125 A1 WO 2015050125A1 JP 2014076109 W JP2014076109 W JP 2014076109W WO 2015050125 A1 WO2015050125 A1 WO 2015050125A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
membrane device
water
treated water
ultrapure water
Prior art date
Application number
PCT/JP2014/076109
Other languages
English (en)
French (fr)
Inventor
長雄 福井
森田 博志
田中 洋一
秀章 飯野
山田 聡
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52778713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015050125(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US15/021,178 priority Critical patent/US20160220958A1/en
Priority to KR1020167005770A priority patent/KR102092441B1/ko
Priority to JP2015540505A priority patent/JP6304259B2/ja
Priority to CN201480048799.XA priority patent/CN105517960A/zh
Publication of WO2015050125A1 publication Critical patent/WO2015050125A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/149Multistep processes comprising different kinds of membrane processes selected from ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2611Irradiation
    • B01D2311/2619UV-irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/263Chemical reaction
    • B01D2311/2634Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2653Degassing
    • B01D2311/2657Deaeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • C02F2209/105Particle number, particle size or particle characterisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the present invention relates to an ultrapure water production apparatus, and more particularly to an ultrapure water production apparatus including a primary pure water system and a subsystem.
  • the ultrapure water used as semiconductor cleaning water is manufactured by an ultrapure water production apparatus including a primary pure water system, a subsystem (secondary pure water system), and the like.
  • a pretreatment system may be provided before the primary pure water system.
  • suspended substances and colloidal substances in raw water are removed by means of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) devices and the like.
  • primary pure water is produced by removing ions, organic components, etc. from the water using a reverse osmosis membrane separation device, deaeration device, and ion exchange device (mixed bed type or 4 bed 5 tower type). Is done.
  • primary pure water is highly processed into ultrapure water by a low-pressure ultraviolet oxidation device, an ion exchange pure water device, an ultrafiltration membrane (UF membrane) device, or the like.
  • UF membrane ultrafiltration membrane
  • a UF membrane device is arranged to remove fine particles generated from ion exchange resin or the like.
  • UF membrane devices are mainly used as membrane devices installed at the last stage of the subsystem.
  • MF membrane microfiltration membrane
  • UF membrane microfiltration membrane
  • RO membrane reverse osmosis membrane
  • a membrane separator may be provided in two stages in series in the subsystem (Patent Documents 1 to 4).
  • 2 and 3 of Patent Document 1 describe that a UF membrane device and an ion exchange group-modified MF membrane device are installed in series in this order at the last stage of the ultrapure water production device.
  • FIG. 4A of Patent Document 2 describes that a reverse osmosis membrane (RO membrane) device is provided after the UF membrane device at the end of the secondary pure water device.
  • Patent Document 3 describes that a secondary pure water device is provided with a UF membrane device and an anion adsorption membrane device having a pore diameter of 500 to 5000 mm.
  • Patent Document 4 a pre-filter for blocking particles having a particle size of 0.01 mm (10 ⁇ m) or more is provided in front of a UF or MF (microfiltration) membrane device used as a separation membrane module for producing ultrapure water.
  • UF or MF microfiltration
  • Patent Document 3 specifically shows a hollow fiber membrane having a pore diameter of 0.2 ⁇ m (2000 mm), a porosity of 60%, and a film thickness of 0.35 mm as an anion-adsorbing membrane (paragraph 0023). According to this anion adsorption membrane, silica can be removed to a high degree, but there is a disadvantage that fine particles of ultrapure water level cannot be removed.
  • the prefilter of Patent Document 4 is for preventing dust having a size of 10 ⁇ m or more from colliding with the UF or MF membrane in the last stage and causing membrane damage, and particles smaller than 10 ⁇ m are not removed.
  • Patent Documents 1 to 4 describe that the membrane device is provided in multiple stages as the terminal fine particle removal unit of the subsystem. However, any of the sufficiently satisfactory fine particle removal effects can be obtained. It was not a thing.
  • JP 2004-283710 A JP2003-190951 JP-A-10-216721 JP-A-4-338221
  • An object of the present invention is to provide an ultrapure water production apparatus capable of stably producing high quality ultrapure water from which fine particles are highly removed.
  • the ultrapure water production apparatus of the present invention has a subsystem for producing ultrapure water from primary pure water.
  • a membrane device is provided at the last stage of the subsystem.
  • the membrane devices are installed in multiple stages in series, the first membrane device is a UF membrane device, MF membrane device or RO membrane device, and the last membrane device is UF membrane device or ion-exchange group modified. There is no MF membrane device.
  • UF membrane devices are preferably installed in two stages in series.
  • an MF membrane device, an RO membrane device, and a UF membrane device may be installed in three stages in this order.
  • fine particle measuring means for measuring the number of fine particles of treated water in the membrane device to manage the fine particles of treated water.
  • one particle measuring means When measuring the number of treated water particles in two or more membrane devices, one particle measuring means may be provided for each membrane device, and one particle measuring means is provided for a plurality of membrane devices. In order to measure the number of fine particles, the number of fine particles of treated water in each membrane device is measured by one fine particle measuring means by sequentially switching the treated water supplied from each membrane device to the fine particle measuring means. It may be configured as follows.
  • an automatic valve for branching to the treated water extraction pipe of each of the two or more membrane modules provided in parallel, collecting water for measuring the number of particles and feeding it to the particle measuring means is provided. It is preferable to provide a water sampling pipe to be provided, and to switch the membrane module to be sampled by this automatic valve so as to sequentially measure the number of treated water particles in each membrane module. Further, the treated water from the membrane modules constituting the membrane device merges, and the number of fine particles can be similarly measured for the treated water of the membrane device. It is preferable to branch off a water sampling pipe provided with an automatic valve. A manual valve may be used instead of the automatic valve.
  • UF membrane devices and the like are provided in a multistage in the last stage of the subsystem, and ultrapure water with high water quality with a remarkably small number of fine particles is produced. According to the present invention, it is possible to produce high-quality ultrapure water having a particle diameter of 10 nm or more and a number of fine particles lower than 100 / L.
  • the membrane device on the most downstream side is a UF membrane device or an MF membrane device not subjected to ion exchange group modification. There is no risk of occurrence. Since an MF membrane device that is not modified with an ion exchange group is used as the MF membrane device, there is no disadvantage that the exchange base is detached and becomes a fine particle source.
  • a fine particle measuring means for measuring the number of fine particles of the treated water of the membrane device immediately before the last stage and / or the treated water of the final stage membrane apparatus is provided, and if necessary, based on the measurement result of the fine particle measuring means.
  • By performing maintenance such as membrane exchange it is possible to stably and reliably produce high-quality ultrapure water having a particle diameter of 10 nm or more and a number of fine particles lower than 100 / L.
  • the fine particles accumulate on the membrane surface over time, so that the fine particles may leak into the treated water, or when the membrane is damaged due to some external load. There is also a risk that fine particles may leak into the treated water and reduce the quality of the obtained ultrapure water, but by providing such a fine particle measuring means and monitoring and managing the number of fine particles in the membrane treated water, Leakage of fine particles to the treated water can be prevented in advance.
  • the membrane device is installed in series in two or more stages on the last stage side of the subsystem.
  • An example of the overall flow of the ultrapure water production apparatus having this subsystem is shown in FIGS.
  • Each of the ultrapure water production apparatuses shown in FIGS. 1 to 3 includes a pretreatment system 1, a primary pure water system 2, and a subsystem 3.
  • the pretreatment system 1 comprising agglomeration, pressurized flotation (precipitation), filtration device, etc.
  • suspended substances and colloidal substances in raw water are removed.
  • the primary pure water system 2 equipped with a reverse osmosis (RO) membrane separation device, a deaeration device, and an ion exchange device (mixed bed type, two-bed three-column type, or four-bed five-column type), ions and organic components in raw water are removed. I do.
  • the RO membrane separation apparatus removes ionic and colloidal TOC in addition to removing salts.
  • the ion exchange device in addition to removing salts, the TOC component adsorbed or ion exchanged by the ion exchange resin is removed.
  • the degassing device nitrogen degassing or vacuum degassing
  • the dissolved oxygen is removed.
  • the primary pure water thus obtained (normally, pure water with a TOC concentration of 2 ppb or less) is used as a sub tank 11, a pump P, a heat exchanger 12, and a UV oxidation apparatus 13. Then, water is sequentially passed through the catalytic oxidant decomposition device 14, the deaeration device 15, the mixed bed deionization device (ion exchange device) 16, the first membrane device 17 for removing fine particles, and the second membrane device 18.
  • the collected ultrapure water is sent to youth point 19.
  • UV oxidizer 13 a UV oxidizer that irradiates UV having a wavelength near 185 nm, which is usually used in an ultrapure water production apparatus, for example, a UV oxidizer using a low-pressure mercury lamp can be used.
  • This UV oxidation apparatus 13 primary pure water TOC is organic acid, further is decomposed into CO 2. Further, in the UV oxidizer 13, H 2 O 2 is generated from water due to the excessively irradiated UV.
