JP2009172462A - 水質改質装置、及び水処理システム、並びに排水の再利用システム - Google Patents

水質改質装置、及び水処理システム、並びに排水の再利用システム Download PDF

Info

Publication number
JP2009172462A
JP2009172462A JP2008011113A JP2008011113A JP2009172462A JP 2009172462 A JP2009172462 A JP 2009172462A JP 2008011113 A JP2008011113 A JP 2008011113A JP 2008011113 A JP2008011113 A JP 2008011113A JP 2009172462 A JP2009172462 A JP 2009172462A
Authority
JP
Japan
Prior art keywords
water
membrane
filtration
separated
permeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008011113A
Other languages
English (en)
Inventor
Seiji Miyawaki
誠治 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Miura Protec Co Ltd
Original Assignee
Miura Co Ltd
Miura Protec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Miura Protec Co Ltd filed Critical Miura Co Ltd
Priority to JP2008011113A priority Critical patent/JP2009172462A/ja
Publication of JP2009172462A publication Critical patent/JP2009172462A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】簡易かつ低コストでもって所望の水質を有する生産水の生成を可能とする。
【解決手段】本発明の水質改質装置は、第1〜第4の膜モジュール21〜24が4段に直列接続されている。本実施の形態では、第1〜第3の膜モジュール21〜23には、第1〜第3の逆浸透膜21a〜23aが内蔵され、第4の膜モジュール24には、ナノろ過膜24aが内蔵されている。また、各逆浸透膜21a〜23aは、TDSの除去率が90%以上、かつSiOの除去率が90%以上に設定されたろ過膜が使用され、ナノろ過膜24aは、TDSの除去率が40〜60%、かつSiOの除去率が1〜10%に設定されたろ過膜が使用される。各膜モジュールで膜ろ過分離される濃縮水は次段の膜モジュールに原水として供給され、或いは循環系に回収される。一方、膜ろ過分離された各透過水は混合されて生産水となる。
【選択図】図2

