WO2015045618A1 - 強化繊維用サイジング剤及びその用途 - Google Patents

強化繊維用サイジング剤及びその用途 Download PDF

Info

Publication number
WO2015045618A1
WO2015045618A1 PCT/JP2014/070302 JP2014070302W WO2015045618A1 WO 2015045618 A1 WO2015045618 A1 WO 2015045618A1 JP 2014070302 W JP2014070302 W JP 2014070302W WO 2015045618 A1 WO2015045618 A1 WO 2015045618A1
Authority
WO
WIPO (PCT)
Prior art keywords
sizing agent
weight
reinforcing fiber
unsaturated polyester
resin
Prior art date
Application number
PCT/JP2014/070302
Other languages
English (en)
French (fr)
Inventor
善夫 橋本
幹生 中川
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2015504801A priority Critical patent/JP5730457B1/ja
Priority to KR1020167005031A priority patent/KR102190010B1/ko
Priority to CN201480039921.7A priority patent/CN105378176B/zh
Publication of WO2015045618A1 publication Critical patent/WO2015045618A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/676Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • D06M15/51Unsaturated polymerisable polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • C08J2367/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to a sizing agent for reinforcing fibers and its use. Specifically, the present invention relates to a sizing agent for reinforcing fibers used to reinforce a matrix resin, a reinforcing fiber strand using the reinforcing fiber, and a fiber-reinforced composite material.
  • Fiber reinforced composite materials in which plastic materials (called matrix resins) are reinforced with various synthetic fibers are widely used for automobile applications, aerospace applications, sports / leisure applications, general industrial applications, and the like.
  • fibers used in these composite materials include various inorganic fibers such as carbon fibers, glass fibers, and ceramic fibers, and various organic fibers such as aramid fibers, polyamide fibers, and polyethylene fibers.
  • These various synthetic fibers are usually manufactured in a filament shape, and then processed into a sheet-like intermediate material called a unidirectional prepreg by a hot melt method or a drum winding method, processed by a filament winding method, or in some cases a textile Or it is used as a reinforced fiber through various high-order processing steps, such as being processed into a chopped fiber shape.
  • Epoxy resins are widely used as matrix resins for reinforced fiber composite materials.
  • unsaturated polyester resins, vinyl ester resins, acrylic resins, and the like are used as radical polymerization matrix resins.
  • the adhesion between the matrix resin and the reinforced fiber is important, and the sizing that improves the adhesion of the reinforced fiber to the above epoxy resin and radical polymerization matrix resin.
  • Agents for example, Patent Documents 1 and 2) have been proposed.
  • Patent Document 1 and Patent Document 2 improve the adhesion of the reinforcing fibers to the epoxy resin or the radical polymerization matrix resin, the reinforcing fibers to which the sizing agent has been applied over time. There were cases in which the problem of fluff generation and a decrease in adhesion to the matrix resin occurred. Furthermore, problems may occur in the long-term storage stability of the sizing agent. Some reinforcing fibers have a low elongation and are brittle. These reinforcing fibers to which conventional sizing agents are applied may cause problems such as generation of fuzz and fiber cutting due to mechanical friction in the processing step.
  • the affinity between the reinforcing fibers and the matrix resin can be increased and firmly adhered, and the fluff of the reinforcing fiber strands can be suppressed and the aging can be suppressed.
  • Development of a sizing agent with excellent properties is desired.
  • the object of the present invention is to provide excellent adhesion with a matrix resin to reinforcing fibers, to suppress generation of fluff and aging of reinforcing fiber strands, and to provide long-term storage stability. It is an object of the present invention to provide a sizing agent excellent in the above, a reinforcing fiber strand and a fiber-reinforced composite material using the same.
  • the present inventors have used the epoxy resin (A) and the specific unsaturated polyester (B), and further by using the fatty acid ester (C). The present inventors have found that the problem can be solved and have reached the present invention.
  • the sizing agent for reinforcing fibers of the present invention contains an epoxy resin (A), an unsaturated polyester (B) having an acid value of less than 5, and a fatty acid ester (C).
  • the unsaturated polyester (B) is preferably 30 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin (A), and a total of 100 of the epoxy resin (A) and the unsaturated polyester (B).
  • the fatty acid ester (C) is preferably 1 to 15 parts by weight with respect to parts by weight.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the unsaturated polyester (B) is preferably 1.2 to 2.1.
  • the unsaturated polyester (B) preferably contains a condensate of an unsaturated dibasic acid (b1) and an alkylene oxide adduct (b2) of bisphenols.
  • the unsaturated polyester (B) was obtained by reacting a reactive component containing an unsaturated dibasic acid (b1) and an alkylene oxide adduct (b2) of bisphenol at a ratio satisfying the following formula (I). It is preferable. Number of moles of unsaturated dibasic acid (b1) ⁇ number of moles of alkylene oxide adduct (b2) of bisphenol (I)
  • the acid value of the unsaturated polyester (B) is preferably 4.5 or less.
  • the melting point of the fatty acid ester (C) is preferably 5 ° C. or less.
  • the fatty acid ester (C) is preferably an ester having a structure in which an unsaturated fatty acid having 10 to 24 carbon atoms and a monohydric alcohol having 8 to 20 carbon atoms are ester-bonded.
  • the total weight ratio of the epoxy resin (A), the unsaturated polyester (B), and the fatty acid ester (C) in the nonvolatile content of the sizing agent is preferably 70% by weight or more.
  • the reinforcing fiber strand of the present invention is obtained by adhering the above-described reinforcing fiber sizing agent to a raw material reinforcing fiber strand.
  • the fiber-reinforced composite material of the present invention includes a matrix resin and the above-described reinforcing fiber strand.
  • the matrix resin is preferably a thermosetting resin.
  • the sizing agent for reinforcing fibers of the present invention can impart excellent adhesiveness with the matrix resin to the reinforcing fibers. Moreover, generation
  • the present invention is a sizing agent for reinforcing fibers used to reinforce a matrix resin, and contains an epoxy resin (A), a specific unsaturated polyester (B) and a fatty acid ester (C). Details will be described below.
  • Epoxy resin (A) The epoxy resin (A) is an essential component of the sizing agent of the present invention.
  • the epoxy resin (A) is a compound having two or more reactive epoxy groups in the molecular structure.
  • the epoxy resin (A) is typically a glycidyl ether type obtained from epichlorohydrin and an active hydrogen compound, and other examples include glycidyl ester type, glycidyl amine type, and alicyclic type.
  • the epoxy resin (A) may be used alone or in combination of two or more.