  • the treated water of the UV oxidizer 13 is then passed through a catalytic oxidant decomposition device 14.
  • the oxidant decomposition catalyst of the catalytic oxidant decomposition apparatus 14 include noble metal catalysts known as redox catalysts, such as palladium (Pd) compounds such as metal palladium, palladium oxide, palladium hydroxide, or platinum (Pt), Of these, a platinum (Pt) catalyst having a strong reducing action can be preferably used.
  • the catalytic oxidant decomposition device 14 efficiently decomposes and removes H 2 O 2 generated in the UV oxidizer 13 and other oxidants by the catalyst. Then, by decomposition of H 2 O 2, water is generated, almost no possible to produce oxygen as the anion exchange resin and activated carbon, do not cause DO increase.
  • the treated water of the catalytic oxidant decomposition device 14 is then passed through the deaeration device 15.
  • a vacuum deaerator, a nitrogen deaerator, or a membrane deaerator can be used as the deaerator 15. This deaeration device 15 efficiently removes DO and CO 2 from the water.
  • the treated water from the deaerator 15 is then passed through the mixed bed ion exchanger 16.
  • the mixed bed type ion exchange device 16 a non-regenerative type mixed bed type ion exchange device in which an anion exchange resin and a cation exchange resin are mixed and filled in accordance with an ion load is used.
  • the mixed bed type ion exchange device 16 removes cations and anions in the water and increases the purity of the water.
  • a multi-bed type ion exchange device, an electric regeneration type ion exchange device, or the like may be used.
  • the ultrapure water production apparatus of the present invention is an example of the ultrapure water production apparatus of the present invention, and the ultrapure water production apparatus of the present invention can be combined with various devices other than those described above.
  • the UV irradiation treated water from the UV oxidizer 13 may be introduced into the mixed bed deionizer 16 as it is.
  • an anion exchange column 19 may be installed in place of the catalytic oxidant decomposition apparatus 14.
  • an RO membrane separation device may be installed after the mixed bed ion exchange device.
  • an apparatus for deionizing after decomposing urea and other TOC components in the raw water by heat-decomposing the raw water in an acidic condition of pH 4.5 or less and in the presence of an oxidizing agent may be incorporated.
  • the UV oxidation device, the mixed bed ion exchange device, the deaeration device, and the like may be installed in multiple stages. Further, the pretreatment system 1 and the primary pure water system 2 are not limited to those described above, and various other combinations of apparatuses can be adopted.
  • any of a UF membrane, an MF membrane, and an RO membrane may be used.
  • a UF membrane or an MF membrane that is not modified with an ion exchange group is used. Accordingly, there are the following six combinations of the first film device 17 and the second film device 18. (1) UF membrane-UF membrane (2) UF membrane-MF membrane without ion exchange group modification (3) MF membrane-UF membrane (4) MF membrane-MF membrane without ion exchange group modification (5) RO Membrane-UF membrane (6) RO membrane-MF membrane without ion-exchange group modification
  • the membrane device may be installed in three or more stages in series.
  • membrane devices may be installed in three stages, such as MF membrane device-RO membrane device-UF membrane device.
  • the pore size of the membrane is preferably 1 ⁇ m or less, particularly 0.001 to 1 ⁇ m, and particularly preferably 0.001 to 0.5 ⁇ m.
  • the thickness is preferably 0.01 to 1 mm.
  • the material include polyolefin, polystyrene, polysulfone, polyester, polyamide, cellulose, polyvinylidene fluoride, and polytetrafluoroethylene.
  • a UF membrane apparatus or the like is provided in multiple stages in series at the last stage of the subsystem, and high quality ultrapure water with a remarkably small number of fine particles is produced.
  • the most downstream membrane device is a UF membrane device or an MF membrane device that is not modified with an ion exchange group, so that fine particles are generated from the membrane device itself like the RO membrane device. There is no risk. Further, since an MF membrane device that is not modified with an ion exchange group is used as the MF membrane device, there is no disadvantage that the exchange base is detached and becomes a fine particle source.
  • the membrane device is preferably a cross-flow type, and the recovery rate is preferably up to about 95% during operation. If the brine flow rate is further reduced, fine particles are deposited on the film surface, which may reduce the fine particle blocking rate.
  • the recovery rate may be about 95%, and the number of series stages may be changed according to the quality of the feed water.
  • Fine particle removal when the UF membrane device is used in two stages is given by the following equation.
  • C 1 C 0 ⁇ (1-Re / 100) + B
  • C 2 C 1 ⁇ (1-Re / 100) + B
  • C 0 Concentration of fine particles in UF membrane water supply [units / mL]
  • C 1 concentration of fine particles in the first-stage UF membrane treated water [units / mL]
  • C 2 Concentration of fine particles in the second stage UF membrane treated water [units / mL]
  • Re Fine particle rejection rate in UF membrane [%]
  • B Number of fine particles generated from the UF membrane material itself [piece / mL]
  • the particle rejection rate of the fine particle removal film is calculated by passing model nanoparticles through water and measuring the number of fine particles of water supply and treated water.
  • the MF membrane has a larger pore size than the UF membrane, but an adsorption effect on the membrane can be expected due to the difference in membrane material. Since the UF membrane is superior to the MF membrane in terms of the fine particle rejection rate as a membrane, when using the MF membrane and the UF membrane in multiple stages, it is desirable to install a UF membrane device at the end, but this is not restrictive.
  • the RO membrane is superior to the UF membrane in terms of the particulate rejection rate, fine particles are generated from the membrane material or potting member. Therefore, when the RO membrane device is installed as the first membrane device, the UF membrane is installed at the most downstream and It is preferable to remove it.
  • a boosting pump and a valve may be provided in the middle of each stage of the membrane device installed in series in two stages or three or more stages.
  • the membrane devices when the membrane devices are installed in series in multiple stages, the pressure loss increases, so that a pump can be provided between the membrane devices in consideration of the pressure loss.
  • a particle filling facility such as a mixed bed type ion exchange device or a catalytic oxidizer decomposition device because fine particles are generated due to particle crushing. It is preferable not to install anything other than clean piping downstream from the last stage UF membrane.
  • the apparatus of the present invention it is preferable to pay attention to the range of the recovery rate, because if the recovery rate is set too large, fine particles may be deposited on the film surface. It is preferable to design the particle removal film type and the number of installation stages from the particle diameter of the fine particles to be removed, the flow rate of the water to be treated, and the target water quality.
  • the membrane device In the membrane device, if the processing is continued, fine particles accumulate on the membrane surface over time, so that the fine particles may leak into the treated water, and also when the membrane is damaged due to some external load. There is a risk that fine particles leak into the water and the quality of the obtained ultrapure water is lowered. Therefore, in the present invention, it is preferable to prevent the leakage of fine particles into the treated water by providing a fine particle measuring means and monitoring and managing the number of fine particles of the membrane treated water.
  • the fine particle measuring means is not particularly limited, and commercially available fine particle measuring means can be used.
  • FIG. 4 shows the particle management of the treated water by providing a particle measuring device 31 for measuring the number of treated water particles in the first membrane device 17 and a particle measuring device 32 for measuring the number of treated water particles in the second membrane device 18. It is a flowchart which shows the system which performs.
  • first membrane water supply the first-stage treated water supplied to the first membrane device 17 (for example, treated water of the mixed-bed deionizer 16 in the case of the ultrapure water production device of FIGS. 1 to 3) is referred to as “first membrane water supply”.
  • second membrane water supply the water supplied to the second membrane device 18 (usually treated water of the first membrane device 17) is referred to as “second membrane water supply”, and the treated water of the first membrane device 17 and the second membrane device 18
  • the treated water is referred to as “first membrane treated water” and “second membrane treated water”, respectively.
  • the first membrane device 17 and the second membrane device 18 are each provided with three membrane modules 17A to 17C and 18A to 18C in parallel.
  • the first membrane feed water is introduced into the membrane modules 17A to 17C of the first membrane device 17 from the pipe 21 via the branch pipes 21a, 21b, 21c, respectively, and the first membrane treated water is supplied to the branch pipes 22a, 22b, 22c and
  • the concentrated water is fed to the second membrane device 18 through the collecting pipe 22, and the membrane concentrated water passes through the branch pipes 23a, 23b, 23c and the collecting pipe 23, and enters the inlet side of the subsystem (the ultrapure water production apparatus in FIGS. 1 to 3). For example, it is configured to be returned to the sub tank 11).
  • the second membrane supply water (first membrane treated water) is introduced into the membrane modules 18A to 18C of the second membrane device 18 from the collecting pipe 22 via the branch pipes 24a, 24b, and 24c, respectively.
  • the treated water is supplied to the use point as ultrapure water through the branch pipes 25a, 25b, 25c and the collective pipe 25, and the membrane concentrated water is supplied to the inlet side of the subsystem through the branch pipes 26a, 26b, 26c and the collective pipe 26 (
  • the ultrapure water production apparatus of FIGS. 1 to 3 is configured to be returned to the sub tank 11).
  • the branch pipes 22a to 22c for taking the treated water from the respective membrane modules 17A to 17C of the first membrane device 17 and the collecting pipe 22 are used for collecting and feeding a part of the treated water to the particle measuring device 31, respectively.