Description

本発明は水質改質装置、及び水処理システム、並びに排水の再利用システムに関し、より詳しくは原水を膜ろ過分離して所望の水質を有する生産水を得る水質改質装置、及び該水質改質装置を備えた水処理システム、並びに該水質改質装置を使用した排水の再利用システムに関する。
膜ろ過技術は、膜をろ材として原水を通し、原水中に存在する汚染物質や不純物をろ過して透過水(又はろ過液)と濃縮水とに分離する技術であり、今日、浄水処理や廃水処理の分野で広く利用されている。
この膜ろ過では、半透膜のろ過膜に圧力を負荷することにより、10μm以下の小さいサイズの溶質を分離することができ、膜の種類によって精密ろ過(microfiltlation;以下、「MF」という。)法、限外ろ過(ultrafiltration;以下、「UF」という。)法、ナノろ過(nanofiltration;以下、「NF」という。)法、及び逆浸透(reverse osmosis;以下、「RO」という。)法等が知られている。
このうち、MF法は、粒径0.1〜10μm程度の微粒子の除去に適しており、UF法は高分子物質やタンパク質の除去に適している。また、RO法は、浸透圧以上の圧力を負荷することにより溶存塩類やSiOをも効果的に除去することができ、ほぼ純水の生産水を得ることができる。NF法は、RO膜に比べると除去対象物質の粒子サイズが若干大きく、数nm以下の物質除去に適用される。このNF法は、脱塩処理や軟水化処理、トリハロメタンや農薬の除去、更には海水淡水化の前処理等の用途に使用される。
ところで、飲料水、食品営業用水、各種事業場の製造用水、ボイラ用水、冷却水では、極力高純度の水を使用するのが好ましいことから、原水をRO装置で膜ろ過分離し、高純度の水を生成することが広く行われている。
例えば、特許文献1では、図7に示すように、UF膜101aを備えたUF部101とNF膜(ルーズRO膜)102aを備えたNF部102と、RO膜103aを備えたRO部103とをこの順序で配した膜分離装置が提案されている。
この特許文献1では、UF膜101aで限外膜ろ過処理された透過水を塩除去率の比較的低いNF膜102aで膜分離することにより、NF部102から多量の透過水を取得し、この透過水をRO部103に供給することにより、RO部103の透過液量を低下させることなく、良質の処理水を得ようとしている。
また、他の背景技術としては、原水の一部をバイパスし、膜ろ過分離された透過水と原水とを混合させて生産水を得るようにした技術も提案されている。
例えば、特許文献2では、図8に示すように、給水経路111と、この給水経路111に介装されたろ過膜を内蔵したろ過処理部112と、このろ過処理部112の下流側へ未ろ過水を供給するバイパス経路113と、給水経路111に設けられたろ過水流量制御バルブ114と、前記バイパス経路113に設けられた未ろ過水流量制御バルブ115と、ろ過水と未ろ過水とが給水される給水タンク116と、ろ過水流量制御バルブ114及び未ろ過水流量制御バルブ115を開閉制御する制御部117とを備えたボイラ用給水装置が提案されている。
この特許文献2では、給水タンク116に接続されている蒸気ボイラや復水配管(不図示)の腐食が抑制可能な水質となるように、ろ過水流量制御バルブ114及び未ろ過水流量制御バルブ115を開閉制御している。そして、ろ過処理部112を透過した透過水とバイパス経路113からの原水とを給水タンク116で混合させ、これにより所望水質の水を得ようとしている。尚、この特許文献2では、給水タンク116内の水は循環経路118を介して循環されると共に、該循環経路118には脱気処理部119が介装されている。
また、特許文献3では、図9に示すように、給水タンク121に接続される給水ライン122が第1の給水ライン122aと第2の給水ライン122bに分岐され、第1の給水ライン122aには水質改質装置123が介装されると共に、第2の給水ライン122bには純水製造装置124が介装され、第1の給水ライン122aからの処理水と第2の給水ライン122bからの純水とが処理水混合手段125で混合されて給水タンク121に水を貯留するようにした水質改質システムが提案されている。
特許文献3は、水質改質装置123がNF膜を備えたろ過処理部123aと溶存気体除去処理部123bとを有し、純水製造装置124がRO膜を備えたRO部124aと溶存気体除去処理部124bとを有している。そして、水質改質装置123のろ過処理部123aで腐食促進成分が除去された第1の透過水を生成し、純水製造装置124のRO部124aで純水からなる第2の透過水を生成し、処理水混合手段125で第1及び第2の透過水を混合し、配管や熱機器設備等で腐食の抑制が可能な生産水を得るようにしている。
特開昭61−200810号公報(第1図) 特開2006−239649号公報(図1) 特開2005−319426号公報(図1)
しかしながら、特許文献1は、原水を、NF膜102aに透過させた後にRO膜103aに透過させているため、RO膜103aを透過して得られた生産水は、ほぼ純水であり、電気伝導率が極めて低く、イオン性シリカの含有量も低い。また、原水に溶存する重炭酸イオン(HCO )はRO膜103aを殆ど透過しないため、RO膜103aを透過する二酸化炭素(CO)の濃度が相対的に上昇して生産水は酸性となり、pHが低下する。このため生産水に接する配管類や設備装置の耐食性低下を招くおそれがある。特に、冷却塔のように補給水を循環させ、濃縮して使用する場合は、補給水に純水を使用すると配管腐食等が助長され易くなる。したがって、工場用水やボイラー用水、冷却塔等の場合は、補給水に適度の塩分やシリカ成分を含み、弱酸性〜弱アルカリ性の水質を有する水を使用するのが望ましい。
また、特許文献2では、原水の一部をバイパスし、未ろ過水とろ過分離されたろ過水とを混合しているので、生産水中には原水中の塩分やシリカ成分も含まれ、配管や設備装置の耐食性低下を回避することが可能である。
しかしながら、この特許文献2では、長時間の運転によりろ過処理部112に内蔵されたろ過膜に微生物や金属スケールが沈着してファウリングが生じるおそれがある。そして、このようなファウリングが生じると、ろ過膜を透過する透過水量が低下するため、バイパス経路113の流量調整が困難となり、給水タンク116に給水される処理水の水質が不安定となる。
また、特許文献3では、給水ライン122を第1の給水ライン122aと第2の給水ライン122bに分岐し、それぞれのラインに水質改質装置123及び純水製造装置124を設けているため、システムの煩雑化を招き、設置スペースも大きくなり、システムの大型化を招くという問題点がある。
本発明はこのような事情に鑑みなされたものであって、簡易かつ低コストでもって所望の水質を有する生産水の生成が可能な水質改質装置、及び該水質改質装置を備えた水処理システム、並びに該水質改質装置を使用した排水の再利用システムを提供することを目的とする。
上記目的を達成するために本発明に係る水質改質装置は、原水を透過水と濃縮水とに膜ろ過分離するRO膜と、前記RO膜で膜ろ過分離された濃縮水を原水として更に透過水と濃縮水とに膜ろ過分離するNF膜とを備え、前記RO膜で膜ろ過分離された透過水と前記NF膜で膜ろ過分離された透過水とを混合して生産水を生成するように構成され、前記RO膜は、総溶解固形分(Total Dissolved Solids;以下、「TDS」と記す。)の除去率が90%以上、かつ二酸化ケイ素(以下、「SiO」と記す。)の除去率が90%以上であり、前記NF膜は、TDSの除去率が40〜60%、かつSiOの除去率が1〜10%であることを特徴としている。
また、本発明の水質改質装置は、n個(ただし、n≧2以上の正の整数である。)の前記RO膜が多段に直列接続され、第(n−1)番目のRO膜で膜ろ過分離された濃縮水が、原水として第n番目のRO膜に供給されて透過水と濃縮水とに膜ろ過分離されると共に、m個(ただし、m≧1以上の正の整数である。)の前記NF膜を有し、前記第n番目のRO膜で膜ろ過分離された濃縮水が、原水としてNF膜に供給されて透過水と濃縮水とに膜ろ過分離され、第m番目のNF膜で膜ろ過分離された濃縮水は循環系に回収されると共に、前記n個のRO膜及びm個のNF膜で膜ろ過分離された各透過水が混合されて生産水が生成されることを特徴としている。
