JP2013223847A - 水処理方法および水処理装置 - Google Patents
水処理方法および水処理装置 Download PDFInfo
- Publication number
- JP2013223847A JP2013223847A JP2012097768A JP2012097768A JP2013223847A JP 2013223847 A JP2013223847 A JP 2013223847A JP 2012097768 A JP2012097768 A JP 2012097768A JP 2012097768 A JP2012097768 A JP 2012097768A JP 2013223847 A JP2013223847 A JP 2013223847A
- Authority
- JP
- Japan
- Prior art keywords
- water
- membrane
- adsorbent
- treated
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
【課題】設備を複雑化または巨大化せず、プロセスを煩雑にすることもなく、逆浸透膜またはナノろ過膜によってろ過する被処理水中の膜閉塞物質を減少させることができる水処理方法の提供。
【解決手段】被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法。
【選択図】図1
【解決手段】被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法。
【選択図】図1
Description
本発明は水処理方法および水処理装置に関する。
従来、浄水処理において、有機性の汚染が進行した水源を使用せざるを得ない場合、オゾン処理、活性炭処理、生物処理などの処理方法をその水質に応じて適用してきた。しかし、その中でも重要な役割を担うオゾン処理は、臭素酸などの消毒副生成物の問題があるため代替処理法が模索されている。その代替処理法の1つとしてナノろ過(NF)が挙げられ、海外では既にいくつかのプラントが稼働している。
一方、下排水処理の分野においては、水質基準が厳しくなる傾向にあり、放流水については従来よりも高度に浄化することが望まれており、また、水資源枯渇の問題から、下水をはじめとする各種排水を逆浸透膜などを使用して高度に浄化し再利用するケースも増加している。
このように逆浸透膜(RO膜)やナノろ過膜(NF膜)を利用した高度水処理プロセスの重要性は日々高まりつつあるが、その運転管理を行う場合に問題となるのが膜汚染による透水性能の低下であり、この課題の解決のために、種々の調査研究や対策技術の開発が行われている。
近年の研究において、浄水処理に使用する逆浸透膜やナノろ過膜の汚染物質は、天然有機物(natural organic matter:NOM)と呼ばれる有機物群によって引き起こされ、その中でも多糖類の影響が大きいことが報告されている。また、下排水処理の再利用などを目的に使用される逆浸透膜やナノろ過膜の汚染物質については、その前段の処理に生物処理が適用されることから、溶解性生物代謝産物(soluble microbial products:SMP)やそれらのコロイド状の凝集体の影響が指摘されており、浄水処理と同様に、多糖類の影響とその重要性が報告されている。
これらの膜汚染物質は0.45μm以下程度の大きさを有する、いわゆる溶解性有機物と定義される物質群であり、比較的低濃度で膜供給水中に存在する。
これらの膜汚染物質は0.45μm以下程度の大きさを有する、いわゆる溶解性有機物と定義される物質群であり、比較的低濃度で膜供給水中に存在する。
このような逆浸透膜供給水中の汚染物質を除去する操作を含む水処理方法として、例えば特許文献1には、生物処理水を含有する水を分画分子量10,000〜250,000の限外ろ過膜でろ過したのち、活性炭塔に通水し、得られた活性炭処理水を逆浸透膜分離処理することを特徴とする生物処理水含有水の処理方法が記載されている。
また、特許文献2には被処理水を生物処理槽内で活性汚泥処理する工程、被処理水と活性汚泥の混合液を前記生物処理槽内または生物処理槽外において、精密ろ過膜で膜分離する工程、および該膜分離処理後の水を逆浸透膜処理する工程を有してなる水処理方法において、前記膜分離処理をする工程の後であって前記逆浸透処理をする工程の前に、活性炭等との接触ろ過、凝集砂ろ過(マイクロフロック法)、凝集沈殿砂ろ過、生物膜処理、オゾン処理、促進酸化処理からなる群から選ばれる少なくとも一つの処理方法によって、親水性の有機物を除去するための工程を有することを特徴とする水処理方法が記載されている。
しかしながら特許文献1に記載の方法で利用する活性炭は、色度成分に代表されるフミン物質の吸着除去には効果的であるが、荷電がなく、また、多糖類は比較的親水性の物質であるので活性炭に吸着し難い。したがって、活性炭の使用量を増加し、被処理水と活性炭との接触時間を長くするために、設備を複雑化または巨大化する必要があり、経済的にも成立しにくい。
また、特許文献2に記載の固定床型の吸着装置によって膜閉塞物質を処理する方法等では膜閉塞物質(多糖類等)を吸着し難いので、上記特許文献1に記載の方法の場合と同様に、設備を複雑化または巨大化する必要があり、経済的にも成立し難い。