  • the water sampling branch pipes 27a, 27b, 27c, and 27d are connected, and the water sampled in each of the branch pipes 27a to 27d is supplied to the particle measuring device 31 via the collective water sampling pipe 27 to determine the number of particles. Measurement is performed.
  • a part of the treated water is sampled and supplied to the particle measuring device 32 to the branch pipes 25a to 25c and the collecting pipe 25 for taking the treated water from the membrane modules 18A to 18C of the second membrane device 18, respectively.
  • Water sampling branch pipes 28a, 28b, 28c, and 28d are connected to each other, and the water sampled in each of the branch water sampling pipes 28a to 28d is supplied to the particle measuring device 32 through the collective water sampling pipe 28. Then, the number of fine particles is measured.
  • V 1 to V 18 , V 20 , V 30 are automatic valves provided in each pipe.
  • the membrane module 17C of the first membrane device 17 and the membrane module 18C of the second membrane device 18 are spare membrane modules, and usually the particulate removal is performed by the membrane modules 17A and 17B and the membrane modules 18A and 18B.
  • V 7 to V 9 and V 16 to V 18 are closed, and the automatic valves V 1 , V 2 , and V 4 are closed.
  • V 5 , V 10 , V 11 , V 13 , V 14 are open.
  • the automatic valve V 3 and V 6 and V 20 are opened and closed sequentially.
  • the first membrane water supply is introduced into the membrane modules 17A and 17B from the pipe 21 via the branch pipes 21a and 21b and subjected to membrane treatment, and the treated water is supplied to the second membrane device 18 via the branch pipes 22a and 22b and the collecting pipe 22. Is done.
  • the concentrated water in which the fine particles are concentrated by the membrane modules 17A and 17B is returned to the sub tank on the inlet side of the subsystem through the branch pipes 23a and 23b and the collecting pipe 23.
  • the first membrane treated water is introduced into the membrane modules 18A and 18B from the collecting pipe 22 via the branch pipes 24a and 24b and subjected to membrane treatment, and the treated water (ultra pure water) is used via the branch pipes 25a and 25b and the collecting pipe 25. Sent to points.
  • the concentrated water in which the fine particles are concentrated in the membrane modules 18A and 18B is returned to the sub tank on the inlet side of the subsystem through the branch pipes 26a and 26b and the collecting pipe 26.
  • the leakage of fine particles or the fine particle removal rate for each membrane module is measured. While detecting the decrease, the performance of the membrane device itself can be monitored. If any of the membrane module leaks or a decrease in the particulate removal rate is detected, the supply of water to the membrane module is stopped and switched to the water supply to the spare membrane module. Perform removal. Specifically, when it is detected that fine particles begin to leak into the treated water of the membrane module 17A or the fine particle removal rate is lowered, the automatic valves V 1 , V 2 and V 3 are closed and the automatic valve is closed.
  • V 7 and V 8 are opened, and V 9 is opened and closed in order with the automatic valve V 6 and the automatic valve V 20 , so that the membrane for removing particulates is treated with the treated water of the membrane module 17 B and the membrane module 17 C.
  • a part of the treated water of the membrane module 17B, the treated water of the membrane module 17C, and a part of the first membrane treated water are collected in order, and the fine particle measuring device 31 measures the number of fine particles.
  • the membrane module 17A is subjected to maintenance such as membrane exchange.
  • the frequency of switching the automatic valve for collecting water for measuring the number of particles is not particularly limited, but the number of particles continuously for 30 to 60 minutes in the membrane treated water of one membrane module and the entire membrane device. It is preferable that the measurement can be performed.
  • the membrane treatment is performed by measuring the particulates of the treated water and switching the flow path as necessary. It is possible to reliably prevent the leakage of fine particles into water and to stably obtain high-quality ultrapure water.
  • the particle management system shown in FIG. 4 is configured so that the number of particles in each treated water can be measured with one particle measuring device 30 by being sequentially supplied to the particle measuring device 30 through 29. Unlike the others, the configuration is the same.
  • the number of particle measuring devices By attaching the particle measuring device to the ultrapure water production apparatus, it is possible to prevent the ultrapure water production apparatus from becoming excessively large, thereby reducing the equipment cost and maintenance work.
  • the number of membrane modules provided in the membrane device is not particularly limited, and is usually set in the range of 2 to 20 pieces. Further, the number of spare membrane modules is not limited to one, and two or more may be provided.
  • the measurement of the number of fine particles of the membrane treated water may be performed for the last stage membrane apparatus, or may be performed for the last stage membrane apparatus. Further, the number of fine particles of treated water may be measured for all of the membrane devices provided in multiple stages.
  • the last stage membrane device is a membrane device that removes fine particles in the final stage. If a certain degree of particulate removal rate is obtained in the membrane device up to the stage immediately before the last stage, the final stage membrane device can treat the treated water into the treated water. In order to prevent leakage of fine particles, it is preferable to provide a fine particle measuring means for measuring the number of fine particles of membrane treated water at least in the membrane device immediately before the last stage. It is preferable to provide fine particle measuring means in both of the stage membrane devices so as to measure the number of fine particles of treated water in these membrane devices.
  • the first membrane device 17 and the second membrane device 18 also return their concentrated water (brine water) to the sub-tank, but are not limited to this, and supply it to a separately provided brine recovery tank. You may make it do.
  • the fine particle concentration is a value obtained by measuring the number of fine particles having a particle diameter of 10 nm or more in water with a fine particle measuring device by centrifugal filtration-SEM method.
  • Example 1 In the ultrapure water production apparatus shown in FIG. 1, a UF membrane device (external pressure type hollow fiber membrane, material: polysulfone, nominal molecular weight cut off: 6,000) is used as the first membrane device 17 and the second membrane device 18 at the end of the subsystem. (Insulin), rejection rate Re: 99.90%) was installed to produce ultrapure water. Table 1 shows the measurement results of the fine particle concentration of the water supply and treated water of each membrane device.
  • the concentration of fine particles in the treated water of the first membrane device 17 in the first stage is 1,000 / L or more, but the concentration of fine particles in the treated water of the second membrane device 18 is 51 / L. It was confirmed that the fine particle concentration was 100 particles / L or less by installing the UF membrane device in two stages.
  • Example 2 Ultrapure water was produced in the same manner as in Example 1 except that the combination of the membranes of the first membrane device and the second membrane device was as shown in Table 2, and the fine particle concentration was determined by measuring the number of fine particles in water. . The results are shown in Table 2.
  • MF membrane device not modified with ion exchange groups external pressure type hollow fiber membrane, material: surface modified PTFE, pore diameter 50 nm RO membrane device: Spiral type, Material: Polyamide
  • Example 7 Ultra pure water is produced in the same manner as in Example 1 except that the membrane device is a three-stage installation of MF membrane device-RO membrane device-UF membrane device, and the number of fine particles in water is measured to obtain the fine particle concentration. It was. The results are shown in Table 2. In addition, the above-mentioned thing was used as each film
  • Example 8 In Example 1, as shown in FIG. 4, a fine particle measuring device (“NanoCount 25+” manufactured by Lighthouse) for measuring the number of fine particles in the treated water of each of the UF membrane device of the first membrane device 17 and the UF membrane device of the second membrane device 18. ]) 31 and 32 were provided to produce ultrapure water.
  • NemoCount 25+ manufactured by Lighthouse
  • the UF membrane devices of the first membrane device 17 and the second membrane device 18 have UF membrane modules 17A to 17C and UF membrane modules 18A to 18C, respectively.
  • the UF membrane modules 17C and 18C are spare membrane modules, and are always UF. Processing was performed with the membrane modules 17A and 17B and the UF membrane modules 18A and 18B.
  • the first membrane device 17 by switching the automatic valve V 3 and V 6 and V 20 (1 times the frequency 30 minutes), the treated water and the first treated water and the UF membrane module 17B of the UF membrane module 17A
  • the first membrane treated water of the membrane device 17 was sequentially fed to the particle measuring device 31 to measure the number of particles.
  • the second membrane unit 18 by switching the automatic valve V 12 and V 15 and V 30 (1 times the frequency 30 minutes), the treated water in the treated water and UF membrane module 18B of the UF membrane module 18A second
  • the second membrane treated water of the membrane device 18 was sequentially fed to the particle measuring device 32 and the number of particles was measured.
  • FIGS. 6A and 6B show the changes over time in the concentration of fine particles obtained from the measurement results of the number of fine particles of treated water in the UF membrane module 17A and the UF membrane module 17B.
  • the UF membrane modules provided in the same membrane device are as shown in FIGS. Even in such a case, there was a difference in durability for each lot, and it was confirmed that fine particle leakage started earlier in the UF membrane module 18A than in the UF membrane module 18B.
  • the automatic valve is switched to immediately pass the first membrane water supply from the flow path for supplying the UF membrane module 17A and the UF membrane module 17B to the spare UF membrane module 17B.
  • high quality ultrapure water having a fine particle concentration of 100 particles / L or less was supplied from the second membrane device 18 over a long period of time as in the first embodiment. I was able to obtain it stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 微粒子が高度に除去された高水質の超純水を安定に製造することができる超純水製造装置が提供される。一次純水から超純水を製造するサブシステムを有する超純水製造装置であって、該サブシステムの最後段に膜装置が設けられている超純水製造装置において、該膜装置が直列に多段に設置されており、第1段の膜装置はUF膜装置、MF膜装置又はRO膜装置であり、最後段の膜装置はUF膜装置又はイオン交換基修飾されていないMF膜装置であることを特徴とする超純水製造装置。