また、本発明の水質改質装置は、前記mが2以上の場合は、m個の前記NF膜が多段に直列接続され、第(m−1)番目のNF膜で膜ろ過分離された濃縮水が、原水として第m番目のNF膜に供給されて透過水と濃縮水とに膜ろ過分離されることを特徴としている。
さらに、本発明の水質改質装置は、少なくとも一つ以上の前記RO膜と少なくとも一つ以上の前記NF膜とを内蔵した膜ろ過処理部を有し、前記膜ろ過処理部は、前記NF膜が前記RO膜の後段に位置するように、前記RO膜と前記NF膜とが直列多段に膜配列されていることを特徴としている。
本発明に係る水処理システムは、上述した水質改質装置を備えていることを特徴としている。
また、本発明の水処理システムは、活性炭ろ過装置、除鉄除マンガンろ過装置、砂ろ過装置、及び軟水装置のうちの少なくとも1つ以上の前処理装置を有していることを特徴としている。
また、本発明に係る排水の再利用システムは、ろ過膜を使用して排水中の懸濁物質を固液分離する膜分離反応槽と、該膜分離反応槽で得られた液中の有機物を酸化剤及び紫外線中で酸化分解して除去し、原水を得る紫外線装置と、前記原水を膜ろ過分離して生産水を生成する膜ろ過分離装置とを備えた排水の再利用システムにおいて、前記膜ろ過分離装置が、上述した水質改質装置で構成されていることを特徴としている。
さらに、本発明に係る排水の再利用システムは、活性汚泥を使用して排水中の有機物を生物分解する曝気槽と、前記活性汚泥を沈降分離して得られた液体に膜ろ過分離処理を施してろ過液を生成する第1の膜ろ過装置と、前記ろ過液に紫外線を照射して原水を生成する紫外線装置と、前記原水に膜ろ過分離処理を施して生産水を生成する第2の膜ろ過分離装置とを備えた排水の再利用システムにおいて、前記第2の膜ろ過分離装置が、上述した水質改質装置で構成されていることを特徴としている。
上記水質改質装置によれば、原水を透過水と濃縮水とに膜ろ過分離するRO膜と、前記RO膜で膜ろ過分離された濃縮水を原水として更に透過水と濃縮水とに膜ろ過分離するNF膜とを備え、前記RO膜で膜ろ過分離された透過水と前記NF膜で膜ろ過分離された透過水とを混合して生産水を生成するように構成され、前記RO膜は、TDSの除去率が90%以上、かつSiOの除去率が90%以上であり、前記NF膜は、TDSの除去率が40〜60%、かつSiOの除去率が1〜10%であるので、TDS及びSiOを適度に含有した生産水を得ることができ、水質が酸性側に過度に変化することもなく配管等の耐久性向上を図ることができる。
さらに、溶解固形分やSiOが適度に生産水中に放出されることから、ろ膜にスケールが付着するのを極力防ぐことができ、ファウリングの発生を予防できる。
また、n個(ただし、n≧2以上の正の整数である。)の前記RO膜を有し、第(n−1)番目のRO膜で膜ろ過分離された濃縮水が、原水として第n番目のRO膜に供給されて透過水と濃縮水とに膜ろ過分離されると共に、m個(ただし、m≧1以上の正の整数である。)の前記NF膜を有し、前記第n番目のRO膜で膜ろ過分離された濃縮水が、原水としてNF膜に供給されて透過水と濃縮水とに膜ろ過分離され、第m番目のNF膜で膜ろ過分離された濃縮水は循環系に回収されると共に、前記n個のRO膜及びm個のNF膜で膜ろ過分離された各透過水が混合されて生産水が生成され、さらに前記mが2以上の場合は、第(m−1)番目のNF膜で膜ろ過分離された濃縮水が、原水として第mのNF膜に供給されて透過水と濃縮水とに膜ろ過分離されるので、上述した作用効果を容易に奏することができる。
さらに、少なくとも一つ以上の前記RO膜と少なくとも一つ以上の前記NF膜とを内蔵した膜ろ過処理部を有し、前記膜ろ過処理部は、前記NF膜が前記RO膜の後段に位置するように、前記RO膜と前記NF膜とが直列多段に膜配列されているので、前段でのRO膜により膜ろ過分離されたと透過水と後段でのNF膜により膜ろ過分離されたと透過水とを混合することにより、大規模な装置を要することもなく、簡単かつ低コストでは配管や設備装置の腐食するのを回避しつつ、ろ膜へのスケール付着も極力防止することのできる水質改質装置を実現することができる。
また、本発明の水処理システムは、上記水質改質装置を備え、さらに活性炭ろ過装置、除鉄除マンガンろ過装置、砂ろ過装置、及び軟水装置のうちの少なくとも1つ以上の前処理装置を有しているので、ろ膜へのスケール付着や配管腐食等を招くのを極力回避するようにした所望純度の水質を有する補給水を簡単かつ低コストで得ることができる。
さらに、本発明の排水の再利用システムは、ろ過膜を使用して排水中の懸濁物質を固液分離する膜分離反応槽と、該膜分離反応槽で得られた液中の有機物を酸化剤及び紫外線中で酸化分解して除去し、原水を得る紫外線装置と、前記原水を膜ろ過分離して生産水を生成する膜ろ過分離装置とを備えた排水の再利用システムにおいて、前記膜ろ過分離装置が、上記水質改質装置で構成されているので、膜分離活性汚泥法、及び促進酸化処理法と上述した水質改質装置とを組み合わせることにより、塩分の高い工場排水から適度な純度を有する生産水を得ることができ、したがって工場排水を再利用に供することができ、資源の有効活用を図ることができる。
また、本発明の排水の再利用システムは、活性汚泥を使用して排水中の有機物を生物分解する曝気槽と、前記活性汚泥を沈降分離して得られた液体に膜ろ過分離処理を施してろ過液を生成する第1の膜ろ過装置と、前記ろ過液に紫外線を照射して原水を生成する紫外線装置と、前記原水に膜ろ過分離処理を施して生産水を生成する第2の膜ろ過分離装置とを備えた排水の再利用システムにおいて、前記第2の膜ろ過分離装置が、上記水質改質装置で構成されているので、標準活性汚泥法、比較的大きなサイズの物質を除去する第1の膜ろ過装置、及び紫外線装置と上述した水質改質装置とを組み合わせることにより、塩分の高い工場排水から適度な純度を有する生産水を得ることができ、したがって工場排水を再利用に供することができ、資源の有効活用を図ることができる。
次に、本発明の実施の形態を図面に基づき詳説する。
図1は、本発明に係る水質改質装置を備えた水処理システムの一実施の形態を示す概略構成図である。
すなわち、この水処理システムは、原水中に含有される懸濁物質等を除去する前処理装置群1と、前処理装置群1で前処理された原水の水質を改質する水質改質装置2と、水質改質装置2から出力された補給水を貯留する給水タンク3と、これら前処理装置群1及び水質改質装置2の各構成要素や給水タンク3への給水を制御するシステム制御部(不図示)とを備えている。
前処理装置群1は、原水中の残留塩素や有機物を除去する活性炭ろ過装置4と、イオン交換法等により原水を軟水化する軟水装置5と、原水中の色度成分や臭気成分等を除去する活性炭フィルタ6と、原水中に浮遊する汚染物質を除去するプレフィルタ7とを有し、原水供給ライン8にはこれらの順序で各前処理装置が配設されている。
そして、活性炭ろ過装置4と軟水装置5との間には第1の硬度監視装置9が介装され、軟水装置5に供給される原水硬度が監視される。また、軟水装置5と活性炭フィルタ6との間には第2の硬度監視装置10が介装され、軟水装置5で軟水化された原水の硬度が監視される。そして、第1の硬度監視装置9及び第2の硬度監視装置10の監視結果により所定の軟水化がされていないと判断されたときは、軟水装置5は、該軟水装置5に内蔵された陽イオン交換樹脂の交換能力が飽和したと判断し、所定の再生処理を行う。
また、プレフィルタ7の下流側には残留塩素監視装置11が設けられ、これにより水質改質装置2に供給される原水の塩素濃度が監視される。
そして、水質改質装置2は、原水を濃縮水と透過水とに膜ろ過分離する複数の膜モジュールを備えた膜モジュール群(膜ろ過処理部)12を有し、また原水を膜モジュール群12に供給する給水弁13と、膜モジュール群12に内蔵されたろ過膜に圧力を負荷する加圧ポンプ14とが原水供給ライン8上に配設されている。
