WO2019188964A1 - 超純水製造システム及び超純水製造方法 - Google Patents

超純水製造システム及び超純水製造方法 Download PDF

Info

Publication number
WO2019188964A1
WO2019188964A1 PCT/JP2019/012461 JP2019012461W WO2019188964A1 WO 2019188964 A1 WO2019188964 A1 WO 2019188964A1 JP 2019012461 W JP2019012461 W JP 2019012461W WO 2019188964 A1 WO2019188964 A1 WO 2019188964A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafiltration membrane
ultrapure water
water
water production
treated
Prior art date
Application number
PCT/JP2019/012461
Other languages
English (en)
French (fr)
Inventor
輝 丹治
しおり 永田
野口 幸男
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to JP2020510064A priority Critical patent/JPWO2019188964A1/ja
Priority to KR1020207024835A priority patent/KR20200135314A/ko
Publication of WO2019188964A1 publication Critical patent/WO2019188964A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to an ultrapure water production system and an ultrapure water production method.
  • ultrapure water used in a semiconductor manufacturing process is manufactured using an ultrapure water manufacturing system.
  • the ultrapure water production system includes, for example, a pretreatment unit that removes suspended substances in raw water to obtain pretreatment water, total organic carbon (TOC) components and ion components in pretreatment water, reverse osmosis membrane devices and ions It consists of a primary pure water production section that produces primary pure water by removing using an exchange device, and a secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water. .
  • TOC total organic carbon
  • secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water.
  • primary pure water is highly processed by an ultraviolet oxidation device, an ion exchange pure water device, an ultrafiltration membrane (UF) device, or the like to generate ultrapure water.
  • the ultrafiltration membrane device is disposed in the vicinity of the last stage of the secondary pure water production unit, and removes fine particles generated from an ion exchange resin or the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • polysulfone polysulfone
  • ultrafiltration membranes made of PTFE or PVDF for ultrapure water are still under development with regard to the removal performance of fine particles, and it is difficult to use them for the purpose of removing fine particles. It is. Therefore, in order to produce ultrapure water in which fine particles having a particle diameter of less than 50 nm and about 10 nm are reduced, it is necessary to use an ultrafiltration membrane made of, for example, polysulfone.
  • JP 2016-64342 A International Publication No. 2015/050125 JP-A-10-99855 JP 2016-083646 A
  • water containing an oxidant such as hydrogen peroxide may be sterilized through the system after the system is newly manufactured or before re-operation after replacement of the apparatus.
  • an oxidant such as hydrogen peroxide
  • a startup operation is performed in which pure water is passed through the system for cleaning.
  • filtration membranes conventionally used for removing fine particles having a particle size of less than 50 nm and about 10 nm, such as an ultrafiltration membrane made of polysulfone are deteriorated due to this sterilization, and are started up.
  • dust generation (fine particles) from the ultrafiltration membrane may continue during operation, and it takes a long time to start up.
  • the present invention has been made to solve the above-described problems, and provides an ultrapure water production system and an ultrapure water production method capable of shortening the startup period after sterilization of the ultrapure water production system.
  • the purpose is to do.
  • the ultrapure water production system of the present invention has an ultrafiltration membrane device and a particulate filter connected in series to the ultrafiltration membrane device, and water to be treated is composed of the ultrafiltration membrane device and the particulate filter.
  • the ultrafiltration membrane device has a removal rate of fine particles having a particle diameter of 20 nm or more of 99.8% or more, and the fine particle filter has: It comprises an oxidation-resistant filtration membrane.
  • the ultrafiltration membrane device preferably has an ultrafiltration membrane with a molecular weight cut-off of 3000 to 10,000, and the ultrafiltration membrane device comprises polysulfone, polyvinylidene fluoride, It is preferable to have an ultrafiltration membrane made of polytetrafluoroethylene.
  • the fine particle filter preferably has a filtration membrane having a pore size of 40 nm to 2 ⁇ m, and the fine particle filter has a filtration membrane made of polyvinylidene fluoride or polytetrafluoroethylene. It is preferable.
  • the ultrapure water production system of the present invention further comprises a hydrogen peroxide removing device upstream of the ultrafiltration membrane device, and the ultrafiltration membrane is treated water of the hydrogen peroxide removing device as the treated water. It is preferable that the treatment can be performed sequentially with the apparatus and the particulate filter.
  • the ultrapure water production system of the present invention comprises, in this order, an ultraviolet oxidation device, a hydrogen peroxide removal device, a degassing membrane device, and a non-regenerative mixed bed ion exchange resin device upstream of the ultrafiltration membrane device, It is preferable that the treated water of the non-regenerative mixed bed ion exchange resin apparatus can be treated with the ultrafiltration membrane apparatus and the particulate filter as treated water.
  • water to be treated is passed through an ultrafiltration membrane device, and fine particles having a particle diameter of 20 nm or more are treated with a removal rate of 99.8% or more.
  • the treated water is passed through a particulate filter having oxidation resistance and treated.
  • the water to be treated of the fine particle filter has a number of fine particles having a particle diameter of 20 nm or more of 500 pcs. / L or less is preferable.
  • the start-up period after sterilization of the ultrapure water production system can be shortened.
  • Ultrafiltration membranes are generally relatively resistant to oxidizing agents such as hydrogen peroxide. Therefore, even when the hydrogen peroxide concentration is contained in the water supplied to the ultrafiltration membrane, it is understood that the membrane deterioration due to hydrogen peroxide does not occur for a short time even at a concentration of about 1 to 2%, for example. It was. However, when the ultrafiltration membrane after hydrogen peroxide sterilization is started up, there is a difference in the rise time depending on the material of the ultrafiltration membrane, that is, the ultrafiltration membrane having higher oxidation resistance. I found that the rise time is smaller.
  • Patent Document 4 discloses that when the ultrafiltration membrane is broken, coarse particles of 0.4 to 10 ⁇ m are generated. However, chemical damage due to hydrogen peroxide during cleaning, membrane exchange, It was inferred that the start-up operation takes time because fine particles are generated by a similar mechanism due to physical damage caused by rapid changes in flow rate at the start and stop of water flow. The present invention has been completed based on the above findings.
  • the ultrapure water production system 1 includes a pretreatment unit 10, a primary pure water production unit 11, a tank 12, and a secondary pure water production unit 13.
  • An ultrafiltration membrane device 2 for removing particulates in water and a particulate filter 3 are sequentially provided on the rear side in the water production unit 13. Both the pretreatment unit 10 and the primary pure water production unit 11 are provided as necessary.
  • an ultrafiltration membrane device having a high removal rate of fine particles having a particle diameter of less than 20 nm or about 20 nm is used as the ultrafiltration membrane device 2, and the acid filter is used as the particle filter 3.
  • a filter device having a functional filtering membrane is used.
  • the ultrafiltration membrane device 2 highly removes the fine particles as described above, and captures the generated dust by the fine particle filter 3, so that the ultrapure water production system is started up after sterilization. The period can be shortened.
  • the ultrafiltration membrane device 2 the particulate filter 3, and the other devices that the ultrapure water production system 1 have as necessary will be described.
  • the pretreatment unit 10 removes suspended substances in the raw water to generate pretreatment water, and supplies the pretreatment water to the primary pure water production unit 11.
  • the pretreatment unit 10 is configured by appropriately selecting, for example, a sand filtration device, a microfiltration device or the like for removing suspended substances in the raw water, and further heat exchange for adjusting the temperature of the treated water as necessary. It is configured with a container.
  • the pretreatment unit 10 may be omitted depending on the quality of the raw water.
  • Raw water is, for example, city water, well water, ground water, industrial water, water used in semiconductor manufacturing factories, etc., collected and processed (recovered water).
  • the primary pure water production unit 11 includes a reverse osmosis membrane device, a degassing device (decarbonation tower, vacuum degassing device, degassing membrane device, etc.), ion exchange device (cation exchange device, anion exchange device, mixed bed type). An ion exchange device or the like) and an ultraviolet oxidation device are appropriately combined.
  • the primary pure water production unit 11 produces primary pure water by removing ionic and nonionic components and dissolved gas in the pretreatment water, and supplies this primary pure water to the tank 12.