Description

超純水製造装置
 本発明は、超純水の製造装置に係り、特に一次純水システムとサブシステムとを備えた超純水製造装置に関する。
 半導体洗浄用水として用いられている超純水は、一次純水システム、サブシステム(二次純水システム)等から構成される超純水製造装置により製造される。一次純水システムの前段に前処理システムが設けられることもある。
 前処理システムでは、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより、原水中の懸濁物質やコロイド物質等が除去される。
 一次純水システムでは、逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)等によって、水中のイオンや有機成分等が除去されて一次純水が製造される。サブシステムでは、低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜(UF膜)装置等により一次純水が高度に処理されて超純水とされる。このサブシステムの最後段にはUF膜装置が配置され、イオン交換樹脂などから生じる微粒子が除去される。
 近年、半導体製造プロセスの発展により水中の微粒子管理が厳しくなっている。International Technology Roadmap for Semiconductorsは2019年には粒子径>11.9nmの保証値<1,000個/L(管理値<100個/L)とすることを求めている。
 サブシステム最後段に設置される膜装置としてはUF膜装置が主として用いられている。UF膜を用いて微粒子を除去するには、膜面の細孔径が微粒子径より小さい膜を用いることが望ましいが、UF膜面には無数の細孔が存在し、その孔径にばらつきがある。このため10nm程度の微粒子を完全に除去することは出来ないという欠点があった。
 精密濾過膜(MF膜)の細孔径はサブミクロンオーダーでUF膜の細孔径より大きいため、透過水中の微粒子数を100個以下/L(粒子径>10nm)レベルで管理することは難しい。逆浸透膜(RO膜)は孔径がUF膜より小さいため、高度な微粒子除去が理論上可能であるが、モジュールとしての清浄度が低く、微粒子を発生させてしまう(例えばポッティング材からの発塵)という問題があり、サブシステムの末端微粒子除去ユニットとしては適用できなかった。
 超純水中の微粒子数を低減させるために、サブシステムに膜分離装置を2段に直列に設けることがある(特許文献1~4)。特許文献1の図2,3には、超純水製造装置の最後段にUF膜装置とイオン交換基修飾MF膜装置とをこの順に直列に設置することが記載されている。特許文献2の図4(a)には、2次純水装置の末端のUF膜装置の後段に逆浸透膜(RO膜)装置を設けることが記載されている。特許文献3には、2次純水装置にUF膜装置と、孔径500~5000Åのアニオン吸着膜装置とを設けることが記載されている。特許文献4には、超純水製造用分離膜モジュールとして用いられるUF又はMF(精密濾過)膜装置の前段に、粒径0.01mm(10μm)以上の粒子を阻止するプレフィルタを設けることが記載されている。
 特許文献1のように、UF膜装置とイオン交換基修飾MF膜とを直列に設けた場合、イオン交換基修飾MF膜から交換基体が脱離して微粒子源となるという短所がある。
 特許文献2のように、UF膜装置とRO膜装置とを直列に配置した場合、RO膜から微粒子が発生することがあるため、超純水の水質が低下するおそれがある。
 特許文献3には、アニオン吸着膜として、具体的には、孔径0.2μm(2000Å)、空孔率60%、膜厚0.35mmの中空糸膜が示されている(0023段落)。このアニオン吸着膜によると、シリカを高度に除去することが出来るが、超純水レベルの微小な微粒子は除去できないという短所がある。
 特許文献4のプレフィルタは、10μm以上のゴミが最終段のUF又はMF膜に衝突して膜破損を生じさせることを防止するためのものであり、10μmよりも小さい粒子は除去されない。
 このように、特許文献1~4には、サブシステムの末端微粒子除去ユニットとして、膜装置を多段に設けることが記載されているが、いずれも十分に満足し得る微粒子除去効果を得ることができるものではなかった。
特開2004-283710 特開2003-190951 特開平10-216721 特開平4-338221
 本発明は、微粒子が高度に除去された高水質の超純水を安定に製造することができる超純水製造装置を提供することを目的とする。
 本発明の超純水製造装置は、一次純水から超純水を製造するサブシステムを有する。該サブシステムの最後段に膜装置が設けられている。該膜装置が直列に多段に設置されており、第1段の膜装置はUF膜装置、MF膜装置又はRO膜装置であり、最後段の膜装置はUF膜装置又はイオン交換基修飾されていないMF膜装置である。
 本発明では、前記膜装置として、UF膜装置が直列に2段に設置されていることが好ましい。前記膜装置として、MF膜装置、RO膜装置及びUF膜装置がこの順に3段に設置されてもよい。
 本発明では、膜装置の処理水の微粒子数を測定する微粒子測定手段を設け、処理水の微粒子を管理することが好ましい。最後段の直前の段(後ろから2段目)の膜装置の処理水の微粒子数を測定する微粒子測定手段、及び/又は、最後段の処理水の微粒子数を測定する微粒子測定手段を設け、これらの膜装置からの微粒子のリークないしは微粒子除去率の低下を検知して、必要に応じて膜交換等のメンテナンスを行うことが、得られる超純水について高度な微粒子管理を安定的に行う上で好ましい。
 2以上の膜装置の処理水の微粒子数を測定する場合、微粒子測定手段は、各膜装置毎に1台ずつ設けられていてもよく、複数の膜装置に対して1台の微粒子測定手段を設け、微粒子数測定のために各膜装置から該微粒子測定手段に送給する処理水を順番に切り換えることにより、1台の微粒子測定手段で各膜装置の処理水の微粒子数の測定が行われるように構成されていてもよい。
 膜装置が並列に設けられた2以上の膜モジュールを有する場合、各々の膜モジュールについて微粒子管理を行うことが好ましい。従って、並列に設けられた2以上の膜モジュールの各々の処理水の取出配管に分岐して、微粒子数測定のための水を採水して微粒子測定手段に送給するための、自動弁を備える採水配管を設け、この自動弁により、採水する膜モジュールを切り換えて、各膜モジュールの処理水の微粒子数測定を順番に行うようにすることが好ましい。更に膜装置を構成する膜モジュールからの各々の処理水が合流した、当該膜装置の処理水についても同様に微粒子数の測定を行うことができるように、この合流水が流れる集合配管にも同様に自動弁を備えた採水配管を分岐して設けることが好ましい。自動弁のかわりに手動弁を用いても良い。
 本発明の超純水製造装置では、サブシステムの最後段にUF膜装置等を直列に多段に設けており、微粒子数が著しく少ない高水質の超純水が製造される。本発明によると、粒子径が10nm以上の微粒子数が100個/Lよりも低い高水質の超純水を製造することが可能である。
 本発明では、多段に配置された膜装置のうち最下流側の膜装置をUF膜装置又はイオン交換基修飾されていないMF膜装置としているため、RO膜装置のように膜装置の自体から微粒子が発生するおそれはない。MF膜装置としてイオン交換基修飾されていないMF膜装置を用いるため、交換基体が脱離して微粒子源となるという短所もない。
 最後段の直前の膜装置の処理水、及び/又は、最後段の膜装置の処理水の微粒子数を測定する微粒子測定手段を設け、この微粒子測定手段の測定結果に基づいて、必要に応じて膜交換等のメンテナンスを行うことにより、粒子径が10nm以上の微粒子数が100個/Lよりも低い高水質の超純水を安定にかつ確実に製造することが可能となる。
 即ち、膜装置では、処理を継続すると経時的に膜面に微粒子が蓄積することにより、処理水中に微粒子がリークする場合があり、また、何らか外的負荷がかかって膜が破損した場合にも処理水中に微粒子がリークして、得られる超純水の水質を低下させる危険性があるが、このように微粒子測定手段を設けて膜処理水の微粒子数をモニタリングして管理することにより、処理水への微粒子のリークを未然に防止することができる。
超純水製造装置の実施の形態を示すフロー図である。 超純水製造装置の実施の形態を示すフロー図である。 超純水製造装置の実施の形態を示すフロー図である。 第1膜装置と第2膜装置に微粒子測定手段を設けた実施の形態を示すフロー図である。 微粒子測定手段を設けた別の実施の形態を示すフロー図である。 図6a,6bは、実施例8におけるUF膜モジュール17AとUF膜モジュール17Bの処理水の微粒子濃度の経時変化を示すグラフである。
 以下、図面を参照して実施の形態について説明する。
 本発明の超純水製造装置では、サブシステムの最後段側に、膜装置が2段又はそれ以上に直列に設置されている。このサブシステムを有する超純水製造装置の全体フローの一例を図1~3に示す。
 図1~3の各超純水製造装置は、いずれも前処理システム1、一次純水システム2及びサブシステム3から構成される。
 凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。逆浸透(RO)膜分離装置、脱気装置及びイオン交換装置(混床式、2床3塔式又は4床5塔式)を備える一次純水システム2では原水中のイオンや有機成分の除去を行う。なお、RO膜分離装置では、塩類除去のほかにイオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類除去のほかにイオン交換樹脂によって吸着又はイオン交換されるTOC成分を除去する。脱気装置(窒素脱気又は真空脱気)では溶存酸素の除去を行う。
 図1の超純水製造装置では、このようにして得られた一次純水(通常の場合、TOC濃度2ppb以下の純水)を、サブタンク11、ポンプP、熱交換器12、UV酸化装置13、触媒式酸化性物質分解装置14、脱気装置15、混床式脱イオン装置(イオン交換装置)16、微粒子除去用第1膜装置17及び第2膜装置18に順次に通水し、得られた超純水をユースポイント19に送る。
