WO2015046028A1 - ノルボルネン系架橋重合体およびその製造方法 - Google Patents

ノルボルネン系架橋重合体およびその製造方法 Download PDF

Info

Publication number
WO2015046028A1
WO2015046028A1 PCT/JP2014/074772 JP2014074772W WO2015046028A1 WO 2015046028 A1 WO2015046028 A1 WO 2015046028A1 JP 2014074772 W JP2014074772 W JP 2014074772W WO 2015046028 A1 WO2015046028 A1 WO 2015046028A1
Authority
WO
WIPO (PCT)
Prior art keywords
norbornene
temperature
monomer
group
atom
Prior art date
Application number
PCT/JP2014/074772
Other languages
English (en)
French (fr)
Inventor
伸人 亀井
Original Assignee
Rimtec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rimtec株式会社 filed Critical Rimtec株式会社
Priority to CN201480053129.7A priority Critical patent/CN105593265B/zh
Priority to EP14849140.0A priority patent/EP3031841B1/en
Priority to KR1020217002834A priority patent/KR102241359B1/ko
Priority to JP2015539156A priority patent/JPWO2015046028A1/ja
Priority to US15/025,113 priority patent/US20160244540A1/en
Priority to KR1020167010391A priority patent/KR20160061362A/ko
Publication of WO2015046028A1 publication Critical patent/WO2015046028A1/ja
Priority to US16/030,444 priority patent/US20180319912A1/en
Priority to US16/266,378 priority patent/US10611866B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/08Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/65Electrical insulator
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking

