WO2016006526A1 - フッ化物イオン含有排水の処理方法及び処理装置 - Google Patents

フッ化物イオン含有排水の処理方法及び処理装置 Download PDF

Info

Publication number
WO2016006526A1
WO2016006526A1 PCT/JP2015/069122 JP2015069122W WO2016006526A1 WO 2016006526 A1 WO2016006526 A1 WO 2016006526A1 JP 2015069122 W JP2015069122 W JP 2015069122W WO 2016006526 A1 WO2016006526 A1 WO 2016006526A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
fluoride ion
containing wastewater
less
Prior art date
Application number
PCT/JP2015/069122
Other languages
English (en)
French (fr)
Inventor
雄大 鈴木
建持 千佳
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2016006526A1 publication Critical patent/WO2016006526A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a treatment method and treatment apparatus for fluoride ion-containing wastewater.
  • Wastewater containing fluoride ions (fluoride ion-containing wastewater) is discharged from factories for electronic parts such as semiconductor devices and liquid crystal displays.
  • fluoride ion-containing wastewater Fluoride ion-containing wastewater
  • pure water is produced by treating fluoride ion-containing wastewater because of cost reduction and increasing environmental awareness.
  • RO membranes reverse ion osmosis membranes
  • JP 2001-104955 A Japanese Patent Laid-Open No. 11-221579
  • the pH of drainage in a reverse osmosis membrane is an important operating parameter, and it is known that the pH of drainage affects various ion blocking rates, scaling risks, slime risks, and the like. For example, it is known that the fluoride ion blocking rate by a reverse osmosis membrane is significantly reduced in wastewater in an acidic region.
  • An object of the present invention is to provide a treatment method and a treatment apparatus for fluoride ion-containing wastewater capable of obtaining a high fluoride ion rejection rate by reverse osmosis membrane treatment in an acidic region where the pH of the fluoride ion-containing wastewater is 4 to 6. It is to provide.
  • the present invention is a method for treating fluoride ion-containing wastewater, wherein the fluoride ion-containing wastewater is passed through a reverse osmosis membrane under conditions of pH 4 to 6 and separated into permeate and concentrated water,
  • the reverse osmosis membrane is a reverse osmosis membrane having a ⁇ potential of less than ⁇ 1 mV at a pH of 4 to 6 and a corrected permeate flow rate of less than 0.94 m / day / MPa.
  • the fluoride ion-containing wastewater preferably contains ammonium ions.
  • the apparatus for treating fluoride-containing wastewater of the present invention is a reverse osmosis membrane module that separates fluoride ion-containing wastewater into permeate and concentrated water by passing it through a reverse osmosis membrane under the condition of pH 4-6.
  • the reverse osmosis membrane is a reverse osmosis membrane having a ⁇ potential of less than ⁇ 1 mV at pH 4 to 6 and a corrected permeate flow rate of less than 0.94 m / day / MPa.
  • a treatment method and a treatment apparatus for fluoride ion-containing wastewater capable of obtaining a high fluoride ion rejection rate by reverse osmosis membrane treatment in an acidic region where the pH of the fluoride ion-containing wastewater is 4 to 6. Can be provided.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a treatment apparatus for fluoride ion-containing wastewater according to the present embodiment.
  • a fluoride ion-containing wastewater treatment apparatus 1 shown in FIG. 1 includes a raw water storage tank 10, a drainage pump 12, and a reverse osmosis membrane module 14 including a reverse osmosis membrane.
  • the fluoride ion-containing wastewater treatment apparatus 1 includes a supply water line 16, a permeate water line 18, and a concentrated water line 20.
  • One end of the supply water line 16 is connected to the raw water storage tank 10, and the other end is connected to the primary side inlet of the reverse osmosis membrane module 14.
  • the supply water line 16 is provided with a drain pump 12.
  • One end of the permeate line 18 is connected to the secondary outlet of the reverse osmosis membrane module 14, and the other end is connected to, for example, a demanding device or the like (not shown).
  • One end of the concentrated water line 20 is connected to the primary outlet of the reverse osmosis membrane module 14, and the other end of the concentrated water line 20 is connected to, for example, a water storage tank (not shown).
  • the raw water storage tank 10 stores fluoride ion-containing wastewater having a pH of 4-6. If necessary, before storing the fluoride ion-containing wastewater in the raw water storage tank 10, pretreatment such as turbidity treatment or organic substance decomposition treatment may be performed with a turbidity removal device or a biological treatment device. desirable.
  • the reverse osmosis membrane module 14 is a device that separates concentrated water and permeated water through a reverse osmosis membrane. Although it does not specifically limit as a form of the reverse osmosis membrane module 14, A spiral type, a hollow fiber type, a flat membrane type, a tubular type etc. are mentioned.
  • the reverse osmosis membrane used for the reverse osmosis membrane module 14 is a reverse osmosis membrane having a ⁇ potential of less than ⁇ 1 mV at a pH of 4 to 6 and a corrected permeated water amount of less than 0.94 m / day / MPa.
  • the ⁇ potential of the reverse osmosis membrane is a potential at the interface (slip surface) of the outer layer of the electric double layer formed on the surface of the reverse osmosis membrane in the solvent. And it is considered that the more negative the ⁇ potential, the higher the resilience with the anion in the solvent.
  • the corrected permeated water amount is a value indicating the water permeation performance of the reverse osmosis membrane, and is the amount of water that permeates the unit area of the membrane per unit time when the operating pressure is applied.
  • the drainage pump 12 is operated, and fluoride ion-containing wastewater having a pH of 4 to 6 is supplied from the raw water storage tank 10 to the reverse osmosis membrane module 14 through the supply water line 16 at a predetermined operating pressure.
  • fluoride ion-containing water is supplied to the reverse osmosis membrane module 14 at a predetermined operating pressure, fluoride ions and the like are separated by the reverse osmosis membrane, and permeated water with reduced fluoride ions and the like is transmitted through the reverse osmosis membrane. , It does not permeate the reverse osmosis membrane and is separated into concentrated water having increased fluoride ions and the like. Then, the permeated water is discharged from the permeated water line 18, and the concentrated water is discharged from the concentrated water line 20.