  • the primary pure water has, for example, a total organic carbon (TOC) concentration of 5 ⁇ g C / L or less, a resistivity of 17 M ⁇ ⁇ cm or more, and a fine particle number of 20 nm or more of 100,000 psc. / L or less.
  • TOC total organic carbon
  • the tank 12 stores primary pure water and supplies the required amount to the secondary pure water production unit 13.
  • the secondary pure water production unit 13 removes trace impurities in the primary pure water to produce ultrapure water.
  • the secondary pure water production unit 13 includes, for example, a heat exchanger (HEX) 4, an ultraviolet oxidizer (TOC-UV) 5, hydrogen peroxide on the upstream side of the ultrafiltration membrane device 2. It comprises a removal device (H 2 O 2 removal device) 6, a degassing membrane device (MDG) 7, and a non-regenerative mixed bed ion exchange resin device (Polisher) 8.
  • the secondary pure water manufacturing part 13 does not necessarily need to be equipped with the said apparatus, What is necessary is just to employ
  • the heat exchanger (HEX) 4 adjusts the temperature of the primary pure water supplied from the tank 12 as necessary.
  • the temperature of the primary pure water whose temperature is adjusted by the heat exchanger 4 is preferably 25 ⁇ 3 ° C.
  • the ultraviolet oxidizer (TOC-UV) 5 irradiates the primary pure water whose temperature is adjusted by the heat exchanger 4 with ultraviolet rays to decompose and remove trace organic substances in the water.
  • the ultraviolet oxidation device 5 includes, for example, an ultraviolet lamp and generates ultraviolet rays having a wavelength of about 185 nm.
  • the ultraviolet oxidation device 5 may further generate ultraviolet rays having a wavelength of about 254 nm.
  • the ultraviolet oxidizer 5 in order to reduce the hydrogen peroxide flowing out from the ultraviolet oxidizer 5 and suppress the deterioration of the ultrafiltration membrane of the downstream ultrafiltration membrane device 2 and the filtration membrane of the particulate filter 3, the ultraviolet oxidizer
  • the amount of ultraviolet irradiation at 5 is preferably 0.05 to 0.2 kWh / m 3 .
  • the hydrogen peroxide removing device (H 2 O 2 removing device) 6 is a device that decomposes and removes hydrogen peroxide in water.
  • a palladium-carrying resin device that decomposes and removes hydrogen peroxide with a palladium (Pd) -carrying resin
  • examples thereof include a reducing resin device having a surface filled with a reducing resin having a sulfite group and / or a hydrogen sulfite group. Since the hydrogen peroxide concentration in the water can be reduced by providing the hydrogen peroxide removing device 6, it is possible to suppress the deterioration of the ultrafiltration membrane device 2.
  • the degassing membrane device (MDG) 7 is a device that depressurizes the secondary side of the gas-permeable membrane and allows only the dissolved gas in water flowing through the primary side to permeate to the secondary side and remove it.
  • MDG degassing membrane device
  • commercially available products such as 3M X50 and X40, and DIC Separel can be used as the degassing membrane device 7.
  • the degassing membrane device 7 removes dissolved oxygen in the treated water obtained from the hydrogen peroxide removing device 6 to generate treated water having a dissolved oxygen concentration (DO) of 1 ⁇ g / L or less, for example.
  • DO dissolved oxygen concentration
  • the non-regenerative type mixed bed type ion exchange resin apparatus (Polisher) 8 has a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed. Adsorption and removal of cation and anion components.
  • the non-regenerative mixed bed type ion exchange resin device 8 is a device that mixes and accommodates a cation exchange resin and an anion exchange resin therein.
  • the cation exchange resin used here is a strong acid cation exchange resin or a weak acid cation exchange resin
  • the anion exchange resin is a strong base anion exchange resin or a weak base anion exchange resin.
  • As the mixed bed type ion exchange resin it is preferable to use a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Examples of commercially available products include N-Lite MBSP manufactured by Nomura Micro Science. MBGP or the like can be used.
  • the ultrafiltration membrane device 2 processes the treated water of the non-regenerative mixed bed ion exchange resin device 8 to generate permeated water and concentrated water.
  • the removal rate of fine particles having a particle diameter of 20 nm or more is 99.8% or more, preferably 99.95% or more, and more preferably 99.99% or more.
  • the ultrafiltration membrane device 2 removes most of the fine particles that cause deterioration in the quality of ultrapure water.
  • the number of fine particles having a particle diameter of 20 nm or more is 500 pcs. / L or less, and further 200 pcs. / L or less permeated water can be obtained.
  • the ultrafiltration membrane device 2 can remove fine particles having a particle diameter of 10 nm or more with the above-described removal rate, thereby further improving the quality of ultrapure water so that the number of fine particles having a particle diameter of 10 nm or more is 200 pcs. / L or less, or even 50 pcs. / L or less permeated water can be obtained.
  • the permeated water generated in the ultrafiltration membrane device 2 is supplied to the fine particle filter 3 in the subsequent stage.
  • the concentrated water is discharged out of the system, or is circulated and reprocessed before the ultrapure water production system.
  • the ultrafiltration membrane device 2 treats the treated water of the non-regenerative mixed bed ion exchange resin device 8 in FIG. 2 above, but is not limited thereto, and water from which coarse particles have been removed.
  • it may be treated water after being treated in the pretreatment unit, and pretreated water, primary treated water, secondary treated water (including circulating water) and the like are treated water. And can.
  • the ultrafiltration membrane device 2 has such a particulate removal rate as described above for such water to be treated.
  • As the water to be treated it is more preferable to use the treated water of the suspended substance removing device provided to the pretreatment unit 10 or the treated water of the reverse osmosis membrane device provided to the primary pure water production unit 11.
  • the ultrafiltration membrane device 2 is preferably provided in the secondary pure water production unit 13.
  • the fine particle removal rate is, for example, the number of fine particles having a predetermined particle size in the permeated water when fine particle-containing water pressurized to 0.1 MPa or more is passed through the film to be measured at a water recovery rate of 95% or more.
  • the number of fine particles having a predetermined particle diameter in the feed water are calculated by ⁇ 1- (number of fine particles having a predetermined particle diameter in permeated water / number of fine particles having a predetermined particle diameter in feed water) ⁇ ⁇ 100 (%) can do.
  • the removal rate can be confirmed by mixing polystyrene latex (manufactured by Thermo Fisher, model number 3020A, nominal diameter 20 nm) with ultrapure water and charging 500,000 / ml to the water supplied to the membrane device to be measured.
  • Such an ultrafiltration membrane device 2 is preferably a device having an ultrafiltration membrane having a fractional molecular weight of preferably 3000 to 10000, more preferably 4000 to 8000, because a high particulate removal rate can be easily obtained.
  • the fractional molecular weight of the ultrafiltration membrane can be measured, for example, as follows. Sample water containing a plurality of different types of marker molecules with known molecular weights is passed through the ultrafiltration membrane to be measured, and the removal rate of the marker molecules is measured. The measurement result of the removal rate obtained is plotted against the molecular weight to create a fraction curve. The molecular weight with a removal rate of 90%, for example, is determined from the fraction curve as the fraction molecular weight of the membrane.
  • the marker molecule dextran, polyethylene glycol (PEG), protein or the like is used.
  • the ultrafiltration membrane of the ultrafiltration membrane device 2 is, for example, an asymmetric membrane or a composite membrane, such as polysulfone, polyolefin, polyester, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethersulfone, or polyamide. Is preferably used as a material.
  • the membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane or the like, but is not limited thereto. Since a high fine particle removal rate can be obtained, those made of polysulfone are more preferable. Note that the ultrafiltration membrane may not have the oxidation resistance as the filtration membrane of the particulate filter 3 described later.
  • Effective membrane area of the ultrafiltration membrane device 2 is preferably 5m 2 ⁇ 60m 2, 10m 2 ⁇ 50m 2 is more preferable. 15 m 2 to 40 m 2 is more preferable, and when the effective film area is in the above range, deterioration of the film is easily suppressed.
  • the water recovery rate in the ultrafiltration membrane device 2 is preferably 95% or more, and more preferably 99% or more. Thereby, the production efficiency of ultrapure water can be improved while obtaining ultrapure water from which fine particles are highly removed.
  • the particulate filter 3 processes the permeated water of the ultrafiltration membrane device 2 to generate permeated water and concentrated water.
  • the particulate filter 3 includes an oxidation-resistant filtration membrane.
  • a filtration membrane include an ultrafiltration membrane (UF) and a microfiltration membrane (MF) composed of PVDF or PTFE as a material.