Definitions

  • the present invention relates to a norbornene-based crosslinked polymer excellent in heat resistance and a method for producing the same.
  • the high heat-resistant resin is suitably used for applications requiring high heat resistance, such as engine cover applications such as automobiles and electrical insulation applications such as sealing materials such as power semiconductors.
  • Polymers of cyclic olefins such as norbornene are generally excellent in heat resistance, but as a technique for producing a norbornene-based crosslinked polymer that further improves heat resistance, for example, a method using a predetermined norbornene-based monomer having a polar group (Patent Document 1) And a method using a predetermined metathesis catalyst (Patent Document 2) has been proposed. However, there is still room for improvement in the heat resistance of the resulting polymer.
  • an object of the present invention is to provide a norbornene-based crosslinked polymer having an extremely high heat resistance and an efficient production method thereof.
  • the gist of the present invention is as follows. [1] 50% by mass or more of at least one selected from the group consisting of a dicyclopentadiene monomer unit, a tetracyclododecene monomer unit, and a tricyclopentadiene monomer unit; A norbornene-based crosslinked polymer having a glass transition temperature of 240 ° C.
  • the norbornene-based crosslinked polymer of the present invention exhibits the effect of exhibiting ultrahigh heat resistance with a glass transition temperature of 240 ° C. or higher.
  • the norbornene-based crosslinked polymer of the present invention has 50 masses of at least one selected from the group consisting of a dicyclopentadiene monomer unit, a tetracyclododecene monomer unit, and a tricyclopentadiene monomer unit. % Or more and a glass transition temperature (Tg) of 240 ° C. or higher.
  • the dicyclopentadiene monomer unit, the tetracyclododecene monomer unit, and the tricyclopentadiene monomer unit are units obtained by ring-opening polymerization of each monomer. .
  • the dicyclopentadiene monomer is dicyclopentadiene or a tricyclic compound in which a part of hydrogen in the structure is substituted with a substituent.
  • the tetracyclododecene monomer is tetracyclododecene or a tetracyclic compound in which a part of hydrogen in the structure is substituted with a substituent.
  • the tricyclopentadiene monomer is tricyclopentadiene or a pentacyclic compound in which a part of hydrogen in the structure is substituted with a substituent.
  • These monomers include alkyl groups having 1 to 5 carbon atoms such as a methyl group, ethyl group, propyl group, and butyl group; alkenyl groups having 2 to 5 carbon atoms such as a vinyl group; 5 alkylidene group; may have a substituent such as an aryl group having 6 to 10 carbon atoms such as a phenyl group, a tolyl group and a naphthyl group.
  • these monomers have polar groups such as hydroxyl groups, ester groups (—C (O) O—), ether groups (—O—), epoxy groups, cyano groups, halogen atoms as substituents. It may be.
  • the norbornene-based crosslinked polymer of the present invention is used as a sealing target when used as a sealing material such as a power semiconductor. Adhesiveness with a certain semiconductor element is improved and insulation performance is sufficiently exhibited, which is preferable.
  • dicyclopentadiene monomer examples include dicyclopentadiene, 2-methyldicyclopentadiene, 2,3-dimethyldicyclopentadiene, 2,3-dihydroxydicyclopentadiene, dicyclopentadiene monoepoxide, vinyl norbornene. And 5-ethylidene norbornene.
  • tetracyclododecene monomer examples include tetracyclododecene, ethylidenetetracyclododecene, and methanotetrafluorofluorene.
  • tricyclopentadiene monomer examples include 3a, 4,4a, 5,8,8a, 9,9a-octahydro-4,9: 5,8-dimethano-1H-benzo [f] indene and 1 , 4: 4a, 4b, 5,8,8a, 9a-octahydro-1,4: 5,8-dimethano-1H-fluorene (all these are tricyclopentadiene), and tricyclopentadiene monoepoxide Is exemplified.
  • a polymer having low hygroscopicity and high strength can be obtained, so dicyclopentadiene, tetracyclododecene, 3a, 4,4a, 5,8,8a, 9, 9a-octahydro-4,9: 5,8-dimethano-1H-benzo [f] indene and 1,4: 4a, 4b, 5,8,8a, 9a-octahydro-1,4: 5,8-dimethano -1H-fluorene is particularly preferred.
  • These monomers are used alone or in combination of two or more.
  • the norbornene-based crosslinked polymer of the present invention has 50 masses of at least one selected from the group consisting of a dicyclopentadiene monomer unit, a tetracyclododecene monomer unit, and a tricyclopentadiene monomer unit. From the viewpoint of further improving the heat resistance of the polymer, the content is preferably 60 to 100% by mass, more preferably 70 to 100% by mass.
  • the norbornene-based crosslinked polymers of the present invention those containing 50% by mass or more of tricyclopentadiene monomer units are preferable from the viewpoint of improving heat resistance and insulation in a balanced manner. Those containing 100% by mass are more preferable, and those containing 70 to 100% by mass are particularly preferable.
  • the norbornene-based crosslinked polymer of the present invention is produced by, for example, a production method described later, and bubbles are generated in the polymerization reaction, and the resulting polymer may contain bubbles. If air bubbles are present in the polymer, its insulating properties are lowered. Surprisingly, when a polymerization reaction is carried out using a composition containing a large amount of tricyclopentadiene monomer, the generation of bubbles is suppressed, and among the polymers thus obtained, tricyclopentadiene monomer is particularly preferred. Since the norbornene-based crosslinked polymer of the present invention containing a monomer unit in the above range is substantially free of bubbles, it is presumed that heat resistance and insulation are improved in a well-balanced manner.
  • the norbornene-based crosslinked polymer of the present invention includes a dicyclopentadiene monomer unit, a dicyclopentadiene monomer unit, a tetracyclododecene monomer unit or a tricyclopentadiene monomer unit, It may contain other monomer units copolymerizable with a tetracyclododecene monomer or a tricyclopentadiene monomer.
  • the content of other monomer units is preferably 40% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less from the viewpoint of maintaining high heat resistance.
  • Examples of other monomers include monocyclic olefins such as cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, cycloheptene, cyclooctene, and cyclododecene.
  • the norbornene-based crosslinked polymer of the present invention is at least selected from the group consisting of a dicyclopentadiene monomer, a tetracyclododecene monomer, and a tricyclopentadiene monomer. It is obtained by subjecting one kind to bulk ring-opening polymerization and crosslinking, and its glass transition temperature (Tg) is 240 ° C. or higher, which is very high as compared with conventional norbornene-based crosslinked polymers.
  • Tg glass transition temperature
  • the glass transition temperature of the norbornene-based crosslinked polymer of the present invention is preferably 250 ° C. or higher, more preferably 270 ° C. or higher. In addition, although a glass transition temperature is so preferable that it is high, the upper limit is about 330 degreeC normally.
  • the glass transition temperature of the norbornene-based cross-linked polymer of the present invention is tan ⁇ under the conditions of a temperature rise rate of 5 ° C./min and a measurement frequency of 1 Hz in a tensile mode of a dynamic viscoelasticity measuring device (DMA). Measured and can be determined as the temperature at which tan ⁇ takes the maximum value.
  • DMA dynamic viscoelasticity measuring device
  • a product name “DMS6100” manufactured by Seiko Instruments Inc. can be used as the apparatus.
  • the norbornene-based crosslinked polymer of the present invention is suitably used as an insulating material.
  • those containing 50% by mass or more of a tricyclopentadiene-based monomer unit are usually 1 minute at a measurement temperature of 23 ° C.
  • the withstand voltage is 60 kV / mm or more, preferably 70 kV / mm or more, and has high heat resistance and excellent insulating properties.
  • it is very suitably used as a sealing material for power semiconductors.
  • the upper limit of the withstand voltage for 1 minute is usually about 100 kV / mm.
  • the withstand voltage for 1 minute can be calculated
  • the norbornene-based crosslinked polymer of the present invention includes at least one selected from the group consisting of the dicyclopentadiene monomer, the tetracyclododecene monomer, and the tricyclopentadiene monomer described above, and a metathesis.
  • the above-mentioned other monomer may be contained in the blend.
  • the compound used in the step (1) contains a metathesis polymerization catalyst together with the above monomer components.
  • the above-mentioned blend contains, in all monomers contained therein, a tricyclopentadiene monomer usually at 50% by mass or more, preferably 60 to 100% by mass, More preferably, those containing 70 to 100% by mass are suitably used.
  • the composition of each monomer contained in the blend is substantially the same as the composition of each monomer unit in the resulting norbornene-based crosslinked polymer.
  • the metathesis polymerization catalyst used in the present invention is a complex formed by bonding a plurality of ions, atoms, polyatomic ions and / or compounds with a transition metal atom as a central atom.
  • transition metal atoms atoms of Groups 5, 6 and 8 (long-period periodic table, the same applies hereinafter) are used.
  • the atoms of each group are not particularly limited, examples of the Group 5 atom include tantalum.
  • Examples of the Group 6 atom include molybdenum and tungsten.
  • Examples of the Group 8 atom include Examples thereof include ruthenium and osmium. Of these transition metal atoms, Group 8 ruthenium and osmium are preferred.
  • the metathesis polymerization catalyst used in the present invention is preferably a complex having ruthenium or osmium as a central atom, and more preferably a complex having ruthenium as a central atom.
  • a complex having ruthenium as a central atom a ruthenium carbene complex in which a carbene compound is coordinated to ruthenium is preferable.
  • the “carbene compound” is a general term for compounds having a methylene free group, and refers to a compound having an uncharged divalent carbon atom (carbene carbon) as represented by (> C :).
  • the ruthenium carbene complex is excellent in catalytic activity at the time of bulk ring-opening polymerization, the resulting polymer has little odor derived from unreacted monomers, and a high-quality polymer with good productivity can be obtained. In addition, it is relatively stable to oxygen and moisture in the air and is not easily deactivated, so that it can be used even in the atmosphere.
  • Examples of the ruthenium carbene complex include those represented by the following general formula (1) or general formula (2).
  • R 1 and R 2 each independently include a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. And these groups may have a substituent or may be bonded to each other to form a ring. Examples of R 1 and R 2 bonded to each other to form a ring include an indenylidene group which may have a substituent, such as a phenylindenylidene group.
  • organic group having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom include an alkyl group having 1 to 20 carbon atoms and 2 to 2 carbon atoms.
  • alkenyl groups C 2-20 alkynyl groups, C 6-20 aryl groups, C 1-20 alkoxy groups, C 2-20 alkenyloxy groups, C 2-20 alkynyloxy groups Group, aryloxy group having 6 to 20 carbon atoms, alkylthio group having 1 to 8 carbon atoms, carbonyloxy group, alkoxycarbonyl group having 1 to 20 carbon atoms, alkylsulfonyl group having 1 to 20 carbon atoms, 1 to 20 carbon atoms Alkylsulfinyl group, alkyl sulfonic acid group having 1 to 20 carbon atoms, aryl sulfonic acid group having 6 to 20 carbon atoms, phosphonic acid group, aryl phosphinic group having 6 to 20 carbon atoms Phospho groups include an alkyl ammonium group having 1 to 20 carbon atoms, and an aryl ammonium group having 6 to 20 carbon atoms.
  • These organic groups having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom may have a substituent.
  • substituents include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • X 1 and X 2 each independently represent an arbitrary anionic ligand.
  • An anionic ligand is a ligand having a negative charge when pulled away from a central metal atom, such as a halogen atom, a diketonate group, a substituted cyclopentadienyl group, an alkoxyl group, an aryloxy group, A carboxyl group etc. can be mentioned.
  • L 1 and L 2 represent a hetero atom-containing carbene compound or a neutral electron donating compound other than the hetero atom-containing carbene compound.
  • the heteroatom-containing carbene compound and the neutral electron-donating compound other than the heteroatom-containing carbene compound are compounds having a neutral charge when separated from the central metal. From the viewpoint of improving the catalytic activity, a heteroatom-containing carbene compound is preferred.
  • a heteroatom means an atom of groups 15 and 16 of the periodic table, and specific examples include a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, an arsenic atom, and a selenium atom. .
  • a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • heteroatom-containing carbene compound a compound represented by the following general formula (3) or (4) is preferable, and a compound represented by the following general formula (3) is particularly preferable from the viewpoint of improving catalytic activity.
  • R 3 , R 4 , R 5 and R 6 are each independently hydrogen atom; halogen atom; or halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus
  • R 3 , R 4 , R 5 and R 6 may be bonded together in any combination to form a ring.
  • R 5 and R 6 are hydrogen atoms.
  • R 3 and R 4 are preferably an aryl group which may have a substituent, more preferably a phenyl group having an alkyl group having 1 to 10 carbon atoms as a substituent, and particularly preferably a mesityl group.
  • neutral electron donating compound examples include oxygen atom, water, carbonyls, ethers, nitriles, esters, phosphines, phosphinites, phosphites, sulfoxides, thioethers, amides, imines , Aromatics, cyclic diolefins, olefins, isocyanides, and thiocyanates.