 UV酸化装置13としては、通常、超純水製造装置に用いられる185nm付近の波長を有するUVを照射するUV酸化装置、例えば低圧水銀ランプを用いたUV酸化装置を用いることができる。このUV酸化装置13で、一次純水中のTOCが有機酸、更にはCOに分解される。また、このUV酸化装置13では過剰に照射されたUVにより、水からHが発生する。
 UV酸化装置13の処理水は、次いで触媒式酸化性物質分解装置14に通水される。触媒式酸化性物質分解装置14の酸化性物質分解触媒としては、酸化還元触媒として知られる貴金属触媒、例えば、金属パラジウム、酸化パラジウム、水酸化パラジウム等のパラジウム(Pd)化合物又は白金(Pt)、なかでも還元作用の強力な白金(Pt)触媒を好適に使用することができる。
 この触媒式酸化性物質分解装置14により、UV酸化装置13で発生したH、その他の酸化性物質が触媒により効率的に分解除去される。そして、Hの分解により、水は生成するが、アニオン交換樹脂や活性炭のように酸素を生成させることは殆どなく、DO増加の原因とならない。
 触媒式酸化性物質分解装置14の処理水は、次いで脱気装置15に通水される。脱気装置15としては、真空脱気装置、窒素脱気装置や膜式脱気装置を用いることができる。この脱気装置15により、水中のDOやCOが効率的に除去される。
 脱気装置15の処理水は次いで混床式イオン交換装置16に通水される。混床式イオン交換装置16としては、アニオン交換樹脂とカチオン交換樹脂とをイオン負荷に応じて混合充填した非再生型混床式イオン交換装置を用いる。この混床式イオン交換装置16により、水中のカチオン及びアニオンが除去され、水の純度が高められる。なお、混床式イオン交換装置16の代わりに多床式のイオン交換装置や電気再生式イオン交換装置などが用いられてもよい。
 図1の構成は本発明の超純水製造装置の一例であり、本発明の超純水製造装置は、上記以外の各種の機器を組み合わせることができる。例えば、図2のように、UV酸化装置13からのUV照射処理水をそのまま混床式脱イオン装置16に導入してもよい。図3のように、触媒式酸化性物質分解装置14の代わりにアニオン交換塔19を設置してもよい。
 図示はしないが、混床式イオン交換装置の後にRO膜分離装置を設置しても良い。また、原水をpH4.5以下の酸性下、かつ、酸化剤存在下で加熱分解処理して原水中の尿素及び他のTOC成分を分解した後、脱イオン処理する装置を組み込むこともできる。UV酸化装置や混床式イオン交換装置、脱気装置等は多段に設置されても良い。また、前処理システム1や一次純水システム2についても、何ら上述のものに限定されるものではなく、他の様々な装置の組み合せを採用し得る。
 第1膜装置17の膜としては、UF膜、MF膜、RO膜のいずれを用いてもよい。第2膜装置18の膜としては、UF膜又はイオン交換基修飾されていないMF膜を用いる。従って、第1膜装置17と第2膜装置18の組み合わせとしては、次の6通りとなる。
 (1) UF膜-UF膜
 (2) UF膜-イオン交換基修飾されていないMF膜
 (3) MF膜-UF膜
 (4) MF膜-イオン交換基修飾されていないMF膜
 (5) RO膜-UF膜
 (6) RO膜-イオン交換基修飾されていないMF膜
 膜装置は3段以上直列に設置されてもよい。例えば、MF膜装置-RO膜装置-UF膜装置のように膜装置が3段に設置されてもよい。
 膜装置17,18としてMF膜装置、UF膜装置を用いる場合、その膜の孔径は1μm以下、特に0.001~1μm、とりわけ0.001~0.5μmが好ましい。厚さは0.01~1mmであることが好ましい。材質は、ポリオレフィン、ポリスチレン、ポリスルホン、ポリエステル、ポリアミド、セルロース系、ポリビニリデンフロライド、ポリテトラフルオロエチレンなどを挙げることができる。
 このように構成された超純水製造装置では、サブシステムの最後段にUF膜装置等を直列に多段に設けており、微粒子数が著しく少ない高水質の超純水が製造される。また、多段に配置された膜装置のうち最下流側の膜装置をUF膜装置又はイオン交換基修飾されていないMF膜装置としているため、RO膜装置のように膜装置の自体から微粒子が発生するおそれはない。また、MF膜装置としてイオン交換基修飾されていないMF膜装置を用いるため、交換基体が脱離して微粒子源となるという短所もない。
 本発明では、膜装置はクロスフロー方式とすることが好ましく、運転時は回収率を95%程度までとすることが好ましい。それ以上のブライン流量の低下は、膜面への微粒子堆積を招くことになり、微粒子阻止率が低下するおそれがある。回収率を95%程度とし、直列段数は給水水質に応じて変更するようにしてもよい。
 UF膜装置を2段で用いた時の微粒子除去は次式で与えられる。
  C=C×(1-Re/100)+B
  C=C×(1-Re/100)+B
    C:UF膜給水中の微粒子濃度[個/mL]
    C:1段目UF膜処理水中の微粒子濃度[個/mL]
    C:2段目UF膜処理水中の微粒子濃度[個/mL]
    Re:UF膜での微粒子阻止率[%]
    B:UF膜材自体から発生する微粒子数[個/mL]
 微粒子除去膜の粒子阻止率は、モデルナノ粒子を通水して給水と処理水の微粒子数を測定することにより算出する。
 MF膜はUF膜より孔径が大きいが、膜材質の違いにより膜での吸着効果が期待できる。膜としての微粒子阻止率はUF膜がMF膜より優れるため、MF膜とUF膜を多段で用いる場合、末端はUF膜装置を設置することが望ましいがこの限りではない。
 RO膜は微粒子阻止率ではUF膜に勝るものの、膜材またはポッティング部材から微粒子が発生するため、第1膜装置としてRO膜装置を設置した場合、最下流にUF膜を設置し、微粒子を高度に除去することが好ましい。
 2段又は3段以上に直列に設置された膜装置の各段の途中に昇圧用ポンプ、バルブが設けられてもよい。例えば、膜装置を多段に直列に設置すると、圧力損失が大きくなるため、圧力損失を考慮して膜装置同士の間にポンプを設けることができる。この場合、ポンプやバルブから発塵する微粒子を除去するため、末端にはUF膜を設置させることが好ましい。膜装置同士の間には、混床式イオン交換装置、触媒式酸化性物質分解装置のような粒子充填設備は、粒子の破砕による微粉発生が懸念されるため、設置しないことが望ましい。最後段UF膜より下流側にはクリーン配管以外を設置しないことが好ましい。
 本発明装置では、回収率を大きく設定しすぎると膜面に微粒子が堆積するおそれがあるため、回収率の範囲に注意するのが好ましい。除去対象とする微粒子の粒径、被処理水の流量、及び目標水質から、微粒子除去膜種および設置段数を設計するのが好ましい。
 膜装置では、処理を継続すると経時的に膜面に微粒子が蓄積することにより、処理水中に微粒子がリークする場合があり、また、何らか外的負荷がかかって膜が破損した場合にも処理水中に微粒子がリークして、得られる超純水の水質を低下させる危険性がある。このため、本発明においては、微粒子測定手段を設けて膜処理水の微粒子数をモニタリングして管理することにより、処理水への微粒子のリークを未然に防止することが好ましい。
 以下に、図4,5を参照して微粒子測定手段を用いた微粒子管理システムについて説明する。図4,5において、同一機能を奏する部材には同一符号を付してある。
 微粒子測定手段としては特に制限はなく、市販の微粒子測定手段を用いることができる。
 図4は、第1膜装置17の処理水の微粒子数を測定する微粒子測定器31と第2膜装置18の処理水の微粒子数を測定する微粒子測定器32とを設けて処理水の微粒子管理を行うシステムを示すフロー図である。
 以下において、第1膜装置17に供給される前段の処理水(例えば、図1~3の超純水製造装置であれば混床式脱イオン装置16の処理水)を「第1膜給水」と称し、第2膜装置18に供給される水(通常は第1膜装置17の処理水)を「第2膜給水」と称し、第1膜装置17の処理水、第2膜装置18の処理水をそれぞれ「第1膜処理水」「第2膜処理水」と称す。
 図4において、第1膜装置17、第2膜装置18は、それぞれ3つの膜モジュール17A~17C、18A~18Cが並列に設けられている。
 第1膜装置17の各膜モジュール17A~17Cには、それぞれ配管21より分岐配管21a,21b,21cを経て第1膜給水が導入され、第1膜処理水が分岐配管22a,22b,22c及び集合配管22を経て第2膜装置18に送給され、膜濃縮水が分岐配管23a,23b,23c及び集合配管23を経てサブシステムの入口側(図1~3の超純水製造装置であれば、サブタンク11)に返送されるように構成されている。同様に、第2膜装置18の各膜モジュール18A~18Cには、それぞれ集合配管22より分岐配管24a,24b,24cを経て第2膜給水(第1膜処理水)が導入され、第2膜処理水が分岐配管25a,25b,25c及び集合配管25を経て超純水としてユースポイントに送給され、膜濃縮水が分岐配管26a,26b,26c及び集合配管26を経てサブシステムの入口側(図1~3の超純水製造装置であれば、サブタンク11)に返送されるように構成されている。
 第1膜装置17の各膜モジュール17A~17Cから処理水を取り出す分岐配管22a~22cと集合配管22には、それぞれ微粒子測定器31に処理水の一部を採水して送給するための採水分岐配管27a,27b,27c,27dが接続されており、各分岐配管27a~27dで採水された水は、集合採水配管27を経て微粒子測定器31に送給されて微粒子数の測定が行われる。同様に、第2膜装置18の各膜モジュール18A~18Cから処理水を取り出す分岐配管25a~25cと集合配管25には、それぞれ微粒子測定器32に処理水の一部を採水して送給するための採水分岐配管28a,28b,28c,28dが接続されており、各分岐採水配管28a~28dで採水された水は、集合採水配管28を経て微粒子測定器32に送給されて微粒子数の測定が行われる。
 V~V18,V20,V30は各配管に設けられた自動弁である。
 第1膜装置17の膜モジュール17C及び第2膜装置18の膜モジュール18Cは予備の膜モジュールであって、通常は、膜モジュール17A,17Bと膜モジュール18A,18Bで微粒子除去が行われる。
 従って、各配管に設けられた自動弁V~V18,V20,V30のうち、V~V及びV16~V18は閉とされ、自動弁V,V,V,V,V10,V11,V13,V14が開とされている。また、自動弁VとVとV20は順番に開閉する。同様に自動弁V12とV15とV30は順番に開閉する。