  • the reverse osmosis membrane of the present embodiment when the ⁇ potential at pH 4 to 6 is less than ⁇ 1 mV, the resilience with fluoride ions in the fluoride ion-containing wastewater at pH 4 to 6 is increased, and therefore fluoride. It is considered that ions are difficult to permeate the reverse osmosis membrane. Furthermore, when the corrected permeated water amount is less than 0.94 m / day / MPa as in the reverse osmosis membrane of the present embodiment, it is considered that the pores of the membrane become small and fluoride ions are difficult to permeate.
  • fluoride ion-containing wastewater having a pH of 4 to 6 is used.
  • a high fluoride ion rejection can be obtained without adjusting the pH in the alkaline region. That is, a permeated water having a low fluoride ion concentration is obtained.
  • fluoride ion rejection is obtained by (fluoride ion concentration of waste water ⁇ fluoride ion concentration of permeated water) / fluoride ion concentration of waste water ⁇ 100.
  • the fluoride ion concentration is measured by an ion chromatography analyzer (761 Compact IC manufactured by Metrohm Japan).
  • a reverse osmosis membrane with a corrected permeate flow rate of 0.94 m / day / MPa or more has high repulsion of fluoride ions, but the pores of the membrane are also large. Therefore, it is considered that fluoride ions are easily transmitted.
  • a reverse osmosis membrane having a corrected permeated water amount of less than 0.94 m / day / MPa but having a ⁇ potential of ⁇ 1 mV or more at pH 4 to 6 can be used even if the pores of the membrane are small. It is considered that the fluoride ion is easy to permeate because of its low repulsion with ions.
  • a reverse osmosis membrane having a ⁇ potential of less than ⁇ 1 mV at pH 4 to 6 and a corrected permeated water amount of less than 0.94 m / day / MPa can be obtained, for example, by interfacial polymerization of an aromatic carboxylic acid and an aromatic amine.
  • a polyamide film may be mentioned.
  • surface treatment of a reverse osmosis membrane is performed using various surface treatment agents or the like for the purpose of imparting hydrophilicity or bactericidal properties to the surface of the reverse osmosis membrane.
  • the surface treatment of the reverse osmosis membrane with various surface treatment agents is within the range satisfying the above ⁇ potential value. Needs to be implemented.
  • the corrected permeated water amount of the reverse osmosis membrane is considered to be mainly influenced by the size of the pore diameter, a series of membrane formation including interfacial polymerization is performed within the range satisfying the above corrected permeated water value. Need to be done.
  • the material of the reverse osmosis membrane is not particularly limited as long as it satisfies the above ⁇ potential and the corrected permeated water amount.
  • the film thickness of the reverse osmosis membrane is, for example, 150 ⁇ m to 170 ⁇ m.
  • the pore diameter of the reverse osmosis membrane is, for example, not less than 0.5 nm and not more than 0.7 nm.
  • the ⁇ potential of the reverse osmosis membrane was measured by a plate electrophoretic method by immersing a reverse osmosis membrane having a size of 15 mm ⁇ 33 mm (thickness of 5 mm or less) in a 10 mM NaCl aqueous solution having a pH of 4 to 6 and measuring the solution.
  • the corrected permeate flow rate is 0.2mm NaCl aqueous solution with pH 8.0 and temperature 25 ° C supplied to reverse osmosis membrane with dimensions of 15mm x 33mm (thickness 5mm or less) at operating pressure of 1.55MPa and recovery rate of 15%. This is the value obtained by dividing the permeated water amount by the operating pressure.
  • the operating pressure refers to the pressure at the primary inlet of the reverse osmosis membrane module 14.
  • the recovery rate is the ratio (%) of the flow rate of permeated water to the flow rate of water (here, NaCl aqueous solution) supplied to the reverse osmosis membrane module 14.
  • the ⁇ potential at pH 4 to 6 of the reverse osmosis membrane is not particularly limited as long as it is less than ⁇ 1 mV.
  • the corrected permeation amount of the reverse osmosis membrane is practically, for example, 0.11 m / day / MPa or more. It is desirable that it is less than 0.94 m / day / MPa. If the reverse permeation membrane has a corrected permeated water amount of less than 0.11 m / day / MPa, it may take time to obtain the required permeated water amount, which may not be practical.
  • FIG. 2 is a schematic diagram showing another example of the configuration of the fluoride ion-containing wastewater treatment apparatus according to this embodiment.
  • the same components as those in the treatment apparatus 1 for fluoride ion-containing wastewater shown in FIG. 2 includes a raw water storage tank 10, a drainage pump 12, a reverse osmosis membrane module 14 including a reverse osmosis membrane, a pH adjusting device, and an ammonium ion sensor 22.
  • the raw water storage tank 10 is provided with a pH sensor 24.
  • the pH sensor 24 detects the pH of the fluoride ion-containing wastewater in the raw water storage tank 10.
  • the ammonium ion sensor 22 is installed in the permeate water line 18 and detects the ammonium ion concentration in the permeate water.
  • the pH adjusting device includes a pH adjusting agent tank 26, a pH adjusting agent pump 28, a pH adjusting agent line 30, and a control unit 32.
  • One end of the pH adjuster line 30 is installed in the raw water storage tank 10, and the other end is connected to the pH adjuster tank 26.
  • the pH adjusting agent pump 28 is provided in the pH adjusting agent line 30.
  • the control unit 32 controls the operation of the pH adjusting agent pump 28 and the drainage pump 12 based on the pH value by the pH sensor 24 and the ammonium ion concentration by the ammonium ion sensor 22, and is electrically connected thereto. Has been.
  • the pH of the fluoride ion-containing wastewater in the raw water storage tank 10 is detected by the pH sensor 24. If the pH of the fluoride ion-containing wastewater in the raw water storage tank 10 is within the range of 4 to 6, as described above, the fluoride ion-containing wastewater is passed through the reverse osmosis membrane module 14 to obtain permeated water, concentrated water, Separated.
  • the control unit 32 operates the pH adjuster pump 28 so that the pH adjuster in the pH adjuster tank 26 is The pH is adjusted so that the pH of the waste water containing fluoride ions is 4 to 6 by being supplied into the raw water storage tank 10 through the pH adjuster line 30.
  • the pH adjuster include acid agents such as hydrochloric acid and alkali agents such as sodium hydroxide.