  • R 1 , R 2 , X 1 , X 2 , L 1 and L 2 are bonded to each other alone and / or in any combination to form a multidentate chelate
  • a fluorinated ligand may be formed.
  • the heat resistance and the insulating property of the norbornene-based crosslinked polymer of the present invention are improved in a well-balanced manner.
  • the compound represented by the general formula (1) is preferable, and among them, the compound represented by the following general formula (5) or general formula (6) is more preferable.
  • Z is an oxygen atom, a sulfur atom, a selenium atom, NR 12 , PR 12 or AsR 12 , and R 12 is a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom ,
  • R 12 is a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom
  • An organic group having 1 to 20 carbon atoms which may contain a sulfur atom, a phosphorus atom or a silicon atom; however, since the effect of the present invention becomes more remarkable, an oxygen atom is preferable as Z.
  • R 1 , R 2 , X 1 and L 1 are the same as those in the general formulas (1) and (2), and are bonded individually and / or in any combination to form a polydentate.
  • a chelating ligand may be formed, but X 1 and L 1 do not form a multidentate chelating ligand, and R 1 and R 2 are bonded to each other to form a ring. Is more preferable, and an indenylidene group which may have a substituent is more preferable, and a phenylindenylidene group is particularly preferable.
  • organic group having 1 to 20 carbon atoms that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a heteroaryl having 6 to 20 carbon atoms. These groups may have a substituent and may be bonded to each other to form a ring. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • the ring is an aromatic ring Any of alicyclic ring and heterocyclic ring may be used, but it is preferable to form an aromatic ring, more preferably an aromatic ring having 6 to 20 carbon atoms, and an aromatic ring having 6 to 10 carbon atoms to be formed. It is particularly preferable to do this.
  • R 9 , R 10 and R 11 each independently include a hydrogen atom; a halogen atom; or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom or a silicon atom.
  • These organic groups each having 1 to 20 carbon atoms may have a substituent and may be bonded to each other to form a ring.
  • Specific examples of the organic group having 1 to 20 carbon atoms which may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom or a silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 9 , R 10 and R 11 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • m is 0 or 1.
  • m is preferably 1, in which case Q is an oxygen atom, a nitrogen atom, a sulfur atom, a methylene group, an ethylene group or a carbonyl group, preferably a methylene group.
  • R 1 , X 1 , X 2 and L 1 are the same as those in the general formulas (1) and (2), and are bonded to each other alone and / or in any combination to form multidentate chelation. Although a ligand may be formed, it is preferred that X 1 , X 2 and L 1 do not form a multidentate chelating ligand and R 1 is a hydrogen atom.
  • R 13 to R 21 each independently represents a hydrogen atom; a halogen atom; or an organic group having 1 to 20 carbon atoms which may contain a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom And these groups may have a substituent and may be bonded to each other to form a ring.
  • Specific examples of the organic group having 1 to 20 carbon atoms that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom include those represented by the general formulas (1) and (2). Same as the case.
  • R 13 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, R 14 to R 17 are preferably hydrogen atoms, and R 18 to R 21 are Preferably they are a hydrogen atom or a halogen atom.
  • specific examples of the compound represented by the general formula (6) and the production method thereof include, for example, those described in International Publication No. 11/0797799 (Special Table 2013-516392).
  • the catalyst deactivation temperature of the compound is usually 230 ° C. or lower.
  • the amount of the metathesis polymerization catalyst used is preferably 0.01 mmol or more, more preferably 0.1 to 50 mmol, further preferably 0.1 to 20 with respect to 1 mol of all monomers used in the reaction. Millimolar.
  • the blend may contain other components other than the above-described monomer component and metathesis polymerization catalyst.
  • examples of such other components include an activator, a polymerization retarder, a filler, and a radical generator. Agents, modifiers, anti-aging agents, colorants, light stabilizers, flame retardants and the like.
  • the activator is a compound that acts as a cocatalyst of the above-described metathesis polymerization catalyst and improves the polymerization activity of the above-described metathesis polymerization catalyst.
  • Such an activator is not particularly limited, but specific examples thereof include organoaluminum compounds such as alkylaluminum halides such as ethylaluminum dichloride and diethylaluminum chloride, and alkoxyalkylaluminum halides; organotin compounds such as tetrabutyltin; Organozinc compounds such as diethyl zinc; chlorosilane compounds such as dimethylmonochlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, tetrachlorosilane, bicycloheptenylmethyldichlorosilane, phenylmethyldichlorosilane, dihexyldichlorosilane, phenyltrichlor
  • the amount of the activator used is not particularly limited, but is preferably 0.1 mol or more, more preferably 1 mol or more with respect to 1 mol of the metathesis polymerization catalyst, and the upper limit of the amount used is preferably 100 mol or less, More preferably, it is 20 mol or less. If the amount of the activator used is too small, the polymerization activity becomes too low, and the reaction time becomes long, resulting in a decrease in production efficiency. Conversely, if the amount used is too large, the reaction becomes too intense, It tends to be difficult to obtain a desired polymer.
  • the polymerization retarder is used to prevent the polymerization from starting during the preparation when the monomer component and the metathesis polymerization catalyst are mixed to prepare the blend.
  • examples of such a polymerization retarder include phosphines, phosphites, vinyl ether derivatives, ethers, esters, nitrile compounds, pyridine derivatives, alcohols, acetylenes and ⁇ -olefins.
  • the amount of the polymerization retarder used is not particularly limited, but is preferably 15 parts by weight or more and 5000 parts by weight or less, more preferably 15 to 1800 parts by weight, and more preferably 100 parts by weight of the metathesis polymerization catalyst. Is 50 to 900 parts by weight, more preferably 150 to 500 parts by weight.
  • the filler is not particularly limited, and examples thereof include a fibrous filler having an aspect ratio of 5 to 100 and a particulate filler having an aspect ratio of 1 to 2. These fibrous fillers and particulate fillers can also be used in combination.
  • the fibrous filler examples include glass fiber, carbon fiber, wollastonite, potassium titanate, zonolite, basic magnesium sulfate, aluminum borate, tetrapot-type zinc oxide, gypsum fiber, phosphate fiber, alumina fiber, Examples thereof include acicular calcium carbonate and acicular boehmite.
  • wollastonite is preferable from the viewpoint that the rigidity can be increased with a small addition amount and the bulk ring-opening polymerization reaction is not inhibited.
  • the particulate filler examples include calcium carbonate, calcium hydroxide, calcium silicate, calcium sulfate, aluminum hydroxide, magnesium hydroxide, titanium oxide, zinc oxide, barium titanate, silica, alumina, carbon black, graphite , Antimony oxide, red phosphorus, various metal powders, clay, various ferrites, hydrotalcite and the like.
  • silica, alumina, and aluminum hydroxide are preferable because they do not inhibit the bulk ring-opening polymerization reaction.
  • the filler has a hydrophobic surface.
  • the filler can be prevented from agglomerating and settling in the blend, and the filler can be uniformly dispersed in the resulting polymer.
  • Treatment agents used for hydrophobizing treatment include silane coupling agents such as vinyltrimethoxysilane, titanate coupling agents, aluminate coupling agents, fatty acids such as stearic acid, fats and oils, surfactants, waxes, etc. Can be mentioned.
  • the hydrophobic treatment of the filler can also be performed by mixing the treatment agent simultaneously with the filler when preparing the blend.
  • the blending amount of the filler in the blend is preferably 10 to 1000 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the total monomer components used.
  • radical generator examples include known organic peroxides, diazo compounds, and nonpolar radical generators. Of these, organic peroxides are preferred.
  • organic peroxide examples include hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3 -Dialkyl peroxides such as hexyne and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane; Dialkyl peroxides are preferred in that they have less obstacles to the metathesis polymerization reaction.
  • the blending amount of the radical generator in the blend is usually 0.5 to 2.0 parts by weight with respect to 100 parts by weight of all monomer components used.
  • modifiers are also known, and can be used by appropriately blending a desired amount into the blend.
  • the blend is at least one selected from the group consisting of a metathesis polymerization catalyst, a dicyclopentadiene monomer, a tetracyclododecene monomer, and a tricyclopentadiene monomer, and a desired Can be prepared by mixing other monomers and / or other components.
  • the blend exhibits a solid or liquid state at room temperature according to the melting point of the monomer component used.
  • the blend may be formed by cooling and solidifying.
  • “Cooling solidification” means solidifying under cooling.
  • Such a formulation can be prepared, for example, by the following two methods.
  • the monomer component is not substantially melted into a solid component that has been cooled to a solidification point or less in advance, the metathesis polymerization catalyst, and other components that are optionally added.
  • the mixture is prepared while cooling at a temperature, and the resulting mixture is subjected to pressure molding under cooling with a tableting machine or a press molding machine, and then cooled and solidified to prepare a blend.
  • the temperature at the time of mixing each component is based also on the monomer component to be used, generally 25 degrees C or less is preferable.
  • a liquid monomer component, a metathesis polymerization catalyst, and other components to be added as desired are mixed at a temperature at which the resulting mixture is kept in a liquid state, so that the monomer components are opened in bulk.
  • a compound is prepared by cooling and solidifying using a mold described later.
  • the temperature at which the components are mixed depends on the monomer components used, but is usually preferably 30 to 60 ° C. In any method, the cooling temperature at the time of cooling and solidification is usually preferably ⁇ 60 to 0 ° C., although it depends on the monomer component used.
  • step (1) the blend is heated at a temperature lower than the deactivation temperature of the metathesis polymerization catalyst to be primarily cured.
  • the deactivation temperature of the metathesis polymerization catalyst varies depending on the type of the individual catalyst, but can be determined by referring to the instruction manual of the supplier or experimentally. Moreover, when using a some metathesis polymerization catalyst, the catalyst with the lowest deactivation temperature becomes the object of deactivation temperature.
  • the heating is preferably performed at a temperature lower by 10 ° C. than the deactivation temperature of the metathesis polymerization catalyst to be used, more preferably by 20 ° C., and further preferably by 30 ° C.
  • the specific temperature range of the heating temperature in the step (1) is usually 25 ° C. or higher and lower than 220 ° C., preferably 25 to 210 ° C., more preferably 60 to 200 ° C.
  • the heating time for primary curing is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes.
  • the monomer component undergoes bulk ring-opening polymerization and the crosslinking reaction proceeds to obtain a cured product.
  • step (1) there is no limitation on the method of first curing the compound.
  • a cured product such as a film or plate can be obtained.
  • the thickness of the cured product is usually 15 mm or less, preferably 10 mm or less, more preferably 5 mm or less.
  • the support include films and plates made of resins such as polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; iron, stainless steel, copper, aluminum, nickel, chromium, gold, silver, etc. And a film or plate made of any of the above metal materials.
  • a resin film or metal foil is preferable.
  • the thickness of the resin film or metal foil is usually 1 to 150 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 3 to 75 ⁇ m from the viewpoint of workability and the like.
  • Examples of the method for applying the composition on the support include known coating methods such as spray coating, dip coating, roll coating, curtain coating, die coating, and slit coating.
  • the compound coated on the support is dried if desired and then heated to cause bulk ring-opening polymerization.
  • a heating method a method in which a composition applied to a support is placed on a heating plate and heated, a method in which heating is performed while applying pressure using a press (hot pressing), a method in which a heated roller is pressed, and a heating furnace And the like.
  • the shape of the cured product obtained by the method (b) can be arbitrarily set by a molding die.
  • a film shape, a column shape, other arbitrary three-dimensional shapes, etc. are mentioned.
  • the pre-blend (ii) can be prepared, for example, by dissolving or dispersing the metathesis polymerization catalyst in a small amount of a suitable solvent.
  • a suitable solvent examples include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and trimethylbenzene; ketones such as methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and 4-hydroxy-4-methyl-2-pentanone. Is mentioned.
  • a pre-formulation containing a monomer component and a metathesis polymerization catalyst (hereinafter sometimes referred to as “liquid A”), and What is necessary is just to mix the pre-formulation (henceforth a "B liquid” may be called hereafter) containing a monomer component and an activator.