  • the glycidyl ether type epoxy resin (A) for example, an epoxy resin having a functional group represented by the following general formula (1) produced using alcohols as a raw material, and a general formula ( Examples thereof include an epoxy resin having a functional group represented by 2).
  • Examples of the glycidyl ester type epoxy resin (A) include an epoxy resin having a functional group represented by the following general formula (3), which is produced using a carboxylic acid such as a phthalic acid derivative or a synthetic resin fatty acid as a raw material.
  • Examples of the glycidylamine type epoxy resin (A) include an epoxy resin having a functional group represented by the following general formula (4) and an epoxy resin having a functional group represented by the following general formula (5).
  • Examples of the alicyclic epoxy resin (A) include an epoxy resin (A) having a functional group represented by the following general formula (6).
  • an epoxy resin having a functional group represented by the general formula (2) is preferable for improving the adhesion between the fiber and the matrix resin.
  • the epoxy equivalent of the epoxy resin (A) is preferably 100 to 1500 g / eq, more preferably 120 to 1000 g / eq, and further preferably 150 to 800 g / eq.
  • the epoxy equivalent refers to that based on JIS-K7236.
  • the weight average molecular weight of the epoxy resin (A) is preferably 100 to 10000, more preferably 100 to 8000, and further preferably 150 to 7000.
  • the weight average molecular weight is less than 100, the heat resistance may be insufficient and volatilize in the drying step of the reinforcing fiber strand.
  • the weight average molecular weight exceeds 10,000, the long-term storage stability of the sizing agent may be lowered.
  • the epoxy resin (A) is preferably an aromatic epoxy resin having an aromatic ring in the molecular structure from the viewpoint of improving the adhesion between the reinforcing fiber and the matrix resin.
  • the aromatic epoxy resin include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, and pyrocatechol; dihydroxynaphthalene, biphenol, bisphenol F, bisphenol A, phenol novolac, orthocresol novolak, resorcin novolak, Examples thereof include polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as bisphenol F novolak, bisphenol A novolak, dicyclopentadiene-modified phenol, triphenylmethane, and tetraphenylethane.
  • a compound represented by the following general formula (7) a compound represented by the following general formula (8) are preferable, and a compound represented by the following general formula (7) is more preferable.
  • R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom or a methyl group.
  • n is an integer of 0 to 30, preferably 0 to 20, and more preferably 0 to 10.
  • m is an integer of 0 to 10, preferably 0 to 8, and more preferably 0 to 5.
  • the method for producing the epoxy resin (A) is not particularly limited, and a known method can be employed. Moreover, the above-mentioned epoxy resin (A) is generally marketed, and these commercially available epoxy resins (A) can be used in the sizing agent for carbon fibers of the present invention.
  • Unsaturated polyester (B) having an acid value of less than 5 is an essential component of the sizing agent of the present invention.
  • the acid value is preferably 4.5 or less, more preferably 4 or less, and even more preferably 3.5 or less.
  • the acid value is represented by the number of mg of potassium hydroxide necessary to neutralize 1 g of the sample, and is measured according to JIS K 2501: 2003.
  • An unsaturated polyester refers to a polyester compound having one or more unsaturated bonds in the molecular structure.
  • the unsaturated polyester 1) a condensate of an acid alone having at least one unsaturated bond and an alcohol, 2) a mixture of an acid having at least one unsaturated bond and an acid having no unsaturated bond, and an alcohol And 3) a condensate of an acid and an alcohol having one or more unsaturated bonds.
  • an unsaturated dibasic acid and a dihydric alcohol condensate are particularly preferable.
  • the unsaturated dibasic acid is a compound having an unsaturated double bond and two carboxylic acid groups, or an anhydride thereof.
  • an aliphatic unsaturated dibasic acid having 4 to 6 carbon atoms is particularly preferable.
  • divalent alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, pentanediol, hexanediol, bisphenols, and alkylene oxide adducts of bisphenols.
  • alkylene oxide adducts of bisphenols are preferable. Bisphenols and alkylene oxide adducts of bisphenols will be described later.
  • the unsaturated polyester (B) is an alkylene oxide adduct of the above unsaturated dibasic acid (hereinafter referred to as unsaturated dibasic acid (b1)) and a bisphenol from the viewpoint of improving the adhesion between the reinforcing fiber and the matrix resin. It is preferable to contain a condensate with b2).
  • Bisphenols are compounds having two hydroxyphenyl groups, such as bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S.
  • the alkylene oxide addition product (b2) of bisphenol is a compound obtained by addition polymerization of alkylene oxide to the bisphenol.
  • the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide.
  • the number of moles of alkylene oxide added is preferably 10 moles or less, more preferably 5 moles or less, and most preferably 2 to 4 moles. If added in excess of 10 mol, the rigidity of the bisphenols may be lost, and the adhesion with the matrix resin may be reduced.
  • the unsaturated polyester (B) is an unsaturated dibasic acid (b1) and an alkylene oxide adduct (b2) of bisphenols represented by the following formula (b) from the viewpoints of suppression of aging of the reinforcing fiber strand and storage stability of the sizing agent. It is preferably obtained by reacting a reactive component that is contained in a proportion satisfying I). Number of moles of unsaturated dibasic acid (b1) ⁇ number of moles of alkylene oxide adduct (b2) of bisphenol (I)
  • the molar ratio (b1 / b2) of the unsaturated dibasic acid (b1) to the alkylene oxide adduct (b2) of bisphenols is preferably 70/100 to 99/100, more preferably 75/100 to 90/100, 80/100 to 85/100 is more preferable.
  • the total proportion of the unsaturated dibasic acid (b1) and the alkylene oxide adduct (b2) of bisphenols in the reactive component is preferably 90 mol% or more, 95 mol% or more is more preferable, and 100 mol% is further more preferable.
  • the reactive component does not substantially contain an esterified product of an unsaturated dibasic acid from the viewpoint of improving the adhesion between the reinforcing fiber and the matrix resin.
  • the proportion of the esterified product of unsaturated dibasic acid in the reactive component is preferably 2 mol% or less, more preferably 1 mol% or less, and even more preferably 0 mol%.
  • the proportion of the compound having a monofunctional active hydrogen group in the reactive component is preferably 2 mol% or less, more preferably 1 mol% or less, and even more preferably 0 mol%.
  • the compound having a monofunctional active hydrogen group include monohydric alcohols, secondary amines, and monovalent thiols.
  • the weight average molecular weight of the unsaturated polyester (B) is preferably 500 to 5000, more preferably 800 to 4500, and still more preferably 1000 to 3500.
  • the molecular weight is less than 500, neither good adhesiveness nor heat resistance may be obtained.