また、膜モジュール群12の濃縮水出口には循環ライン15が接続されている。該循環ライン15の経路中には排水弁16が設けられると共に、該循環ライン15の先端は給水弁13と加圧ポンプ14の間の原水供給ライン8に接続されている。そして、濃縮水の一部は排水弁16を介して外部に排水されると共に、残りの濃縮水は循環ライン(循環系)15を介して原水供給ライン8に回収される。また、膜モジュール群12は、後述するようにろ過膜を透過した透過水が混合されて生産水を生成するように構成されている。そして、生産水出口には補給ライン17が接続されると共に、該補給ライン17には補給弁18及び流量計19が介装され、かつ補給ライン17の先端は給水タンク3に接続されている。
また、給水タンク3には圧力検知式の水位センサ20が挿入されており、給水タンク3の水頭圧を検知し、その検知信号をシステム制御部(不図示)に送信する。そして、給水タンク3の水位が所定の低レベルまで低下すると、補給弁18が開弁して給水タンク3に生産水を給水し、給水タンク3の水位が所定の高レベルに達すると、補給弁18は閉弁して生産水の給水タンク3への補給を停止するように、給水タンク3の水位は前記システム制御部により制御される。
膜モジュール群12は、4個の膜モジュール(第1〜第4の膜モジュール21〜24)が4段に直列接続されている。本実施の形態では、第1〜第3の膜モジュール21〜23には、スパイラル状に巻回された第1〜第3のRO膜エレメント(以下、単に「RO膜」という。)が内蔵され、第4の膜モジュール24には、スパイラル状に巻回されたNF膜エレメント(以下、「NF膜」という。)が内蔵されている。
そして、第1〜第3のRO膜は、TDSの除去率が90%以上、かつSiOの除去率が90%以上に設定されたろ過膜が使用され、NF膜は、TDSの除去率が40〜60%、かつSiOの除去率が1〜10%に設定されたろ過膜が使用される。
次に、RO膜及びNF膜の溶質除去原理を説明する。
RO膜及びNF膜は、例えば、末端にカルボニル基を有するポリアミド等の高分子素材で形成された多孔質膜からなり、膜表面は、液中で末端のカルボニル基が解離することにより、負電荷に帯電可能とされている。
そして、RO膜は、細孔径が高分子間の隙間レベル程度の極めて小さな径に形成されており、負電荷に帯電している膜表面の電気的反発力と分子ふるい効果により、数nm〜0.1nm程度の大きさの溶質分子を除去することができる。すなわち、RO膜は、原水の供給される一次側から加圧ポンプ14により浸透圧以上の圧力が負荷されると、原水中を電気泳動している溶質分子のうち、分子ふるい効果により、分子サイズの小さな溶質分子は細孔を透過し、分子サイズの大きな溶質分子は細孔の透過が阻止される。また、分子サイズが小さくても負に帯電している溶質イオンは電気的反発力を受けて細孔の透過が阻止される。
このようにRO膜では、TDSやSiOの除去率は、その仕様によって若干の差異はあるものの、溶存塩類やSiOをほぼ除去することができ、高純度の透過水を得ることができる。
一方、NF膜は、細孔径についてはRO膜よりも大きいが、膜表面で負に帯電している電荷の密度(負電荷密度)はRO膜よりも大きく、主として電気的反発力により不純な溶質分子を除去することができる。すなわち、NF膜は、細孔径がRO膜よりも大きいため、RO膜では透過を阻止できる小さなサイズの溶質分子はNF膜では透過してしまうおそれがある。
しかしながら、NF膜は膜表面の負電荷密度がRO膜よりも大きいため、電気的反発力もRO膜よりも大きい。すなわち、NF膜は、電気的反発力による選択除去膜としての性質を有し、Ca2+やNa等の陽イオンや中性のSiOは膜を透過し易いが、ClやSO 2-等の負イオンは電気的反発力により膜の透過を効果的に阻止することができる。また、NF膜は、RO膜に比べて細孔径も大きいため、RO膜では透過が困難な重炭酸イオン(HCO )等の負イオンであっても分子サイズが小さい場合は、電気的反発力を受けることなく膜を透過する可能性がある。
このようにNF膜では、TDSやSiOの除去率はRO膜に比べると低く、溶存塩類やSiO等の不純な溶質分子を或る程度透過する。尚、TDSやSiOの除去率は、NF膜の仕様によって異なる。
ところで、高純度の生産水を高効率で得るためには、RO膜を内蔵した膜モジュールを多段に直列接続し、RO膜を透過した透過水を混合させることにより可能である。例えば、RO膜を内蔵した膜モジュールを4段に直列接続した場合、TDSは50mg/L未満、SiOは5mg/L未満に低下した高純度の生産水を得ることができる。
しかしながら、〔発明が解決しようとする課題〕の項でも述べたように、生産水の純度が過度に高くなると、電気伝導度が例えば500μS/m以下に低下し、さらにRO膜はHCO を殆ど透過しないため、pHも6以下に低下し、このため生産水と接する配管や設備装置の腐食を促進して耐久性低下を招くおそれがある。さらに、RO膜を透過しなかった濃縮水は、循環使用されるため、長時間運転によりRO膜に金属スケール、有機物、或いは微生物等が付着してファウリングが生じやすく、透過水量の低下を招くおそれがある。
したがって、前記配管や設備装置の耐久性低下を防ぎ、またろ過膜へのスケール等の付着を回避してファウリングを予防するためには、HCO を或る程度透過させてpHが低下するのを防止する必要があり、さらには溶存塩類やSiOを生産水中に或る程度放出させてイオンコントロールし、ろ過膜へのスケール等の付着を防止する必要がある。そしてそのためには、生産水中のTDSを50〜300mg/L程度、SiOを5〜30mg/L程度に制御するのが望まれる。
そこで、本実施の形態では、膜モジュール群12のうち、最後段である第4の膜モジュール24にNF膜を内蔵している。そして、第1〜第3の膜モジュール21〜23ではRO膜で膜ろ過分離処理を行い、第4の膜モジュール24ではNF膜で膜ろ過分離処理を行い、RO膜で膜ろ過分離された各透過水とNF膜で膜ろ過分離された透過水とを混合することにより、適度な純度の生産水を得ている。
このような膜モジュール群12に使用されるRO膜及びNF膜の溶質除去率は、原水の水質や膜モジュール群12の膜配列の構成によって異なるため、一義的には決定できないが、RO膜としては、上述したようにTDS及びSiOの除去率が90%以上のもの、例えば東レ社製TMLを使用することができ、NF膜としては、TDSの除去率が40〜60%、SiOの除去率が1〜10%のもの、例えば東レ社製TMNを使用することができる。
図2は膜モジュール群12の膜ろ過分離処理を模式的に示した図である。
上述したように第1〜第3の膜モジュール21〜23には、TDSの除去率η1及びSiOの除去率η2がいずれも90%以上の第1〜第3のRO膜21a〜23aが内蔵され、第4の膜モジュール24には、TDSの除去率φ1が40〜60%、SiOの除去率φ2が1〜10%のNF膜24aが内蔵されている。
TDS量X、及びSiO量Yを含有した原水100重量部が第1の膜モジュール21に供給されると、原水100重量部に対しA1重量部が第1の透過水となり、残りのA1′(=100−A1)重量部が第1の濃縮水となる。TDSの除去率がη1、SiOの除去率がη2であるから、第1の透過水中のTDS量X1は{X・(1−η1)/100}、SiO量Y1は{Y・(1−η2)/100}となる。
一方、第1の濃縮水のTDS量X1′及びSiO量Y1′は、原水、第1の透過水、第1の濃縮水との間の物質収支より、それぞれX・η1/A1′、及びY・η2/A1′となる。
次に、第1の濃縮水が、第2の膜モジュール22に原水として供給される。そして、第1の濃縮水A1′重量部に対し、A2重量部が第2の透過水となり、残りのA2′(=A1′−A2)重量部が第2の濃縮水となる。したがって、第2の膜モジュール22では回収率B2は100A2/A1′となる。TDSの除去率はη1、SiOの除去率がη2であるから、第2の透過水中のTDS量X2は{X1′・(1−η1)/100}、SiO量Y2は{Y1′・(1−η2)/100}となる。
一方、第2の濃縮水のTDS量X2′、及びSiO量Y2′は、第1の濃縮水、第2の透過水、第2の濃縮水との間の物質収支より、それぞれX1′・η1・A1′/100A2′、及びY1′・η2・A1′/100A2′となる。