  • a pre-compound composed only of monomer components (hereinafter sometimes referred to as “C solution”) may be used in combination.
  • the said component when mix
  • Examples of the method of injecting or placing the compound in the space of the molding die and then performing the bulk ring-opening polymerization include, for example, RIM molding method, RTM method, potting method, (solid, liquid) transfer molding method, compression molding method, Examples thereof include a printing molding method and a vacuum casting method.
  • RIM molding method used suitably when a compound is a liquid is demonstrated.
  • a known collision mixing device is usually used as a reaction injection molding (RIM) device in order to cause the compound to undergo bulk ring-opening polymerization in a mold.
  • RIM reaction injection molding
  • Two or more pre-compounds pre-compound (i) and pre-compound (ii), or “A liquid”, “B liquid”, and “C liquid” as described above,
  • the mixture is instantaneously mixed with a mixing head to prepare a formulation, which is injected into a mold as it is and heated in the mold to cause bulk ring-opening polymerization to obtain a cured product. It is done.
  • a low-pressure injector such as a dynamic mixer or a static mixer can be used instead of the collision mixing device.
  • the mold is not particularly limited, but it is usually preferable to use a split structure mold formed of a male mold and a female mold. Further, the mold to be used is not necessarily an expensive metal mold having high rigidity, and a resin mold or the like can be used.
  • the material of the mold is not particularly limited, but steel, aluminum, zinc alloy, nickel, copper, chromium, etc. may be mentioned, and may be manufactured by any method such as casting, forging, thermal spraying, electroforming, Further, it may be plated.
  • the temperature of the mold is preferably 10 to 150 ° C., more preferably 30 to 120 ° C., and still more preferably 50 to 100 ° C.
  • the clamping pressure is usually in the range of 0.01 to 10 MPa.
  • the time for bulk ring-opening polymerization may be appropriately selected, but is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes after the completion of the injection of the pre-formulation.
  • a cured product After completion of bulk ring-opening polymerization, a cured product can be obtained by opening the mold and removing the mold.
  • a cured product obtained by performing the primary curing in step (1) is heated at a temperature equal to or higher than the deactivation temperature of the metathesis polymerization catalyst used in step (2).
  • Second curing is one of the major features. By performing such secondary curing, the glass transition temperature of the obtained polymer is unexpectedly increased greatly, and the heat resistance of the resulting norbornene-based crosslinked polymer is greatly improved.
  • step (2) the cured product obtained in step (1) is secondarily cured by heating at a temperature equal to or higher than the deactivation temperature of the used metathesis polymerization catalyst.
  • the heating of the cured product in the step (2) is performed at a temperature that is preferably 60 ° C. higher, more preferably 70 ° C. higher, more preferably 80 ° C. higher than the deactivation temperature of the used metathesis polymerization catalyst.
  • the specific temperature range of the heating temperature in the step (2) is usually 250 ° C. or higher and lower than 350 ° C., preferably 280 to 330 ° C., more preferably 300 to 310 ° C.
  • the heating time of the cured product in the step (2) is usually 10 to 120 minutes, preferably 20 to 90 minutes, more preferably 30 to 60 minutes.
  • the norbornene-based crosslinked polymer of the present invention can be obtained.
  • the norbornene-based crosslinked polymer of the present invention has a very excellent property in heat resistance such that the glass transition temperature is 240 ° C. or higher.
  • Such a norbornene-based crosslinked polymer of the present invention has excellent heat resistance while maintaining other mechanical properties (for example, tensile strength, bending strength, bending elastic modulus, Izod impact strength), Taking advantage of these characteristics, automotive applications such as bumpers and air deflectors, construction and industrial machinery applications such as wheel loaders and power shovels, leisure applications such as golf carts and game machines, medical applications such as medical equipment, large panels and chairs It can be used for industrial applications such as, and for household equipment such as shower pans and wash bowls.
  • the norbornene-based crosslinked polymer of the present invention is suitable as an insulating material having high heat resistance, and can be used for electrical insulation applications such as an electrical insulation sealing material and an electrical insulation structure.
  • the norbornene-based crosslinked polymer of the present invention which contains 50% by mass or more of tricyclopentadiene monomer units, is excellent in heat resistance and insulation, and is used for engine covers such as automobiles.
  • it can be suitably used for applications requiring high heat resistance and insulation, such as electrical insulation applications such as sealing materials such as power semiconductors.
  • Example 1 (Preparation of catalyst solution)
  • a metathesis polymerization catalyst a ruthenium catalyst represented by the following formula (7) (VC843, molecular weight 843, manufactured by Strem Chemicals) 0.6 part, and 2,6-di-t-butyl-p-cresol (BHT, anti-aging agent) ) 15 parts were dissolved in 82 parts of cyclopentanone, and then 2.2 parts of 3,4-dimethylpyridine and 0.1 part of phenyltrichlorosilane were mixed to obtain a catalyst solution.
  • formula (7) VC843, molecular weight 843, manufactured by Strem Chemicals
  • BHT 2,6-di-t-butyl-p-cresol
  • the deactivation temperature of the ruthenium catalyst was experimentally determined, it was 220 ° C.
  • the experiment can be obtained from the exothermic peak measured by DSC (differential scanning calorimeter) at a temperature rising rate of 10 ° C./min.
  • Example plate molding As a monomer, 100 parts of dicyclopentadiene (molecular weight 132.2) heated to 40 ° C., 0.5 part of triphenylphosphine as a polymerization retarder, and 3.3 parts of the catalyst solution prepared above are added. These were mixed to prepare a blend (solid state). In addition, the usage-amount of the metathesis polymerization catalyst with respect to 1 mol of all monomers used was 0.03 mmol.
  • an aluminum female mold having a space of 250 mm in length, 200 mm in width, and 0.5 mm in thickness is prepared, and the composition obtained above is placed on the mold, and is 250 mm in length and 200 mm in width.
  • a metal plate was put on a female mold, and as a step (1), a cured product was obtained by performing a bulk ring-opening polymerization reaction by heating at a temperature of 70 ° C. and a pressure of 5 Mpa for 5 minutes in a press molding machine [step (1). ].
  • Step (2) a norbornene-based crosslinked polymer.
  • the specific gravity of the obtained norbornene-based crosslinked polymer was 1.05, and the glass transition temperature was 259 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • JIS K 7161 tensile strength
  • JIS K 7171 bending strength and flexural modulus
  • JIS K 7110 Izod impact strength
  • Comparative Example 1 A norbornene-based crosslinked polymer was produced under the same conditions as in Example 1 except that the heating temperature in the step (2) was changed from 300 ° C to 200 ° C. The resulting norbornene-based crosslinked polymer had a specific gravity of 1.04 and a glass transition temperature of 142 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Example 2 A norbornene-based crosslinked polymer was obtained in the same manner as in Example 1 except that tetracyclododecene (molecular weight 160.3) was used instead of dicyclopentadiene. In addition, the usage-amount of the metathesis polymerization catalyst with respect to 1 mol of all monomers used was 0.04 mmol.
  • the specific gravity of the obtained norbornene-based crosslinked polymer was 1.05, and the glass transition temperature was 267 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Example 2 A norbornene-based crosslinked polymer was produced under the same conditions as in Example 2 except that the heating temperature in step (2) was changed from 300 ° C to 200 ° C. The resulting norbornene-based crosslinked polymer had a specific gravity of 1.05 and a glass transition temperature of 213 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Example 3 A norbornene-based crosslinked polymer was obtained in the same manner as in Example 1 except that tricyclopentadiene (molecular weight 198.3) was used instead of dicyclopentadiene. In addition, the usage-amount of the metathesis polymerization catalyst with respect to 1 mol of all monomers used was 0.05 mmol.
  • the specific gravity of the obtained norbornene-based crosslinked polymer was 1.06, and the glass transition temperature was 281 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Comparative Example 3 A norbornene-based crosslinked polymer was produced under the same conditions as in Example 3 except that the heating temperature in step (2) was changed from 300 ° C to 200 ° C.
  • the obtained norbornene-based crosslinked polymer had a specific gravity of 1.03 and a glass transition temperature of 231 ° C.
  • the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Example 4 (Pre-formulation) As a pre-compound for reaction injection molding, Liquid A: Product name “PENTAM (registered trademark) A liquid” manufactured by RIMTEC A metathesis polymerization catalyst having Mo as a central atom; And a monomer component mainly composed of dicyclopentadiene. Liquid B: Product name “PENTAM (registered trademark) B liquid” manufactured by RIMTEC An active agent, And a monomer component mainly composed of dicyclopentadiene. was used. In addition, when the deactivation temperature of the metathesis polymerization catalyst contained in the liquid A was experimentally determined in the same manner as in Example 1, it was 220 ° C.
  • Example plate molding Prepare a die for reaction injection molding of a flat molded product consisting of a female die plated with cast steel having a space of 500 mm in length ⁇ width 500 mm ⁇ thickness 4 mm inside, and a forged aluminum male die paired therewith, The female mold was heated to 75 ° C and the male mold was heated to 40 ° C.
  • This reaction injection mold has a structure having a compound injection hole at the center of the side surface.
  • the specific gravity of the obtained norbornene-based crosslinked polymer was 1.06, and the glass transition temperature was 244 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • Example 4 A norbornene-based crosslinked polymer was produced under the same conditions as in Example 4 except that the heating temperature in step (2) was changed from 300 ° C to 200 ° C. The resulting norbornene-based crosslinked polymer had a specific gravity of 1.05 and a glass transition temperature of 145 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. The results are shown in Table 1.
  • the heating temperature in the step (1) was less than the deactivation temperature of the metathesis polymerization catalyst to obtain a cured product.
  • the cured product was obtained. It can be seen that the glass transition temperature of the obtained norbornene-based crosslinked polymer was greatly increased by heating at a temperature higher than the deactivation temperature.
  • Example 5 A norbornene-based crosslinked polymer was obtained in the same manner as in Example 1 except that a mixture of 80 parts of tricyclopentadiene and 20 parts of dicyclopentadiene was used instead of dicyclopentadiene. In addition, the usage-amount of the metathesis polymerization catalyst with respect to 1 mol of all monomers used was 0.05 mmol.
  • the specific gravity of the obtained norbornene-based crosslinked polymer was 1.06, and the glass transition temperature was 281 ° C. Then, the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively. Moreover, the presence or absence of the presence of bubbles in the polymer was confirmed, and the withstand voltage (23 ° C.) for 1 minute of the polymer was measured. The results are shown in Table 2.
  • Comparative Example 5 A norbornene-based crosslinked polymer was produced under the same conditions as in Example 5 except that the heating temperature in step (2) was changed from 300 ° C to 200 ° C.
  • the obtained norbornene-based crosslinked polymer had a specific gravity of 1.03 and a glass transition temperature of 231 ° C.
  • the obtained norbornene-based crosslinked polymer was measured for tensile strength, bending strength, bending elastic modulus, and Izod impact strength at 23 ° C., respectively.
  • the presence or absence of the presence of bubbles in the polymer was confirmed, and the withstand voltage (23 ° C.) for 1 minute of the polymer was measured.
  • the results are shown in Table 2.
  • the presence / absence of bubbles was confirmed by visually observing the obtained norbornene-based crosslinked polymer to confirm the presence / absence of bubbles inside.
  • the measurement of the withstand voltage for 1 minute was performed according to JIS-C2110-1 (2010). Specifically, a 0.2 mm thick film made of a norbornene-based cross-linked polymer is formed between the electrodes, and at a measurement temperature of 23 ° C., the voltage is increased and the voltage is kept for 1 minute until the electrodes are short-circuited. Holding was repeated, and at that time, the voltage was measured, and the maximum value of the voltage until short circuit was divided by the film thickness.
  • membrane which consists of a norbornene type crosslinked polymer was formed between electrodes according to the manufacturing method of the norbornene type crosslinked polymer of this invention.
  • the polymer of the present invention is extremely excellent in heat resistance, it can be suitably used for applications requiring heat resistance such as engine cover applications such as automobiles and electrical insulation applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位からなる群から選択される少なくとも1種を50質量%以上含有してなり、ガラス転移温度が240℃以上であるノルボルネン系架橋重合体に関する。さらに本発明は、前記の単量体成分の少なくとも1種と、メタセシス重合触媒と、を含有してなる配合物を、前記メタセシス重合触媒の失活温度未満の温度で加熱して一次硬化させる工程(1)、並びに工程(1)により得られた硬化物を前記メタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させる工程(2)を含む、前記のノルボルネン系架橋重合体の製造方法に関する。かかる本発明のノルボルネン系架橋重合体は、ガラス転移温度が240℃以上という超高耐熱性を示すという効果を発揮する。