 第1膜給水は配管21より分岐配管21a,21bを経て膜モジュール17A,17Bに導入されて膜処理され、処理水は分岐配管22a,22b及び集合配管22を経て第2膜装置18に送給される。膜モジュール17A,17Bで微粒子が濃縮された濃縮水は分岐配管23a,23b、集合配管23を経てサブシステムの入口側のサブタンクに返送される。
 第1膜処理水は集合配管22より分岐配管24a,24bを経て膜モジュール18A,18Bに導入されて膜処理され、処理水(超純水)は分岐配管25a,25b及び集合配管25を経てユースポイントに送給される。膜モジュール18A,18Bで微粒子が濃縮された濃縮水は分岐配管26a,26b、集合配管26を経てサブシステムの入口側のサブタンクに返送される。
 図4の実施の形態では、自動弁Vと自動弁Vと自動弁V20が順番に開閉するため、膜モジュール17Aからの処理水と膜モジュール17Bからの処理水とこれらが合流した第1膜装置17からの第1膜処理水の一部が順番に微粒子測定器31に送給される。このため、1つの微粒子測定器31により、微粒子除去に使用している膜モジュール17A,17Bの処理水と、これらを合わせた第1膜処理水中の微粒子数を順番に測定することができる。同様に、自動弁V12と自動弁V15と自動弁V30が順番に開閉するため、膜モジュール18Aからの処理水と膜モジュール18Bからの処理水とこれらが合流した第2膜装置18からの第2膜処理水の一部が順番に微粒子測定器32に送給される。このため、1つの微粒子測定器32により、微粒子除去に使用している膜モジュール18A,18Bの処理水と、これらを合わせた第2膜処理水中の微粒子数を順番に測定することができる。
 このように、各膜装置において微粒子除去に使用している膜モジュールの各々及び全体の膜処理水について、処理水中の微粒子数を測定することにより、膜モジュール毎の微粒子のリークないしは微粒子除去率の低下を検知すると共に、膜装置自体の性能をモニタリングすることができる。いずれかの膜モジュールの微粒子のリークないしは微粒子除去率の低下を検知した場合には、当該膜モジュールへの給水の供給を停止し、予備の膜モジュールへの給水に切り換え、予備の膜モジュールで微粒子除去を行う。具体的には、膜モジュール17Aの処理水中に微粒子がリークし始めたり、微粒子除去率が低下したりしたことを検知した場合には、自動弁V,V,Vを閉、自動弁V,Vを開として、Vについては、自動弁V及び自動弁V20と順番に開閉するようにすることで、膜モジュール17Bの処理水と膜モジュール17Cとで微粒子除去の膜処理を行うと共に、膜モジュール17Bの処理水と膜モジュール17Cの処理水と第1膜処理水の一部を順番に採水して微粒子測定器31で微粒子数の測定を行う。この間に、膜モジュール17Aについては、膜交換等のメンテナンスを行う。
 第2膜装置18についても同様に処理を行うことができる。
 微粒子数測定のための水を採水するための自動弁の切り換えの頻度については特に制限はないが、1つの膜モジュール及び膜装置全体の膜処理水において、30~60分間連続して微粒子数の測定を行うことができる程度であることが好ましい。
 このように、各膜装置に並列に設けられた膜モジュールの各々及び当該膜装置の膜処理水について、処理水の微粒子測定を行うと共に、必要に応じて流路切り換えを行うことにより、膜処理水への微粒子のリークを確実に防止して、高水質の超純水を安定に得ることができるようになる。
 図5は、図4における2台の微粒子測定器31,32の代りに1台の微粒子測定器30を設け、採水配管27a~27d及び採水配管28a~28dからの水を集合採水配管29を経て順番に微粒子測定器30に送給して各処理水の微粒子数の測定を1台の微粒子測定器30で行うことができるように構成した点が図4に示す微粒子管理システムとは異なり、その他は同様の構成とされている。
 このように、複数の膜装置に対して1台の微粒子測定器を設け、自動弁の切り換えにより順番に各部の処理水の微粒子数の測定を行えるように構成することにより、微粒子測定器の台数を削減し、微粒子測定器を超純水製造装置に付設することにより、超純水製造装置が過大となることを防止し、設備コストの低減、メンテナンスの作業の軽減を図ることができる。
 膜装置に設けられる膜モジュールの数には特に制限はなく、通常、2~20個の範囲で設定される。また、予備の膜モジュールは1個に限らず、2個以上設けてもよい。
 膜処理水の微粒子数の測定は、最後段の膜装置について行ってもよく、また、最後段の直前の段の膜装置について行ってもよい。また、多段に設けられた膜装置のすべてについて処理水の微粒子数の測定を行ってもよい。
 一般に、最後段の膜装置は仕上げの微粒子除去を行う膜装置であり、最後段の直前の段までの膜装置においてある程度の微粒子除去率が得られれば、最後段の膜装置の処理水への微粒子のリークは防止されるため、少なくとも最後段の直前の段の膜装置に、膜処理水の微粒子数を測定する微粒子測定手段を設けることが好ましく、最後段の直前の段の膜装置と最後段の膜装置の両方に微粒子測定手段を設けてこれらの膜装置の処理水の微粒子数を測定するようにすることが好ましい。
 本実施の態様では、第1膜装置17および第2膜装置18も、その濃縮水(ブライン水)はサブタンクに返送されているが、これに限定されず、別途設けたブライン回収用タンクに供給するようにしてもよい。
 以下に実施例を挙げて本発明をより具体的に説明する。
 以下において、微粒子濃度は、水中の粒径10nm以上の微粒子数を、遠心濾過-SEM法による微粒子測定器によって測定して求めた値である。
[実施例1]
 図1に示す超純水製造装置において、サブシステムの末端の第1膜装置17及び第2膜装置18としてUF膜装置(外圧型中空糸膜、材質:ポリスルホン、公称分画分子量:6,000(インシュリン)、阻止率Re:99.90%)を設置し、超純水を製造した。各膜装置の給水及び処理水の微粒子濃度の測定結果等を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の通り、1段目の第1膜装置17の処理水中の微粒子濃度は1,000個/L以上であるが、第2膜装置18の処理水中の微粒子濃度は51個/Lであり、UF膜装置を2段に設置することにより、微粒子濃度が100個/L以下となることが認められた。
[実施例2~6]
 第1膜装置と第2膜装置の膜の組み合わせを表2の通りとしたこと以外は実施例1と同様にして超純水を製造し、水中の微粒子数を測定して微粒子濃度を求めた。結果を表2に示す。なお、UF膜装置以外の各膜装置としては、次のものを用いた。
 イオン交換基修飾されていないMF膜装置:外圧型中空糸膜、材質:表面改質PTFE、孔径50nm
 RO膜装置:スパイラル型、材質:ポリアミド
[実施例7]
 膜装置をMF膜装置-RO膜装置-UF膜装置の3段直列設置としたこと以外は実施例1と同様にして超純水を製造し、水中の微粒子数を測定して微粒子濃度を求めた。結果を表2に示す。なお、各膜装置としては上記のものを用いた。
Figure JPOXMLDOC01-appb-T000002
 表2の通り、実施例2~7においても、2段又は3段の膜装置により、微粒子数の少ない高水質の超純水が製造される。
[実施例8]
 実施例1において、図4に示す通り、第1膜装置17のUF膜装置と第2膜装置18のUF膜装置のそれぞれの処理水中の微粒子数を測定する微粒子測定器(Lighthouse社製「NanoCount25+」)31,32を設けて超純水の製造を行った。
 第1膜装置17及び第2膜装置18のUF膜装置は、それぞれUF膜モジュール17A~17C、UF膜モジュール18A~18Cを有し、UF膜モジュール17C,18Cは予備の膜モジュールとし、常時UF膜モジュール17A,17BとUF膜モジュール18A,18Bで処理を行った。
 このとき、第1膜装置17において、自動弁VとVとV20の切り換え(頻度30分に1回)により、UF膜モジュール17Aの処理水とUF膜モジュール17Bの処理水と第1膜装置17の第1膜処理水を順番に微粒子測定器31に送給して微粒子数の測定を行った。同様に第2膜装置18においても、自動弁V12とV15とV30の切り換え(頻度30分に1回)により、UF膜モジュール18Aの処理水とUF膜モジュール18Bの処理水と第2膜装置18の第2膜処理水を順番に微粒子測定器32に送給して微粒子数の測定を行った。
 UF膜モジュール17AとUF膜モジュール17Bの処理水の微粒子数の測定結果から求めた微粒子濃度の経時変化は、図6a及び6bに示す通りであり、同一の膜装置に設けられたUF膜モジュールであってもロット毎に耐久性に差異があり、UF膜モジュール18Aでは、UF膜モジュール18Bよりも早期に微粒子リークが始まることが確認された。
 そこで、UF膜モジュール18Aより微粒子リークが始まった後、直ちに自動弁の切り換えにより、第1膜給水をUF膜モジュール17AとUF膜モジュール17Bに送給する流路から、UF膜モジュール17Bと予備のUF膜モジュール17Cに送給する流路に切り換えて処理を継続したところ、実施例1と同様に第2膜装置18より、微粒子濃度100個/L以下の高水質の超純水を長期に亘り安定して得ることができた。
 上記のように、流路切り換えを行わずに、UF膜モジュール18Aから微粒子がリークし始めた後もそのままUF膜モジュール17AとUF膜モジュール17Bでの処理を継続したところ、UF膜モジュール17Aから微粒子がリークし始めてから600日後には、第2膜装置18の処理水からも微粒子がリークし始め、超純水の微粒子数管理値を満足することができなくなった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年10月4日付で出願された日本特許出願2013-209175及び2014年1月28日付で出願された日本特許出願2014-013478に基づいており、その全体が引用により援用される。
 1 前処理システム
 2 一次純水システム
 3 サブシステム
 17 第1膜装置
 17A,17B,17C 第1膜モジュール
 18 第2膜装置
 18A,18B,18C 第2膜モジュール
 30,31,32 微粒子測定器