また、特許文献2に記載の固定床型の吸着装置によって膜閉塞物質を処理する方法等では膜閉塞物質(多糖類等)を吸着し難いので、上記特許文献1に記載の方法の場合と同様に、設備を複雑化または巨大化する必要があり、経済的にも成立し難い。
このように、従来、逆浸透膜またはナノろ過膜によってろ過する被処理水中の膜閉塞物質を減少させようとした場合、設備が複雑化または巨大化したり、プロセスが煩雑になったりするという問題があった。
すなわち、本発明の目的は、設備を複雑化または巨大化せず、プロセスを煩雑にすることもなく、逆浸透膜またはナノろ過膜によってろ過する被処理水中の膜閉塞物質を減少させることができる水処理方法およびそれを行うことができる水処理装置を提供することを目的とする。
すなわち、本発明の目的は、設備を複雑化または巨大化せず、プロセスを煩雑にすることもなく、逆浸透膜またはナノろ過膜によってろ過する被処理水中の膜閉塞物質を減少させることができる水処理方法およびそれを行うことができる水処理装置を提供することを目的とする。
本発明者は上記課題を解決するための鋭意検討を重ね、特定の吸着剤と被処理水とを接触させた後に逆浸透膜またはナノろ過膜を用いてろ過すれば、被処理水中の膜閉塞物質を高度に減少させることができることを見出し、本発明を完成させた。
本発明は以下の(1)〜(7)である。
(1)被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法。
(2)前記吸着剤の平均粒子径が10〜200nmである、上記(1)に記載の水処理方法。
(3)前記被処理水が、分画分子量が10,000〜100,000の限外ろ過膜で処理して得たものである、上記(1)または(2)に記載の水処理方法。
(4)前記吸着剤が疎水性材料を主成分とする、上記(1)〜(3)のいずれかに記載の水処理方法。
(5)前記吸着剤が、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォンおよびカーボンブラックからなる群から選ばれる少なくとも1つを主成分とする、上記(1)〜(4)のいずれかに記載の水処理方法。
(6)逆浸透膜またはナノろ過膜を用いてろ過して得られる、前記ろ過水以外の部分である濃縮水の少なくとも一部を、前記被処理水および/または前記供給水へ加える、上記(1)〜(5)のいずれかに記載の水処理方法。
(7)前記被処理水へ吸着剤を添加する吸着剤添加手段と、
前記供給水をろ過する逆浸透膜またはナノろ過膜を備えるろ過装置と
を備え、上記(1)〜(6)のいずれかに記載の水処理方法を行うことができる、水処理装置。
本発明は以下の(1)〜(7)である。
(1)被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法。
(2)前記吸着剤の平均粒子径が10〜200nmである、上記(1)に記載の水処理方法。
(3)前記被処理水が、分画分子量が10,000〜100,000の限外ろ過膜で処理して得たものである、上記(1)または(2)に記載の水処理方法。
(4)前記吸着剤が疎水性材料を主成分とする、上記(1)〜(3)のいずれかに記載の水処理方法。
(5)前記吸着剤が、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォンおよびカーボンブラックからなる群から選ばれる少なくとも1つを主成分とする、上記(1)〜(4)のいずれかに記載の水処理方法。
(6)逆浸透膜またはナノろ過膜を用いてろ過して得られる、前記ろ過水以外の部分である濃縮水の少なくとも一部を、前記被処理水および/または前記供給水へ加える、上記(1)〜(5)のいずれかに記載の水処理方法。
(7)前記被処理水へ吸着剤を添加する吸着剤添加手段と、
前記供給水をろ過する逆浸透膜またはナノろ過膜を備えるろ過装置と
を備え、上記(1)〜(6)のいずれかに記載の水処理方法を行うことができる、水処理装置。
本発明によれば、設備を複雑化または巨大化せず、プロセスを煩雑にすることもなく、逆浸透膜またはナノろ過膜によってろ過する被処理水中の膜閉塞物質を減少させることができる水処理方法およびそれを行うことができる水処理装置を提供することができる。
本発明について説明する。
本発明は、被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法である。
このような水処理方法を、以下では「本発明の方法」ともいう。
本発明は、被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法である。
このような水処理方法を、以下では「本発明の方法」ともいう。
本発明の方法では被処理水と吸着剤とを接触させて、吸着剤によって膜汚染物質を吸着することで、後に逆浸透膜またはナノろ過膜でろ過する際の、膜の閉塞を抑制することができる。
本発明の方法における吸着剤について説明する。
吸着剤はコロイド状であり、被処理水中の膜閉塞物質を吸着することができるものであれば特に限定されないが、従来公知の精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)、ナノろ過膜(NF膜)を製造するために用いることができる高分子素材からなるものであることが好ましい。
具体的には、セルロース系のような親水性素材を主成分とする吸着剤であってもよいが、疎水性素材を主成分とする吸着剤であることが好ましい。