  • the molecular weight exceeds 5000, the solution stability may deteriorate.
  • the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the unsaturated polyester (B) is preferably 1.2 to 2.1, more preferably 1.4 to 2.0. 1.6 to 1.9 are more preferable.
  • the molecular weight ratio is less than 1.2, neither good adhesiveness nor heat resistance may be obtained.
  • the molecular weight ratio exceeds 2.2, the solution stability may deteriorate.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) referred to in the present invention were measured with a separation column (Showa Denko) using a high-speed gel permeation chromatography apparatus HLC-8220GPC manufactured by Tosoh Corporation at a sample concentration of 2 mg / ml.
  • This is a value calculated from a chart measured by a RI detector after being injected into Shodex (registered trademark) KF-G, KF-402HQ, KF-403HQ, manufactured by Co., Ltd.
  • Tetrahydrofuran (THF) was used for the mobile phase
  • polyethylene glycol (PEG) was used for the calibration curve preparation standard substance, and the measurement was performed at a column temperature of 40 ° C. and a flow rate of 0.3 ml / min.
  • the method for producing the unsaturated polyester (B) is not particularly limited, and a known method can be employed.
  • it can be obtained by polycondensation of an unsaturated dibasic acid (b1) and an alkylene oxide adduct (b2) of bisphenols.
  • the reaction temperature during polycondensation is preferably 110 ° C. to 180 ° C., more preferably 130 ° C. to 160 ° C., from the viewpoint of promoting esterification and reducing the acid value of the reaction product.
  • the reaction time during the polycondensation is 1 to 10 hours, more preferably 2 to 5 hours, from the viewpoint of promoting esterification and lowering the acid value of the reaction product.
  • An esterification catalyst may be used to promote the polycondensation reaction.
  • the fatty acid ester (C) is an essential component of the sizing agent of the present invention.
  • the sizing agent for reinforcing fibers of the present invention is a matrix resin for the reinforcing fibers. And excellent adhesion can be imparted. Moreover, generation
  • the fatty acid ester (C) is a compound having a structure in which a fatty acid and a monohydric alcohol are ester-bonded.
  • the fatty acid include saturated fatty acids having 10 to 24 carbon atoms and unsaturated fatty acids having 10 to 24 carbon atoms. From the viewpoint of suppressing the fluff of the reinforcing fiber strand, an unsaturated fatty acid having 10 to 24 carbon atoms is preferable.
  • the number of carbon atoms of the fatty acid is preferably 10 to 22, more preferably 12 to 20, and still more preferably 14 to 20.
  • Specific examples of fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, arachidic acid, behenic acid, lignoselenic acid and the like.
  • Examples of the monohydric alcohol include monohydric alcohols having 8 to 20 carbon atoms. More specifically, a saturated monohydric alcohol having 8 to 20 carbon atoms or an unsaturated monohydric alcohol having 8 to 20 carbon atoms can be used.
  • the carbon number of the monohydric alcohol is preferably 12 to 22, more preferably 14 to 20, and still more preferably 16 to 20.
  • Specific examples of monohydric alcohols include octyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, oleyl alcohol, nonadecyl alcohol, and branched alcohols thereof. .
  • the fatty acid ester (C) is a compound having a structure in which an unsaturated fatty acid having 10 to 24 carbon atoms and a monohydric alcohol having 8 to 20 carbon atoms are ester-bonded.
  • the unsaturated fatty acid preferably has 10 to 22 carbon atoms, more preferably 12 to 20 carbon atoms, and still more preferably 14 to 20 carbon atoms.
  • the carbon number of the monohydric alcohol is preferably 12 to 22, more preferably 14 to 20, and still more preferably 16 to 20.
  • the fatty acid ester (C) can be represented by the following general formula (9).
  • R 9 is an alkyl group, alkenyl group or alkynyl group having 9 to 23 carbon atoms.
  • R 9 is an alkenyl group are preferred.
  • R 9 may be linear or branched.
  • R 9 preferably has 12 to 22 carbon atoms, more preferably 14 to 20 carbon atoms, and still more preferably 16 to 20 carbon atoms.
  • R 10 is an alkyl group, alkenyl group or alkynyl group having 8 to 20 carbon atoms.
  • R 10 may be linear or branched.
  • R 10 preferably has 10 to 20 carbon atoms, more preferably 12 to 20 carbon atoms, and still more preferably 14 to 20 carbon atoms.
  • fatty acid ester (C) examples include, for example, octyl laurate, decyl laurate, lauryl laurate, tridecyl laurate, myristyl laurate, cetyl laurate, heptadecyl laurate, stearyl laurate, oleyl laurate, laurin
  • Nonadecyl acid octyl myristate, decyl myristate, lauryl myristate, tridecyl myristate, myristyl myristate, cetyl myristate, heptadecyl myristate, stearyl myristate, oleyl myristate, nonadecyl myristate, octyl palmitate , Lauryl palmitate, tridecyl palmitate, myristyl palmitate, cetyl palmitate, heptadecyl palmitate, steary
  • the fatty acid ester (C) has a melting point of 5 ° C. or less, more preferably 5 ° C. to ⁇ 10 ° C., and further preferably 5 ° C. to ⁇ 5 ° C., from the viewpoint of suppressing the fluff of the reinforcing fiber strand. If the melting point is more than 5 ° C, when the reinforcing fiber strand is stored for a long time in winter, the fatty acid ester becomes solid and the effect of suppressing fluff may be reduced.
  • the melting point in the present invention was measured as follows. A measurement sample is collected to a height of about 10 mm in a capillary tube (both inner diameter 1 mm, outer diameter 2 mm or less, length 50 to 80 mm) with both ends open.
  • melting point measuring apparatus M-565 manufactured by BUCHI
  • the temperature is raised at a rate of 1 ° C./min from a temperature below the melting point.
  • the temperature at which the measurement sample melts and becomes transparent is defined as the melting point.
  • the weight average molecular weight of the fatty acid ester (C) is preferably 300 to 700, more preferably 400 to 600, and most preferably 500 to 600.
  • the molecular weight is less than 300, the heat resistance of the fatty acid ester is lowered and volatilized in the drying step of the reinforced strand, which may reduce the fluff suppressing effect.
  • the molecular weight is more than 700, friction increases and the fluff suppressing effect of the reinforcing fiber strand may be reduced.
  • the sizing agent for reinforcing fibers of the present invention contains the aforementioned epoxy resin (A), unsaturated polyester (B) and fatty acid ester (C) as essential components.