Description

ノルボルネン系架橋重合体およびその製造方法
 本発明は耐熱性に優れたノルボルネン系架橋重合体及びその製造方法に関する。
 高耐熱性樹脂は、例えば、自動車などのエンジンカバー用途や、パワー半導体などの封止材料といった電気絶縁用途など、高い耐熱性が要求される用途に好適に用いられる。
 ノルボルネンなどの環状オレフィンの重合体は一般に耐熱性に優れるが、耐熱性を一層向上させるノルボルネン系架橋重合体の製造技術として、例えば、極性基を有する所定のノルボルネン系モノマーを用いる方法(特許文献1)や、所定のメタセシス触媒を用いる方法(特許文献2)が提案されている。しかしながら、得られる重合体の耐熱性については未だ改良の余地があった。
特開平6-25394号公報 特開2004-352896号公報
 従って、本発明の課題は、超高耐熱性のノルボルネン系架橋重合体及びその効率的な製造方法を提供することにある。
 即ち、本発明の要旨は、
〔1〕ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位からなる群から選択される少なくとも1種を50質量%以上含有してなり、ガラス転移温度が240℃以上であるノルボルネン系架橋重合体;並びに
〔2〕ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体及びトリシクロペンタジエン系単量体からなる群から選択される少なくとも1種と、メタセシス重合触媒と、を含有してなる配合物を、前記メタセシス重合触媒の失活温度未満の温度で加熱して一次硬化させる工程(1)、並びに
 工程(1)により得られた硬化物を前記メタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させる工程(2)
を含む、前記〔1〕に記載のノルボルネン系架橋重合体の製造方法、に関するものである。
 本発明のノルボルネン系架橋重合体は、ガラス転移温度が240℃以上という超高耐熱性を示すという効果を発揮する。
 本発明のノルボルネン系架橋重合体は、ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位からなる群から選択される少なくとも1種を50質量%以上含有してなり、ガラス転移温度(Tg)が240℃以上というものである。
 本発明において、ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位とは、各々の単量体を開環重合して得られる単位をいう。
 本発明において、ジシクロペンタジエン系単量体とは、ジシクロペンタジエン、またはその構造中の水素の一部が置換基で置換された3環体の化合物である。テトラシクロドデセン系単量体とは、テトラシクロドデセン、またはその構造中の水素の一部が置換基で置換された4環体の化合物である。トリシクロペンタジエン系単量体とは、トリシクロペンタジエン、またはその構造中の水素の一部が置換基で置換された5環体の化合物である。
 これらの単量体は、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基;ビニル基等の炭素数2~5のアルケニル基;エチリデン基等の炭素数1~5のアルキリデン基;フェニル基、トリル基、ナフチル基等の炭素数6~10のアリール基等の置換基を有していてもよい。
 更に、これらの単量体は、置換基として、水酸基、エステル基(-C(O)O-)、エーテル基(-O-)、エポキシ基、シアノ基、ハロゲン原子等の極性基を有していてもよい。
 特に、用いる単量体が、水酸基、エポキシ基およびシアノ基などの極性基を有すると、本発明のノルボルネン系架橋重合体を、例えば、パワー半導体などの封止材料として用いる場合、封止対象である半導体素子との密着性が向上し、絶縁性能が充分に発揮されるため好適である。
 ジシクロペンタジエン系単量体の具体例としては、ジシクロペンタジエン、2-メチルジシクロペンタジエン、2,3-ジメチルジシクロペンタジエン、2,3-ジヒドロキシジシクロペンタジエン、ジシクロペンタジエンモノエポキシド、ビニルノルボルネン、及び5-エチリデンノルボルネンなどが例示される。
 テトラシクロドデセン系単量体の具体例としては、テトラシクロドデセン、エチリデンテトラシクロドデセン、及びメタノテトラフルオロフルオレンなどが例示される。
 トリシクロペンタジエン系単量体の具体例としては、3a,4,4a,5,8,8a,9,9a-オクタヒドロ-4,9:5,8-ジメタノ-1H-ベンゾ[f]インデン及び1,4:4a,4b,5,8,8a,9a-オクタヒドロ-1,4:5,8-ジメタノ-1H-フルオレン(これらの慣用名はいずれもトリシクロペンタジエン)、並びにトリシクロペンタジエンモノエポキシドなどが例示される。
 本発明に用いられる単量体としては、吸湿性が低く、高強度の重合体が得られることから、ジシクロペンタジエン、テトラシクロドデセン、3a,4,4a,5,8,8a,9,9a-オクタヒドロ-4,9:5,8-ジメタノ-1H-ベンゾ[f]インデン、及び1,4:4a,4b,5,8,8a,9a-オクタヒドロ-1,4:5,8-ジメタノ-1H-フルオレンが特に好ましい。
 以上の単量体は、それぞれ単独であるいは2種以上を組み合わせて用いられる。
 本発明のノルボルネン系架橋重合体は、ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位からなる群から選択される少なくとも1種を50質量%以上含有してなるものであるが、該重合体の耐熱性をより向上させる観点から、その含有量としては、好ましくは60~100質量%、より好ましくは70~100質量%である。
 本発明のノルボルネン系架橋重合体としては中でも、耐熱性と絶縁性とをバランス良く向上させる観点から、トリシクロペンタジエン系単量体単位を、50質量%以上含有してなるものが好ましく、60~100質量%含有してなるものがより好ましく、70~100質量%含有してなるものが特に好ましい。
 本発明のノルボルネン系架橋重合体は、例えば、後述する製造方法により製造されるが、重合反応の際に気泡が発生し、得られる重合体中に気泡が含まれることがある。重合体中に気泡が存在すると、その絶縁性が低下する。意外にも、トリシクロペンタジエン系単量体を多く含む配合物を用いて重合反応を行った場合、気泡の発生が抑制され、そのようにして得られる重合体の中でも、特にトリシクロペンタジエン系単量体単位を上記範囲で含有する、本発明のノルボルネン系架橋重合体には気泡が実質的に含まれないことから、耐熱性と絶縁性とがバランス良く向上するものと推定される。
 なお、本発明のノルボルネン系架橋重合体は、ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位又はトリシクロペンタジエン系単量体単位以外に、ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体又はトリシクロペンタジエン系単量体と共重合可能なその他の単量体単位を含んでいてもよい。その他の単量体単位の含有量としては、高い耐熱性を維持する観点から、40質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。その他の単量体としては、例えば、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘプテン、シクロオクテン、及びシクロドデセン等の単環の環状オレフィンが挙げられる。
 本発明のノルボルネン系架橋重合体は、後述するように、前記した、ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体及びトリシクロペンタジエン系単量体からなる群から選択される少なくとも1種を塊状開環重合すると共に架橋して得られるが、そのガラス転移温度(Tg)は240℃以上であり、従来のノルボルネン系架橋重合体に比べて非常に高い。これまで、ノルボルネン系単量体を塊状開環重合させると、重合反応と共に充分な架橋が生じ、重合後の加熱は、得られた重合体を劣化させることはあれ、なんらの利点もないと考えられていたところ、意外にも、得られた重合体をさらに所定温度で加熱することで、より一層架橋が進行するものと推定され、予想外に高いガラス転移温度を有するノルボルネン系架橋重合体が得られた。本発明のノルボルネン系架橋重合体のガラス転移温度としては、好ましくは250℃以上、より好ましくは270℃以上である。なお、ガラス転移温度は高いほど好ましいが、通常、その上限は330℃程度である。
 なお、本発明のノルボルネン系架橋重合体のガラス転移温度は、動的粘弾性測定装置(DMA)の引っ張りモードにて、室温から昇温レート5℃/min、測定周波数1Hzの条件下でtanδを測定し、tanδが最大値をとる温度として求めることができる。前記装置としては、例えば、セイコーインスツル株式会社製、製品名「DMS6100」を用いることができる。
 本発明のノルボルネン系架橋重合体は絶縁材料として好適に用いられるが、中でも、トリシクロペンタジエン系単量体単位を50質量%以上含有してなるものは、通常、測定温度23℃での1分間耐電圧が60kV/mm以上、好ましくは70kV/mm以上であり、高耐熱性を有すると共に優れた絶縁性を有しており、例えば、パワー半導体の封止材料として非常に好適に用いられる。当該1分間耐電圧の上限としては通常、100kV/mm程度である。
 なお、1分間耐電圧は後述の実施例に記載の方法により求めることができる。
 本発明のノルボルネン系架橋重合体は、上記した、ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体及びトリシクロペンタジエン系単量体からなる群から選択される少なくとも1種と、メタセシス重合触媒と、を含有してなる配合物を、前記メタセシス重合触媒の失活温度未満の温度で加熱して一次硬化させる工程(1)、並びに工程(1)により得られた硬化物を前記メタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させる工程(2)を含む方法によって効率よく製造することができる。なお、配合物には、前記したその他の単量体が含まれていてもよい。
 工程(1)において用いられる配合物には、上記の単量体成分とともに、メタセシス重合触媒が含有される。
 前記の通り、トリシクロペンタジエン系単量体単位を50質量%以上含有する、本発明のノルボルネン系架橋重合体では、耐熱性と絶縁性とがバランス良く向上する。かかる重合体を効率的に製造する観点から、前記配合物としては、それに含まれる全単量体中、トリシクロペンタジエン系単量体を通常、50質量%以上、好ましくは60~100質量%、より好ましくは70~100質量%含有するものが好適に用いられる。なお、配合物に含まれる各単量体の組成と、得られるノルボルネン系架橋重合体中の各単量体単位の組成とは、実質的に同じである。
 本発明において用いられるメタセシス重合触媒は、遷移金属原子を中心原子として、複数のイオン、原子、多原子イオンおよび/または化合物が結合してなる錯体である。遷移金属原子としては、第5,6および8族(長周期型周期表、以下同様)の原子が使用される。それぞれの族の原子は特に限定されないが、第5族の原子としては、例えば、タンタルが挙げられ、第6族の原子としては、例えば、モリブデンやタングステンが挙げられ、第8族の原子としては、例えば、ルテニウムやオスミウムが挙げられる。これら遷移金属原子の中でも、第8族のルテニウムやオスミウムが好ましい。すなわち、本発明に使用されるメタセシス重合触媒としては、ルテニウム又はオスミウムを中心原子とする錯体が好ましく、ルテニウムを中心原子とする錯体がより好ましい。ルテニウムを中心原子とする錯体としては、カルベン化合物がルテニウムに配位してなるルテニウムカルベン錯体が好ましい。ここで、「カルベン化合物」とは、メチレン遊離基を有する化合物の総称であり、(>C:)で表されるような電荷のない2価の炭素原子(カルベン炭素)を持つ化合物をいう。ルテニウムカルベン錯体は、塊状開環重合時の触媒活性に優れるため、得られる重合体には未反応のモノマーに由来する臭気が少なく、生産性良く良質な重合体が得られる。また、酸素や空気中の水分に対して比較的安定であって、失活しにくいので、大気下でも使用可能である。
 ルテニウムカルベン錯体としては、下記一般式(1)又は一般式(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)及び(2)において、R及びRは、それぞれ独立して、水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよい。R及びRが互いに結合して環を形成した例としては、フェニルインデニリデン基などの、置換基を有していてもよいインデニリデン基が挙げられる。
 ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基、炭素数1~8のアルキルチオ基、カルボニルオキシ基、炭素数1~20のアルコキシカルボニル基、炭素数1~20のアルキルスルホニル基、炭素数1~20のアルキルスルフィニル基、炭素数1~20のアルキルスルホン酸基、炭素数6~20のアリールスルホン酸基、ホスホン酸基、炭素数6~20のアリールホスホン酸基、炭素数1~20のアルキルアンモニウム基、及び炭素数6~20のアリールアンモニウム基等を挙げることができる。これらの、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基は、置換基を有していてもよい。置換基の例としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び炭素数6~10のアリール基等を挙げることができる。
 X及びXは、それぞれ独立して、任意のアニオン性配位子を示す。アニオン性配位子とは、中心金属原子から引き離されたときに負の電荷を持つ配位子であり、例えば、ハロゲン原子、ジケトネート基、置換シクロペンタジエニル基、アルコキシル基、アリールオキシ基、カルボキシル基などを挙げることができる。
 L及びLは、ヘテロ原子含有カルベン化合物又はヘテロ原子含有カルベン化合物以外の中性電子供与性化合物を表す。ヘテロ原子含有カルベン化合物及びヘテロ原子含有カルベン化合物以外の中性電子供与性化合物は、中心金属から引き離されたときに中性の電荷を持つ化合物である。触媒活性向上の観点からヘテロ原子含有カルベン化合物が好ましい。ヘテロ原子とは、周期律表第15族及び第16族の原子を意味し、具体的には、窒素原子、酸素原子、リン原子、硫黄原子、ヒ素原子、及びセレン原子などを挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、窒素原子、酸素原子、リン原子、及び硫黄原子が好ましく、窒素原子が特に好ましい。
 前記ヘテロ原子含有カルベン化合物としては、下記一般式(3)又は(4)で示される化合物が好ましく、触媒活性向上の観点から、下記一般式(3)で示される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(3)及び(4)中、R、R、R及びRは、それぞれ独立して、水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20個の有機基;を表す。ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例は、上記一般式(1)及び(2)の場合と同様である。