また、疎水性素材の中でも、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォンおよびポリエーテルスルフォンからなる群から選ばれる少なくとも1つを主成分とすることが好ましい。中でも製造の容易性から、ポリスルフォンおよび/またはポリエーテルスルフォンを主成分とすることがより好ましい。また、吸着剤を再生させる際に水酸化ナトリウム等のアルカリ薬品、NaClOや過酸化水素水等の酸化剤を使用するので、耐薬品性の観点から、中でもポリフッ化ビニリデンおよび/またはポリ塩化ビニルが好ましい。
吸着剤はコロイド状であり、被処理水中の膜閉塞物質を吸着することができるものであれば特に限定されないが、従来公知の精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)、ナノろ過膜(NF膜)を製造するために用いることができる高分子素材からなるものであることが好ましい。
具体的には、セルロース系のような親水性素材を主成分とする吸着剤であってもよいが、疎水性素材を主成分とする吸着剤であることが好ましい。
また、疎水性素材の中でも、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォンおよびポリエーテルスルフォンからなる群から選ばれる少なくとも1つを主成分とすることが好ましい。中でも製造の容易性から、ポリスルフォンおよび/またはポリエーテルスルフォンを主成分とすることがより好ましい。また、吸着剤を再生させる際に水酸化ナトリウム等のアルカリ薬品、NaClOや過酸化水素水等の酸化剤を使用するので、耐薬品性の観点から、中でもポリフッ化ビニリデンおよび/またはポリ塩化ビニルが好ましい。
また、吸着剤はカーボンブラックを含むことが好ましい。
したがって、吸着剤は、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォンおよびカーボンブラックからなる群から選ばれる少なくとも1つを主成分とすることが好ましい。
したがって、吸着剤は、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォンおよびカーボンブラックからなる群から選ばれる少なくとも1つを主成分とすることが好ましい。
本発明の方法において、主成分とは、50質量%以上含むことを意味するものとするが、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、98質量%以上であることがより好ましく、100質量%、すなわち実質的に他の成分を含まないことがさらに好ましい。ここで「実質的に含まない」とは原料や生産工程から不純物として混入することはあり得るが、意図的には含有されないことを意味する。
以下においても「主成分」とは、このような意味で用いるものとする。
以下においても「主成分」とは、このような意味で用いるものとする。
また、吸着剤は、金、銀、鉄、マンガン、シリカ、アルミナ等の金属成分を含む(好ましくは主成分として含む)ものであることが好ましい。前記吸着剤を容易に製造できるからである。
吸着剤は、このような金属成分と、前記高分子素材との両方を含むものであってもよい。例えば吸着剤は前記高分子素材を主成分とし、残部としてこの金属成分を含むものであってよい。
吸着剤は、このような金属成分と、前記高分子素材との両方を含むものであってもよい。例えば吸着剤は前記高分子素材を主成分とし、残部としてこの金属成分を含むものであってよい。
本発明の方法において吸着剤は、上記のような材質であって、平均粒子径が10〜200nmであることが好ましく、50〜100nmであることがより好ましい。
また、吸着剤は水等の溶媒に分散してコロイド状になっているものであってもよいし、被処理水へ添加することでコロイド状になる、未だ粉状のものであってもよい。いずれであっても、本発明の方法における吸着剤に該当するものとする。
上記のような材質であって、かつ平均粒子径が10〜200nm(好ましくは50〜100nm)であると、被処理水に含まれる膜閉塞物質の吸着性が特に優れることを、本発明者は見出した。また、このような平均粒子径であるとより容易に製造することができる。また、後述するように逆浸透膜やナノろ過膜が、平膜とスペーサーとを海苔巻状に巻きつけたスパイラル型膜モジュール(エレメント)や中空円筒状の中空糸膜モジュール(エレメント)であっても、膜と膜との間のスペース(流路)に吸着剤(膜閉塞物質を吸着した状態の吸着剤)が詰まって閉塞することが発生し難いという観点からも、このような平均粒子径であることが好ましい。
なお、吸着剤の平均粒子径は、走査型電子顕微鏡(SEM)または原子間力顕微鏡(AFM)を用いて、100個の粒子の吸着剤の直径(投影面積円相当径)を測定し、それを単純平均することで得られる値を意味するものとする。
また、吸着剤は水等の溶媒に分散してコロイド状になっているものであってもよいし、被処理水へ添加することでコロイド状になる、未だ粉状のものであってもよい。いずれであっても、本発明の方法における吸着剤に該当するものとする。
上記のような材質であって、かつ平均粒子径が10〜200nm(好ましくは50〜100nm)であると、被処理水に含まれる膜閉塞物質の吸着性が特に優れることを、本発明者は見出した。また、このような平均粒子径であるとより容易に製造することができる。また、後述するように逆浸透膜やナノろ過膜が、平膜とスペーサーとを海苔巻状に巻きつけたスパイラル型膜モジュール(エレメント)や中空円筒状の中空糸膜モジュール(エレメント)であっても、膜と膜との間のスペース(流路)に吸着剤(膜閉塞物質を吸着した状態の吸着剤)が詰まって閉塞することが発生し難いという観点からも、このような平均粒子径であることが好ましい。