Claims (10)

  1.  一次純水から超純水を製造するサブシステムを有する超純水製造装置であって、
     該サブシステムの最後段に膜装置が設けられている超純水製造装置において、
     該膜装置が直列に多段に設置されており、第1段の膜装置はUF膜装置、MF膜装置又はRO膜装置であり、最後段の膜装置はUF膜装置又はイオン交換基修飾されていないMF膜装置であることを特徴とする超純水製造装置。
  2.  請求項1において、前記膜装置として、UF膜装置が直列に2段に設置されていることを特徴とする超純水製造装置。
  3.  請求項1において、前記膜装置として、MF膜装置、RO膜装置及びUF膜装置がこの順に3段に設置されていることを特徴とする超純水製造装置。
  4.  請求項1ないし3のいずれか1項において、前記最後段の直前の段の膜装置の処理水の微粒子数を測定する微粒子測定手段を設けたこと特徴とする超純水製造装置。
  5.  請求項1ないし4のいずれか1項において、前記最後段の膜装置の処理水の微粒子数を測定する微粒子測定手段を設けたこと特徴とする超純水製造装置。
  6.  請求項4又は5において、2以上の前記膜装置の処理水の微粒子数を測定する微粒子測定手段を設けたことを特徴とする超純水製造装置。
  7.  請求項6において、前記微粒子測定手段は、各膜装置毎に設けられていることを特徴とする超純水製造装置。
  8.  請求項6において、複数の膜装置に対して1台の前記微粒子測定手段が設けられており、微粒子数測定のために各膜装置から該微粒子測定手段に送給する処理水を順番に切り換えることにより、該1台の微粒子測定手段で各々の膜装置の処理水の微粒子数の測定が行われることを特徴とする超純水製造装置。
  9.  請求項1ないし8のいずれか1項において、前記膜装置は、並列に設けられた2以上の膜モジュールを有し、
     該2以上の膜モジュールの各々の処理水の取出配管から分岐した、微粒子数測定のための水を採水して前記微粒子測定手段に送給するための、自動弁を備えた採水配管が設けられており、
     該自動弁の切り換えにより、各膜モジュール毎の処理水の微粒子数の測定が行われるように構成されていることを特徴とする超純水製造装置。
  10.  請求項9において、更に、前記2以上の膜モジュールからの各処理水が合流する前記膜装置の処理水の取出配管に分岐して、微粒子数測定のための水を採水して前記微粒子測定手段に送給するための、自動弁を備えた採水配管が設けられており、
     前記2以上の膜モジュールの各々の処理水の取出配管から分岐した採水配管に設けられた自動弁と、該膜装置の処理水の取出配管から分岐した採水配管に設けられた自動弁の切り換えにより、該各膜モジュール毎の処理水の微粒子数と該膜装置の処理水の微粒子数との測定が行われるように構成されていることを特徴とする超純水製造装置。
PCT/JP2014/076109 2013-10-04 2014-09-30 超純水製造装置 WO2015050125A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/021,178 US20160220958A1 (en) 2013-10-04 2014-09-30 Ultrapure water production apparatus
KR1020167005770A KR102092441B1 (ko) 2013-10-04 2014-09-30 초순수 제조 장치
JP2015540505A JP6304259B2 (ja) 2013-10-04 2014-09-30 超純水製造装置
CN201480048799.XA CN105517960A (zh) 2013-10-04 2014-09-30 超纯水制造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-209175 2013-10-04
JP2013209175 2013-10-04
JP2014013478 2014-01-28
JP2014-013478 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015050125A1 true WO2015050125A1 (ja) 2015-04-09

Family

ID=52778713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076109 WO2015050125A1 (ja) 2013-10-04 2014-09-30 超純水製造装置

Country Status (6)

Country Link
US (1) US20160220958A1 (ja)
JP (1) JP6304259B2 (ja)
KR (1) KR102092441B1 (ja)
CN (1) CN105517960A (ja)
TW (1) TWI627995B (ja)
WO (1) WO2015050125A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064342A (ja) * 2014-09-24 2016-04-28 オルガノ株式会社 超純水製造装置
JP2018030087A (ja) * 2016-08-24 2018-03-01 オルガノ株式会社 超純水製造装置
WO2018207492A1 (ja) * 2017-05-12 2018-11-15 栗田工業株式会社 ボイラ水処理装置および処理方法
JP2018176082A (ja) * 2017-04-14 2018-11-15 栗田工業株式会社 水質調整水の製造方法及び装置
WO2019022174A1 (ja) * 2017-07-26 2019-01-31 富士フイルム株式会社 ろ過装置、精製装置、薬液の製造装置、ろ過済み被精製物、薬液、及び、感活性光線性又は感放射線性樹脂組成物
WO2019155672A1 (ja) * 2018-02-07 2019-08-15 栗田工業株式会社 超純水製造システムの微粒子管理方法
WO2019188964A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
WO2019188965A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
WO2019188963A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造システムの運転方法
JP2020037088A (ja) * 2018-09-05 2020-03-12 栗田工業株式会社 超純水製造装置の運転方法
JP2020171892A (ja) * 2019-04-11 2020-10-22 野村マイクロ・サイエンス株式会社 中空糸膜損傷検出装置及び超純水製造装置並びに中空糸膜損傷検出方法
WO2021029094A1 (ja) * 2019-08-15 2021-02-18 栗田工業株式会社 非再生型イオン交換樹脂装置の微粒子破過時間の予測方法及び非再生型イオン交換樹脂装置の管理方法
JP2021506562A (ja) * 2017-12-20 2021-02-22 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 温水カート調整システムおよび方法
JP2021087957A (ja) * 2021-03-11 2021-06-10 栗田工業株式会社 水質調整水の製造方法及び装置
WO2024004472A1 (ja) * 2022-06-30 2024-01-04 オルガノ株式会社 純水製造装置の膜ろ過装置の性能評価装置とこれを用いた純水製造システム、及び純水製造装置の膜ろ過装置の性能評価方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265287B1 (ja) * 2017-02-17 2018-01-24 栗田工業株式会社 選択性透過膜、その製造方法及び水処理方法
JP6871763B2 (ja) * 2017-03-09 2021-05-12 オルガノ株式会社 中空糸膜装置の清浄度の評価方法、洗浄方法及び中空糸膜装置の洗浄装置
KR101998875B1 (ko) * 2018-05-30 2019-07-10 주식회사 앱스필 파티클 카운터용 외함 및 이를 구비한 초순수 생산 시스템
JP7171386B2 (ja) * 2018-11-22 2022-11-15 野村マイクロ・サイエンス株式会社 超純水製造装置の立ち上げ方法及び超純水製造装置
KR20210141462A (ko) * 2019-03-29 2021-11-23 쿠리타 고교 가부시키가이샤 미립자 제거 장치 및 미립자 제거 방법
CN113874328B (zh) * 2019-05-30 2023-09-12 奥加诺株式会社 超纯水制造系统及超纯水制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397284A (ja) * 1986-10-14 1988-04-27 Shinko Fuaudoraa Kk 超純水中の微量有機物の除去方法
JPS63294907A (ja) * 1987-05-26 1988-12-01 Daicel Chem Ind Ltd 中空糸型限外濾過膜モジュ−ル
JPH0316692A (ja) * 1989-03-06 1991-01-24 Morita Kagaku Kogyo Kk 無菌純水の供給方法
JPH05138167A (ja) * 1991-11-19 1993-06-01 Japan Organo Co Ltd 超純水供給装置
JPH0760291A (ja) * 1993-08-30 1995-03-07 Nippon Millipore Kk パイロジエンフリーの超純水の製造方法
US5518624A (en) * 1994-05-06 1996-05-21 Illinois Water Treatment, Inc. Ultra pure water filtration
JPH1099855A (ja) * 1996-08-05 1998-04-21 Sony Corp 限外濾過機能を備える超純水供給プラント、および超純水の供給方法
JP2011230021A (ja) * 2010-04-24 2011-11-17 Suido Kiko Kaisha Ltd 膜損傷検知方法及び膜ろ過設備