  • the unsaturated polyester (B) is preferably 30 to 300 parts by weight, more preferably 35 to 250 parts by weight, and still more preferably 40 to 200 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
  • the amount is less than 30 parts by weight, the adhesiveness of the reinforcing fibers may be reduced with respect to the radical polymerization matrix resin.
  • the texture of the reinforcing fiber strands becomes hard, and it may be easy to generate scratches in the processing step.
  • the fatty acid ester (C) is preferably 1 to 15 parts by weight, more preferably 3 to 12 parts by weight, based on 100 parts by weight of the total of the epoxy resin (A) and the unsaturated polyester (B). More preferred is 10 parts by weight.
  • the amount is less than 1 part by weight, the fluff suppressing effect of the reinforcing fiber strand may be reduced.
  • the adhesiveness of the reinforcing fibers may be lowered with respect to the matrix resin.
  • the total weight ratio of the epoxy resin (A), unsaturated polyester (B) and fatty acid ester (C) in the non-volatile content of the sizing agent is preferably 70% by weight or more, more preferably 70 to 95% by weight. Preferably, it is 75 to 90% by weight. When the amount is less than 70% by weight, the adhesiveness of the reinforcing fibers may be lowered with respect to the matrix resin.
  • the non-volatile content in the present invention refers to an absolutely dry component when the sizing agent is heat treated at 105 ° C. to remove the solvent and the like and reach a constant weight.
  • the sizing agent of the present invention may contain water from the viewpoints of safety to the human body during handling, prevention of disasters such as fire, and prevention of pollution of the natural environment.
  • An organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, or methyl ethyl ketone may be used as long as the effects of the present invention are not impaired.
  • the sizing agent of the present invention is self-emulsified and / or emulsified and dispersed in water.
  • the average particle size of the sizing agent is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 0.01 to 1 ⁇ m, still more preferably 0.01 to 0.5 ⁇ m. When the average particle size is more than 10 ⁇ m, not only the sizing agent can be uniformly adhered to the reinforcing fibers, but also the sizing agent itself may be separated in a few days, and the storage stability may be poor and impractical.
  • the average particle diameter as used in the field of this invention means the average value computed from the particle size distribution measured with the laser diffraction / scattering type particle size distribution measuring apparatus (LA-910 by Horiba).
  • the sizing agent of the present invention may contain components other than the epoxy resin (A), unsaturated polyester (B) and fatty acid ester (C) described above as long as the effects of the present invention are not impaired.
  • the other components include various surfactants, various smoothing agents, antioxidants, flame retardants, antibacterial agents, crystal nucleating agents, antifoaming agents, and the like. It may be used.
  • the surfactant contains an epoxy resin (A), unsaturated polyester (B), fatty acid ester (C) or other resin that is water-insoluble or hardly soluble in the sizing agent
  • the surfactant is used as an emulsifier. Emulsification can be carried out efficiently.
  • the surfactant is not particularly limited, and a known one can be appropriately selected from nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants. Surfactant may use together 1 type (s) or 2 or more types.
  • Nonionic surfactants include, for example, alkylene oxide addition nonionic surfactants (higher alcohols, higher fatty acids, alkylphenols, styrenated phenols, benzylphenols, glycerin, pentaerythritol, sorbits, sorbitans, sorbitan esters, castors Oils, hydrogenated castor oil, higher aliphatic amines, fatty acid amides, oils and fats added with alkylene oxides such as ethylene oxide and propylene oxide (two or more types can be used together), and higher fatty acids added to polyalkylene glycols And the like, ethylene oxide / propylene oxide copolymers, esters of polyhydric alcohols and fatty acids, aliphatic alkanolamides, and the like.
  • alkylene oxide addition nonionic surfactants higher alcohols, higher fatty acids, alkylphenols, styrenated phenols, benzylphenols, g
  • nonionic surfactant examples include polyoxyalkylene straight chain such as polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, and polyoxyethylene cetyl ether.
  • Polyalkylene branched primary alkyl ethers such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene isocetyl ether, polyoxyethylene isostearyl ether; polyoxyethylene 1-hexyl hexyl ether, polyoxyethylene 1- Octyl hexyl ether, polyoxyethylene 1-hexyl octyl ether, polyoxyethylene 1-pentyl heptyl ether, polyoxyethylene 1-heptyl pet Polyoxyalkylene branched secondary alkyl ethers such as tilether; polyoxyalkylene alkenyl ethers such as polyoxyethylene oleyl ether; polyoxys such as polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene dodecylphenyl ether Alkylenealkylphenyl ether; polyoxyethylene tristyryl phenyl ether, polyoxyethylene distyryl phenyl
  • anionic surfactant examples include carboxylic acid (salt), sulfate ester salt of higher alcohol / higher alcohol ether, sulfonate salt, phosphate ester salt of higher alcohol / higher alcohol ether, and the like.
  • anionic surfactant examples include fatty acids (salts) such as oleic acid, palmitic acid, sodium oleate, potassium palmitate, triethanolamine oleate; hydroxyacetic acid, potassium hydroxyacetate, Hydroxyl group-containing carboxylic acids (salts) such as lactic acid and potassium lactate; polyoxyalkylene alkyl ether acetic acid (salt) such as polyoxyethylene tridecyl ether acetic acid (sodium salt); potassium trimellitic acid, potassium pyromellitic acid, etc.
  • alkylbenzene sulfonic acid such as dodecylbenzene sulfonic acid (sodium salt); polyoxyalkylene alkyl ether sulfonic acid such as polyoxyethylene 2-ethylhexyl ether sulfonic acid (potassium salt) Salt); higher fatty acid amide sulfonic acid (salt) such as stearoylmethyltaurine (sodium), lauroylmethyltaurine (sodium), myristoylmethyltaurine (sodium), palmitoylmethyltaurine (sodium); N such as lauroylsarcosine acid (sodium) Acyl sarcosine acid (salt); alkyl phosphonic acid (salt) such as octyl phosphonate (potassium salt); aromatic phosphonic acid (salt) such as phenyl phosphonate (potassium
  • cationic surfactant examples include lauryl trimethyl ammonium chloride, myristyl trimethyl ammonium chloride, palmityl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, oleyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, coconut oil alkyl trimethyl.
  • Ammonium chloride beef tallow alkyltrimethylammonium chloride, stearyltrimethylammonium bromide, coconut oil alkyltrimethylammonium bromide, cetyltrimethylammonium methosulphate, oleyldimethylethylammonium ethosulphate, dioctyldimethylammonium chloride, di Alkyl quaternary ammonium salts such as uril dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, octadecyl diethyl methyl ammonium sulfate; (polyoxyethylene) lauryl amino ether lactate, stearyl amino ether lactate, di (polyoxyethylene) lauryl Methyl amino ether dimethyl phosphate, oleyl methyl ethyl ammonium etosulphate, di (polyoxyethylene) lauryl ethyl ammonium etosulphate, di (pol
  • amphoteric surfactants include 2-undecyl-N, N- (hydroxyethylcarboxymethyl) -2-imidazoline sodium and 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt.