  • the drain pump 12 is operated by the control unit 32, and the fluoride ion-containing wastewater in the raw water storage tank 10 is supplied to the supply water line. 16 is supplied to the reverse osmosis membrane module 14 at a predetermined operating pressure. Then, fluoride ions and the like are separated by the reverse osmosis membrane in the reverse osmosis membrane module 14, and the permeated water having reduced fluoride ions and the like permeated through the reverse osmosis membrane and the reverse osmosis membrane do not pass through the fluoride. Separated from concentrated water with increased ions and the like. Then, the permeated water is discharged from the permeated water line 18, and the concentrated water is discharged from the concentrated water line 20.
  • the reverse osmosis membrane of this embodiment can provide a high ammonium ion blocking rate.
  • the pH of the waste water is preferably less than 5.5 in that a higher ammonium ion rejection is obtained.
  • the controller 32 controls the pH adjuster pump 28.
  • the pH of fluoride ion-containing water is adjusted to 4 or more and less than 5.5, and more preferably 4 or more and 5 or less.
  • ammonium ions have been described as an example.
  • the present invention is not particularly limited as long as it is a substance in which the blocking rate by the reverse osmosis membrane is reduced under a pH of more than 6.
  • a substance having a reduced rejection rate due to the reverse osmosis membrane under conditions of pH 6 or higher, such as ammonium ions can obtain a high rejection rate together with fluoride ions.
  • the operating pressure of the drainage supplied to the reverse osmosis membrane module 14 is preferably in the range of 0.8 MPa to 1.9 MPa, for example, from the viewpoint of durability, blocking rate, etc. of the reverse osmosis membrane module.
  • the range of 0.4 MPa to 1.9 MPa is more preferable.
  • the fluoride ion rejection in the treatment apparatus for fluoride ion-containing wastewater of these embodiments is preferably 90% or higher, more preferably 95% or higher, and the pH is higher than 6 such as ammonium ions.
  • a high rejection of 91% or more, more preferably 96% or more is obtained as the rejection of substances whose rejection by the reverse osmosis membrane decreases.
  • Example 1 The test of Example 1 was performed using the apparatus shown in FIG. Table 1 shows the composition of the wastewater treated in Example 1.
  • the ⁇ potential at pH 4 to 6 was in the range of ⁇ 6 to ⁇ 7, and the corrected permeated water amount was 0.73 to 0.81 m / day / MPa.
  • the wastewater of each pH is passed through the reverse osmosis membrane module, and the reverse osmosis membrane is used. The fluoride ion rejection was measured.
  • the drainage conditions were a drainage temperature of 25 ° C., a recovery rate of 15%, and a permeate flow rate of 0.51 to 0.54 m / day. As a result, the operating pressure was 0.67 to 0.70 MPa.
  • the fluoride ion blocking rate by the reverse osmosis membrane is a value calculated as (fluoride ion concentration of waste water ⁇ fluoride ion concentration of permeated water) / fluoride ion concentration of raw water ⁇ 100.
  • Comparative Example 1 was the same as Example 1 except that a reverse osmosis membrane having a ⁇ potential of -9 to -11 at a pH of 4 to 6 and a corrected permeate flow rate of 0.94 m / day / MPa was used. And the fluoride ion rejection by the reverse osmosis membrane was measured.
  • Comparative Example 2 Comparative Example 2 was the same as Example 1 except that a reverse osmosis membrane having a ⁇ potential in the range of pH 4 to 6 in the range of 0 to ⁇ 1 and a corrected permeated water amount of 0.73 m / day / MPa was used. Tested and measured the fluoride ion rejection by the reverse osmosis membrane.
  • FIG. 3 is a diagram showing the fluoride ion blocking rate by the reverse osmosis membranes of Example 1 and Comparative Examples 1 and 2.
  • the horizontal axis in FIG. 3 represents each pH of the drainage, and the vertical axis represents the fluoride ion blocking rate when draining each pH drainage through the reverse osmosis membrane.
  • the pH of the waste water was 6.5 or more, the fluoride ion blocking rate of the reverse osmosis membrane of Example 1 and the reverse osmosis membranes of Comparative Examples 1 and 2 was hardly changed.
  • the reverse osmosis membrane of Example 1 had a fluoride ion rejection of 90% or higher, which was higher than the reverse osmosis membranes of Comparative Examples 1 and 2.
  • the pH of the wastewater was 3.0, even in the reverse osmosis membrane of Example 1, the fluoride ion rejection was as low as 70%.
  • Example 2 shows the composition of the wastewater treated in Example 2.
  • Example 2 the same reverse osmosis membrane as in Example 1 was used. After adding hydrochloric acid or sodium hydroxide to the wastewater having the composition shown in Table 2 and adjusting the pH of the wastewater to 9.0, 6.5, 6.0, 5.0, 4.0, 3.0, The drainage of each pH was passed through the reverse osmosis membrane module, and the fluoride ion and ammonium ion rejection rates by the reverse osmosis membrane were measured.
  • the drainage conditions were a drainage temperature of 25 ° C., an operating pressure of 0.74 to 0.76 MPa, and a recovery rate of 15%. As a result, the amount of permeated water was 0.57 to 0.59 m / day.
  • Comparative Example 3 In Comparative Example 3, the same reverse osmosis membrane as that in Comparative Example 1 was used, except that the test was performed in the same manner as in Example 2 to measure the fluoride ion and ammonium ion rejection rates by the reverse osmosis membrane.
  • Comparative Example 4 In Comparative Example 4, tests were performed in the same manner as in Example 2 except that the same reverse osmosis membrane as in Comparative Example 2 was used, and the fluoride ion and ammonium ion rejection rates by the reverse osmosis membrane were measured.
  • Tables 3 to 8 show the results of the fluoride ion and ammonium ion blocking rate and the permeated water concentration when drainage of each pH was passed through the reverse osmosis membranes of Example 2 and Comparative Examples 3 and 4.
  • Example 2 and Comparative Examples 3 and 4 had high fluoride ion rejection, but ammonium ion rejection was as low as 76% or less.
  • Table 4 in the wastewater with pH 6.5, both Example 2 and Comparative Examples 3 and 4 obtained high fluoride ion rejection and ammonium ion rejection.
  • Tables 5 to 7 only the reverse osmosis membrane of Example 2 was able to obtain high fluoride ion rejection and ammonium ion rejection with drainage at pH 6, 5, and 4.
  • the pH 3 drainage had a low fluoride ion rejection.
  • Treatment equipment for fluoride-containing wastewater 10 Raw water storage tank, 12 Wastewater pump, 14 Reverse osmosis membrane module, 16 Supply water line, 18 Permeate water line, 20 Concentrated water line, 22 Ammonium ion sensor, 24 pH sensor, 26 pH adjusting agent tank, 28 pH adjusting agent pump, 30 pH adjusting agent line, 32 control unit.