  • the membrane shape include, but are not limited to, a sheet flat membrane, a spiral membrane, a tubular membrane, and a hollow fiber membrane.
  • the oxidation resistance of the filtration membrane is, for example, that the membrane has been immersed in 5% by mass of hydrogen peroxide for 10 days, and the change in the amount of permeated water is less than 5% before the test, or its tensile strength.
  • the film is not limited to a film that is determined to have oxidation resistance by the above method, and a film that is nominally considered to have hydrogen peroxide resistance or oxidation resistance may be used.
  • the fine particle filter 3 does not have to realize a high fine particle removal rate as that of the ultrafiltration membrane device 2. Therefore, the removal rate of fine particles having a particle diameter of 20 nm or more in the fine particle filter 3 is preferably 40 to 80%, more preferably 50 to 70%.
  • the pore size of the filtration membrane is preferably 40 nm to 2 ⁇ m, more preferably 70 nm to 1 ⁇ m, and more preferably 80 to 0.2 ⁇ m. Further preferred.
  • the pore diameter of the filtration membrane can be determined by a nominal pore diameter or can be measured using a substance having a known particle diameter by the same method as that for the ultrafiltration membrane.
  • the pore size of the filtration membrane is less than 40 nm, although dust generation from the ultrafiltration membrane device 2 can be captured, the number of filtration membranes used as a particulate filter increases, and the water flow differential pressure rises faster. Problems are likely to occur. Further, if the pore size of the filtration membrane exceeds 2 ⁇ m, dust generation from the ultrafiltration membrane may not be captured.
  • the water recovery rate in the particulate filter 3 is preferably 80% or more, and more preferably 90% or more. Thereby, the production efficiency of ultrapure water can be improved while obtaining ultrapure water from which fine particles are highly removed.
  • the number of fine particles having a particle size of 20 nm or more is preferably 500 pcs. / L or less, more preferably 200 pcs. / P or less ultrapure water can be obtained. More preferably, the number of fine particles having a particle size of 20 nm or more is 50 pc. / P or less high purity ultrapure water can be obtained.
  • the quality of ultrapure water is, for example, a total organic carbon (TOC) concentration of 1 ⁇ g C / L or less and a resistivity of 18 M ⁇ ⁇ cm or more.
  • the ultrapure water produced by the particulate filter 3 is supplied to a place (POU) where ultrapure water is used.
  • the sterilization of the ultrapure water production system 1 is performed, for example, as follows.
  • Hydrogen peroxide solution in which hydrogen peroxide is dissolved in primary pure water is supplied to the secondary pure water production unit 13 of the ultrapure water production system.
  • the concentration of hydrogen peroxide is, for example, 0.1 to 2% by mass.
  • a bypass pipe is provided to connect the front and rear of the hydrogen peroxide removing device 6 so that the hydrogen peroxide water does not flow through the hydrogen peroxide removing device 6, and a flow path is provided so that the hydrogen peroxide water flows through the bypass pipe.
  • the heat exchanger 4 For the hydrogen peroxide solution, the heat exchanger 4, the ultraviolet oxidation device 5, the degassing membrane device 7, the non-regenerative mixed bed type ion exchange resin device (polisher) 8, the ultrafiltration membrane device 2, and the particulate filter 3 are sequentially arranged. In the process, the inside of the piping constituting the flow path of each device is sterilized.
  • primary pure water not containing hydrogen peroxide is passed through the secondary pure water production unit 13 to remove hydrogen peroxide in the system. Thereafter, the primary pure water is further passed, and the start-up operation is performed until the quality of the permeated water of the particulate filter 3 becomes a quality suitable for the production of ultrapure water.
  • the ultrapure water production system 1 When the ultrapure water production system 1 has the pretreatment unit 10 or the primary pure water production unit 11, hydrogen peroxide from the upstream of the pretreatment unit 10 or immediately before the primary pure water production unit 11 during sterilization. Water may be allowed to flow. In the sterilization of the ultrapure water production system 1, in order to improve the sterilization efficiency, only the secondary pure water production unit 13, which requires a high degree of cleanness, or the primary pure water production unit 11 and the secondary pure water production unit 13, It is preferable to let hydrogen oxide water flow.
  • the ultrafiltration membrane of the ultrafiltration membrane device 2 does not have oxidation resistance, the ultrafiltration membrane is deteriorated by hydrogen peroxide and generates dust. Therefore, it is necessary to perform a startup operation in which pure water is allowed to flow until the dust generation is settled.
  • This startup operation is performed when, for example, the number of fine particles having a particle diameter of 20 nm or more in the permeated water of the fine particle filter 3 is 500 pcs. Continue until / L or less.
  • the dust generation from the ultrafiltration membrane is removed by the particulate filter 3 at the subsequent stage, so that the startup time is shortened.
  • the start-up time is, for example, about 2 to 24 hours, although it depends on the scale of the secondary pure water production unit 13.
  • the start-up operation is performed under conditions up to / L or less, the start-up time is about five times that when the fine particle filter 3 is provided, and is about 10 to 120 hours.
  • the startup period after sterilization of the ultrapure water production system can be shortened.
  • Example 1 An ultrapure water production system having a secondary pure water production unit similar to that shown in FIG. 2 was used. This secondary pure water production department is equipped with a heat exchanger, an ultraviolet oxidation device (JPW-2, manufactured by Nippon Photo Science Co., Ltd.), a Pd-supporting resin device (LANXESS, Lewatit K7333) downstream of the tank for storing the primary pure water.
  • JPW-2 ultraviolet oxidation device
  • LANXESS Lewatit K7333
  • Degassing membrane device (3M, X40 G451H), non-regenerative mixed bed type ion exchanger (Nomura Micro Science N-Lite MBSP 200L filling), ultrafiltration membrane device (Asahi Kasei, OLT- 6036 (fractionated molecular weight (nominal): 6000, effective membrane area: 34 m 2 ) and a microfiltration membrane device (manufactured by Nihon Entegris, Trinzik, nominal pore size 0.1 ⁇ m).
  • the ultrafiltration membrane device is installed with an ultrafiltration membrane soaked in 1% by mass of hydrogen peroxide solution for 1 hour, and then washed by passing pure water through it. After confirming that it became 0.5 ⁇ g / L or less, it was incorporated into the secondary pure water production department.
  • the primary pure water was supplied to the secondary pure water production department, and the change with time of the number of fine particles having a particle diameter of 20 nm or more in the permeated water of the microfiltration membrane device was measured.
  • a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems was used for the measurement of the number of fine particles. The results are shown in the graph of FIG.
  • the number of fine particles having a particle diameter of 20 nm or more is 500 pcs. It can be seen that the time period until the reduction to / L is about 180 hours, and the start-up period after sterilization with hydrogen peroxide is shortened as compared with the configuration of the comparative example in which the particulate filter is not provided.
  • Example 2 The start-up time was measured under the same apparatus configuration and conditions as in Example 1 except that the microfiltration membrane apparatus of Example 1 was changed to Trinzik (nominal pore size 15 nm) manufactured by Nihon Entegris.
  • Example 1 when microfiltration membranes were used in the same number as in Example 1, the water flow differential pressure in the microfiltration membrane device was 1.5 times that in Example 1. Therefore, it was necessary to increase the pump output, but the change with time in the number of fine particles was the same as in Example 1. However, approximately half a year after the start-up, the differential pressure increase at the microfiltration membrane became severe, and it was necessary to replace the microfiltration membrane. Moreover, it turned out that in order to manufacture ultrapure water with the operating pressure of an Example, it is necessary to double the number of microfiltration membranes from this. From the above, it was found that when a fine particle filter having a small pore diameter is used, the cost of the microfiltration membrane is doubled, but the change with time in the number of fine particles at the time of start-up is equivalent to that in Example 1.
  • SYMBOLS 1 Ultrapure water production system, 2 ... Ultrafiltration membrane apparatus, 3 ... Fine particle filter, 4 ... Heat exchanger (HEX), 5 ... Ultraviolet oxidation apparatus (TOC-UV), 6 ... Hydrogen peroxide removal apparatus, 7 Degassing membrane device (MDG), 8 Non-regenerative mixed bed ion exchange resin device (Polisher), 10 Pretreatment unit, 11 Primary water production unit, 12 Tank, 13 Secondary water production Department.
  • HEX Heat exchanger
  • TOC-UV Ultraviolet oxidation apparatus
  • MDG Degassing membrane device
  • Polyisher Non-regenerative mixed bed ion exchange resin device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