  • 2-heptadecyl-N-carboxymethyl-N-hydroxyethyl imidazolium betaine stearyl dimethyl betaine, lauryl dihydroxyethyl betaine, lauryl dimethylaminoacetic acid betaine, alkyl betaine, amide betaine, sulfobetaine, etc.
  • Examples include betaine amphoteric surfactants; amino acid amphoteric surfactants such as N-laurylglycine, N-lauryl ⁇ -alanine, N-stearyl ⁇ -alanine, sodium laurylaminopropionate, and the like.
  • the weight ratio of the surfactant to the nonvolatile content of the sizing agent is preferably 5 to 30% by weight, more preferably 10 to 25% by weight, and further preferably 15 to 25% by weight.
  • the concentration of the non-volatile content of the sizing agent of the present invention is not particularly limited, and is appropriately selected in consideration of the stability as an aqueous dispersion, the viscosity easy to handle as a product, and the like.
  • the weight ratio of the non-volatile content in the entire sizing agent is preferably 10 to 100% by weight, more preferably 15 to 100% by weight, and particularly preferably 20 to 100% by weight.
  • the total weight ratio of water and non-volatile components in the entire sizing agent is preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 99% by weight or more, and particularly preferably 100% by weight.
  • the above-mentioned aqueous dispersion and aqueous solution may contain a solvent other than water, such as an organic solvent, from the viewpoint of preventing thickening and solidification of the aqueous dispersion and aqueous solution over time. Even if it is not contained or contained, it is preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 1% by weight or less based on the entire sizing agent.
  • the method for producing the sizing agent of the present invention as an aqueous dispersion is not particularly limited, and a known method can be employed. As described above, when each component constituting the sizing agent is produced, each is made into an aqueous dispersion, a method of mixing them, and each component constituting the sizing agent is put into warm water under stirring and emulsified and dispersed.
  • the reinforcing fiber strand of the present invention is obtained by adhering the above-mentioned reinforcing fiber sizing agent to the raw material reinforcing fiber strand, and is a reinforcing fiber for reinforcing the matrix resin.
  • the reinforcing fiber strand of the present invention is excellent in adhesiveness with the matrix resin.
  • the matrix resin is preferably a thermosetting matrix resin because the effect of improving the adhesion by the sizing agent of the present invention is higher.
  • the reinforcing fiber strand of the present invention is excellent in process passability due to less fluff generation, and excellent in long-term storage because there is no or little change in the sizing agent for reinforcing fibers over time.
  • the adhering amount of the non-volatile component of the sizing agent to the raw material reinforcing fiber strand can be appropriately selected and may be set to a necessary amount for the reinforcing fiber strand to have a desired function, but the adhering amount is 0 with respect to the raw material reinforcing fiber strand. It is preferably 1 to 20% by weight.
  • the adhesion amount is more preferably 0.1 to 10% by weight, and further preferably 0.5 to 5% by weight with respect to the raw material reinforcing fiber strand.
  • the strand in the form of chopped fiber is more preferably 0.5 to 20% by weight, and further preferably 1 to 10% by weight.
  • the adhesion amount of the sizing agent is small, the effects of the present invention relating to heat resistance, resin impregnation property, and adhesiveness are difficult to obtain, and the binding property of the reinforcing fiber strands is insufficient, and the handling property may be deteriorated.
  • the amount of the sizing agent attached is too large, the reinforcing fiber strands become too stiff and the handling property becomes worse, and the resin impregnation property becomes worse at the time of composite molding.
  • a method for producing a reinforcing fiber strand includes a treatment liquid containing the above-described sizing agent, having a nonvolatile weight ratio of 0.5 to 10% by weight, and a total weight ratio of water and nonvolatile components of 90% by weight or more. And a preparation step of preparing, and an attachment step of attaching the treatment liquid to the raw material reinforcing fiber strand so that the amount of non-volatile matter attached to the raw material reinforcing fiber strand is 0.1 to 20% by weight.
  • the weight ratio of the nonvolatile content in the treatment liquid is more preferably 0.5 to 10% by weight, and further preferably 1 to 5% by weight.
  • the total weight ratio of water and nonvolatile components is more preferably 95% by weight or more, further preferably 99% by weight or more, and particularly preferably 100% by weight.
  • the preferable adhering amount of the nonvolatile content is as described in the previous paragraph.
  • the method for adhering the sizing agent to the raw material reinforcing fiber strand is not particularly limited as long as the sizing agent is attached to the raw material reinforcing fiber strand by a kiss roller method, roller dipping method, spray method or other known methods. Good. Among these methods, the roller dipping method is preferable because the sizing agent can be uniformly attached to the raw material reinforcing fiber strand.
  • the drying method of the obtained deposit For example, it can heat-dry with a heating roller, a hot air, a hot plate, etc.
  • all the constituent components of the sizing agent may be attached after mixing, or the constituent components may be attached separately in two or more stages. .
  • it is other than an epoxy resin (A), unsaturated polyester (B), and fatty acid ester (C),
  • Thermosetting resins such as vinyl ester resin and a phenol resin, and / or
  • a thermoplastic resin such as a polyolefin resin, a polyester resin, a nylon resin, or an acrylic resin may be attached to the raw material reinforcing fiber strand.
  • the reinforcing fiber strand of the present invention is used as a reinforcing fiber of a composite material using various resins as a matrix resin, and the form to be used may be a long fiber form or a chopped fiber form.
  • various inorganic fibers such as carbon fiber, glass fiber and ceramic fiber, aramid fiber, polyethylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate
  • strands such as various organic fibers such as fibers, polyarylate fibers, polyacetal fibers, PBO fibers, polyphenylene sulfide fibers, and polyketone fibers.
  • the (raw material) reinforced fiber strand includes carbon fiber, aramid fiber, polyethylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate fiber, polyarylate fiber, polyacetal. At least one strand selected from fibers, PBO fibers, polyphenylene sulfide fibers and polyketone fibers is preferable, and carbon fiber strands are more preferable.
  • the fiber-reinforced composite material of the present invention includes a matrix resin and the above-described reinforcing fiber strand. Reinforcing fiber strands are treated with the sizing agent of the present invention, and the sizing agent is uniformly attached to the fibers, so that the affinity with the reinforcing fiber strands and the matrix resin is good, and a fiber-reinforced composite material having excellent adhesion is obtained.