次に、第2の濃縮水が、第3の膜モジュール23に原水として供給され、第2の濃縮水A2′重量部に対し、A3重量部が第2の透過水となり、残りのA3′(=A2′−A3)重量部が第3の濃縮水となる。したがって、第3の膜モジュール23では回収率B3は100A3/A2′となる。TDSの除去率はη1、SiOの除去率がη2であるから、第3の透過水中のTDS量X3は{X2′・(1−η1)/100}、SiO量Y3は{Y2′・(1−η2)/100}となる。
一方、第3の濃縮水のTDS量X3′、及びSiO量Y3′は、第2の濃縮水、第3の透過水、第3の濃縮水との間の物質収支より、それぞれX2′・η1・A2′/100A3′、及びY2′・η2・A2′/100A3′となる。
次に、第3の濃縮水が、NF膜24aが内蔵された第4の膜モジュール24に原水として供給される。そして、第3の濃縮水A3′重量部に対し、A4重量部が第2の透過水となり、残りのA4′(=A3′−A4)重量部が第4の濃縮水となる。したがって、第4の膜モジュール24では回収率B4は100A4/A3′となる。TDSの除去率はφ1、SiOの除去率はφ2であるから、第4の透過水中のTDS量X4は{X3′・(1−φ1)/100}、SiO量Y4は{Y3′・(1−φ2)/100}となる。
一方、第4の濃縮水のTDS量X4′、及びSiO量Y4′は、第3の濃縮水、第4の透過水、第4の濃縮水との間の物質収支より、それぞれX3′・φ1・A3′/100A4′、及びY3′・φ2・A3′/100A4′となる。
そして、第1〜第4の透過水が混合されて生産水となる。生産水の回収率B5は{B1+A1′・A2/100+A2′・A3/100+A3′・A4/100}となる。
また、生産水のTDS量X5は{(B1・X1+B2・X2+B3・X3+B4・X4)/100}となり、SiO量Y5は{(B1・Y1+B2・Y2+B3・Y3+B4・Y4)/100}となる。
このように上記水質改質装置2を備えた水処理システムでは、前処理装置群1で前処理された原水は、原水供給ライン8を介して第1の膜モジュール21の一次側に供給される。そして、第1のRO膜21aによって膜ろ過分離され、第1のRO膜21aを透過した第1の透過水は二次側から出力される。一方、第1のRO膜21aを透過しなかった第1の濃縮水は、第2の膜モジュール22の一次側に原水として供給される。そして、第2のRO膜22aによって膜ろ過分離され、第2のRO膜22aを透過した第2の透過水は二次側から出力される。また、第2のRO膜22aを透過しなかった第2の濃縮水は第3の膜モジュール23の一次側に原水として供給される。そして、第3のRO膜23aによって膜ろ過分離され、第3のRO膜23aを透過した第3の透過水は二次側から出力される。
一方、第3のRO膜23aを透過しなかった第3の濃縮水は、第4の膜モジュール24の一次側に原水として供給される。そして、NF膜24aによって膜ろ過分離され、NF膜24aを透過しなかった第4の濃縮水は、循環ライン15に出力される一方、NF膜24aを透過した第4の透過水は二次側から出力される。
そして、第1〜第3の膜モジュール21〜23及び第4の膜モジュール24から出力された各透過水は混合されて生産水となり給水ライン17を経て給水タンク13に供給される。
このように本実施の形態では水質改質装置2の膜モジュール群12は、第1〜第3のRO膜21a〜23bを内蔵した第1〜第3の膜モジュール21〜23の後段にNF膜24を内蔵した第4の膜モジュール24が直列接続されているので、第4の膜モジュール24によって生産水中のTDSやSiOの含有量を増量させることができ、これにより電気伝導度が過度に低くなることもなく、生産水の純度が必要以上に高くなるのを回避することができる。また、生産水中には或る程度のHCO も溶存することからpHが低下するのを回避することもできる。そして、これにより生産水に接する配管や設備装置の耐久性向上を図ることができる。また、生産中には適度なSiOやCa成分も含むことから、膜へのスケール付着を予防することができ、ファウリングの発生を極力抑制することが可能となる。
尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、最初の3段をRO膜を内蔵した膜モジュールで構成し、最後段にNF膜を内蔵した膜モジュールを配しているが、NF膜がRO膜の後段に位置するように、RO膜とNF膜とが直列多段に膜配列されていればよく、原水の水質等に応じ要旨を逸脱しない範囲で種々変更することが可能である。例えば、RO膜を内蔵した膜モジュールを2段構成とし、NF膜を内蔵した膜モジュールを2段構成としてもよい。また、上記の実施の形態では、膜モジュールを4段に直列接続しているが、RO膜の後段にNF膜が配されていればよく、膜モジュールの個数も限定されるものではない。
また、上記水処理システムでは、前処理装置として活性炭ろ過装置、軟水装置を使用しているが、除鉄除マンガンろ過装置や砂ろ過装置を前処理装置として使用しても同様に適用できるのはいうまでもない。
次に、本発明の水質改質装置を排水の再利用システムに使用した場合について説明する。
図3は、排水の再利用システムの第1の実施の形態を示すシステム構成図であって、本第1の実施の形態では、膜分離活性汚泥法で排水中の汚濁物質を除去してろ過液を生成し、促進酸化処理法によりこのろ過液を酸化分解して前記ろ過液中の有機物を除去し、これにより原水を生成し、この原水を水質改質装置で膜ろ過分離し、ボイラ、冷却塔や工場用水等に使用可能な生産水を得ている。
すなわち、この第1の実施の形態では、塩分の高い工場排水が流量調整槽25に供給される。流量調整槽25には散気板26が配されており、さらに該散気管26はブロワ27に接続されている。そして、ブロワ27により散気された工場排水は、水中ポンプ28により吸引されて膜分離反応槽(Membrane bioreactor;以下、「MBR装置」という。)29に供給される。このMBR装置29は高油分対応型とされ、内部にMF膜32及び散気板30が配されると共に、該散気管30はブロワ31に接続されている。流量調整槽25からの工場排水がMBR装置29に供給されると、MF膜32は工場排水中に浸漬された状態となる。そして、MF膜32は、吸引ポンプ33により原液である工場排水を活性汚泥とろ過液に固液分離し、固液分離されたろ過液はMBR処理槽34に供給される。
次いで、ろ過液は送水ポンプ35により紫外線装置36に供給される。具体的には、送水ポンプ35と紫外線装置36との間には過酸化水素等の酸化剤が貯留された酸化剤添加装置37が介装されており、ろ過液は酸化剤が添加されて紫外線装置36に供給される。
紫外線装置36には紫外線ランプ38が配されており、酸化剤の添加されたろ過液は、紫外線ランプ38からの紫外線が照射されると、強力な酸化力を有するヒドロキシラジカル(HO・)を生成する。そしてろ過液に含まれる有機物はこのヒドロキシラジカルによって酸化分解し、これにより膜ろ過用原水が生成される。また、紫外線装置36の下流側には重亜硫酸ソーダ等の還元剤が貯留された還元剤添加装置39が配されている。そして、原水には還元剤が添加され、FI(ファウリング・インデックス)値が約1に調整されて水質改質装置2に供給される。そして、水質改質装置2では、上述した膜ろ過分離処理が行われ、所定純度の生産水が生成される。そして、この生産水がボイラ、冷却塔、工場用水等、所定の用途に供されることとなる。
このように本第1の実施の形態では、膜分離活性汚泥法、及び促進酸化処理法と上述した水質改質装置とを組み合わせることにより、塩分の高い工場排水から適度な純度を有する生産水を得ることができ、したがって工場排水を再利用に供することができ、資源の有効活用を図ることができる。
図4は、排水の再利用システムの第2の実施の形態を示すシステム構成図であって、本第2の実施の形態では、活性汚泥を使用して工場排水中の有機物を生物分解し、その後活性汚泥を沈降分離し、上澄液を処理水として第1の膜ろ過分離処理を施し、紫外線装置で酸化分解して汚濁物を除去し、その後、水質改質装置で第2の膜ろ過処理し、所望の生産水を得ている。