超純水製造システムの殺菌後の立ち上げ期間を短縮することのできる超純水製造システム及び超純水製造方法を提供すること。 直列に接続された限外ろ過膜装置2及び微粒子フィルター3を有し、被処理水を前記限外ろ過膜装置2と前記微粒子フィルター3で順に処理して超純水を製造する超純水製造システム1であって、前記限外ろ過膜装置2は、粒子径20nm以上の微粒子の除去率が99.8%以上であり、前記微粒子フィルター3は、耐酸化剤性のろ過膜を具備する超純水製造システム1及び超純水製造方法。

Description

超純水製造システム及び超純水製造方法
 本発明は、超純水製造システム及び超純水製造方法に関する。
 従来、半導体製造工程で使用する超純水は、超純水製造システムを用いて製造されている。超純水製造システムは、例えば、原水中の懸濁物質を除去して前処理水を得る前処理部、前処理水中の全有機炭素(TOC)成分やイオン成分を、逆浸透膜装置やイオン交換装置を用いて除去して一次純水を製造する一次純水製造部及び一次純水中の極微量の不純物を除去して超純水を製造する二次純水製造部で構成されている。原水としては、市水、井水、地下水、工業用水等が用いられる他、超純水の使用場所(ユースポイント:POU)で回収された使用済みの超純水(以下、「回収水」と称する。)が用いられる。
 二次純水製造部では、紫外線酸化装置、イオン交換純水装置及び限外ろ過膜(UF)装置等により一次純水が高度に処理されて超純水が生成する。限外ろ過膜装置は、この二次純水製造部の最後段付近に配置され、イオン交換樹脂などから生じる微粒子を除去する。
 ところで、超純水については、高純度化に対する要求が年々高まってきており、例えば微粒子濃度は、粒子径が50nm以上の微粒子数で、1000pcs./L以下が求められている。さらに、要求水質はより厳しくなる傾向にあり、粒子径が50nm未満、例えば10nm程度の微粒子の低減も求められてきている。そのため、より粒子径の小さな微粒子を高度に除去する方法が提案されている(例えば、特許文献1、2参照。)。
 超純水製造用の限外ろ過膜としては、ポリテトラフルオロエチレン(PTFE)製、ポリフッ化ビニリデン(PVDF)製、ポリスルホン製などの市販品が使用されている。中でも、上記のような微細微粒子の高い除去性能を実現するためには、ポリスルホン製の限外ろ過膜の使用が一般的である。これに対し、PTFE製や、PVDF製の超純水用の限外ろ過膜は、微細微粒子の除去性能に関しては、未だ開発中の段階であり、微細微粒子除去の目的でこれらを使うことは困難である。したがって、粒子径が50nm未満、さらに10nm程度の微粒子を低減した超純水を製造するには、例えばポリスルホン製などの限外ろ過膜を使う必要があるのが現状である。
 また、超純水水質の向上を目的として、超純水プラントの上流で生じたコンタミネーション分や粒状形成分を最末端に配置した限外ろ過膜装置で除去する方法も提案されている(例えば、特許文献3参照。)
 また、上記のような微細微粒子以外にも、限外ろ過膜の劣化又は破断時に特徴的な大きさ、形状の粗大粒子が超純水中に発生することも知られている(例えば、特許文献4参照。)。
特開2016-64342号公報 国際公開2015/050125号 特開平10-99855号公報 特開2016-083646号公報
 ところで、超純水製造システムでは、システムの新規製造後や、装置交換後の再運転前に、系内に過酸化水素等の酸化剤を含む水を通流させて殺菌することがある。殺菌後には、残留する過酸化水素を除去するため、系内に純水を通流させて洗浄する立ち上げ運転を行う。このとき、従来、粒子径が50nm未満、さらに10nm程度の微粒子の除去に用いられているろ過膜、例えばポリスルホン製の限外ろ過膜では、この殺菌により限外ろ過膜が劣化して、立ち上げ運転時に限外ろ過膜からの発塵(微粒子)が続く場合があり、立ち上げに長期間がかかるという課題があった。
 このような限外ろ過膜の発塵を原因とする立ち上げ時間の長期化に対して、上記特許文献1、2のように、単に限外ろ過膜や精密ろ過膜を2段に配置した構成のみでは、立ち上げ時間の短縮は困難であった。また、特許文献3のように、超純水製造システムの最末端や、POUの直前に限外ろ過膜や精密ろ過膜を設置する方法では、立ち上げ運転時の発塵を捕捉できるものの、超純水製造システムのサークル配管が立ち上げ運転時に発生する発塵で汚染されてしまうので、立ち上げに長時間かかるという問題を解消できない。
 本発明は、上記した課題を解消するためになされたものであって、超純水製造システムの殺菌後の立ち上げ期間を短縮することのできる超純水製造システム及び超純水製造方法を提供することを目的とする。
 本発明の超純水製造システムは、限外ろ過膜装置と該限外ろ過膜装置に直列に接続された微粒子フィルターとを有し、被処理水を前記限外ろ過膜装置と前記微粒子フィルターで順に処理して超純水を製造する超純水製造システムであって、前記限外ろ過膜装置は、粒子径20nm以上の微粒子の除去率が99.8%以上であり、前記微粒子フィルターは、耐酸化剤性のろ過膜を具備することを特徴とする。
 本発明の超純水製造システムにおいて、前記限外ろ過膜装置は、分画分子量が3000~10000の限外ろ過膜を有することが好ましく、前記限外ろ過膜装置は、ポリスルホン、ポリフッ化ビニリデン又はポリテトラフルオロエチレンを材料とする限外ろ過膜を有することが好ましい。
 本発明の超純水製造システムにおいて、前記微粒子フィルターは、孔径が40nm~2μmのろ過膜を有することが好ましく、前記微粒子フィルターは、ポリフッ化ビニリデン又はポリテトラフルオロエチレンを材料とするろ過膜を有することが好ましい。
 本発明の超純水製造システムは、前記限外ろ過膜装置の上流に、さらに過酸化水素除去装置を有し、前記過酸化水素除去装置の処理水を前記被処理水として前記限外ろ過膜装置と前記微粒子フィルターとで順に処理可能とすることが好ましい。
 本発明の超純水製造システムは、前記限外ろ過膜装置の上流に、紫外線酸化装置、過酸化水素除去装置、脱気膜装置及び非再生型混床式イオン交換樹脂装置をこの順に備え、
 前記非再生型混床式イオン交換樹脂装置の処理水を被処理水として前記限外ろ過膜装置及び微粒子フィルターで処理可能とすることが好ましい。
 本発明の超純水製造方法は、被処理水を限外ろ過膜装置に通水して、粒子径20nm以上の微粒子を99.8%以上の除去率で処理し、前記限外ろ過膜装置の処理水を、耐酸化剤性を有する微粒子フィルターに通水して処理することを特徴とする。
 本発明の超純水製造方法において、前記微粒子フィルターの被処理水は粒子径20nm以上の微粒子数が500pcs./L以下であることが好ましい。
 本発明の超純水製造システム及び超純水製造方法によれば、超純水製造システムの殺菌後の立ち上げ期間を短縮することができる。