  • the matrix resin refers to a matrix resin made of a thermosetting resin or a thermoplastic resin, and may include one or more kinds.
  • thermosetting resin An epoxy resin, a phenol resin, unsaturated polyester resin, a vinyl ester resin, an acrylic resin, cyanate ester resin, a polyimide resin etc. are mentioned.
  • the thermoplastic matrix resin is not particularly limited, and is a polyolefin resin, polyamide resin, polycarbonate resin, polyester resin, polyacetal resin, ABS resin, phenoxy resin, polymethyl methacrylate resin, polyphenylene sulfide resin, polyetherimide resin, Examples include polyether ketone resins.
  • thermosetting matrix resin is preferable, an epoxy resin, an unsaturated polyester resin, and a vinyl ester resin are more preferable, and an epoxy resin is most preferable because the adhesive improvement effect by the sizing agent of the present invention is higher.
  • the epoxy resin is a compound having a reactive epoxy group in the molecular structure, and is cured by mixing the curing agent and heating the epoxy group to form a crosslinked network.
  • an epoxy resin the thing similar to the above-mentioned epoxy resin (A) which is an essential component of a sizing agent can be mentioned.
  • These matrix resins may be partially or wholly modified for the purpose of further improving the adhesiveness with the reinforcing fiber strands.
  • the method for producing the fiber reinforced composite material is not particularly limited, and known methods such as compound injection molding using chopped fibers and long fiber pellets, press molding using UD sheets and woven sheets, and other filament winding molding can be employed.
  • the curing agent is mixed and heated under pressure or normal pressure to produce a fiber reinforced composite material, and the curing agent and curing accelerator are mixed.
  • the content of the reinforcing fiber strand in the fiber reinforced composite material is not particularly limited, and may be appropriately selected depending on the type of fiber, the form, the type of matrix resin, and the like. 70% by weight is preferable, and 20 to 60% by weight is more preferable.
  • the composite material interface property evaluation apparatus HM410 manufactured by Toei Sangyo Co., Ltd. was used, and the adhesiveness was evaluated by the microdroplet method. Carbon fiber filaments are taken out from the carbon fiber strands obtained in the examples and comparative examples, and set in a sample holder. A drop of each matrix resin mixed with a curing agent and a curing accelerator was formed on the carbon fiber filament, and the drop was cured by the following curing method to obtain a measurement sample.
  • the measurement sample was set in the apparatus, the drop was sandwiched between apparatus blades, the carbon fiber filament was run on the apparatus at a speed of 0.06 mm / min, and the maximum extraction load F when the drop was extracted from the carbon fiber filament was measured.
  • the matrix resin is an epoxy resin in Examples 1 to 10 and Comparative Examples 1 to 4, and 7 to 9, an unsaturated polyester resin in Examples 11 to 14 and Comparative Example 5, and in Examples 15 to 18 and Comparative Example 6. Vinyl ester resin was used.
  • Epoxy resin A drop of matrix resin adjusted to 100 parts by weight of epoxy resin JER828 (manufactured by Mitsubishi Chemical Corporation) and 3 parts by weight of DICY (manufactured by Mitsubishi Chemical Corporation) is heated at 80 ° C. ⁇ 1 hour, 150 ° C. ⁇ 3 hours. Cured.
  • Unsaturated polyester resin Unsaturated polyester resin Rigolac M540 (manufactured by Showa Denko KK) 100 parts by weight, Parmec N (manufactured by NOF Corporation) 2 parts by weight, drop of matrix resin 80 ° C. ⁇ 1 hour, 150 C. for 3 hours to cure.
  • Vinyl ester resin Vinyl ester resin Lipoxy R-806 (manufactured by Showa Denko KK) 100 parts by weight, Percure O (manufactured by NOF Corporation) 2 parts by weight, drop of matrix resin 80 ° C. ⁇ 1 hour, 150 C. for 3 hours to cure.
  • ⁇ Fiber storage> The carbon fiber strands obtained in Examples and Comparative Examples are stored at 100 ° C. for 10 days, and the difference between the hardness of the carbon fiber strand after storage and the hardness of the carbon fiber strand before storage is determined. Judged to be less.
  • the hardness of the carbon fiber strand (length: about 50 cm) was measured with a texture tester (HANDLE-O-METERHOM-2, manufactured by Daiei Kagaku Seisakusho Co., Ltd., slit width 10 mm).
  • Example 1 JER1001, unsaturated polyester (B-1), oleyl oleate, POE (150) hydrogenated castor oil ether, PO / EO (25/75) polyether (so that the non-volatile composition of the treating agent shown in Table 1 is obtained)
  • the molecular weight of 16000 was charged into an emulsifier, and water was gradually added under stirring to phase-invert and emulsify to obtain an aqueous dispersion of a sizing agent having a nonvolatile content concentration of 30 wt%.
  • the obtained sizing agent aqueous dispersion is diluted with water to prepare a sizing agent emulsion having a non-volatile content concentration of 3% by weight, and dipped and impregnated with sizing agent-untreated carbon fiber strands (fineness 800 tex, number of filaments 12,000). After that, it was dried with hot air at 105 ° C. for 15 minutes to obtain a sizing agent-treated carbon fiber strand having a theoretical adhesion amount of 1.0%. About this sizing agent and this strand, each characteristic value was evaluated by the above-mentioned method. Adhesiveness and fuzziness were evaluated using carbon fiber strands before evaluation of fiber storability and carbon fiber strands after evaluation of fiber storability. The results are shown in Table 1.
  • Example 1 a sizing agent-treated carbon fiber strand was obtained in the same manner as in Example 1 except that the sizing agent emulsion was adjusted so that the non-volatile composition of the treating agents shown in Tables 1 to 3 was obtained. Evaluated. The evaluation results of each characteristic value are shown in Tables 1 to 3.
  • the sizing agents of the examples are excellent in long-term stability.
  • the fiber strand of an Example is excellent in adhesiveness with a matrix resin, and fluff generation
  • the fiber storage property is excellent, the adhesiveness is excellent even after fiber storage, and the occurrence of fluff is suppressed.
  • the fiber reinforced composite material in which the matrix resin is reinforced with the reinforcing fiber is used for automobile applications, aerospace applications, sports / leisure applications, general industrial applications, and the like.
  • the reinforcing fiber include various inorganic fibers such as carbon fiber, glass fiber, and ceramic fiber, and various organic fibers such as aramid fiber, polyamide fiber, and polyethylene fiber.