すなわち、この第2の実施の形態では、塩分の高い工場排水が、上記第1の適用例と同様、流量調整槽25に供給される。そして、ブロワ27により散気されている流量調整槽25内の工場排水は、水中ポンプ28により吸引されて曝気槽41に供給される。曝気槽41ではブロワ42からの空気を散気板43に吹き込み、酸素を供給し続けて撹拌する。これにより工場排水に含まれる有機物は好気性微生物の作用によって分解し、活性汚泥が生成される。次いで、曝気槽41に連設された沈殿槽44では、活性汚泥を沈降分離して該活性汚泥を沈殿させる。そして、沈殿槽44の下流側には次亜塩素酸ナトリウム等の殺菌剤が貯留された殺菌剤添加装置45が配されており、沈殿槽44で沈降分離された上澄液には、殺菌剤が添加され受水槽46に貯留される。次いで、受水槽46中の前記上澄液をUF膜装置48に供給する、該UF膜装置48は、例えば中空糸型のUF膜が内蔵され、加圧ポンプ47で所定の圧力を負荷することにより上澄液中の2〜200nm程度の汚濁物質が除去される。そしてその後は、第1の実施の形態と同様、紫外線装置36及び水質改質装置2を経て生産水が生成され、この生産水がボイラ、冷却塔、工場用水等、所定の用途に供される。
このように本第2の実施の形態では、標準活性汚泥法、UF装置、及び紫外線装置と上述した水質改質装置とを組み合わせることにより、塩分の高い工場排水から適度な純度を有する生産水を得ることができ、したがって工場排水を再利用に供することができ、資源の有効活用を図ることができる。
次に、本発明の水質改質装置の実施例を具体的に説明する。
図5は、TDS;2000mg/L、SiO;60mg/Lを含有した原水を膜ろ過分離した場合のシミュレーション結果を示したフローシートであって、第1〜第3の膜モジュール21〜23にはTDSの除去率η1が97%、SiOの除去率η2が95%のRO膜21a〜23aがそれぞれ内蔵され、第4の膜モジュール24にはTDSの除去率φ1が55%、SiOの除去率φ2が5%のNF膜24aが内蔵されている。
この実施例では、原水が第1の膜モジュール21の一次側に供給されると、原水100重量部に対し、15重量部が第1の透過水となり、残りの85重量部が第1の濃縮水となる。そして、TDSの除去率η1が97%、SiOの除去率η2が95%であるから、第1の透過水中のTDS量は60(=2000×0.03)mg/L、SiO量は3.0(=60×0.05)mg/Lとなる。
一方、第1の濃縮水のTDS量、及びSiO量は、原水、第1の透過水、第1の濃縮水との間の物質収支より、それぞれ2282(=2000×0.97/0.85)mg/L、及び67(=60×0.95/0.85)となる。
次に、第1の濃縮水は第2のRO膜22aに原水として供給され、第1の濃縮水85重量部に対し、15重量部が第2の透過水となり、残りの70重量部が第2の濃縮水となる。したがって、第2のRO膜22aでは回収率は18%(=15/85)となる。そして、TDSの除去率η1が97%、SiOの除去率η2が95%であるから、第2の透過水中のTDS量は68(=2282×0.03)mg/L、SiO量は3.4(=67×0.05)mg/Lとなる。
一方、第2の濃縮水のTDS量、及びSiO量は、第1の濃縮水、第2の透過水、第2の濃縮水との間の物質収支より、それぞれ2688(=0.85×2282×0.97/0.70)mg/L、及び77(=0.85×67×0.95/0.70)となる。
次に、第2の濃縮水は第3のRO膜23aに供給され、第2の濃縮水70重量部に対し、10重量部が第2の透過水となり、残りの60重量部が第2の濃縮水となる。したがって、第3のRO膜23aでは回収率は14%(=10/60)となる。そして、TDSの除去率η1が97%、SiOの除去率η2が95%であるから、第3の透過水中のTDS量は81(=2688×0.03)mg/L、SiO量は3.9(=77×0.05)mg/Lとなる。
一方、第3の濃縮水のTDS量、及びSiO量は、第2の濃縮水、第3の透過水、第3の濃縮水との間の物質収支より、それぞれ3042(=0.70×2688×0.97/0.60)mg/L、及び86(=0.70×77×0.95/0.60)となる。
次に、第3の濃縮水はNF膜24aに供給され、第3の濃縮水60重量部に対し、10重量部が第4の透過水となり、残りの50重量部が第4の濃縮水となる。したがって、NF膜24aでは回収率は17%(=10/60)となる。そして、TDSの除去率φ1が55%、SiOの除去率φ2が5%であるから、第4の透過水中のTDS量は1369(=3042×0.45)mg/L、SiO量は82(=86×0.95)mg/Lとなる。
一方、第4の濃縮水のTDS量、及びSiO量は、第3の濃縮水、第4の透過水、第4の濃縮水との間の物質収支より、それぞれ2008(=0.60×3048×0.55/0.50)mg/L、及び5(=0.60×86×0.05/0.50)mg/Lとなる。
そして、第1〜第4の透過水が合流されて生産水となる。この生産水は原水100重量部に対して50重量部(=15+15+10+10)となり、回収率は50%(=15+15×85/100+14×70/100+17×60/100)となる。
そして、生産水のTDS量は265(=0.15×60+0.18×68+0.14×81+0.17×1369)mg/L、SiO量は15.6(=0.15×3.0+0.18×3.4+0.14×3.9+0.17×82)mg/Lとなった。
次に、比較例として、各膜モジュールが全てRO膜を内蔵している場合のシミュレーションを行った。
図6は、比較例のシミュレーション結果を示すフローシートである。
この比較例では、第3の濃縮水が得られるまでは、図5の実施例と同様である。
そして、第3の濃縮水がRO膜24a′を内蔵した第4の膜モジュール24′に原水として供給され、第3の濃縮水60重量部に対し、10重量部が第4の透過水となり、残りの50重量部が第4の濃縮水となり、回収率は、上記実施例と同様、17%(=10/60)となる。そして、TDSの除去率η1が97%、SiOの除去率η2が95%であるから、第4の透過水中のTDS量は91(=3042×0.05)mg/L、SiO量は4.3(=86×0.03)mg/Lとなる。
一方、第4の濃縮水のTDS量、及びSiO量は、第3の濃縮水、第4の透過水、第4の濃縮水との間の物質収支より、それぞれ3540(=0.60×3042×0.97/0.50)mg/L、及び108(=0.60×86×0.95/0.50)mg/Lとなる。
そして、第1〜第4の透過水が混合されて生産水となる。この生産水は原水100重量部に対して50重量部(=15+15+10+10)となり、回収率は50%(=15+15×85/100+14×70/100+17×60/100)となる。
また、生産水のTDS量は47(=0.15×60+0.18×68+0.14×81+0.17×91)mg/L、SiO量は2.3(=0.15×3.0+0.18×3.4+0.14×3.9+0.17×4.3)mg/Lとなる。
この実施例と比較例との対比から明らかなように、比較例では、全てRO膜による膜ろ過分離を行っているので、TDSやSiOが殆ど除外され、極めて純度の高い生産水が得られることが分かる。
これに対し実施例では、最終段でNF膜による膜ろ過分離を行っているので、生産水には適度なTDSとSiOを含み、その結果、配管や設備装置の耐久性向上に好都合でファウリングの発生抑制に好都合な適度な純度の生産水を得ることが可能であることが確認された。
本発明に係る水質改質装置を備えた水処理システムの一実施の形態(を示す概略構成図である。 上記水質改質装置のフローを模式的に示した図である。 本発明に係る排水の再利用システムの第1の実施の形態を示すシステム構成図である。 本発明に係る排水の再利用システムの第2の実施の形態を示すシステム構成図である。 実施例のシミュレーション結果を示したフローシートである。 比較例のシミュレーション結果を示したフローシートである。 特許文献1に示された膜分離装置の模式図である。 特許文献2に示されたボイラ給水装置の概略図である。 特許文献3に示された水質改質システムの概略図である。
符号の説明
2 水質改質装置
4 活性炭ろ過装置
5 軟水装置
12 膜モジュール(膜ろ過処理部)
15 循環ライン(循環系)
21a〜23a RO膜(逆浸透膜)
24a NF膜(ナノろ過膜)
29 MBR装置(膜分離反応槽)
36 紫外線装置
41 曝気槽
48 UF膜装置(第1の膜ろ過装置)