なお、吸着剤の平均粒子径は、走査型電子顕微鏡(SEM)または原子間力顕微鏡(AFM)を用いて、100個の粒子の吸着剤の直径(投影面積円相当径)を測定し、それを単純平均することで得られる値を意味するものとする。
吸着剤は、上記のような材質および平均粒子径であって、被処理水に含まれる膜汚染物質を吸着する性能を備えるものである。
膜汚染物質とは、逆浸透膜またはナノろ過膜を継続して使用した場合に、それらの膜のろ過抵抗を上昇させる物質であり、前述のように、浄水の場合であれば天然有機物(NOM)と呼ばれる有機物群(主として多糖類)が該当し、下排水の場合であれば溶解性生物代謝産物(SMP)やそれらのコロイド状の凝集体(主として多糖類)が該当する。また、その大きさは0.45μm以下程度であり、いわゆる溶解性有機物と定義される物質群である。
膜汚染物質とは、逆浸透膜またはナノろ過膜を継続して使用した場合に、それらの膜のろ過抵抗を上昇させる物質であり、前述のように、浄水の場合であれば天然有機物(NOM)と呼ばれる有機物群(主として多糖類)が該当し、下排水の場合であれば溶解性生物代謝産物(SMP)やそれらのコロイド状の凝集体(主として多糖類)が該当する。また、その大きさは0.45μm以下程度であり、いわゆる溶解性有機物と定義される物質群である。
本発明の方法において被処理水と吸着剤を接触させる方法は特に限定されず、例えば被処理水へ吸着剤を添加し、従来公知の方法で撹拌する方法が挙げられる。
本発明の方法において被処理水と吸着剤とを接触させる場合、その量比は特に限定されないが、被処理水1Lに対する吸着剤の乾燥質量として、10〜1,000mg/Lであることが好ましく、10〜300mg/Lであることがより好ましい。
また、吸着剤が溶媒に分散したコロイド状のものである場合は、被処理水1Lに対する吸着剤(溶液)の添加量は、20〜500mg/Lであることが好ましく、50〜200mg/Lであることがより好ましい。
また、吸着剤が溶媒に分散したコロイド状のものである場合は、被処理水1Lに対する吸着剤(溶液)の添加量は、20〜500mg/Lであることが好ましく、50〜200mg/Lであることがより好ましい。
また、被処理水と吸着剤との接触時間は、これらの量比にもよるが、1〜60分であることが好ましく、1〜10分であることがより好ましい。
本発明の方法における処理対象である被処理水は、逆浸透膜またはナノろ過膜を用いて継続的にろ過した場合に、膜の透過性を悪化させる膜汚染物質を含有するものであれば特に限定されない。
被処理水に含まれる膜汚染物質の含有率は特に限定されないが、0.0001〜1ppmであることが好ましく、0.0001〜0.1ppmであることがより好ましい。
被処理水に含まれる膜汚染物質の含有率は特に限定されないが、0.0001〜1ppmであることが好ましく、0.0001〜0.1ppmであることがより好ましい。
被処理水としては、水道原水(河川水、湖沼水)、下排水、海水、汽水などが挙げられる。
また、被処理水は、上記の水道原水や下排水等を精密ろ過膜や限外ろ過膜を用いて処理した後のものであってもよいし、接触ろ過、砂ろ過、マイクロフロック法、凝集沈殿砂ろ過、生物膜処理、オゾン処理、促進酸化処理等の処理を施した後のものであってもよい。
例えば、被処理水のSSが高い場合(例えば5mg/L以上)は、精密ろ過膜や限外ろ過膜を用いて処理したものを、本発明の方法における被処理水とし、このような被処理水と前記吸着剤とを接触させることが好ましい。したがって、本発明の方法における被処理水は、SSが無く、膜閉塞物質(多糖類等)を含む(例えば0.0001〜1ppm)ものであることが好ましい。
例えば、被処理水のSSが高い場合(例えば5mg/L以上)は、精密ろ過膜や限外ろ過膜を用いて処理したものを、本発明の方法における被処理水とし、このような被処理水と前記吸着剤とを接触させることが好ましい。したがって、本発明の方法における被処理水は、SSが無く、膜閉塞物質(多糖類等)を含む(例えば0.0001〜1ppm)ものであることが好ましい。
また、前記被処理水が、分画分子量が10,000〜100,000の限外ろ過膜で処理して得たものであることが好ましい。
水道原水や下排水の生物処理水に含まれる天然有機物(NOM)や溶解性生物代謝産物(SMP)等の膜汚染物質(主として多糖類)は、幅広い分子量分布を有しており、数十万ダルトンから数千ダルトンであると報告されている。また、本発明者が鋭意行った研究では、その上限は0.1μm程度である。
本発明者は鋭意研究を行い、膜汚染物質となる多糖類は大きく二つの分子量範囲にわけることができ、一つは分子量が100,000ダルトンより大きいグループであり、もう一つはそれよりも小さいグループであることを見出した。また、前者の分子量が100,000ダルトンよりも大きい多糖類は、膜透過抵抗への影響がより大きいことを見出した。また、前者の分子量が100,000ダルトンよりも大きい多糖類を吸着するためには、比較的多量の吸着剤が必要となることを見出した。さらに、限外ろ過膜の分画分子量が100,000ダルトンよりも大きいと、その孔径が高分子成分と同程度の大きさとなるため限外ろ過膜が簡単に目詰まりしてしまうことを見出した。