Abstract

 フッ化物イオン含有排水をpH4~6の条件下で、逆浸透膜に通水して透過水と濃縮水とに分離する逆浸透膜モジュール14を備え、前記逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満であるフッ化物イオン含有排水の処理装置を用いる。

Description

フッ化物イオン含有排水の処理方法及び処理装置
 本発明は、フッ化物イオン含有排水の処理方法及び処理装置の技術に関する。
 半導体デバイスや液晶ディスプレイ等の電子部品製造工場等からは、フッ化物イオンを含む排水(フッ化物イオン含有排水)が排出される。近年、電子部品製造工場等では、コストダウンや環境意識の高まりから、フッ化物イオン含有排水を処理して、純水を製造することが行われている。
 フッ化物イオン含有排水の処理には逆浸透膜(RO膜)が多く使用されている(例えば、特許文献1及び2参照)。
特開2001-104955号公報 特開平11-221579号公報
 ところで、逆浸透膜において排水のpHは、重要な運転パラメータであり、排水のpHによって、様々なイオンの阻止率、スケーリングリスク、スライムリスク等に影響を与えることが知られている。例えば、酸性領域の排水では、逆浸透膜によるフッ化物イオン阻止率が著しく低下することが知られている。
 実際の排水は様々なpHで工場等から排出されるが、スケーリングリスクやスライムリスク、又は併用する薬品等によっては、排水を酸性領域で逆浸透膜に通水する必要があり、この場合、高いフッ化物イオン阻止率を得ることが困難であった。
 また、フッ化物イオンの他に、アンモニウムイオン等のアルカリ領域において、逆浸透膜による阻止率が低下するイオンを含む排水の場合、酸性領域で逆浸透膜に通水するだけでは、高いフッ化物イオン阻止率を得ることが困難であった。
 本発明の目的は、フッ化物イオン含有排水のpHが4~6の酸性領域における逆浸透膜処理で、高いフッ化物イオン阻止率を得ることができるフッ化物イオン含有排水の処理方法及び処理装置を提供することにある。
 (1)本発明は、フッ化物イオン含有排水をpH4~6の条件下で、逆浸透膜に通水して透過水と濃縮水とに分離するフッ化物イオン含有排水の処理方法であって、前記逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜である。
 (2)上記(1)に記載のフッ化物イオン含有排水の処理方法において、前記フッ化物イオン含有排水には、アンモニウムイオンが含まれていることが好ましい。
 (3)本発明のフッ化物含有排水の処理装置は、フッ化物イオン含有排水をpH4~6の条件下で、逆浸透膜に通水して透過水と濃縮水とに分離する逆浸透膜モジュールを備え、前記逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜である。
 本発明によれば、フッ化物イオン含有排水のpHが4~6の酸性領域における逆浸透膜処理で、高いフッ化物イオン阻止率を得ることができるフッ化物イオン含有排水の処理方法及び処理装置を提供することができる。
本実施形態に係るフッ化物イオン含有排水の処理装置の構成の一例を示す模式図である。 本実施形態に係るフッ化物イオン含有排水の処理装置の構成の他の一例を示す模式図である。 実施例1、比較例1及び2の逆浸透膜によるフッ化物イオンの阻止率を示す図である。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 図1は、本実施形態に係るフッ化物イオン含有排水の処理装置の構成の一例を示す模式図である。図1に示すフッ化物イオン含有排水の処理装置1は、原水貯槽10、排水用ポンプ12、逆浸透膜を備える逆浸透膜モジュール14を備えている。またフッ化物イオン含有排水の処理装置1は、供給水ライン16、透過水ライン18、濃縮水ライン20を備えている。
 供給水ライン16の一端は原水貯槽10に接続され、他端は逆浸透膜モジュール14の一次側入口に接続されている。供給水ライン16には、排水用ポンプ12が設けられている。また、透過水ライン18の一端は逆浸透膜モジュール14の二次側出口に接続されており、他端は、例えば、需要先の装置等(不図示)に接続されている。また、濃縮水ライン20の一端は、逆浸透膜モジュール14の一次側出口に接続されており、濃縮水ライン20の他端は、例えば、貯水タンク等(不図示)に接続されている。
 原水貯槽10には、pHが4~6のフッ化物イオン含有排水が貯留される。なお、必要に応じて、フッ化物イオン含有排水を原水貯槽10に貯留する前に、除濁装置や生物処理装置等で、除濁処理や有機物の分解処理等の前処理を行っておくことが望ましい。
 逆浸透膜モジュール14は、逆浸透膜を介して濃縮水と透過水とに分離する装置である。逆浸透膜モジュール14の形態としては、特に限定されないが、スパイラル型、中空糸型、平膜型、チューブラー型などが挙げられる。