 また、R、R、R及びRは任意の組合せで互いに結合して環を形成していてもよい。
 なお、本発明の効果がより一層顕著になることから、R及びRが水素原子であることが好ましい。また、R及びRは、置換基を有していてもよいアリール基が好ましく、置換基として炭素数1~10のアルキル基を有するフェニル基がより好ましく、メシチル基が特に好ましい。
 前記中性電子供与性化合物としては、例えば、酸素原子、水、カルボニル類、エーテル類、ニトリル類、エステル類、ホスフィン類、ホスフィナイト類、ホスファイト類、スルホキシド類、チオエーテル類、アミド類、イミン類、芳香族類、環状ジオレフィン類、オレフィン類、イソシアニド類、及びチオシアネート類等が挙げられる。
 上記一般式(1)及び(2)において、R、R、X、X、L及びLは、それぞれ単独で、及び/又は任意の組合せで互いに結合して、多座キレート化配位子を形成してもよい。
 また、本発明で用いるルテニウムカルベン錯体としては、上記一般式(1)又は(2)で表される化合物の中でも、本発明のノルボルネン系架橋重合体の耐熱性と絶縁性とをバランス良く向上させる観点から、上記一般式(1)で表される化合物が好ましく、中でも、以下に示す一般式(5)又は一般式(6)で表される化合物であることがより好ましい。かかる化合物をメタセシス重合触媒として用いることで重合反応が適度に進行して気泡の発生が抑制され、本発明のノルボルネン系架橋重合体の耐熱性と絶縁性とがバランス良く向上するものと推定される。
 一般式(5)を以下に示す。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(5)中、Zは、酸素原子、硫黄原子、セレン原子、NR12、PR12又はAsR12であり、R12は、水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であるが、本発明の効果がより一層顕著になることから、Zとしては酸素原子が好ましい。
 なお、R、R、X及びLは、上記一般式(1)及び(2)の場合と同様であり、それぞれ単独で、及び/又は任意の組み合わせで互いに結合して、多座キレート化配位子を形成しても良いが、X及びLが多座キレート化配位子を形成せず、かつ、R及びRは互いに結合して環を形成していることが好ましく、置換基を有していてもよいインデニリデン基であることがより好ましく、フェニルインデニリデン基であることが特に好ましい。
 また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子又は珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)及び(2)の場合と同様である。
 上記一般式(5)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は炭素数6~20のヘテロアリール基で、これらの基は、置換基を有していてもよく、また、互いに結合して環を形成していてもよい。置換基の例としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又は炭素数6~10のアリール基を挙げることができ、環を形成する場合の環は、芳香環、脂環およびヘテロ環のいずれであってもよいが、芳香環を形成することが好ましく、炭素数6~20の芳香環を形成することがより好ましく、炭素数6~10の芳香環を形成することが特に好ましい。
 上記一般式(5)中、R、R10及びR11は、それぞれ独立して、水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、互いに結合して環を形成していてもよい。また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)及び(2)の場合と同様である。
 R、R10及びR11は、水素原子又は炭素数1~20のアルキル基であることが好ましく、水素原子又は炭素数1~3のアルキル基であることが特に好ましい。
 なお、上記一般式(5)で表わされる化合物の具体例及びその製造方法としては、例えば、国際公開第03/062253号(特表2005-515260)に記載のもの等が挙げられる。当該化合物の触媒失活温度は、通常、230℃以下である。
 一般式(6)を以下に示す。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(6)中、mは、0又は1である。mは1が好ましく、その場合、Qは、酸素原子、窒素原子、硫黄原子、メチレン基、エチレン基又はカルボニル基であり、好ましくはメチレン基である。
は、単結合または二重結合であり、好ましくは単結合である。
 R、X、X及びLは、上記一般式(1)及び(2)の場合と同様であり、それぞれ単独で、及び/又は任意の組み合わせで互いに結合して、多座キレート化配位子を形成しても良いが、X、X及びLが多座キレート化配位子を形成せず、かつ、Rは水素原子であることが好ましい。
 R13~R21は、それぞれ独立して、水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでいてもよい炭素数1~20の有機基;であり、これらの基は、置換基を有していてもよく、互いに結合して環を形成していてもよい。また、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子又は珪素原子を含んでいてもよい炭素数1~20の有機基の具体例としては、上記一般式(1)及び(2)の場合と同様である。
 R13は、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~3のアルキル基であり、R14~R17は、好ましくは水素原子であり、R18~R21は、好ましくは水素原子又はハロゲン原子である。
 なお、上記一般式(6)で表わされる化合物の具体例及びその製造方法としては、例えば、国際公開第11/079799(特表2013-516392)に記載のもの等が挙げられる。当該化合物の触媒失活温度は、通常、230℃以下である。
 メタセシス重合触媒の使用量は、反応に使用する全単量体1モルに対して、好ましくは0.01ミリモル以上であり、より好ましくは0.1~50ミリモル、さらに好ましくは0.1~20ミリモルである。
 配合物は、上記の単量体成分及びメタセシス重合触媒以外のその他の成分を含有するものであってもよく、このようなその他の成分としては、活性剤、重合遅延剤、充填材、ラジカル発生剤、改質剤、老化防止剤、着色剤、光安定剤、及び難燃剤などが挙げられる。
 活性剤は、上述したメタセシス重合触媒の共触媒として作用し、上述したメタセシス重合触媒の重合活性を向上させる化合物である。このような活性剤としては、特に限定されないが、その具体例としては、エチルアルミニウムジクロリド、ジエチルアルミニウムクロリド等のアルキルアルミニウムハライド、アルコキシアルキルアルミニウムハライド等の有機アルミニウム化合物;テトラブチル錫等の有機スズ化合物;ジエチル亜鉛等の有機亜鉛化合物;ジメチルモノクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、テトラクロロシラン、ビシクロヘプテニルメチルジクロロシラン、フェニルメチルジクロロシラン、ジヘキシルジクロロシラン、フェニルトリクロロシラン、メチルトリクロロシラン等のクロロシラン化合物;等が挙げられる。
 活性剤の使用量は、特に限定されないが、メタセシス重合触媒1モルに対して、好ましくは0.1モル以上、より好ましくは1モル以上であり、使用量の上限は、好ましくは100モル以下、より好ましくは20モル以下である。活性剤の使用量が少なすぎると、重合活性が低くなりすぎて、反応に要する時間が長くなるため生産効率が低下し、逆に、使用量が多すぎると、反応が激しくなり過ぎてしまい、所望の重合体が得難くなる傾向がある。
 重合遅延剤は、単量体成分とメタセシス重合触媒とを混合して配合物を調製する際、その調製中に重合が開始してしまうことを抑制するためのものである。このような重合遅延剤としては、ホスフィン類、ホスファイト類、ビニルエーテル誘導体、エーテル、エステル、ニトリル化合物、ピリジン誘導体、アルコール類、アセチレン類及びα-オレフィン類などが挙げられる。
 重合遅延剤の使用量は、特に限定されないが、メタセシス重合触媒100質量部に対して、好ましくは15質量部以上、5000質量部以下であり、より好ましくは15~1800質量部であり、より好ましくは50~900質量部、さらに好ましくは150~500質量部である。
 充填材としては、特に限定されないが、例えば、アスペクト比が5~100の繊維状充填材や、アスペクト比が1~2の粒子状充填材が挙げられる。また、これら繊維状充填材と粒子状充填材を組み合わせて用いることもできる。
 繊維状充填材の具体例としては、ガラス繊維、炭素繊維、ウォラストナイト、チタン酸カリウム、ゾノライト、塩基性硫酸マグネシウム、ホウ酸アルミニウム、テトラポット型酸化亜鉛、石膏繊維、ホスフェート繊維、アルミナ繊維、針状炭酸カルシウム、針状ベーマイトなどを挙げることができる。なかでも、少ない添加量で剛性を高めることができ、しかも塊状開環重合反応を阻害しないという点より、ウォラストナイトが好ましい。
 粒子状充填材の具体例としては、炭酸カルシウム、水酸化カルシウム、ケイ酸カルシウム、硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化亜鉛、チタン酸バリウム、シリカ、アルミナ、カーボンブラック、グラファイト、酸化アンチモン、赤燐、各種金属粉、クレー、各種フェライト、ハイドロタルサイト等を挙げることができる。これらの中でも、塊状開環重合反応を阻害しないので、シリカ、アルミナおよび水酸化アルミニウムが好ましい。
 また、上記充填材は、その表面を疎水化処理したものであることが好ましい。疎水化処理した充填材を用いることにより、配合物中における充填材の凝集・沈降を防止でき、また、得られる重合体中における充填材の分散を均一にすることができる。疎水化処理に用いられる処理剤としては、ビニルトリメトキシシラン等のシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ステアリン酸等の脂肪酸、油脂、界面活性剤、ワックス等を挙げることができる。なお、充填材の疎水化処理は、配合物を調製する際に、前記処理剤を充填剤と同時に混合することによっても可能である。
 配合物中の充填材の配合量は、用いる全単量体成分100質量部に対して、10~1000質量部であることが好ましく、100~500質量部であることがより好ましい。充填材の配合量を上記範囲とすることにより、得られる重合体の強度を高めることができる。
 ラジカル発生剤としては、公知の、有機過酸化物、ジアゾ化合物及び非極性ラジカル発生剤などが挙げられる。中でも、有機過酸化物が好ましい。
 有機過酸化物としては、例えば、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド類;ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)-3-ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンなどのジアルキルペルオキシド類;などが挙げられる。メタセシス重合反応に対する障害が少ない点で、ジアルキルペルオキシド類が好ましい。
 配合物中のラジカル発生剤の配合量としては、通常、用いる全単量体成分100質量部に対して、0.5~2.0質量部である。
 その他の改質剤等も公知であり、所望量を配合物に適宜配合して用いることができる。
 配合物は、公知の方法に従い、メタセシス重合触媒、ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体及びトリシクロペンタジエン系単量体からなる群から選択される少なくとも1種、及び所望により、その他の単量体及び/又はその他の成分を混合することにより、調製することができる。なお、配合物は、室温において、用いる単量体成分の融点に従い、固体状又は液状を示す。
 また、配合物は、冷却固化してなるものであってもよい。「冷却固化」とは、冷却下に固めることを意味する。かかる配合物は、例えば、以下の2つの方法により調製することができる。
 第1の方法では、予め凝固点以下に冷却して固形状とした単量体成分と、メタセシス重合触媒と、所望により添加されるその他の成分とを、該単量体成分が実質的に融解しない温度下で冷却しながら混合し、得られた混合物を、例えば、打錠機やプレス成形機にて冷却下に加圧成形して冷却固化することにより、配合物を調製する。各成分を混合する際の温度は、用いる単量体成分にもよるが、通常、25℃以下が好ましい。
 第2の方法では、液状の単量体成分と、メタセシス重合触媒と、所望により添加されるその他の成分とを、得られる混合物が液状を保つ温度下で混合し、単量体成分の塊状開環重合が実質的に進行する前に、例えば、後述の成形型を利用して冷却固化することにより、配合物を調製する。各成分を混合する際の温度は、用いる単量体成分にもよるが、通常、30~60℃が好ましい。
 なお、いずれの方法においても、冷却固化する際の冷却温度としては、用いる単量体成分にもよるが、通常、-60~0℃が好ましい。
 工程(1)では、配合物をメタセシス重合触媒の失活温度未満の温度で加熱して一次硬化させる。メタセシス重合触媒の失活温度は、個々の触媒の種類によって異なるが、供給業者の取り扱い説明書を参照することにより、あるいは実験的に求めることができる。また、複数のメタセシス重合触媒を用いる場合、失活温度が最も低い触媒が、失活温度の対象となる。工程(1)では、使用するメタセシス重合触媒の失活温度よりも好ましくは10℃低い温度、より好ましくは20℃低い温度、さらに好ましくは30℃低い温度で加熱する。工程(1)における加熱温度の具体的な温度範囲としては、通常、25℃以上、220℃未満であり、25~210℃が好ましく、60~200℃がより好ましい。一次硬化のための加熱時間としては、通常、1秒~20分、好ましくは10秒~5分である。
 配合物を一次硬化させる際、単量体成分が塊状開環重合すると共に架橋反応が進行し、硬化物が得られる。
 工程(1)において、配合物を一次硬化させる方法に限定はないが、例えば、(a)配合物を支持体上に塗布し、次いで塊状開環重合する方法、(b)配合物を成形型の空間部に注入又は載置し、次いで塊状開環重合する方法、(c)配合物を繊維状強化材に含浸させ、次いで塊状開環重合する方法などが挙げられる。
 (a)の方法によれば、フィルム状、板状等の硬化物が得られる。該硬化物の厚みは、通常15mm以下、好ましくは10mm以下、より好ましくは5mm以下である。
 支持体としては、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンナフタレート、ポリアリレート、及びナイロンなどの樹脂からなるフィルムや板;鉄、ステンレス、銅、アルミニウム、ニッケル、クロム、金、銀などの金属材料からなるフィルムや板;などが挙げられる。なかでも、樹脂フィルム又は金属箔の使用が好ましい。これら樹脂フィルム又は金属箔の厚さは、作業性などの観点から、通常、1~150μm、好ましくは2~100μm、より好ましくは3~75μmである。