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630764B2 (ja) * 1989-03-06 1994-04-27 森田化学工業株式会社 超純水ラインの滅菌方法
US5282967A (en) * 1989-03-06 1994-02-01 Morita Kagaku Kogyo Co., Ltd. Method for feeding germ-free pure water
JP3059238B2 (ja) 1991-05-13 2000-07-04 日東電工株式会社 超純水製造ラインの運転方法及び分離膜モジュ−ル
JP3468784B2 (ja) * 1992-08-25 2003-11-17 栗田工業株式会社 超純水製造装置
JPH10216721A (ja) 1997-02-07 1998-08-18 Kurita Water Ind Ltd 超純水製造装置
KR100687361B1 (ko) * 1999-04-27 2007-02-27 쿠리타 고교 가부시키가이샤 오존 용해수의 제조장치
DE10005735A1 (de) * 2000-02-09 2001-08-23 Evotec Biosystems Ag Verfahren und Vorrichtung zur Abführung suspendierter Mikropartikel aus einem fluidischen Mikrosystem
JP3906684B2 (ja) 2001-12-25 2007-04-18 栗田工業株式会社 超純水供給装置
JP2004283710A (ja) 2003-03-20 2004-10-14 Kurita Water Ind Ltd 純水製造装置
JP5045099B2 (ja) * 2004-03-31 2012-10-10 栗田工業株式会社 超純水製造装置及び超純水製造装置の運転方法
JP4745326B2 (ja) * 2005-01-31 2011-08-10 野村マイクロ・サイエンス株式会社 超純水中の微粒子数測定方法、微粒子数測定用ろ過装置、その製造方法及びその装置に用いる中空糸膜ユニット
JP5124946B2 (ja) * 2006-01-12 2013-01-23 栗田工業株式会社 超純水製造装置における超純水中の過酸化水素の除去方法
US8741155B2 (en) * 2007-04-03 2014-06-03 Evoqua Water Technologies Llc Method and system for providing ultrapure water
CN105217853A (zh) * 2008-03-31 2016-01-06 栗田工业株式会社 纯水制造方法及纯水制造装置
JP5256859B2 (ja) * 2008-06-05 2013-08-07 オムロン株式会社 通行制御装置
WO2010046946A1 (ja) * 2008-10-21 2010-04-29 北斗電子工業株式会社 液体中の粒子のサイズの検出方法および装置
US20170267550A1 (en) * 2012-07-13 2017-09-21 Kurita Water Industries Ltd. Ultrapure water producing method
KR102027026B1 (ko) * 2013-07-24 2019-09-30 쿠리타 고교 가부시키가이샤 초순수 제조 시스템, 초순수 제조 공급 시스템 및 그 세정 방법
JP2015093226A (ja) * 2013-11-11 2015-05-18 栗田工業株式会社 純水製造方法及び装置
EP3203477B1 (en) * 2016-02-03 2020-01-01 Hiroshi Watanabe Semiconductor apparatus and identification method of a semiconductor chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397284A (ja) * 1986-10-14 1988-04-27 Shinko Fuaudoraa Kk 超純水中の微量有機物の除去方法
JPS63294907A (ja) * 1987-05-26 1988-12-01 Daicel Chem Ind Ltd 中空糸型限外濾過膜モジュ−ル
JPH0316692A (ja) * 1989-03-06 1991-01-24 Morita Kagaku Kogyo Kk 無菌純水の供給方法
JPH05138167A (ja) * 1991-11-19 1993-06-01 Japan Organo Co Ltd 超純水供給装置
JPH0760291A (ja) * 1993-08-30 1995-03-07 Nippon Millipore Kk パイロジエンフリーの超純水の製造方法
US5518624A (en) * 1994-05-06 1996-05-21 Illinois Water Treatment, Inc. Ultra pure water filtration
JPH1099855A (ja) * 1996-08-05 1998-04-21 Sony Corp 限外濾過機能を備える超純水供給プラント、および超純水の供給方法
JP2011230021A (ja) * 2010-04-24 2011-11-17 Suido Kiko Kaisha Ltd 膜損傷検知方法及び膜ろ過設備

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064342A (ja) * 2014-09-24 2016-04-28 オルガノ株式会社 超純水製造装置
KR20180125595A (ko) * 2016-08-24 2018-11-23 오르가노 코포레이션 초순수 제조장치
JP2018030087A (ja) * 2016-08-24 2018-03-01 オルガノ株式会社 超純水製造装置
WO2018037686A1 (ja) * 2016-08-24 2018-03-01 オルガノ株式会社 超純水製造装置
KR102119838B1 (ko) 2016-08-24 2020-06-05 오르가노 코포레이션 초순수 제조장치
JP2018176082A (ja) * 2017-04-14 2018-11-15 栗田工業株式会社 水質調整水の製造方法及び装置
JP2018192385A (ja) * 2017-05-12 2018-12-06 栗田工業株式会社 ボイラ水処理装置および処理方法
WO2018207492A1 (ja) * 2017-05-12 2018-11-15 栗田工業株式会社 ボイラ水処理装置および処理方法
WO2019022174A1 (ja) * 2017-07-26 2019-01-31 富士フイルム株式会社 ろ過装置、精製装置、薬液の製造装置、ろ過済み被精製物、薬液、及び、感活性光線性又は感放射線性樹脂組成物
JPWO2019022174A1 (ja) * 2017-07-26 2020-07-16 富士フイルム株式会社 ろ過装置、精製装置、薬液の製造装置、ろ過済み被精製物、薬液、及び、感活性光線性又は感放射線性樹脂組成物
JP7282141B2 (ja) 2017-07-26 2023-05-26 富士フイルム株式会社 ろ過装置、精製装置、薬液の製造装置、ろ過済み被精製物、薬液、及び、感活性光線性又は感放射線性樹脂組成物
US11559758B2 (en) 2017-07-26 2023-01-24 Fujifilm Corporation Filtering device, purification device, chemical liquid manufacturing device, filtered substance to be purified, chemical liquid, and actinic ray-sensitive or radiation-sensitive resin composition
JP2022009469A (ja) * 2017-07-26 2022-01-14 富士フイルム株式会社 ろ過装置、精製装置、薬液の製造装置、ろ過済み被精製物、薬液、及び、感活性光線性又は感放射線性樹脂組成物
US11975294B2 (en) 2017-12-20 2024-05-07 Evoqua Water Technologies Llc Vanox hot water cart conditioning method
JP7303187B2 (ja) 2017-12-20 2023-07-04 エヴォクア ウォーター テクノロジーズ エルエルシー 温水カート調整システムおよび方法
JP2021506562A (ja) * 2017-12-20 2021-02-22 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 温水カート調整システムおよび方法
WO2019155672A1 (ja) * 2018-02-07 2019-08-15 栗田工業株式会社 超純水製造システムの微粒子管理方法
JP7143595B2 (ja) 2018-02-07 2022-09-29 栗田工業株式会社 超純水製造システムの微粒子管理方法
JP2019136628A (ja) * 2018-02-07 2019-08-22 栗田工業株式会社 超純水製造システムの微粒子管理方法
CN111108069A (zh) * 2018-02-07 2020-05-05 栗田工业株式会社 超纯水制造系统的微粒管理方法
JPWO2019188963A1 (ja) * 2018-03-27 2021-03-18 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造システムの運転方法
WO2019188963A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造システムの運転方法
JP7267258B2 (ja) 2018-03-27 2023-05-01 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造システムの運転方法
WO2019188965A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
WO2019188964A1 (ja) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
JP2020037088A (ja) * 2018-09-05 2020-03-12 栗田工業株式会社 超純水製造装置の運転方法
JP7031538B2 (ja) 2018-09-05 2022-03-08 栗田工業株式会社 超純水製造装置の運転方法
JP2020171892A (ja) * 2019-04-11 2020-10-22 野村マイクロ・サイエンス株式会社 中空糸膜損傷検出装置及び超純水製造装置並びに中空糸膜損傷検出方法
JP2021030102A (ja) * 2019-08-15 2021-03-01 栗田工業株式会社 非再生型イオン交換樹脂装置の微粒子破過時間の予測方法及び非再生型イオン交換樹脂装置の管理方法
WO2021029094A1 (ja) * 2019-08-15 2021-02-18 栗田工業株式会社 非再生型イオン交換樹脂装置の微粒子破過時間の予測方法及び非再生型イオン交換樹脂装置の管理方法
JP2021087957A (ja) * 2021-03-11 2021-06-10 栗田工業株式会社 水質調整水の製造方法及び装置
JP7147898B2 (ja) 2021-03-11 2022-10-05 栗田工業株式会社 水質調整水の製造方法及び装置
WO2024004472A1 (ja) * 2022-06-30 2024-01-04 オルガノ株式会社 純水製造装置の膜ろ過装置の性能評価装置とこれを用いた純水製造システム、及び純水製造装置の膜ろ過装置の性能評価方法

Also Published As

Publication number Publication date
CN105517960A (zh) 2016-04-20
KR102092441B1 (ko) 2020-03-23
TW201532660A (zh) 2015-09-01
KR20160065813A (ko) 2016-06-09
KR102092441B9 (ko) 2022-06-07
US20160220958A1 (en) 2016-08-04
JPWO2015050125A1 (ja) 2017-03-09
JP6304259B2 (ja) 2018-04-04
TWI627995B (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
JP6304259B2 (ja) 超純水製造装置
TWI408107B (zh) 超純水製造裝置及其運轉方法
KR102287709B1 (ko) 초순수 제조 시스템
JP5834492B2 (ja) 超純水製造装置
CN109562964B (zh) 超纯水生产设备
WO2016136650A1 (ja) 水中微粒子の除去装置及び超純水製造・供給システム
JP2004000919A (ja) 脱塩水製造装置
JP6469400B2 (ja) 超純水製造装置
JP5962135B2 (ja) 超純水製造装置
JP5915295B2 (ja) 純水製造方法
JPS62110795A (ja) 高純度水の製造装置
TW201942067A (zh) 超純水製造系統及超純水製造方法
JP6417734B2 (ja) 超純水製造方法
JP3985500B2 (ja) 超純水供給方法
JP5842347B2 (ja) 超純水製造用サブシステム
JP3963319B2 (ja) 超純水製造装置
JP2005246126A (ja) 純水又は超純水の製造装置及び製造方法
JP4826864B2 (ja) 超純水製造装置
JP5135654B2 (ja) 二次純水製造装置
JP2008086854A (ja) 純水製造装置
WO2019188964A1 (ja) 超純水製造システム及び超純水製造方法
CN210237337U (zh) 一种反渗透与edi设备组合除二氧化硅装置
WO2014010075A1 (ja) 超純水製造装置
KR20210145125A (ko) 막 탈기 장치의 세정 방법 및 초순수 제조 시스템
TW202225104A (zh) 超純水製造系統及超純水製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540505

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005770

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850135

Country of ref document: EP

Kind code of ref document: A1