 逆浸透膜モジュール14に用いられる逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜である。ここで、逆浸透膜のζ電位とは、溶媒中の逆浸透膜表面に形成される電気的な二重層のうち、外側の層の界面(すべり面)における電位のことである。そしてζ電位が負であるほど、溶媒中の陰イオンとの反発性が高くなると考えられる。また、補正透過水量は、逆浸透膜の水の透過性能を示す値であり、操作圧力を作用させたときに単位時間に、膜の単位面積を透過する水の量である。
 本実施形態に係るフッ化物イオン含有排水の処理装置1の動作について説明する。
 排水用ポンプ12を稼働させ、pH4~6のフッ化物イオン含有排水を原水貯槽10から供給水ライン16を介して逆浸透膜モジュール14に所定の操作圧力で供給する。逆浸透膜モジュール14にフッ化物イオン含有水を所定の操作圧力で供給すると、逆浸透膜によって、フッ化物イオン等が分離され、逆浸透膜を透過してフッ化物イオン等の低減した透過水と、逆浸透膜を透過せず、フッ化物イオン等の増加した濃縮水とに分離される。そして、透過水は、透過水ライン18から排出され、濃縮水は、濃縮水ライン20から排出される。
 本実施形態の逆浸透膜のように、pH4~6におけるζ電位が-1mV未満であると、pH4~6のフッ化物イオン含有排水中のフッ化物イオンとの反発性が高くなるため、フッ化物イオンが逆浸透膜を透過し難くなると考えられる。さらに、本実施形態の逆浸透膜のように、補正透過水量が0.94m/day/MPa未満であると、膜の空孔が小さくなるため、フッ化物イオンが透過し難くなると考えられる。このため、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜を用いることにより、pHが4~6のフッ化物イオン含有排水をアルカリ領域にpH調整することなく、高いフッ化物イオン阻止率が得られる。すなわち、フッ化物イオン濃度の低い透過水が得られる。また、pH4~6のフッ化物イオン含有排水をアルカリ領域にpH調整する必要がないため、pH6超の条件下で、逆浸透膜による阻止率が低下する物質であるアンモニウムイオン等もフッ化物イオンと共に高い阻止率が得られる。ここで、フッ化物イオン阻止率は、(排水のフッ化物イオン濃度-透過水のフッ化物イオン濃度)/排水のフッ化物イオン濃度×100により求められる。フッ化物イオン濃度は、イオンクロマト分析装置(メトロームジャパン社製 761 Compact IC)により測定される。
 なお、pH4~6におけるζ電位が-1mV未満であるが、補正透過水量が0.94m/day/MPa以上の逆浸透膜では、フッ化物イオンの反発性は高いが、膜の空孔も大きくなるため、フッ化物イオンが透過し易くなると考えられる。また、補正透過水量が0.94m/day/MPa未満であるが、pH4~6におけるζ電位が-1mV以上の値である逆浸透膜は、膜の空孔が小さくなっていても、フッ化物イオンとの反発性が低いため、フッ化粒イオンが透過し易くなると考えられる。
 pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜としては、例えば、芳香族カルボン酸と芳香族アミンの界面重合によって得られるポリアミド膜が挙げられる。一般的に、逆浸透膜の表面に親水性を付与したり殺菌性を付与したりする目的で、種々の表面処理剤等を用いて、逆浸透膜の表面処理が行われる。しかし、逆浸透膜のζ電位は、主に逆浸透膜の表面状態に影響を受けると考えられるため、種々の表面処理剤による逆浸透膜の表面処理は、上記ζ電位の値を満たす範囲内で実施される必要がある。また、逆浸透膜の補正透過水量は、主に孔径の大きさに影響を受けると考えられるため、界面重合をはじめとする一連の製膜は、上記補正透過水量の値を満たす範囲内で実施される必要がある。
 逆浸透膜の素材としては、上記ζ電位及び補正透過水量を満たすものであれば特に制限されるものではなく、例えば、酢酸セルロース系ポリマーやポリアミド、ポリエステル、ポリイミド、ピニルポリマー、ポリビニルアルコール、ポリスルホンなどの高分子材料等が挙げられる。逆浸透膜の膜厚は、例えば、150μm以上~170μm以下である。逆浸透膜の細孔径は、例えば、0.5nm以上~0.7nm以下である。
 逆浸透膜のζ電位は、pH4~6の10mMNaCl水溶液を測定液として、該測定液に15mm×33mm(厚みは5mm以下)の寸法の逆浸透膜を浸漬して、平板電位泳動法により測定される。補正透過水量は、15mm×33mm(厚みは5mm以下)の寸法の逆浸透膜に、pH8.0、温度25℃の0.2%NaCl水溶液を、操作圧力1.55MPa、回収率15%で供給したときの透過水量を操作圧力で除した値である。操作圧力は、逆浸透膜モジュール14の一次側入口の圧力を指す。回収率とは、逆浸透膜モジュール14へ供給される水(ここではNaCl水溶液)の流量に対する透過水の流量の割合(%)である。