実施形態に係る超純水製造システムを表すブロック図である。 実施形態に係る二次純水製造部を表すブロック図である。 実施例及び比較例の超純水製造システムにおける殺菌後の立ち上げ運転時の微粒子数の経時変化を表すグラフである。
 限外ろ過膜は、一般的に過酸化水素等の酸化剤に対して比較的耐性がある。したがって、限外ろ過膜への供給水中に過酸化水素濃度が含有される場合でも、例えば、1~2%程度の濃度でも短時間であれば、過酸化水素による膜劣化は起きないと理解されていた。ところが、過酸化水素殺菌を行った後の限外ろ過膜を立ち上げた場合、限外ろ過膜の素材によって、立ち上がり時間に違いが生じること、すなわち、より耐酸化剤性の強い限外ろ過膜の場合、立ち上がり時間がより小さいことを発見した。
 さらに、耐酸化剤性の比較的弱い限外ろ過膜の場合、この後段に、耐酸化剤性が強く、限外ろ過膜よりも孔径の大きな精密ろ過膜を設置することで、立ち上げ時間が短縮されることを見出した。
 これらのことから立ち上げ運転時に限外ろ過膜から流出する微粒子は、粒子径の比較的大きな微粒子であると推測された。特許文献4には、限外ろ過膜が破断した際に、0.4~10μmの粗大微粒子が発生することが開示されているが、洗浄時の過酸化水素による化学的ダメージや、膜交換や通水開始や停止時の急速な流量の変化等による物理的ダメージにより、これに似たようなメカニズムで微粒子が発生するため、立ち上げ運転に時間がかかると推論した。上記のような知見に基づいて本発明が完成された。
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。図1に示すように、本実施形態に係る超純水製造システム1は、前処理部10、一次純水製造部11、タンク12及び二次純水製造部13を備えており、二次純水製造部13内の後段側に水中の微粒子を除去する限外ろ過膜装置2と微粒子フィルター3を順に備えている。前処理部10及び一次純水製造部11はいずれも、必要に応じて設けられる。
 本実施形態の超純水製造システム1では、限外ろ過膜装置2として粒子径が20nm未満やさらに20nm程度の微細微粒子の除去率の高い限外ろ過膜装置を用いるとともに、微粒子フィルター3として耐酸化剤性のろ過膜を有するフィルター装置を用いる。これにより、限外ろ過膜装置2によって、上記のような微細微粒子を高度に除去するとともに、発生する発塵を微粒子フィルター3で捕捉することで、超純水製造システムの殺菌後の立ち上げ運転期間を短縮できる。
 以下、本実施形態に係る超純水製造システム1が有する限外ろ過膜装置2、微粒子フィルター3及び超純水製造システム1が必要に応じて有するその他の装置について説明する。
 前処理部10は、原水中の懸濁物質を除去して、前処理水を生成し、この前処理水を一次純水製造部11に供給する。前処理部10は、例えば、原水中の懸濁物質を除去するための砂ろ過装置、精密ろ過装置等を適宜選択して構成され、さらに必要に応じて被処理水の温度調節を行う熱交換器等を備えて構成される。なお、原水の水質によっては、前処理部10は省略してもよい。
 原水は、例えば、市水、井水、地下水、工業用水、半導体製造工場などで使用され、回収されて処理された水(回収水)である。
 一次純水製造部11は、逆浸透膜装置、脱気装置(脱炭酸塔、真空脱気装置、脱気膜装置等)、イオン交換装置(陽イオン交換装置、陰イオン交換装置、混床式イオン交換装置等)、紫外線酸化装置のうち1つ以上を適宜組み合わせて構成される。一次純水製造部11は、前処理水中のイオン成分及び非イオン成分、溶存ガスを除去して一次純水を製造し、この一次純水をタンク12に供給する。一次純水は、例えば、全有機炭素(TOC)濃度が5μgC/L以下、抵抗率が17MΩ・cm以上、粒子径20nm以上の微粒子数が100000psc./L以下である。
 タンク12は、一次純水を貯留して、その必要量を二次純水製造部13に供給する。
 二次純水製造部13は、一次純水中の微量不純物を除去して超純水を製造する。図2に示すように、二次純水製造部13は、例えば、限外ろ過膜装置2の上流側に、熱交換器(HEX)4、紫外線酸化装置(TOC-UV)5、過酸化水素除去装置(H除去装置)6、脱気膜装置(MDG)7及び非再生型混床式イオン交換樹脂装置(Polisher)8を備えて構成される。なお、二次純水製造部13は、上記装置を必ずしも備える必要はなく、上記装置を必要に応じて組み合わせて採用すればよい。
 熱交換器(HEX)4は、必要に応じてタンク12から供給された一次純水の温度調節を行う。熱交換器4で温度調節された一次純水の温度は好ましくは25±3℃である。
 紫外線酸化装置(TOC-UV)5は、上記熱交換器4で温度調節された一次純水に紫外線を照射して、水中の微量有機物を分解除去する。紫外線酸化装置5は、例えば、紫外線ランプを有し、波長185nm付近の紫外線を発生する。紫外線酸化装置5は、さらに波長254nm付近の紫外線を発生してもよい。紫外線酸化装置5内で水に紫外線を照射すると紫外線が水を分解してOHラジカルを生成し、このOHラジカルが、水中の有機物を酸化分解する。紫外線酸化装置において過剰の紫外線照射が行われた場合、有機物の酸化分解に寄与しないOHラジカル同士が反応して過酸化水素が発生する。この発生した過酸化水素は、下流の限外ろ過膜装置2の有する限外ろ過膜を劣化させることがある。
 そのため、紫外線酸化装置5から流出する過酸化水素を低減して、下流の限外ろ過膜装置2の有する限外ろ過膜や微粒子フィルター3の有するろ過膜の劣化を抑制するために、紫外線酸化装置5における紫外線照射量は、0.05~0.2kWh/mであることが好ましい。
 過酸化水素除去装置(H除去装置)6は、水中の過酸化水素を分解除去する装置であり、例えば、パラジウム(Pd)担持樹脂によって過酸化水素を分解除去するパラジウム担持樹脂装置や表面に亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂を充填した還元性樹脂装置等が挙げられる。過酸化水素除去装置6を設けることで、水中の過酸化水素濃度を低減することができるので、限外ろ過膜装置2の劣化を抑制することができる。
 脱気膜装置(MDG)7は、気体透過性の膜の二次側を減圧して、一次側を通流する水中の溶存ガスのみを二次側に透過させて除去する装置である。脱気膜装置7として具体的には、3M社製のX50、X40、DIC社製のSeparelなどの市販品を用いることができる。脱気膜装置7は、過酸化水素除去装置6から得られる処理水中の溶存酸素を除去して、例えば、溶存酸素濃度(DO)が1μg/L以下の、処理水を生成する。
 非再生型混床式イオン交換樹脂装置(Polisher)8は、陽イオン交換樹脂と陰イオン交換樹脂が混合された混床式イオン交換樹脂を有し、脱気膜装置7の処理水中の微量の陽イオン成分及び陰イオン成分を吸着除去する。