したがって、前記被処理水を、分画分子量が10,000〜100,000の限外ろ過膜で処理した後に前記吸着剤と接触させれば、吸着剤の使用量を低下させることができるので好ましい。また用いた限外ろ過膜の目詰まりが発生し難い点からも好ましい。また、分画分子量が10,000ダルトンよりも小さくなると、従来公知の限外ろ過膜の場合、その透過性能が実用的でない範囲まで低下し、膜ろ過時の膜差圧が高くなり、実装置に使用できない可能性がある。よって、実用的な透水性能が確保できるならば、分画分子量を10,000ダルトンよりも低くしてよい。
水道原水や下排水の生物処理水に含まれる天然有機物(NOM)や溶解性生物代謝産物(SMP)等の膜汚染物質(主として多糖類)は、幅広い分子量分布を有しており、数十万ダルトンから数千ダルトンであると報告されている。また、本発明者が鋭意行った研究では、その上限は0.1μm程度である。
本発明者は鋭意研究を行い、膜汚染物質となる多糖類は大きく二つの分子量範囲にわけることができ、一つは分子量が100,000ダルトンより大きいグループであり、もう一つはそれよりも小さいグループであることを見出した。また、前者の分子量が100,000ダルトンよりも大きい多糖類は、膜透過抵抗への影響がより大きいことを見出した。また、前者の分子量が100,000ダルトンよりも大きい多糖類を吸着するためには、比較的多量の吸着剤が必要となることを見出した。さらに、限外ろ過膜の分画分子量が100,000ダルトンよりも大きいと、その孔径が高分子成分と同程度の大きさとなるため限外ろ過膜が簡単に目詰まりしてしまうことを見出した。
したがって、前記被処理水を、分画分子量が10,000〜100,000の限外ろ過膜で処理した後に前記吸着剤と接触させれば、吸着剤の使用量を低下させることができるので好ましい。また用いた限外ろ過膜の目詰まりが発生し難い点からも好ましい。また、分画分子量が10,000ダルトンよりも小さくなると、従来公知の限外ろ過膜の場合、その透過性能が実用的でない範囲まで低下し、膜ろ過時の膜差圧が高くなり、実装置に使用できない可能性がある。よって、実用的な透水性能が確保できるならば、分画分子量を10,000ダルトンよりも低くしてよい。
本発明の方法では、前記被処理水と前記吸着剤とを接触させてなる供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過する。膜閉塞物質を吸着した状態の吸着剤は逆浸透膜またはナノろ過膜において補足されるが、膜表面において、吸着剤によって吸着された状態の膜閉塞物質は、原則として、逆浸透膜またはナノろ過膜を閉塞させない。
ここで逆浸透膜およびナノろ過膜は従来公知のものを用いることができる。逆浸透膜は水を通しイオンや塩類等の水以外の不純物は透過しないろ過膜であり、孔の大きさは概ね2nm以下のものである。また、逆浸透膜のうち、孔の大きさが1〜2nmであってイオンや塩類等の阻止率が概ね70%以下と低いものをナノろ過膜いう。具体的には、例えば全芳香族架橋ポリアミド膜(PA膜)、酢酸セルロース膜(CA膜)、無電荷膜などを用いることができる。
ここで逆浸透膜およびナノろ過膜は従来公知のものを用いることができる。逆浸透膜は水を通しイオンや塩類等の水以外の不純物は透過しないろ過膜であり、孔の大きさは概ね2nm以下のものである。また、逆浸透膜のうち、孔の大きさが1〜2nmであってイオンや塩類等の阻止率が概ね70%以下と低いものをナノろ過膜いう。具体的には、例えば全芳香族架橋ポリアミド膜(PA膜)、酢酸セルロース膜(CA膜)、無電荷膜などを用いることができる。
前記供給水を逆浸透膜またはナノろ過膜を用いてろ過する際のろ過条件等も、従来公知の方法と同様であってよい。例えば、従来公知のポンプを用いて0.5〜3MPaの圧力で供給水を逆浸透膜またはナノろ過膜へ供給し、膜透過流速を0.1〜1m3/(m2・日)、回収率を40〜90%として、不純物が除去されたろ過水と、不純物が濃縮された濃縮水を得ることができる。
また、逆浸透膜やナノろ過膜は、従来公知のものと同様に、例えば、平膜とスペーサーとを海苔巻状に巻きつけたスパイラル型膜モジュール(エレメント)や中空円筒状の中空糸膜モジュール(エレメント)であって、ベッセル(耐圧容器)に挿入して使用するものであってよい。この場合、容積効率を高めるために非常にコンパクトな構造となっており、エレメント内の膜と膜との間のスペース(流路)は非常に狭い。具体的にはその相当直径は、スパイラル型で0.7〜1.5mm程度、中空糸型で0.3〜3mm程度である。しかしながら、本発明の方法で用いる特定の吸着剤は、ここへ詰まって閉塞することが発生し難い。
本発明の方法では、前記被処理水と前記吸着剤とを接触させてなる供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得るが、ろ過水と合わせて濃縮水も得られる。濃縮水とは、前記供給水に含まれる不純物(膜閉塞物質、吸着剤、イオン等)を、ろ過水と比較して高濃度で含むものであり、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過することで得られる、ろ過水以外の水を意味する。