 逆浸透膜のpH4~6におけるζ電位は-1mV未満であれば特に制限されるものではないが、逆浸透膜の補正透過水量は、実用上の点で、例えば0.11m/day/MPa以上0.94m/day/MPa未満であることが望ましい。逆浸透膜の補正透過水量が0.11m/day/MPa未満であると、必要な透過水量を得るまでに時間が掛かり、実用的でない場合がある。
 図2は、本実施形態に係るフッ化物イオン含有排水の処理装置の構成の他の一例を示す模式図である。図2に示すフッ化物イオン含有排水の処理装置2において、図1に示すフッ化物イオン含有排水の処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示すフッ化物イオン含有排水の処理装置2は、原水貯槽10、排水用ポンプ12、逆浸透膜を備える逆浸透膜モジュール14、pH調整装置、アンモニウムイオンセンサ22、を備えている。また、原水貯槽10には、pHセンサ24が設置されている。pHセンサ24は、原水貯槽10内のフッ化物イオン含有排水のpHを検出するものである。また、アンモニウムイオンセンサ22は、透過水ライン18に設置され、透過水中のアンモニウムイオン濃度を検出するものである。
 pH調整装置は、pH調整剤タンク26、pH調整剤用ポンプ28、pH調整剤ライン30、制御部32、を備える。pH調整剤ライン30の一端は原水貯槽10に設置され、他端はpH調整剤タンク26に接続されている。pH調整剤用ポンプ28はpH調整剤ライン30に設けられている。制御部32は、pHセンサ24によるpH値やアンモニウムイオンセンサ22によるアンモニウムイオン濃度に基づいて、pH調整剤用ポンプ28及び排水用ポンプ12の稼働を制御するものであり、これらと電気的に接続されている。
 本実施形態に係るフッ化物イオン含有排水の処理装置2の動作について説明する。
 pHセンサ24により、原水貯槽10内のフッ化物イオン含有排水のpHが検出される。原水貯槽10内のフッ化物イオン含有排水のpHが4~6の範囲内であれば、前述した通り、フッ化物イオン含有排水を逆浸透膜モジュール14に通水して、透過水と濃縮水とに分離される。一方、原水貯槽10内のフッ化物イオン含有排水のpHが4未満又は6を超える場合には、制御部32によりpH調整剤用ポンプ28が稼働され、pH調整剤タンク26内のpH調整剤がpH調整剤ライン30を通して、原水貯槽10内に供給され、フッ化物イオン含有排水のpHが4~6となるようにpH調整が行われる。pH調整剤は、塩酸等の酸剤、水酸化ナトリウム等のアルカリ剤等が挙げられる。
 原水貯槽10内のフッ化物イオン含有排水のpHが4~6に調整された後、制御部32により、排水用ポンプ12が稼働され、原水貯槽10内のフッ化物イオン含有排水が、供給水ライン16を介して逆浸透膜モジュール14に所定の操作圧力で供給される。そして、逆浸透膜モジュール14内の逆浸透膜によって、フッ化物イオン等が分離され、逆浸透膜を透過してフッ化物イオン等の低減した透過水と、逆浸透膜を透過せず、フッ化物イオン等の増加した濃縮水とに分離される。そして、透過水は、透過水ライン18から排出され、濃縮水は、濃縮水ライン20から排出される。
 フッ化物イオン含有排水中にアンモニウムイオンが含まれる場合でも、前述した通り、排水のpHが4~6の範囲であれば、本実施形態の逆浸透膜によって、高いアンモニウムイオン阻止率が得られるが、より高いアンモニウムイオン阻止率が得られる点で、排水のpHは5.5未満であることが好ましい。例えば、透過水ライン18に設置したアンモニウムイオンセンサ22により、透過水中のアンモニウムイオン濃度を検出し、アンモニウムイオンの阻止率が90%を下回った場合、制御部32により、pH調整剤用ポンプ28を稼働させ、フッ化物イオン含有水のpHを4以上5.5未満に調整することが好ましく、4以上5以下に調整することがより好ましい。本実施形態では、アンモニウムイオンを例に説明したが、pH6超の条件下で、逆浸透膜による阻止率が低下する物質であれば特に制限されるものではない。これにより、1度のpH調整で、アンモニウムイオン等のpH6超の条件下で、逆浸透膜による阻止率が低下する物質もフッ化物イオンと共に高い阻止率が得られる。
 これらの実施形態では、逆浸透膜モジュール14に供給する排水の操作圧力は、逆浸透膜モジュールの耐久性、阻止率等の点から、例えば、0.8MPa~1.9MPaの範囲が好ましく、1.4MPa~1.9MPaの範囲がより好ましい。
 これらの実施形態のフッ化物イオン含有排水の処理装置におけるフッ化物イオン阻止率は、好ましくは90%以上、より好ましくは95%以上の高い阻止率が得られ、アンモニウムイオン等のpH6超の条件下で、逆浸透膜による阻止率が低下する物質の阻止率は、好ましくは91%以上、より好ましくは96%以上の高い阻止率が得られる。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1)