 支持体上に配合物を塗布する方法としては、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、及びスリットコート法などの公知の塗布方法が挙げられる。
 支持体上に塗布された配合物を所望により乾燥させ、次いで加熱して塊状開環重合させる。加熱方法としては、加熱プレート上に支持体に塗布された配合物を載せて加熱する方法、プレス機を用いて加圧しながら加熱(熱プレス)する方法、熱したローラーを押圧する方法、加熱炉を用いる方法などが挙げられる。
 (b)の方法によって得られる硬化物の形状は、成形型により任意に設定できる。例えば、フィルム状、柱状、その他の任意の立体形状などが挙げられる。
 本方法においては、用いるメタセシス重合触媒が活性剤(共触媒)を必要とするものであるか否かにより、以下の2つの方法により、配合物の調製を行うのが好ましい。
 すなわち、用いるメタセシス重合触媒が活性剤を必要としないものである場合には、単量体成分を含有するプレ配合物(i)と、メタセシス重合触媒を含有するプレ配合物(ii)とを混合すればよい。プレ配合物(ii)は、例えば、メタセシス重合触媒を少量の適当な溶媒に溶解又は分散して調製することができる。当該溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素;メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類などが挙げられる。
 一方、メタセシス重合触媒が活性剤を必要とするものである場合には、単量体成分とメタセシス重合触媒とを含有するプレ配合物(以下、「A液」という場合がある。)と、単量体成分と活性剤とを含有するプレ配合物(以下、「B液」という場合がある。)と、を混合すればよい。この際、単量体成分のみからなるプレ配合物(以下、「C液」という場合がある。)を併用してもよい。
 なお、その他の成分を配合する場合、当該成分は、任意のプレ配合物に配合することができる。
 配合物を成形型の空間部に注入又は載置し、次いで塊状開環重合する方法としては、例えば、RIM成形法、RTM法、ポッティング法、(固体、液体)トランスファー成形法、圧縮成形法、印刷成形法、真空注型法などが挙げられる。以下、配合物が液状である場合に好適に用いられるRIM成形法について説明する。
 RIM成形法では、配合物を成形型内で塊状開環重合させるために、通常、反応射出成形(RIM)装置として、公知の衝突混合装置を用いる。衝突混合装置に、前記の通りの、2以上のプレ配合物〔プレ配合物(i)及びプレ配合物(ii)、又は「A液」、「B液」及び「C液」〕を、それぞれ別個に導入すると、ミキシングヘッドで瞬間的に混合されて配合物が調製され、この配合物はそのまま成形型内に注入され、当該型内で加熱されて塊状開環重合が生じ、硬化物が得られる。なお、衝突混合装置に代えて、ダイナミックミキサーやスタティックミキサー等の低圧注入機を使用することも可能である。
 前記成形型としては、特に限定されないが、通常、雄型と雌型とで形成される割型構造の型を用いるのが好ましい。また、用いる型は、必ずしも剛性の高い高価な金型である必要はなく、樹脂製の型などを用いることができる。金型の材質としては、特に限定されないが、スチール、アルミニウム、亜鉛合金、ニッケル、銅、クロム等が挙げられ、鋳造、鍛造、溶射、電鋳等のいずれの方法で製造されたものでもよく、また、メッキされたものであってもよい。
 成形型の温度としては、好ましくは10~150℃、より好ましくは30~120℃、さらに好ましくは50~100℃である。型締め圧力は通常0.01~10MPaの範囲である。塊状開環重合の時間は適宜選択すればよいが、プレ配合物の注入終了後、通常1秒~20分、好ましくは10秒~5分である。
 塊状開環重合の終了後、成形型を型開きして脱型することにより、硬化物を得ることができる。
 本発明のノルボルネン系架橋重合体の製造方法は、工程(1)の一次硬化を行って得られる硬化物を、工程(2)において、用いたメタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させることを大きな特徴の一つとする。かかる二次硬化を行うことにより、意外にも、得られる重合体のガラス転移温度が大きく上昇し、得られるノルボルネン系架橋重合体の耐熱性が大きく向上することになる。
 工程(2)では、工程(1)で得られた硬化物を、用いたメタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させる。
 工程(2)における硬化物の加熱は、使用したメタセシス重合触媒の失活温度よりも、好ましくは60℃高い温度、より好ましくは70℃高い温度、さらに好ましくは80℃高い温度で行う。工程(2)における加熱温度の具体的な温度範囲としては、通常、250℃以上、350℃未満、好ましく280~330℃、より好ましくは300~310℃である。
 また、工程(2)における硬化物の加熱時間としては、通常、10~120分間、好ましくは20~90分間、より好ましくは30~60分間である。
 以上により、本発明のノルボルネン系架橋重合体を得ることができる。本発明のノルボルネン系架橋重合体は、ガラス転移温度が240℃以上という耐熱性に非常に優れた性質を有する。このような本発明のノルボルネン系架橋重合体は、他の機械物性(例えば、引張強度、曲げ強度、曲げ弾性率、アイゾット衝撃強度)を良好に保ちながら、優れた耐熱性を有するものであり、このような特性を生かし、バンパーやエアデフレクター等の自動車用途、ホイルローダーやパワーショベル等の建設・産業機械用途、ゴルフカートやゲーム機等のレジャー用途、医療機器等の医療用途、大型パネルや椅子等の産業用途、シャワーパンや洗面ボウル等の住宅設備用途などに用いることができる。また、本発明のノルボルネン系架橋重合体は高耐熱性を有する絶縁材料として好適であり、電気絶縁封止材や電気絶縁構造物等の電気絶縁用途等に用いることができる。特に、トリシクロペンタジエン系単量体単位を50質量%以上含有してなる、本発明のノルボルネン系架橋重合体は、非常に耐熱性に優れると共に絶縁性に優れており、自動車等のエンジンカバー用途や、パワー半導体などの封止材料といった電気絶縁用途など、高い耐熱性や絶縁性が要求される用途に好適に用いることができる。
 以下、本発明を実施例に基づいて説明するが、本発明は実施例により何ら限定されるものではない。なお、「部」や「%」は、特に断らない限り、質量基準である。
実施例1
(触媒液の調製)
 メタセシス重合触媒として、下記式(7)で示すルテニウム触媒(VC843、分子量843、Strem Chemicals社製)0.6部、及び2,6-ジ-t-ブチル-p-クレゾール(BHT、老化防止剤)15部をシクロペンタノン82部に溶解させ、次いで、3,4-ジメチルピリジン2.2部、及びフェニルトリクロロシラン0.1部を混合することで、触媒液を得た。
 なお、上記ルテニウム触媒の失活温度を実験的に求めたところ、220℃であった。当該実験は、DSC(示差走査熱量測定装置)にて昇温レート10℃/minで測定を行い、その発熱ピークから求めることが出来る。
Figure JPOXMLDOC01-appb-C000006
(サンプル板の成形)
 単量体として、40℃に加温したジシクロペンタジエン(分子量132.2)100部に、重合遅延剤としてトリフェニルホスフィン0.5部、及び上記にて調製した触媒液3.3部を添加し、これらを混合して配合物(固体状)を調製した。なお、用いた全単量体1モルに対するメタセシス重合触媒の使用量は0.03ミリモルであった。
 金型として、内部に縦250mm×横200mm×厚さ0.5mmの空間を有するアルミニウム製雌型を準備し、上記にて得られた配合物を金型上に置き、縦250mm×横200mmの金属板を雌型に被せ、工程(1)としてプレス成形機にて温度70℃、圧力5Mpaにて5分間加熱することで塊状開環重合反応を行って硬化物を得た〔工程(1)〕。
 上記反応後、直ちに金型温度を300℃まで加熱し、300℃を1時間維持して二次硬化を行い〔工程(2)〕、ノルボルネン系架橋重合体を得た。
 得られたノルボルネン系架橋重合体の比重は1.05であり、ガラス転移温度は259℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
 なお、上記評価は、引張強度(JIS K7161)、曲げ強度及び曲げ弾性率(JIS K7171)、並びにアイゾット衝撃強度(JIS K7110)の各方法に従って行った。
比較例1
 工程(2)における加熱温度を300℃から200℃に変更したこと以外は実施例1と同じ条件でノルボルネン系架橋重合体を製造した。得られたノルボルネン系架橋重合体の比重は1.04であり、ガラス転移温度は142℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
実施例2
 ジシクロペンタジエンの代わりにテトラシクロドデセン(分子量160.3)を用いた以外は実施例1と同様にしてノルボルネン系架橋重合体を得た。なお、用いた全単量体1モルに対するメタセシス重合触媒の使用量は0.04ミリモルであった。
 得られたノルボルネン系架橋重合体の比重は1.05であり、ガラス転移温度は267℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
比較例2
 工程(2)における加熱温度を300℃から200℃に変更したこと以外は実施例2と同じ条件でノルボルネン系架橋重合体を製造した。得られたノルボルネン系架橋重合体の比重は1.05であり、ガラス転移温度は213℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
実施例3
 ジシクロペンタジエンの代わりにトリシクロペンタジエン(分子量198.3)を用いた以外は実施例1と同様にしてノルボルネン系架橋重合体を得た。なお、用いた全単量体1モルに対するメタセシス重合触媒の使用量は0.05ミリモルであった。
 得られたノルボルネン系架橋重合体の比重は1.06であり、ガラス転移温度は281℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
比較例3
 工程(2)における加熱温度を300℃から200℃に変更したこと以外は実施例3と同じ条件でノルボルネン系架橋重合体を製造した。得られたノルボルネン系架橋重合体の比重は1.03であり、ガラス転移温度は231℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
実施例4
(プレ配合物)
反応射出成形用プレ配合物として、
A液:RIMTEC社製、商品名「PENTAM(登録商標)A液」
   Moを中心原子とするメタセシス重合触媒と、
   ジシクロペンタジエンを主成分とする単量体成分と、からなる。
B液:RIMTEC社製、商品名「PENTAM(登録商標)B液」
   活性剤と、
   ジシクロペンタジエンを主成分とする単量体成分と、からなる。
を用いた。
 なお、上記A液に含まれるメタセシス重合触媒の失活温度を、実施例1と同様にして実験的に求めたところ、220℃であった。
(サンプル板の成形)
 内部に縦500mm×横500mm×厚さ4mmの空間を有する鋳鋼にメッキをかけた雌型と、これと対をなす鍛造アルミニウム製雄型からなる平板成形品反応射出成形用金型を準備し、雌型を75℃、雄型を40℃に加温した。
 なお、この反応射出成形用金型は、側面中央部に配合物注入孔を有する構造となっている。
 A液50部及びB液50部をミキシングヘッド内で混合圧力5Mpaで衝突混合させ、得られた配合物(液状)を、注入速度0.5kg/sで前記注入孔より反応射出成形用金型内に注入し、塊状開環重合反応を90秒間行ない、硬化物を得た〔工程(1)〕。
 その後、金型温度を300℃まで加熱し、300℃を1時間維持して二次硬化を行い〔工程(2)〕、ノルボルネン系架橋重合体を得た。
 得られたノルボルネン系架橋重合体の比重は1.06であり、ガラス転移温度は244℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
比較例4
 工程(2)における加熱温度を300℃から200℃に変更したこと以外は実施例4と同じ条件でノルボルネン系架橋重合体を製造した。得られたノルボルネン系架橋重合体の比重は1.05であり、ガラス転移温度は145℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1より、実施例及び比較例の両方において、工程(1)における加熱温度はメタセシス重合触媒の失活温度未満として硬化物を得たが、実施例では、その後の工程(2)において、該失活温度以上の温度で加熱することにより、得られたノルボルネン系架橋重合体のガラス転移温度が大きく上昇したことが分かる。
実施例5
 ジシクロペンタジエンの代わりに、トリシクロペンタジエン80部とジシクロペンタジエン20部とからなる混合物を用いた以外は実施例1と同様にしてノルボルネン系架橋重合体を得た。なお、用いた全単量体1モルに対するメタセシス重合触媒の使用量は0.05ミリモルであった。
 得られたノルボルネン系架橋重合体の比重は1.06であり、ガラス転移温度は281℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。また、該重合体中における気泡の存在の有無の確認、および該重合体の1分間耐電圧(23℃)の測定を行った。結果を表2に示す。
比較例5
 工程(2)における加熱温度を300℃から200℃に変更したこと以外は実施例5と同じ条件でノルボルネン系架橋重合体を製造した。得られたノルボルネン系架橋重合体の比重は1.03であり、ガラス転移温度は231℃であった。そして、得られたノルボルネン系架橋重合体について、23℃における、引張強度、曲げ強度、曲げ弾性率、及びアイゾット衝撃強度の測定をそれぞれ行った。また、該重合体中における気泡の存在の有無の確認、および該重合体の1分間耐電圧(23℃)の測定を行った。結果を表2に示す。
 なお、気泡の存在の有無の確認は、得られたノルボルネン系架橋重合体を目視観察し、内部の気泡の存在の有無を確認することにより行った。1分間耐電圧の測定はJIS-C2110-1(2010)に従って行った。具体的には、ノルボルネン系架橋重合体からなる厚さ0.2mmの膜を電極間に形成し、測定温度23℃にて、電極間で短絡(ショート)するまで電圧の昇圧と1分間の電圧保持を繰り返し、その際、電圧を測定し、短絡するまでの電圧の最大値を膜厚で除することにより求めた。なお、ノルボルネン系架橋重合体からなる膜は、本発明のノルボルネン系架橋重合体の製造方法に従って電極間に形成した。
Figure JPOXMLDOC01-appb-T000008
 表2より、用いた全単量体中、トリシクロペンタジエン系単量体が80%含まれる配合物を用い、工程(2)においてメタセシス重合触媒の失活温度以上の温度で二次硬化することにより得られた、実施例5のノルボルネン系架橋重合体では、同じ配合物を用いたが、工程(2)においてメタセシス重合触媒の失活温度未満の温度で二次硬化することにより得られた、比較例5のノルボルネン系架橋重合体と比べ、1分間耐電圧はほぼ同程度であったが、ガラス転移温度が大きく上昇していることが分かる。
 本発明の重合体は、非常に耐熱性に優れているため、自動車等のエンジンカバー用途や電気絶縁用途などの耐熱性が要求される用途に好適に用いることができる。