 非再生型混床式イオン交換樹脂装置8は、その内部に陽イオン交換樹脂と陰イオン交換樹脂とを混合して収容する装置である。ここで用いられる陽イオン交換樹脂としては、強酸性陽イオン交換樹脂や弱酸性陽イオン交換樹脂が、陰イオン交換樹脂として、強塩基性陰イオン交換樹脂や弱塩基性陰イオン交換樹脂が挙げられる。混床式イオン交換樹脂としては、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を混合したものを用いることが好ましく、その市販品としては、例えば、野村マイクロ・サイエンス製 N-Lite MBSP、MBGPなどを用いることができる。
 限外ろ過膜装置2は、非再生型混床式イオン交換樹脂装置8の処理水を処理して、透過水と濃縮水を生成する。限外ろ過膜装置2は、粒子径20nm以上の微粒子の除去率が99.8%以上であり、99.95%以上であることが好ましく、99.99%以上であることがさらに好ましい。これにより限外ろ過膜装置2によって、超純水の水質悪化の原因となる微粒子のほとんどが除去され、例えば、粒子径20nm以上の微粒子数が500pcs./L以下、さらには200pcs./L以下の透過水を得ることができる。限外ろ過膜装置2は、粒子径10nm以上の微粒子を上記の除去率で除去できることがさらに好ましく、これにより、超純水の水質をより向上させて、粒子径10nm以上の微粒子数が200pcs./L以下、さらには50pcs./L以下の透過水を得ることができる。限外ろ過膜装置2において生成した透過水は後段の微粒子フィルター3に供給される。濃縮水は系外に排出されるか、超純水製造システムの前段に循環されて再処理される。
 なお、限外ろ過膜装置2は、上記では図2の非再生型混床式イオン交換樹脂装置8の処理水を処理することとしているが、これに限られず、粗大な粒子が除去された水、例えば、超純水製造装置における、前処理部で処理された以降の処理水であればよく、前処理水、一次処理水、二次処理水(循環させる場合も含む)等を被処理水とできる。限外ろ過膜装置2は、このような被処理水に対して、上記のような微粒子の除去率を有するものである。この被処理水としては、前処理部10に供えられた懸濁物質除去装置の処理水や、1次純水製造部11に供えられた逆浸透膜装置の処理水を用いることがより好ましい。また、限外ろ過膜装置2は二次純水製造部13内に供えられることが好ましい。
 なお、微粒子除去率は、例えば、測定対象の膜に、0.1MPa以上に加圧した微粒子含有水を水回収率95%以上で通水した際の、透過水中の所定の粒子径の微粒子数と供給水中の所定の粒子径の微粒子数とを測定し、{1-(透過水中の所定の粒子径の微粒子数/供給水中の所定の粒子径の微粒子数)}×100(%)で算出することができる。除去率は、ポリスチレンラテックス(Thermo Fisher製、型番 3020A 呼径20nm)を超純水に混合し、測定対象の膜装置の供給水に500000個/mlをチャージして確かめられる。
 このような限外ろ過膜装置2としては、高い微粒子除去率が得やすいため、分画分子量が好ましくは3000~10000、より好ましくは4000~8000の限外ろ過膜を有する装置が好適である。なお、限外ろ過膜の分画分子量は、例えば、次のようにして測定することができる。分子量が既知でかつ異なる複数種のマーカー分子を含有する試料水を測定対象の限外ろ過膜に通水して当該マーカー分子の除去率を測定する。得られた除去率の測定結果を分子量に対してプロットして分画曲線を作成する。この分画曲線から除去率が例えば90%の分子量をその膜の分画分子量とする。マーカー分子としては、デキストラン、ポリエチレングリコール(PEG)、タンパク質等が用いられる。
 限外ろ過膜装置2が有する限外ろ過膜は、例えば、非対称膜や複合膜であり、ポリスルホン、ポリオレフィン、ポリエステル、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエーテルスルホン又はポリアミドを材料として構成されることが好ましい。膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であるが、これらに限定されない。高い微粒子除去率が得られるためポリスルホン製のものがより好ましい。なお、限外ろ過膜は後述する微粒子フィルター3の有するろ過膜のような耐酸化剤性を有しなくても構わない。
 限外ろ過膜装置2における有効膜面積は、5m~60mが好ましく、10m~50mがより好ましい。15m~40mがさらに好ましく、有効膜面積が上記した範囲であると、膜の劣化を抑制し易い。
 限外ろ過膜装置2における水回収率は95%以上が好ましく、99%以上がより好ましい。これにより、微粒子が高度に除去された超純水を得ながら、超純水の製造効率を向上させることができる。
 微粒子フィルター3は、限外ろ過膜装置2の透過水を処理して透過水と濃縮水を生成する。微粒子フィルター3は耐酸化剤性のろ過膜を具備する。このようなろ過膜としては、例えば、PVDF又はPTFE等を材料として構成される限外ろ過膜(UF)や精密ろ過膜(MF)が挙げられる。膜形状としては、シート平膜、スパイラル膜、管状膜、中空糸膜等が挙げられるが、これらに限定されない。なお、ろ過膜の耐酸化剤性は、例えば、膜を5質量%の過酸化水素水に10日間浸漬した後、その透過水量の変化が、試験前の5%未満であるもの、又はその引っ張り強度の変化量が、試験前の強度に対して5%未満であるもの、を耐酸化剤性有りと判断することができる。
 また、上記の方法で耐酸化剤性を有すると判断される膜に限らず、耐過酸化水素性、あるいは耐酸化性を有すると公称される膜を用いてもよい。
 上述したように水中の微粒子のほとんどは、限外ろ過膜装置2で除去されるので、微粒子フィルター3は、限外ろ過膜装置2ほどの高い微粒子除去率を実現しなくても構わない。そのため微粒子フィルター3における粒子径20nm以上の微粒子の除去率は好ましくは40~80%、より好ましくは50~70%であればよい。
 また、膜交換や過酸化水素洗浄後の立ち上げ運転時に発生する限外ろ過膜からの発塵は比較的粒子径が大きく、例えば、40nm以上1μm以下程度である。そのため、上記限外ろ過膜からの発塵を捕捉しやすいため、ろ過膜の孔径は40nm~2μmであることが好ましく、70nm~1μmであることがより好ましく、80~0.2μmであることがさらに好ましい。このろ過膜の孔径は、公称孔径で判断するか、上記限外ろ過膜と同様の方法で、粒子径が既知の物質を用いて測定することができる。ろ過膜の孔径は40nm未満であると、限外ろ過膜装置2からの発塵を捕捉できるものの、微粒子フィルターとして使用するろ過膜の使用本数が増えたり、通水差圧の上昇が早くなるという問題が生じ易い。また、ろ過膜の孔径は2μmを超えると、限外ろ過膜からの発塵を捕捉できないことがある。