 実施例1の試験は図2に示す装置を用いて行った。実施例1で処理する排水の組成を表1に示す。実施例1で用いた逆浸透膜は、pH4~6におけるζ電位が-6~-7の範囲であり、補正透過水量が0.73~0.81m/day/MPaであった。表1に示す組成の排水に塩酸または水酸化ナトリウムを添加し、排水のpHを3~9の範囲に調整した上で、各pHの排水を逆浸透膜モジュールに通水し、逆浸透膜によるフッ化物イオン阻止率を測定した。排水の通水条件は、排水温度25℃、回収率15%、透過水量0.51~0.54m/dayとした。この結果、操作圧力は0.67~0.70MPaとなった。逆浸透膜によるフッ化物イオン阻止率は、(排水のフッ化物イオン濃度-透過水のフッ化物イオン濃度)/原水のフッ化物イオン濃度×100として算出した値である。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 比較例1では、pH4~6におけるζ電位が-9~-11の範囲であり、補正透過水量が0.94m/day/MPaである逆浸透膜を用いたこと以外は、実施例1と同様に試験し、逆浸透膜によるフッ化物イオン阻止率を測定した。
(比較例2)
 比較例2では、pH4~6におけるζ電位が0~-1の範囲であり、補正透過水量が0.73m/day/MPaである逆浸透膜を用いたこと以外は、実施例1と同様に試験し、逆浸透膜によるフッ化物イオン阻止率を測定した。
 図3は、実施例1、比較例1及び2の逆浸透膜によるフッ化物イオン阻止率を示す図である。図3の横軸は排水の各pHであり、縦軸は、各pHの排水を逆浸透膜に通水した際の、フッ化物イオン阻止率である。図3に示すように、排水のpHが6.5以上では、実施例1の逆浸透膜と比較例1及び2の逆浸透膜とのフッ化物イオン阻止率はほとんど変わらなかった。排水のpHが4~6の範囲では、実施例1の逆浸透膜は、フッ化物イオン阻止率が90%以上であり、比較例1及び2の逆浸透膜より高かった。なお、排水のpHが3.0になると、実施例1の逆浸透膜でも、フッ化物イオン阻止率が70%と低い値となった。これらの結果から、pH4~6におけるζ電位が-1mV未満であり、補正透過水量が0.94m/day/MPa未満である逆浸透膜を用いることにより、フッ化物イオン含有排水のpHが4~6の酸性領域における逆浸透膜処理で、高いフッ化物イオン阻止率が得られると分かった。
(実施例2)
 実施例2で処理する排水の組成を表2に示す。実施例2では実施例1と同じ逆浸透膜を用いた。表2に示す組成の排水に塩酸または水酸化ナトリウムを添加し、排水のpHを9.0、6.5、6.0、5.0、4.0、3.0に調整した上で、各pHの排水を逆浸透膜モジュールに通水し、逆浸透膜によるフッ化物イオン及びアンモニウムイオン阻止率を測定した。排水の通水条件は、排水温度25℃、操作圧力0.74~0.76MPa、回収率15%とした。この結果、透過水量は0.57~0.59m/dayとなった。
Figure JPOXMLDOC01-appb-T000002
(比較例3)
 比較例3では、比較例1と同じ逆浸透膜を用いたこと以外は、実施例2と同様に試験し、逆浸透膜によるフッ化物イオン及びアンモニウムイオン阻止率を測定した。
(比較例4)
 比較例4では、比較例2と同じ逆浸透膜を用いたこと以外は、実施例2と同様に試験し、逆浸透膜によるフッ化物イオン及びアンモニウムイオン阻止率を測定した。
 表3~8に、各pHの排水を実施例2、比較例3及び4の逆浸透膜に通水した際の、フッ化物イオン及びアンモニウムイオン阻止率及び透過水濃度の結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表3から分かるように、pH9の排水では、実施例2、比較例3及び4いずれもフッ化物イオン阻止率は高かったが、アンモニウムイオン阻止率は76%以下と低かった。また、表4から分かるように、pH6.5の排水では、実施例2、比較例3及び4いずれも、高いフッ化物イオン阻止率及びアンモニウムイオン阻止率が得られた。しかし、表5~7から分かるように、pH6、5、4の排水では、実施例2の逆浸透膜のみが、高いフッ化物イオン阻止率及びアンモニウムイオン阻止率が得られた。表8から分かるように、pH3の排水では、いずれも低いフッ化物イオン阻止率であった。
 1~2 フッ化物含有排水の処理装置、10 原水貯槽、12 排水用ポンプ、14 逆浸透膜モジュール、16 供給水ライン、18 透過水ライン、20 濃縮水ライン、22アンモニウムイオンセンサ、24 pHセンサ、26 pH調整剤タンク、28 pH調整剤用ポンプ、30 pH調整剤ライン、32 制御部。