Claims (8)

  1. 原水を透過水と濃縮水とに膜ろ過分離する逆浸透膜と、前記逆浸透膜で膜ろ過分離された濃縮水を原水として更に透過水と濃縮水とに膜ろ過分離するナノ濾過膜とを備え、前記逆浸透膜で膜ろ過分離された透過水と前記ナノろ過膜で膜ろ過分離された透過水とを混合して生産水を生成するように構成され、
    前記逆浸透膜は、総溶解固形分の除去率が90%以上、かつ二酸化ケイ素の除去率が90%以上であり、
    前記ナノろ過膜は、総溶解固形分の除去率が40〜60%、かつ二酸化ケイ素の除去率が1〜10%であることを特徴とする水質改質装置。
  2. n個(ただし、n≧2以上の正の整数である。)の前記逆浸透膜が多段に直列接続され、第(n−1)番目の逆浸透膜で膜ろ過分離された濃縮水が、原水として第n番目の逆浸透膜に供給されて透過水と濃縮水とに膜ろ過分離されると共に、
    m個(ただし、m≧1以上の正の整数である。)の前記ナノろ過膜を有し、前記第n番目の逆浸透膜で膜ろ過分離された濃縮水が、原水として前記ナノろ過膜に供給されて透過水と濃縮水とに膜ろ過分離され、
    第m番目のナノろ過膜で膜ろ過分離された濃縮水は循環系に回収されると共に、前記n個の逆浸透膜及び前記m個のナノろ過膜で膜ろ過分離された各透過水が混合されて生産水が生成されることを特徴とする請求項1記載の水質改質装置。
  3. 前記mが2以上の場合は、m個のナノろ過膜が多段に直列接続され、第(m−1)番目のナノろ過膜で膜ろ過分離された濃縮水が、原水として第m番目のナノろ過膜に供給されて透過水と濃縮水とに膜ろ過分離されることを特徴とする請求項2記載の水質改質装置。
  4. 少なくとも一つ以上の前記逆浸透膜と少なくとも一つ以上の前記ナノろ過膜とを内蔵した膜ろ過処理部を有し、前記膜ろ過処理部は、前記ナノろ過膜が前記逆浸透膜の後段に位置するように、前記逆浸透膜と前記ナノろ過膜とが直列多段に膜配列されていることを特徴とする請求項1乃至請求項3のいずれかに記載の水質改質装置。
  5. 請求項1乃至請求項4のいずれかに記載の水質改質装置を備えていることを特徴とする水処理システム。
  6. 活性炭ろ過装置、除鉄除マンガンろ過装置、砂ろ過装置、及び軟水装置のうちの少なくとも1つ以上の前処理装置を有していることを特徴とする請求項5記載の水処理システム。
  7. ろ過膜を使用して排水中の懸濁物質を固液分離する膜分離反応槽と、該膜分離反応槽で得られた液中の有機物を酸化剤及び紫外線中で酸化分解して除去し、原水を得る紫外線装置と、前記原水を膜ろ過分離して生産水を生成する膜ろ過分離装置とを備えた排水の再利用システムにおいて、
    前記膜ろ過分離装置が、請求項1乃至請求項4のいずれかに記載の水質改質装置で構成されていることを特徴とする排水の再利用システム。
  8. 活性汚泥を使用して排水中の有機物を生物分解する曝気槽と、前記活性汚泥を沈降分離して得られた液体に膜ろ過分離処理を施してろ過液を生成する第1の膜ろ過装置と、前記ろ過液に紫外線を照射して原水を生成する紫外線装置と、前記原水に膜ろ過分離処理を施して生産水を生成する第2の膜ろ過分離装置とを備えた排水の再利用システムにおいて、
    前記第2の膜ろ過分離装置が、請求項1乃至請求項4のいずれかに記載の水質改質装置で構成されていることを特徴とする排水の再利用システム。
JP2008011113A 2008-01-22 2008-01-22 水質改質装置、及び水処理システム、並びに排水の再利用システム Pending JP2009172462A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011113A JP2009172462A (ja) 2008-01-22 2008-01-22 水質改質装置、及び水処理システム、並びに排水の再利用システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011113A JP2009172462A (ja) 2008-01-22 2008-01-22 水質改質装置、及び水処理システム、並びに排水の再利用システム