 微粒子フィルター3における水回収率は80%以上が好ましく、90%以上がより好ましい。これにより、微粒子が高度に除去された超純水を得ながら、超純水の製造効率を向上させることができる。
 微粒子フィルター3の透過水として、粒子径20nm以上の微粒子数が好ましくは500pcs./L以下であり、より好ましくは200pcs./L以下の超純水を得ることができる。さらに好ましくは、微粒子フィルター3の透過水として、粒子径20nm以上の微粒子数が50pcs./L以下の高純度の超純水を得ることができる。また、超純水の水質は、例えば、全有機炭素(TOC)濃度が1μgC/L以下、抵抗率が18MΩ・cm以上である。微粒子フィルター3で生成した超純水は超純水の使用場所(POU)へ供給される。
 また、超純水製造システム1の殺菌は、例えば次のように行われる。超純水製造システムの二次純水製造部13に、一次純水に過酸化水素を溶解させた過酸化水素水を供給する。過酸化水素の濃度は、例えば、0.1~2質量%である。過酸化水素除去装置6に過酸化水素水を通流させないように、過酸化水素除去装置6の前後を接続するバイパス配管を設けて、過酸化水素水がバイパス配管を通流するように流路を変更する。過酸化水素水は、熱交換器4から、紫外線酸化装置5、脱気膜装置7、非再生型混床式イオン交換樹脂装置(ポリッシャー)8、限外ろ過膜装置2、微粒子フィルター3を順に通流し、その過程で各装置の流路を構成する配管内部等が殺菌される。
 その後、二次純水製造部13に過酸化水素を含まない一次純水が通流されて、系内の過酸化水素が除去される。その後さらに一次純水が通流されて、微粒子フィルター3の透過水の水質が超純水の製造に適した水質になるまで、立ち上げ運転が行われる。
 超純水製造システム1が前処理部10又は一次純水製造部11を有している場合、殺菌時には、前処理部10の上流から、又は一次純水製造部11の直前から、過酸化水素水を通流させてもよい。超純水製造システム1の殺菌では、殺菌効率を向上させるため、高度な清浄が求められる二次純水製造部13のみ、あるいは、一次純水製造部11と二次純水製造部13に過酸化水素水を通流させるのが好ましい。
 限外ろ過膜装置2の限外ろ過膜が耐酸化剤性を有していない場合には、過酸化水素によって、限外ろ過膜が劣化して発塵が生じる。そのため、この発塵が収まるまで純水を通流させる立ち上げ運転を行う必要がある。この立ち上げ運転は、例えば、微粒子フィルター3の透過水中の、粒子径20nm以上の微粒子数が、500pcs./L以下となるまで継続される。本実施形態の超純水製造システム1では、この限外ろ過膜からの発塵は、後段の微粒子フィルター3で除去されるため立ち上げ時間が短縮される。立ち上げ時間は二次純水製造部13の規模にもよるが、例えば、2~24時間程度である。
 これに対し、微粒子フィルター3を設けない構成では、限外ろ過膜装置からの発塵が続くため、上記粒子径20nm以上の微粒子数が、500pcs./L以下となるまでの条件で立ち上げ運転を行うと、立ち上げ時間は微粒子フィルター3を設ける場合の約5倍、約10~120時間程度となる。
 以上で説明した実施形態の超純水製造システム及び超純水製造方法によれば、超純水製造システムの殺菌後の立ち上げ期間を短縮することができる。
 以下、実施例を用いて本発明を詳細に説明する。本発明は以下の実施例に限定されない。
(実施例1)
 図2に示すのと同様の二次純水製造部を有する超純水製造システムを使用した。この二次純水製造部は一次純水を貯留するタンクの下流に、熱交換器、紫外線酸化装置(日本フォトサイエンス社製、JPW-2)、Pd担持樹脂装置(LANXESS社製、Lewatit K7333)、脱気膜装置(3M社製、X40 G451H)、非再生型混床式イオン交換装置(野村マイクロ・サイエンス製 N-Lite MBSPを200L充填)、限外ろ過膜装置(旭化成社製、OLT-6036(分画分子量(公称):6000、有効膜面積:34m)及び精密ろ過膜装置(日本インテグリス社製、Trinzik、公称孔径0.1μm)を順に備えている。
 上記限外ろ過膜装置は、1質量%の過酸化水素水に1時間浸漬した限外ろ過膜を設置して、その後、純水を通水して洗浄し、透過水中の過酸化水素濃度が0.5μg/L以下となったのを確認してから二次純水製造部に組み込んだ。
 その後、二次純水製造部に一次純水を供給し、精密ろ過膜装置の透過水中の粒子径20nm以上の微粒子数の経時変化を測定した。微粒子数の測定には、Particle Measuring Systems社製の微粒子計UltraDI-20を用いた。結果を図3のグラフに示す。
(比較例)
 実施例で使用した超純水製造システムと同様に、1質量%の過酸化水素水に1時間浸漬した後に洗浄した限外ろ過膜を有する限外ろ過膜装置を組み込んで、その後段の精密ろ過膜装置を有しない点のみが異なるシステムに、実施例と同様に一次純水を供給し、限外ろ過膜装置の透過水中の粒子径20nm以上の微粒子数の経時変化を測定した。結果を実施例とあわせて図3に示す。
 図3に示されるように、限外ろ過膜装置の後段に微粒子フィルターを設けた実施例の超純水製造システムでは、立ち上げ開始から、粒子径20nm以上の微粒子数が500pcs./Lに低減されるまでの時間が約180時間であり、微粒子フィルターを設けない比較例の構成に比べて、過酸化水素による殺菌後の立ち上げ期間が短縮されたことが分かる。
(実施例2)
 実施例1の精密ろ過膜装置を日本インテグリス社製、Trinzik(公称孔径15nm)に変更した以外は実施例1と同様の装置構成及び条件で立ち上げ時間の測定を行った。
 本例では、精密ろ過膜を、実施例1と同じ本数で使用したところ、精密ろ過膜装置での通水差圧が実施例1の1.5倍となった。そのため、ポンプ出力を上げる必要があったが、微粒子数の経時変化は実施例1と同等であった。ただし、立ち上げ後約半年程度で精密ろ過膜での差圧上昇が激しくなり、精密ろ過膜の交換が必要となった。また、このことから、実施例の運転圧力のままで超純水製造をするためには、精密ろ過膜の本数を2倍にする必要があることが分かった。以上のことから、孔径が小さい微粒子フィルターを用いる場合、精密ろ過膜のコストが2倍になるが、立ち上げ時の微粒子数の経時変化は実施例1の場合と同等であることが分かった。
 1…超純水製造システム、2…限外ろ過膜装置、3…微粒子フィルター、4…熱交換器(HEX)、5…紫外線酸化装置(TOC-UV)、6…過酸化水素除去装置、7…脱気膜装置(MDG)、8…非再生型混床式イオン交換樹脂装置(Polisher)、10…前処理部、11…一次純水製造部、12…タンク、13…二次純水製造部。