Claims (3)

  1. フッ化物イオン含有排水をpH4~6の条件下で、逆浸透膜に通水して透過水と濃縮水とに分離するフッ化物イオン含有排水の処理方法であって、
     前記逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜であることを特徴とするフッ化物イオン含有排水の処理方法。
  2.  前記フッ化物イオン含有排水には、アンモニウムイオンが含まれていることを特徴とする請求項1記載のフッ化物イオン含有排水の処理方法。
  3.  フッ化物イオン含有排水をpH4~6の条件下で、逆浸透膜に通水して透過水と濃縮水とに分離する逆浸透膜モジュールを備え、
     前記逆浸透膜は、pH4~6におけるζ電位が-1mV未満であり、且つ補正透過水量が0.94m/day/MPa未満である逆浸透膜であることを特徴とするフッ化物イオン含有排水の処理装置。
PCT/JP2015/069122 2014-07-10 2015-07-02 フッ化物イオン含有排水の処理方法及び処理装置 WO2016006526A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142080 2014-07-10
JP2014142080A JP6411103B2 (ja) 2014-07-10 2014-07-10 フッ化物イオン含有排水の処理方法及び処理装置

Publications (1)

Publication Number Publication Date
WO2016006526A1 true WO2016006526A1 (ja) 2016-01-14

Family

ID=55064162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069122 WO2016006526A1 (ja) 2014-07-10 2015-07-02 フッ化物イオン含有排水の処理方法及び処理装置

Country Status (3)

Country Link
JP (1) JP6411103B2 (ja)
TW (1) TW201615560A (ja)
WO (1) WO2016006526A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080693A (ja) * 1996-09-06 1998-03-31 Sharp Corp 排水処理方法および排水処理装置
JP2002001069A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 純水製造方法
JP2004243198A (ja) * 2003-02-13 2004-09-02 Toray Ind Inc 複合半透膜および下水処理方法
JP2009172462A (ja) * 2008-01-22 2009-08-06 Miura Co Ltd 水質改質装置、及び水処理システム、並びに排水の再利用システム
JP2012210568A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 現像廃液の再生装置及び再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080693A (ja) * 1996-09-06 1998-03-31 Sharp Corp 排水処理方法および排水処理装置
JP2002001069A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 純水製造方法
JP2004243198A (ja) * 2003-02-13 2004-09-02 Toray Ind Inc 複合半透膜および下水処理方法
JP2009172462A (ja) * 2008-01-22 2009-08-06 Miura Co Ltd 水質改質装置、及び水処理システム、並びに排水の再利用システム
JP2012210568A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 現像廃液の再生装置及び再生方法

Also Published As

Publication number Publication date
JP6411103B2 (ja) 2018-10-24
TW201615560A (zh) 2016-05-01
JP2016016385A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
Couto et al. Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal
Raval et al. A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment
Ricci et al. Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent
US20140048483A1 (en) Method for cleaning membrane module
EP2119675A1 (en) Method for the treatment with reverse osmosis membrane
Mnif et al. Phenol removal from water by AG reverse osmosis membrane
Kumar et al. Removal of phenol from coke‐oven wastewater by cross‐flow nanofiltration membranes
JP7133429B2 (ja) 水処理システム及び水処理方法
Thakura et al. Treating complex industrial wastewater in a new membrane-integrated closed loop system for recovery and reuse
Fan et al. Influence of membrane materials and operational modes on the performance of ultrafiltration modules for drinking water treatment
JP2009233511A (ja) 膜ろ過システムの運転方法
Shang et al. The impact of EfOM, NOM and cations on phosphate rejection by tight ceramic ultrafiltration
JP6202239B2 (ja) 廃水処理装置及び廃水処理方法
Akbari et al. Determination of nanofiltration efficency in arsenic removal from drinking water
EP3243562B1 (en) Method for improving inhibition performance of semipermeable membrane
JP6411103B2 (ja) フッ化物イオン含有排水の処理方法及び処理装置
WO2016111370A1 (ja) 水処理方法
Zhang et al. The influence of chemically enhanced backwash by-products (CEBBPs) on water quality in the coagulation–ultrafiltration process
JP2008259967A (ja) 分離膜の改質方法および装置、その方法により改質された分離膜、並びに分離膜の運転方法および装置
JP2007038052A (ja) 地下水等の水処理装置
WO2018138957A1 (ja) 電気伝導度によるpH制御方法
EP3056258B1 (en) Chemical cleaning method for membrane systems
JP2011224543A (ja) 水処理方法
KR20140123347A (ko) 막 증류 수처리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818951

Country of ref document: EP

Kind code of ref document: A1