本発明の方法では、逆浸透膜またはナノろ過膜を用いてろ過して得られる、前記ろ過水以外の部分である濃縮水の少なくとも一部を、前記被処理水および/または前記供給水へ加えることが好ましい。吸着剤の使用量を低減できるからである。このような本発明の方法の好ましい態様については、次に本発明の装置について説明する際に、あわせて説明する。
本発明の方法では、逆浸透膜またはナノろ過膜を用いてろ過して得られる、前記ろ過水以外の部分である濃縮水の少なくとも一部を、前記被処理水および/または前記供給水へ加えることが好ましい。吸着剤の使用量を低減できるからである。このような本発明の方法の好ましい態様については、次に本発明の装置について説明する際に、あわせて説明する。
次に、本発明の方法を好ましく実施することができる水処理装置について説明する。
このような水処理装置を、以下では「本発明の装置」ともいう。
本発明の装置は、前記被処理水へ吸着剤を添加する吸着剤添加手段と、前記供給水をろ過する逆浸透膜またはナノろ過膜を備えるろ過装置とを備え、本発明の方法を行うことができる、水処理装置である。
このような水処理装置を、以下では「本発明の装置」ともいう。
本発明の装置は、前記被処理水へ吸着剤を添加する吸着剤添加手段と、前記供給水をろ過する逆浸透膜またはナノろ過膜を備えるろ過装置とを備え、本発明の方法を行うことができる、水処理装置である。
本発明の装置について、図1を用いて説明する。図1は本発明の装置における好適態様を示す図である。
図1において本発明の装置10は被処理水1を前処理するための前処理膜ろ過装置12と、前処理膜ろ過装置12によって処理した後の被処理水1を受け入れる供給水槽14と、供給水槽14の中の被処理水1へ吸着剤3を添加するための吸着剤添加手段16と、供給水槽14から排出される供給水5を受け入れて処理する逆浸透膜ろ過装置18と、逆浸透膜ろ過装置18から排出された濃縮水7を供給水槽14および前処理膜ろ過装置12へ供給する濃縮水返送手段20とを有する。
図1において本発明の装置10は被処理水1を前処理するための前処理膜ろ過装置12と、前処理膜ろ過装置12によって処理した後の被処理水1を受け入れる供給水槽14と、供給水槽14の中の被処理水1へ吸着剤3を添加するための吸着剤添加手段16と、供給水槽14から排出される供給水5を受け入れて処理する逆浸透膜ろ過装置18と、逆浸透膜ろ過装置18から排出された濃縮水7を供給水槽14および前処理膜ろ過装置12へ供給する濃縮水返送手段20とを有する。
図1において前処理膜ろ過装置12は、被処理水1を貯留した槽内に精密ろ過膜または限外ろ過膜を浸漬して用いる浸漬型膜ろ過装置である。この装置では、槽内の被処理水を精密ろ過膜または限外ろ過膜を用いてろ過して、被処理水1に含まれる濁度成分や生物集塊を分離除去することができる。
なお、本発明の装置においては、前処理膜ろ過装置としてケーシング型膜ろ過装置を用いてもよい。
なお、本発明の装置においては、前処理膜ろ過装置としてケーシング型膜ろ過装置を用いてもよい。
また、供給水槽14は、前処理膜ろ過装置12によって処理した後の被処理水1を受け入れる槽である。その槽の態様は従来公知のものと同様であってよい。供給水槽14の上部には吸着剤添加手段16が設置されており、吸着剤添加手段16から供給水槽14の中に貯留した被処理水1へ吸着剤3を所望量添加することができる。供給水槽14内では吸着剤3と被処理水1とがよく混合されるように撹拌することが好ましい。吸着剤3の添加量および撹拌時間については、本発明の方法において説明したとおりである。
吸着剤添加手段16は例えば従来公知のものを用いることができ、例えば、液状の吸着剤を貯留するタンクと、そこから所望量の吸着剤を排出させるポンプと、タンクから供給槽14へ吸着剤を送るための配管とを組み合わせてなる装置が挙げられる。また、粉状の吸着剤であれば従来公知の切り出しホッパーを例示できる。
また、本発明の装置10において凝集剤3は供給水槽14へ添加しているが、本発明の装置において凝集剤は、前処理膜ろ過装置から逆浸透膜ろ過装置の間における配管等において添加することもできる。
吸着剤添加手段16は例えば従来公知のものを用いることができ、例えば、液状の吸着剤を貯留するタンクと、そこから所望量の吸着剤を排出させるポンプと、タンクから供給槽14へ吸着剤を送るための配管とを組み合わせてなる装置が挙げられる。また、粉状の吸着剤であれば従来公知の切り出しホッパーを例示できる。
また、本発明の装置10において凝集剤3は供給水槽14へ添加しているが、本発明の装置において凝集剤は、前処理膜ろ過装置から逆浸透膜ろ過装置の間における配管等において添加することもできる。
また、逆浸透膜ろ過装置18は、供給水槽14から排出され、ポンプ等によって加圧された供給水5を受け入れて、逆浸透膜によってろ過処理する装置である。逆浸透膜は従来公知のものを用いることができる。運転条件(ろ過条件)等は従来公知のものであってよく、本発明の方法において説明したとおりである。
本発明逆浸透膜ろ過装置18からは、濃縮水7およびろ過水9が排出される。
逆浸透膜ろ過装置18から排出された濃縮水7は、配管等からなる濃縮水返送手段20によって供給水槽14および前処理膜ろ過装置12へ供給される。このように濃縮水7を供給水槽14および/または前処理膜ろ過装置12へ供給することで、濃縮水を被処理水および/または供給水へ加えることができるので、吸着剤添加手段16から添加する吸着剤3の使用量を低減することができる。濃縮水7には吸着剤が多く含まれているからである。また、濃縮水7を前処理膜ろ過装置12へ返送する場合、前処理膜ろ過装置における膜汚染を抑制することができるので好ましい。