Claims (9)

  1.  限外ろ過膜装置と該限外ろ過膜装置に直列に接続された微粒子フィルターとを有し、被処理水を前記限外ろ過膜装置と前記微粒子フィルターで順に処理して超純水を製造する超純水製造システムであって、
     前記限外ろ過膜装置は、粒子径20nm以上の微粒子の除去率が99.8%以上であり、
     前記微粒子フィルターは、耐酸化剤性のろ過膜を具備することを特徴とする超純水製造システム。
  2.  前記限外ろ過膜装置は、分画分子量が3000~10000の限外ろ過膜を有することを特徴とする請求項1に記載の超純水製造システム。
  3.  前記限外ろ過膜装置は、ポリスルホン、ポリフッ化ビニリデン又はポリテトラフルオロエチレンを材料とする限外ろ過膜を有することを特徴とする請求項1又は2に記載の超純水製造システム。
  4.  前記微粒子フィルターが有するろ過膜の孔径は40nm~2μmであることを特徴とする請求項1乃至3のいずれか1項に記載の超純水製造システム。
  5.  前記微粒子フィルターは、ポリフッ化ビニリデン又はポリテトラフルオロエチレンを材料とするろ過膜を有することを特徴とする請求項1乃至4のいずれか1項に記載の超純水製造システム。
  6.  前記限外ろ過膜装置の上流に、さらに過酸化水素除去装置を有し、前記過酸化水素除去装置の処理水を前記被処理水として前記限外ろ過膜装置と前記微粒子フィルターとで順に処理可能とすることを特徴とする請求項1乃至5のいずれか1項に記載の超純水製造システム。
  7.  前記限外ろ過膜装置の上流に、紫外線酸化装置、過酸化水素除去装置、脱気膜装置及び非再生型混床式イオン交換樹脂装置をこの順に備え、
     前記非再生型混床式イオン交換樹脂装置の処理水を被処理水として前記限外ろ過膜装置及び前記微粒子フィルターで処理可能とすることを特徴とする請求項1乃至6のいずれか1項に記載の超純水製造システム。
  8.  被処理水を限外ろ過膜装置に通水して、粒子径20nm以上の微粒子を99.8%以上の除去率で処理し、
     前記限外ろ過膜装置の処理水を、耐酸化剤性を有する微粒子フィルターに通水して処理する、
    ことを特徴とする超純水製造方法。
  9.  前記微粒子フィルターの被処理水は、粒子径20nm以上の微粒子数が500pcs./L以下であることを特徴とする請求項8に記載の超純水製造方法。
PCT/JP2019/012461 2018-03-27 2019-03-25 超純水製造システム及び超純水製造方法 WO2019188964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510064A JPWO2019188964A1 (ja) 2018-03-27 2019-03-25 超純水製造システム及び超純水製造方法
KR1020207024835A KR20200135314A (ko) 2018-03-27 2019-03-25 초순수 제조 시스템 및 초순수 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060128 2018-03-27
JP2018060128 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188964A1 true WO2019188964A1 (ja) 2019-10-03

Family

ID=68060013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012461 WO2019188964A1 (ja) 2018-03-27 2019-03-25 超純水製造システム及び超純水製造方法

Country Status (4)

Country Link
JP (1) JPWO2019188964A1 (ja)
KR (1) KR20200135314A (ja)
TW (1) TW201942069A (ja)
WO (1) WO2019188964A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760291A (ja) * 1993-08-30 1995-03-07 Nippon Millipore Kk パイロジエンフリーの超純水の製造方法
US5518624A (en) * 1994-05-06 1996-05-21 Illinois Water Treatment, Inc. Ultra pure water filtration
JPH1157417A (ja) * 1997-08-20 1999-03-02 Asahi Chem Ind Co Ltd 超純水製造方法
WO2015050125A1 (ja) * 2013-10-04 2015-04-09 栗田工業株式会社 超純水製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099855A (ja) 1996-08-05 1998-04-21 Sony Corp 限外濾過機能を備える超純水供給プラント、および超純水の供給方法
KR101546046B1 (ko) 2013-10-31 2015-08-20 인우시스템 주식회사 전동카트의 배터리 방전 방지장치 및 방법
JP6469400B2 (ja) 2014-09-24 2019-02-13 オルガノ株式会社 超純水製造装置
JP6450563B2 (ja) 2014-10-29 2019-01-09 野村マイクロ・サイエンス株式会社 限外ろ過膜の診断方法並びに診断装置及び超純水製造システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760291A (ja) * 1993-08-30 1995-03-07 Nippon Millipore Kk パイロジエンフリーの超純水の製造方法
US5518624A (en) * 1994-05-06 1996-05-21 Illinois Water Treatment, Inc. Ultra pure water filtration
JPH1157417A (ja) * 1997-08-20 1999-03-02 Asahi Chem Ind Co Ltd 超純水製造方法
WO2015050125A1 (ja) * 2013-10-04 2015-04-09 栗田工業株式会社 超純水製造装置

Also Published As

Publication number Publication date
KR20200135314A (ko) 2020-12-02
TW201942069A (zh) 2019-11-01
JPWO2019188964A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6304259B2 (ja) 超純水製造装置
JP5045099B2 (ja) 超純水製造装置及び超純水製造装置の運転方法
KR102287709B1 (ko) 초순수 제조 시스템
KR101193902B1 (ko) 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
JP2009028695A (ja) 純水製造装置及び純水製造方法
KR102119838B1 (ko) 초순수 제조장치
WO2019244443A1 (ja) 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
JP5381781B2 (ja) 超純水製造システムの洗浄方法
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
JP2019205994A (ja) 限外ろ過膜モジュール及び限外ろ過膜モジュールを用いた超純水製造方法
JP2014000575A (ja) 純水製造装置及び純水製造方法
WO2019188965A1 (ja) 超純水製造システム及び超純水製造方法
WO2019188964A1 (ja) 超純水製造システム及び超純水製造方法
JP6629383B2 (ja) 超純水製造方法
JP6417734B2 (ja) 超純水製造方法
JP4760648B2 (ja) 純水製造装置
JP2005230774A (ja) 水処理方法及び水処理装置
JP2003010849A (ja) 二次純水製造装置
JP2002001069A (ja) 純水製造方法
JP7171671B2 (ja) 超純水製造システム及び超純水製造方法
JP3727156B2 (ja) 脱塩装置
JP2005103510A (ja) 薬液洗浄方法
Motomura Hot Ultrapure Water System
JP2013223847A (ja) 水処理方法および水処理装置
JP2005246361A (ja) 薬液洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778176

Country of ref document: EP

Kind code of ref document: A1