Claims (7)

  1.  ジシクロペンタジエン系単量体単位、テトラシクロドデセン系単量体単位及びトリシクロペンタジエン系単量体単位からなる群から選択される少なくとも1種を50質量%以上含有してなり、ガラス転移温度が240℃以上であるノルボルネン系架橋重合体。
  2.  トリシクロペンタジエン系単量体単位を50質量%以上含有してなる請求項1に記載のノルボルネン系架橋重合体。
  3.  測定温度23℃での1分間耐電圧が60kV/mm以上である請求項2に記載のノルボルネン系架橋重合体。
  4.  ジシクロペンタジエン系単量体、テトラシクロドデセン系単量体及びトリシクロペンタジエン系単量体からなる群から選択される少なくとも1種と、メタセシス重合触媒と、を含有してなる配合物を、前記メタセシス重合触媒の失活温度未満の温度で加熱して一次硬化させる工程(1)、並びに
     工程(1)により得られた硬化物を前記メタセシス重合触媒の失活温度以上の温度で加熱して二次硬化させる工程(2)
    を含む、請求項1~3いずれかに記載のノルボルネン系架橋重合体の製造方法。
  5.  前記配合物に含まれる全単量体中、トリシクロペンタジエン系単量体が50質量%以上含まれる請求項4に記載の製造方法。
  6.  前記工程(1)において、前記配合物を、25℃以上、220℃未満の温度で加熱して一次硬化させる、請求項4または5に記載の製造方法。
  7.  前記工程(2)において、前記硬化物を、250℃以上、350℃未満の温度で加熱して二次硬化させる、請求項4~6いずれかに記載の製造方法。
PCT/JP2014/074772 2013-09-27 2014-09-19 ノルボルネン系架橋重合体およびその製造方法 WO2015046028A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480053129.7A CN105593265B (zh) 2013-09-27 2014-09-19 降冰片烯类交联聚合物及其制造方法
EP14849140.0A EP3031841B1 (en) 2013-09-27 2014-09-19 Norbornene cross-linked polymer and method for producing same
KR1020217002834A KR102241359B1 (ko) 2013-09-27 2014-09-19 노르보르넨계 가교 중합체 및 그 제조 방법
JP2015539156A JPWO2015046028A1 (ja) 2013-09-27 2014-09-19 ノルボルネン系架橋重合体およびその製造方法
US15/025,113 US20160244540A1 (en) 2013-09-27 2014-09-19 Norbornene cross-linked polymer and method for producing same
KR1020167010391A KR20160061362A (ko) 2013-09-27 2014-09-19 노르보르넨계 가교 중합체 및 그 제조 방법
US16/030,444 US20180319912A1 (en) 2013-09-27 2018-07-09 Norbornene cross-linked polymer and method for producing same
US16/266,378 US10611866B2 (en) 2013-09-27 2019-02-04 Norbornene cross-linked polymer and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013201679 2013-09-27
JP2013-201679 2013-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/025,113 A-371-Of-International US20160244540A1 (en) 2013-09-27 2014-09-19 Norbornene cross-linked polymer and method for producing same
US16/030,444 Division US20180319912A1 (en) 2013-09-27 2018-07-09 Norbornene cross-linked polymer and method for producing same

Publications (1)

Publication Number Publication Date
WO2015046028A1 true WO2015046028A1 (ja) 2015-04-02

Family

ID=52743165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074772 WO2015046028A1 (ja) 2013-09-27 2014-09-19 ノルボルネン系架橋重合体およびその製造方法

Country Status (7)

Country Link
US (3) US20160244540A1 (ja)
EP (1) EP3031841B1 (ja)
JP (2) JPWO2015046028A1 (ja)
KR (2) KR20160061362A (ja)
CN (1) CN105593265B (ja)
TW (1) TW201518334A (ja)
WO (1) WO2015046028A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152623A1 (ja) * 2015-03-26 2016-09-29 Rimtec株式会社 樹脂成形体及びその製造方法
JP2019089910A (ja) * 2017-11-13 2019-06-13 Rimtec株式会社 複合材料の製造方法
JP2019179684A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 絶縁電線、コイル及び電気機器
WO2021215533A1 (ja) * 2020-04-24 2021-10-28 Rimtec株式会社 重合反応性配合液の製造方法
WO2024085044A1 (ja) * 2022-10-20 2024-04-25 Rimtec株式会社 重合性組成物及びノルボルネン系樹脂

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021172227A1 (ja) 2020-02-27 2021-09-02
CN112961280A (zh) * 2021-02-10 2021-06-15 上海东杰汽车装饰件有限公司 聚三环戊二烯ptcpd发泡材料及其制备方法
CN112812232B (zh) * 2021-02-10 2022-07-26 上海东杰汽车装饰件有限公司 聚三环戊二烯ptcpd高分子材料及其制备方法和应用
CN112898487A (zh) * 2021-02-10 2021-06-04 上海东杰高分子材料有限公司 阻燃性聚三环戊二烯ptcpd材料及其制备方法
CN112961453A (zh) * 2021-03-12 2021-06-15 浙江沪通模具有限公司 聚三环戊二烯ptcpd/弹性体ipn合金材料及其制备方法
CN112980300A (zh) * 2021-03-15 2021-06-18 上海东杰高分子材料有限公司 一种无溶剂高分子涂料及其制备方法
CN113336613B (zh) * 2021-05-19 2022-07-29 拓烯科技(衢州)有限公司 一种四环十二碳烯类化合物的制备方法
DE102022210410A1 (de) 2022-09-30 2024-04-04 Infineon Technologies Ag Halbleitervorrichtung und verfahren zu deren herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625394A (ja) 1991-09-26 1994-02-01 Japan Synthetic Rubber Co Ltd 架橋重合体の製造方法
JPH07188396A (ja) * 1993-12-27 1995-07-25 Mitsui Toatsu Chem Inc テトラシクロドデセン系重合体水素添加物及びその製造方法
WO2003062253A1 (en) 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis
JP2004352896A (ja) 2003-05-29 2004-12-16 Nippon Zeon Co Ltd 環状オレフィン系樹脂成形品の製造方法
JP2010229166A (ja) * 2009-03-25 2010-10-14 Nippon Zeon Co Ltd 樹脂成形体
WO2011079799A1 (en) 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm
JP2013256632A (ja) * 2012-06-14 2013-12-26 Nippon Zeon Co Ltd 架橋性樹脂成形体、架橋樹脂成形体、および積層体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8904575D0 (en) * 1989-02-28 1989-04-12 Shell Int Research Polymerization of bulky norbornene derivatives and polymers obtainable therewith
US5268232A (en) * 1991-10-15 1993-12-07 Hercules Incorporated Dicyclopentadiene polymers with heat-resistant dimensional integrity and high Tg
JP3740542B2 (ja) * 1997-08-14 2006-02-01 日本ゼオン株式会社 金属インサート成形体の製造方法
CN100338141C (zh) * 2002-04-26 2007-09-19 株式会社钟化 硬化性组合物、硬化物及其制造方法以及由此硬化物密封的发光二极管
JPWO2006101069A1 (ja) * 2005-03-22 2008-09-04 日本ゼオン株式会社 熱可塑性樹脂、その製造方法および成形材料
JP2008088303A (ja) * 2006-10-02 2008-04-17 Sumitomo Electric Fine Polymer Inc 透明樹脂成形体並びに光学レンズ及び光学フィルム
JP2009066928A (ja) * 2007-09-13 2009-04-02 Rimtec Kk 複合成形体
US20090156735A1 (en) * 2007-12-14 2009-06-18 General Electric Company Composition, article, and associated method
JP5563748B2 (ja) * 2008-04-24 2014-07-30 Rimtec株式会社 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JP2012007117A (ja) * 2010-06-28 2012-01-12 Nippon Zeon Co Ltd 熱硬化性架橋環状オレフィン樹脂フィルム及びその製造方法
JP2012063428A (ja) * 2010-09-14 2012-03-29 Nippon Zeon Co Ltd 光反射板用重合性組成物、及び光反射板
JP2012067232A (ja) * 2010-09-24 2012-04-05 Nippon Zeon Co Ltd 重合性組成物、架橋性樹脂成形体、架橋樹脂成形体及び積層体
JP2012232975A (ja) * 2011-04-20 2012-11-29 Central Glass Co Ltd シロキサン化合物およびその硬化物
KR101135291B1 (ko) * 2011-08-05 2012-04-12 코오롱인더스트리 주식회사 환상올레핀계 고분자 화합물 및 그 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625394A (ja) 1991-09-26 1994-02-01 Japan Synthetic Rubber Co Ltd 架橋重合体の製造方法
JPH07188396A (ja) * 1993-12-27 1995-07-25 Mitsui Toatsu Chem Inc テトラシクロドデセン系重合体水素添加物及びその製造方法
WO2003062253A1 (en) 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis
JP2005515260A (ja) 2002-01-22 2005-05-26 ウニベルズィタイト・ヘント 複分解に使用される金属錯体
JP2004352896A (ja) 2003-05-29 2004-12-16 Nippon Zeon Co Ltd 環状オレフィン系樹脂成形品の製造方法
JP2010229166A (ja) * 2009-03-25 2010-10-14 Nippon Zeon Co Ltd 樹脂成形体
WO2011079799A1 (en) 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm
JP2013516392A (ja) 2009-12-30 2013-05-13 ザンナン・サイテック・カンパニー・リミテッド Rompとrcm反応に対する高効率複分解触媒
JP2013256632A (ja) * 2012-06-14 2013-12-26 Nippon Zeon Co Ltd 架橋性樹脂成形体、架橋樹脂成形体、および積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3031841A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152623A1 (ja) * 2015-03-26 2016-09-29 Rimtec株式会社 樹脂成形体及びその製造方法
JP2019089910A (ja) * 2017-11-13 2019-06-13 Rimtec株式会社 複合材料の製造方法
JP2019179684A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 絶縁電線、コイル及び電気機器
WO2021215533A1 (ja) * 2020-04-24 2021-10-28 Rimtec株式会社 重合反応性配合液の製造方法
WO2024085044A1 (ja) * 2022-10-20 2024-04-25 Rimtec株式会社 重合性組成物及びノルボルネン系樹脂

Also Published As

Publication number Publication date
JPWO2015046028A1 (ja) 2017-03-09
US10611866B2 (en) 2020-04-07
TW201518334A (zh) 2015-05-16
CN105593265B (zh) 2019-01-04
JP6802875B2 (ja) 2020-12-23
EP3031841A4 (en) 2017-04-26
JP2019104934A (ja) 2019-06-27
KR20160061362A (ko) 2016-05-31
CN105593265A (zh) 2016-05-18
US20180319912A1 (en) 2018-11-08
KR20210013359A (ko) 2021-02-03
KR102241359B1 (ko) 2021-04-15
US20160244540A1 (en) 2016-08-25
US20190169329A1 (en) 2019-06-06
EP3031841B1 (en) 2022-03-16
EP3031841A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6802875B2 (ja) ノルボルネン系架橋重合体からなる絶縁材料
JP6689823B2 (ja) 樹脂成形体及びその製造方法
JP5772600B2 (ja) 表面被覆型補強材、反応射出成形用配合液、及び反応射出成形体
JP6708410B2 (ja) 複合成形体の製造方法
JP5892167B2 (ja) 重合性組成物、樹脂成形体及びその製造方法、並びに積層体
WO2021024956A1 (ja) 重合性組成物、シクロオレフィン系重合体および金属樹脂複合体
WO2014103830A1 (ja) 反応射出成形用配合液、反応射出成形体の製造方法および反応射出成形体
JP5563748B2 (ja) 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JP2009255380A (ja) 複合成形体
JP5436336B2 (ja) 触媒液、配合液、ノルボルネン系樹脂成形体およびその成形方法
JP6104263B2 (ja) 重合性組成物および樹脂成形体の製造方法
JP2013076007A (ja) 重合性組成物および樹脂成形体の製造方法
JP2021134245A (ja) 絶縁材料用反応溶液、絶縁材料、及び封止材料
JP2004035615A (ja) 熱可塑性樹脂、架橋樹脂、架橋複合材料および銅張り積層板の製造方法
JP4232350B2 (ja) ノルボルネン系樹脂及び成形品の製造方法
JP2007009043A (ja) ノルボルネン系樹脂成形体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539156

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014849140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167010391

Country of ref document: KR

Kind code of ref document: A