Publications (1)

Publication Number Publication Date
JP2009172462A true JP2009172462A (ja) 2009-08-06

Family

ID=41028207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011113A Pending JP2009172462A (ja) 2008-01-22 2008-01-22 水質改質装置、及び水処理システム、並びに排水の再利用システム

Country Status (1)

Country Link
JP (1) JP2009172462A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147840A (ja) * 2010-01-19 2011-08-04 Miura Co Ltd 水処理システム
KR101346319B1 (ko) * 2012-09-17 2013-12-31 한국수자원공사 연수 및 정수 통합시스템
CN103979698A (zh) * 2014-06-03 2014-08-13 江苏羊城净水设备有限公司 一种循环水养殖的净水方法
CN104016521A (zh) * 2014-06-23 2014-09-03 南车戚墅堰机车有限公司 水阻试验水装置
US8834712B2 (en) 2010-03-12 2014-09-16 Kabushiki Kaisha Toshiba Seawater desalination system
WO2016006526A1 (ja) * 2014-07-10 2016-01-14 オルガノ株式会社 フッ化物イオン含有排水の処理方法及び処理装置
JP2016117016A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
JP2016117017A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
CN105948173A (zh) * 2016-05-12 2016-09-21 广东顺德工业设计研究院(广东顺德创新设计研究院) 反渗透净水系统及其控制方法
US9932250B2 (en) 2010-09-15 2018-04-03 Kabushiki Kaisha Toshiba Membrane filtration system
CN108821490A (zh) * 2018-06-12 2018-11-16 山东大海新能源发展有限公司 一种实现近零排放的太阳能电池板加工排水处理系统
CN110498480A (zh) * 2019-09-21 2019-11-26 佛山市云米电器科技有限公司 一种分体式反渗透滤芯装置及一种净水机
WO2022010283A1 (ko) * 2020-07-08 2022-01-13 코웨이 주식회사 정수장치

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147840A (ja) * 2010-01-19 2011-08-04 Miura Co Ltd 水処理システム
US8834712B2 (en) 2010-03-12 2014-09-16 Kabushiki Kaisha Toshiba Seawater desalination system
US9932250B2 (en) 2010-09-15 2018-04-03 Kabushiki Kaisha Toshiba Membrane filtration system
KR101346319B1 (ko) * 2012-09-17 2013-12-31 한국수자원공사 연수 및 정수 통합시스템
CN103979698A (zh) * 2014-06-03 2014-08-13 江苏羊城净水设备有限公司 一种循环水养殖的净水方法
CN104016521A (zh) * 2014-06-23 2014-09-03 南车戚墅堰机车有限公司 水阻试验水装置
JP2016016385A (ja) * 2014-07-10 2016-02-01 オルガノ株式会社 フッ化物イオン含有排水の処理方法及び処理装置
WO2016006526A1 (ja) * 2014-07-10 2016-01-14 オルガノ株式会社 フッ化物イオン含有排水の処理方法及び処理装置
JP2016117016A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
JP2016117017A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
CN105948173A (zh) * 2016-05-12 2016-09-21 广东顺德工业设计研究院(广东顺德创新设计研究院) 反渗透净水系统及其控制方法
CN108821490A (zh) * 2018-06-12 2018-11-16 山东大海新能源发展有限公司 一种实现近零排放的太阳能电池板加工排水处理系统
CN110498480A (zh) * 2019-09-21 2019-11-26 佛山市云米电器科技有限公司 一种分体式反渗透滤芯装置及一种净水机
CN110498480B (zh) * 2019-09-21 2024-03-15 广东栗子科技有限公司 一种分体式反渗透滤芯装置及一种净水机
WO2022010283A1 (ko) * 2020-07-08 2022-01-13 코웨이 주식회사 정수장치

Similar Documents

Publication Publication Date Title
JP2009172462A (ja) 水質改質装置、及び水処理システム、並びに排水の再利用システム
Singh et al. Introduction to membrane processes for water treatment
KR101193902B1 (ko) 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
JP6194887B2 (ja) 淡水製造方法
JP5908186B2 (ja) 膜を用いた水処理方法および水処理装置
JP3698093B2 (ja) 水処理方法および水処理装置
JP3575271B2 (ja) 純水の製造方法
JP2011088053A (ja) 淡水化処理設備及び方法
JP4649529B1 (ja) 膜処理設備
JP2015077530A (ja) 造水方法および造水装置
JP2009006209A (ja) 中空糸膜モジュールの洗浄方法
JP2001191086A (ja) 水処理装置
JP2007307561A (ja) 高純度水の製造装置および方法
JP3137831B2 (ja) 膜処理装置
JP2000015257A (ja) 高純度水の製造装置および方法
JP2013043156A (ja) 淡水化システムおよび淡水化方法
JP3444202B2 (ja) 水処理装置
WO2016136957A1 (ja) 有機物含有水の処理方法および有機物含有水処理装置
JP2002355683A (ja) 超純水製造方法及び超純水製造装置
WO2012057176A1 (ja) 水処理方法および造水方法
JP4304803B2 (ja) 水処理装置の洗浄方法および水処理装置
JP2005230774A (ja) 水処理方法及び水処理装置
JP5782675B2 (ja) 水処理方法及び超純水製造方法
JP2001239136A (ja) 処理システムおよびその運転方法
JP2009291708A (ja) 逆浸透膜およびその表面処理方法