  • the sizing agent of this invention can be used conveniently with respect to the reinforced fiber for reinforcing a matrix resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の目的は、強化繊維に対してマトリックス樹脂との優れた接着性を付与でき、強化繊維ストランドの毛羽発生及び経時硬化を抑制でき、さらには長期保管安定性に優れたサイジング剤、それを用いた強化繊維ストランド及び繊維強化複合材料を提供することにある。 本発明の強化繊維用サイジング剤は、エポキシ樹脂(A)、酸価5未満の不飽和ポリエステル(B)及び脂肪酸エステル(C)を含有するものである。本発明の強化繊維用サイジング剤を用いることにより、上記課題を解決できる。

Description

強化繊維用サイジング剤及びその用途
 本発明は、強化繊維用サイジング剤及びその用途に関する。詳細には、マトリックス樹脂を補強するために用いられる強化繊維用サイジング剤、これを用いた強化繊維ストランド及び繊維強化複合材料に関する。
 自動車用途、航空・宇宙用途、スポーツ・レジャー用途、一般産業用途等に、プラスチック材料(マトリックス樹脂と称される)を各種合成繊維で補強した繊維強化複合材料が幅広く利用されている。これらの複合材料に使用される繊維としては、炭素繊維、ガラス繊維、セラミック繊維などの各種無機繊維、アラミド繊維、ポリアミド繊維、ポリエチレン繊維などの各種有機繊維が挙げられる。これら各種合成繊維は通常、フィラメント形状で製造され、その後ホットメルト法やドラムワインディング法等により一方向プリプレグと呼ばれるシート状の中間材料に加工されたり、フィラメントワインディング法によって加工されたり、場合によっては織物又はチョップドファイバー形状に加工されたりする等、各種高次加工工程を経て、強化繊維として使用されている。
 強化繊維複合材料のマトリックス樹脂としてはエポキシ樹脂が広く使用されている。エポキシ樹脂以外にもラジカル重合系のマトリックス樹脂として不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂等が使用されている。
 強化繊維複合材料の機械強度を向上させるためには、マトリックス樹脂と強化繊維の接着性が重要となり、上記のエポキシ樹脂、ラジカル重合系のマトリックス樹脂に対して、強化繊維の接着性が向上するサイジング剤(例えば、特許文献1、2等)が提案されている。
 しかし、特許文献1や特許文献2に記載のサイジング剤は、エポキシ樹脂やラジカル重合系のマトリックス樹脂に対して強化繊維の接着性は向上するものの、サイジング剤が付与された強化繊維が経時的に硬くなり、毛羽発生やマトリックス樹脂に対して接着性低下の問題が起こることがあった。更には、サイジング剤の長期保管安定性に問題が起こることがあった。
 また、強化繊維によっては、伸度が小さく、且つ脆い性質を有するものもある。従来のサイジング剤が付与されたこれらの強化繊維は、加工工程における機械的摩擦等によって、毛羽発生や繊維切断などの問題が起こることがあった。
 よって、繊維強化複合材料の分野において、強化繊維とマトリックス樹脂との親和性を高めて、強固に接着させることができ、強化繊維ストランドの毛羽抑制、経時硬化抑制を可能とし、さらには長期保管安定性に優れたサイジング剤の開発が望まれている。
日本国特開昭53-52796号公報 日本国特開昭57-173150号公報
 かかる従来の技術背景に鑑み、本発明の目的は、強化繊維に対してマトリックス樹脂との優れた接着性を付与でき、強化繊維ストランドの毛羽発生及び経時硬化を抑制でき、さらには長期保管安定性に優れたサイジング剤、それを用いた強化繊維ストランド及び繊維強化複合材料を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、エポキシ樹脂(A)と特定の不飽和ポリエステル(B)を用い、さらには脂肪酸エステル(C)を用いることにより、本発明の課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明の強化繊維用サイジング剤は、エポキシ樹脂(A)、酸価5未満の不飽和ポリエステル(B)及び脂肪酸エステル(C)を含有する。
 前記エポキシ樹脂(A)100重量部に対して、前記不飽和ポリエステル(B)が30~300重量部であることが好ましく、前記エポキシ樹脂(A)と前記不飽和ポリエステル(B)との合計100重量部に対して、前記脂肪酸エステル(C)が1~15重量部であることが好ましい。
 前記不飽和ポリエステル(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2~2.1であることが好ましい。
 前記不飽和ポリエステル(B)は、不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)との縮合物を含むことが好ましい。
 前記不飽和ポリエステル(B)は、不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)とを下記式(I)を満たす割合で含む反応性成分を反応させて得られたものであることが好ましい。
 不飽和二塩基酸(b1)のモル数<ビスフェノール類のアルキレンオキサイド付加物(b2)のモル数 (I)
 前記不飽和ポリエステル(B)の酸価が4.5以下であることが好ましい。
 前記脂肪酸エステル(C)の融点は5℃以下であることが好ましい。
 前記脂肪酸エステル(C)は、炭素数10~24の不飽和脂肪酸と炭素数8~20の一価アルコールがエステル結合した構造を持つエステルであることが好ましい。
 サイジング剤の不揮発分に占める、前記エポキシ樹脂(A)と前記不飽和ポリエステル(B)と前記脂肪酸エステル(C)の合計の重量割合は、70重量%以上であることが好ましい。
 本発明の強化繊維ストランドは、原料強化繊維ストランドに対して、上記の強化繊維用サイジング剤を付着させたものである。
 本発明の繊維強化複合材料は、マトリックス樹脂と、上記の強化繊維ストランドとを含むものである。
 前記マトリックス樹脂は、熱硬化性樹脂であることが好ましい。
 本発明の強化繊維用サイジング剤は、強化繊維に対してマトリックス樹脂との優れた接着性を付与できる。また、強化繊維ストランドの毛羽発生及び経時硬化を抑制できる。さらには、長期保管安定性に優れる。
 本発明の強化繊維ストランドは、サイジング剤の経時的な変化がない又は少ないため、長期間保管しても擦過毛羽性及びマトリックス樹脂との接着性の低下を抑制できる。本発明の強化繊維ストランドを使用することにより、優れた物性を有する強化繊維複合材料が得られる。
 本発明は、マトリックス樹脂を補強するために用いられる強化繊維用サイジング剤であって、エポキシ樹脂(A)、特定の不飽和ポリエステル(B)及び脂肪酸エステル(C)を含有するものである。以下、詳細に説明する。
[エポキシ樹脂(A)]
 エポキシ樹脂(A)は、本発明のサイジング剤の必須成分である。エポキシ樹脂(A)とは、分子構造内に反応性のエポキシ基を2個以上有する化合物である。エポキシ樹脂(A)としては、エピクロルヒドリンと活性水素化合物から得られるグリシジルエーテル型が代表的であり、その他にグリシジルエステル型、グリシジルアミン型、脂環型等が挙げられる。エポキシ樹脂(A)は、1種でもよく、2種以上を併用してもよい。