なお、本発明の装置10では濃縮水7を供給水槽14および/または前処理膜ろ過装置12へ供給しているが、本発明の装置では濃縮水を供給水槽から逆浸透膜ろ過装置の間における配管等において供給することもできる。
逆浸透膜ろ過装置18から排出された濃縮水7は、配管等からなる濃縮水返送手段20によって供給水槽14および前処理膜ろ過装置12へ供給される。このように濃縮水7を供給水槽14および/または前処理膜ろ過装置12へ供給することで、濃縮水を被処理水および/または供給水へ加えることができるので、吸着剤添加手段16から添加する吸着剤3の使用量を低減することができる。濃縮水7には吸着剤が多く含まれているからである。また、濃縮水7を前処理膜ろ過装置12へ返送する場合、前処理膜ろ過装置における膜汚染を抑制することができるので好ましい。
なお、本発明の装置10では濃縮水7を供給水槽14および/または前処理膜ろ過装置12へ供給しているが、本発明の装置では濃縮水を供給水槽から逆浸透膜ろ過装置の間における配管等において供給することもできる。
ここで、濃縮水7を供給水槽14と前処理膜ろ過装置12とに分けて供給した方が、一方へ全量の濃縮水を添加する場合よりも、吸着剤添加手段16から添加する吸着剤3の使用量をより低減するができることを、本発明者は見出した。このようになる理由は現段階では不明である。
前処理膜ろ過装置における膜と、逆浸透膜またはナノろ過膜とを比較すると、膜面におけるケーキ剥離性は前者の方が遥かに優れている。したがって供給水槽に添加する吸着剤の量を多くして供給水中の吸着剤濃度を高くする場合は、供給水槽の内部の供給水の一部を前処理膜ろ過装置の槽へ移送してから排水した方が、本発明の装置の全体における水回収率を高くできるので好ましい。
<実施例1>
下水二次処理水(TOC=5mg/L程度)を分画分子量10,000ダルトンの酢酸セルロース性UF膜を用いてろ過して被処理水を得た。
そして、被処理水に、平均粒子径が50nmのポリスルフォンからなる吸着剤を200mg/Lで添加し、スターラーを用いて10分間撹拌して接触させた後、NF膜(東レ株式会社製、SU610)に膜透過流速0.8m3/(m2・日)、回収率50%となるように供給し、透水性能の変化を観察した。
その結果、透水性能は、運転時間が500時間を経過しても、ほとんど低下しなかった。
下水二次処理水(TOC=5mg/L程度)を分画分子量10,000ダルトンの酢酸セルロース性UF膜を用いてろ過して被処理水を得た。
そして、被処理水に、平均粒子径が50nmのポリスルフォンからなる吸着剤を200mg/Lで添加し、スターラーを用いて10分間撹拌して接触させた後、NF膜(東レ株式会社製、SU610)に膜透過流速0.8m3/(m2・日)、回収率50%となるように供給し、透水性能の変化を観察した。
その結果、透水性能は、運転時間が500時間を経過しても、ほとんど低下しなかった。
<比較例1>
実施例1において添加した吸着剤を添加しないこと以外は、実施例1と同じ条件で試験を行った。
その結果、透水性能は、運転開始から徐々に低下し、運転時間が500時間を経過したときには、初期値の50%にまで低下した。
なお、透水性能(%)は初期ろ過圧力に対する、ろ過圧力の上昇分から求める。具体的には、例えば、膜透過流速を0.8m3/(m2・日)で一定とし、初期ろ過圧力が0.5MPaであったとすると、ろ過圧力が1.0MPaとなったときに、透水性能が50%になったとする。
実施例1において添加した吸着剤を添加しないこと以外は、実施例1と同じ条件で試験を行った。
その結果、透水性能は、運転開始から徐々に低下し、運転時間が500時間を経過したときには、初期値の50%にまで低下した。
なお、透水性能(%)は初期ろ過圧力に対する、ろ過圧力の上昇分から求める。具体的には、例えば、膜透過流速を0.8m3/(m2・日)で一定とし、初期ろ過圧力が0.5MPaであったとすると、ろ過圧力が1.0MPaとなったときに、透水性能が50%になったとする。
1 被処理水
3 吸着剤
5 供給水
7 濃縮水
9 ろ過水
10 本発明の装置
12 前処理膜ろ過装置
14 供給水槽
16 吸着剤添加手段
18 逆浸透膜ろ過装置
20 濃縮水返送手段
3 吸着剤
5 供給水
7 濃縮水
9 ろ過水
10 本発明の装置
12 前処理膜ろ過装置
14 供給水槽
16 吸着剤添加手段
18 逆浸透膜ろ過装置
20 濃縮水返送手段
Claims (7)
- 被処理水に含まれる膜汚染物質を吸着する性能を備えるコロイド状の吸着剤を、前記被処理水と接触させて供給水を得た後、前記供給水を逆浸透膜またはナノろ過膜を用いてろ過してろ過水を得る、水処理方法。
- 前記吸着剤の平均粒子径が10〜200nmである、請求項1に記載の水処理方法。
- 前記被処理水が、分画分子量が10,000〜100,000の限外ろ過膜で処理して得たものである、請求項1または2に記載の水処理方法。
- 前記吸着剤が疎水性材料を主成分とする、請求項1〜3のいずれかに記載の水処理方法。
- 前記吸着剤が、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォンおよびカーボンブラックからなる群から選ばれる少なくとも1つを主成分とする、請求項1〜4のいずれかに記載の水処理方法。
- 逆浸透膜またはナノろ過膜を用いてろ過して得られる、前記ろ過水以外の部分である濃縮水の少なくとも一部を、前記被処理水および/または前記供給水へ加える、請求項1〜5のいずれかに記載の水処理方法。
- 前記被処理水へ吸着剤を添加する吸着剤添加手段と、
前記供給水をろ過する逆浸透膜またはナノろ過膜を備えるろ過装置と
を備え、請求項1〜6のいずれかに記載の水処理方法を行うことができる、水処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012097768A JP2013223847A (ja) | 2012-04-23 | 2012-04-23 | 水処理方法および水処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012097768A JP2013223847A (ja) | 2012-04-23 | 2012-04-23 | 水処理方法および水処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013223847A true JP2013223847A (ja) | 2013-10-31 |
Family
ID=49594319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012097768A Pending JP2013223847A (ja) | 2012-04-23 | 2012-04-23 | 水処理方法および水処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013223847A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076371A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社クラレ | 親水性高分子吸着材およびそれを用いた水処理方法 |
-
2012
- 2012-04-23 JP JP2012097768A patent/JP2013223847A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076371A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社クラレ | 親水性高分子吸着材およびそれを用いた水処理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review | |
KR101193902B1 (ko) | 정수 생산을 위한 막여과 정수 처리 시스템 및 방법 | |
Zhang et al. | In situ ozonation to control ceramic membrane fouling in drinking water treatment | |
US20130015131A1 (en) | Method for washing separation membrane module and method for generating fresh water | |
JP3698093B2 (ja) | 水処理方法および水処理装置 | |
JP2007289922A (ja) | ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置 | |
JP2009172462A (ja) | 水質改質装置、及び水処理システム、並びに排水の再利用システム | |
WO2017164361A1 (ja) | 超純水製造システム | |
WO2014129398A1 (ja) | 逆浸透膜装置の運転方法、及び逆浸透膜装置 | |
JP2006320847A (ja) | 有機ヒ素含有水の処理方法とその装置 | |
KR101550702B1 (ko) | 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법 | |
JP5346784B2 (ja) | 分離膜の製造方法、分離膜およびイオン排除性能を有する分離膜モジュール | |
JP6816292B2 (ja) | 水処理方法および水処理装置 | |
JP2006204977A (ja) | 生物処理水含有水の処理方法及び処理装置 | |
JP4958384B2 (ja) | 半導体製造プロセスから排出される有機体炭素含有水の生物処理水の処理方法 | |
JP2012200696A (ja) | 脱塩方法および脱塩装置 | |
JP5581669B2 (ja) | 水処理方法、水処理部材及び水処理設備 | |
AU2009230315B2 (en) | Method for purification treatment of process water | |
JP7113454B2 (ja) | 水処理方法および装置 | |
JP2013223847A (ja) | 水処理方法および水処理装置 | |
JP7403387B2 (ja) | 凝集膜ろ過システムおよび凝集膜ろ過方法 | |
CN110624419B (zh) | 一种反渗透膜环保再生利用方法 | |
CN210410244U (zh) | 一种氨基化氧化石墨烯与石墨相氮化碳复合改性膜 | |
JP3780734B2 (ja) | 複合半透膜 | |
JP4760648B2 (ja) | 純水製造装置 |