 グリシジルエーテル型のエポキシ樹脂(A)としては、例えば、アルコール類を原料として製造される下記一般式(1)で示される官能基を有するエポキシ樹脂、フェノール類を原料として製造される下記一般式(2)で示される官能基を有するエポキシ樹脂等が挙げられる。グリシジルエステル型のエポキシ樹脂(A)としては、例えば、フタル酸誘導体や合成樹脂脂肪酸などのカルボン酸を原料として製造される下記一般式(3)で示される官能基を有するエポキシ樹脂等が挙げられる。グリシジルアミン型のエポキシ樹脂(A)としては、例えば、下記一般式(4)で示される官能基を有するエポキシ樹脂や下記一般式(5)で示される官能基を有するエポキシ樹脂等が挙げられる。脂環型のエポキシ樹脂(A)としては、例えば、下記一般式(6)で示される官能基を有するエポキシ樹脂(A)等が挙げられる。これらの中でも、繊維とマトリックス樹脂の接着性向上の理由から、一般式(2)で示される官能基を有するエポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 エポキシ樹脂(A)のエポキシ当量は、100~1500g/eqが好ましく、120~1000g/eqがより好ましく、150~800g/eqがさらに好ましい。エポキシ当量が100g/eq未満の場合、強化繊維ストランドの経時硬化を促進することがある。エポキシ当量が1500g/eq超の場合、マトリックス樹脂との接着性が低下することがある。なお、エポキシ当量とは、JIS-K7236に準拠したものをいう。
 エポキシ樹脂(A)の重量平均分子量は、100~10000が好ましく、100~8000がより好ましく、150~7000がさらに好ましい。重量平均分子量が100未満の場合、強化繊維ストランドの乾燥工程等で耐熱性が不足し揮散してしまうことがある。重量平均分子量が10000超の場合、サイジング剤の長期保管安定性が低下することがある。
 エポキシ樹脂(A)は、強化繊維とマトリックス樹脂の接着性向上の点から、分子構造中に芳香環を有する芳香族エポキシ樹脂が好ましい。
 上記の芳香族エポキシ樹脂としては、ハイドロキノン、レゾルシン、ピロカテコールなどの単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、ビスフェノールF、ビスフェノールA、フェノールノボラック、オルソクレゾールノボラック、レゾルシンノボラック、ビスフェノールFノボラック、ビスフェノールAノボラック、ジシクロペンタジエン変性フェノール、トリフェニルメタン、テトラフェニルエタンなどの多核多価フェノール化合物のポリグリシジルエーテル化合物などが挙げられる。
 これら芳香族エポキシ樹脂の中でも、下記一般式(7)で示される化合物、下記一般式(8)で示される化合物が好ましく、下記一般式(7)で示される化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(7)において、R、R、R及びRは、それぞれ独立して、水素原子又はメチル基である。nは0~30の整数であり、0~20が好ましく、0~10がさらに好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(8)において、mは0~10の整数であり、0~8が好ましく、0~5がさらに好ましい。
 上述のエポキシ樹脂(A)の製造方法としては、特に限定はなく、公知の方法を採用できる。また、上述のエポキシ樹脂(A)は、一般に市販されているものであり、本発明の炭素繊維用サイジング剤では、それら市販のエポキシ樹脂(A)を使用することができる。
[不飽和ポリステル(B)]
 酸価5未満の不飽和ポリステル(B)は、本発明のサイジング剤の必須成分である。当該酸価が5以上の場合、強化繊維ストランドが経時的に硬くなり、かつ、サイジング剤の長期保管安定性が低下する。当該酸価は、4.5以下が好ましく、4以下がより好ましく、3.5以下がさらに好ましい。ここで酸価とは、試料1gを中和するのに必要な水酸化カリウムのmg数で表わし、JIS K 2501:2003に準拠して測定したものをいう。
 不飽和ポリエステルとは、分子構造内に不飽和結合を1個以上有するポリエステル化合物をいう。不飽和ポリエステルとしては、1)不飽和結合を1個以上有する酸単独とアルコールとの縮合物、2)不飽和結合を1個以上有する酸及び不飽和結合を有さない酸の混合物と、アルコールとの縮合物、3)酸と不飽和結合を1個以上有するアルコールとの縮合物等があげられる。これらの中でも、特に不飽和二塩基酸と二価のアルコールの縮合物が好ましい。
 不飽和二塩基酸としては、不飽和二重結合と2つのカルボン酸基を有する化合物、またはその無水物であり、例えばマレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、メサコン酸、シトラコン酸、アリルマロン酸等が挙げられる。これらの中でも、特に、炭素数が4~6で脂肪族の不飽和二塩基酸が好ましい。
 二価のアルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、ビスフェノール類、ビスフェノール類のアルキレンオキサイド付加物等が挙げられる。これらの中でも、ビスフェノール類のアルキレンオキサイド付加物が好ましい。ビスフェノール類及びビスフェノール類のアルキレンオキサイド付加物については、後述する。
 不飽和ポリエステル(B)は、強化繊維とマトリックス樹脂の接着性向上の点から、上記の不飽和二塩基酸(以下、不飽和二塩基酸(b1)という)とビスフェノール類のアルキレンオキサイド付加物(b2)との縮合物を含むことが好ましい。
 ビスフェノール類とは、2個のヒドロキシフェニル基を有する化合物であり、例えばビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZ等が挙げられる。
 ビスフェノール類のアルキレンオキサオド付加物(b2)とは、上記ビスフェノール類にアルキレンオキサイドを付加重合させた化合物である。アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドが挙げられる。アルキレンオキサイドの付加モル数としては10モル以下が好ましく、5モル以下がさらに好ましく、2~4モルが最も好ましい。10モル超付加すると、ビスフェノール類が有する剛直性が失われ、マトリックス樹脂との接着性が低下することがある。
 不飽和ポリエステル(B)は、強化繊維ストランドの経時硬化抑制及びサイジング剤の保管安定性の点から、不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)とを下記式(I)を満たす割合で含む反応性成分を反応させて得られたものであることが好ましい。
 不飽和二塩基酸(b1)のモル数<ビスフェノール類のアルキレンオキサイド付加物(b2)のモル数 (I)
 不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)のモル比(b1/b2)は、70/100~99/100が好ましく、75/100~90/100がより好ましく、80/100~85/100がさらに好ましい。
 強化繊維とマトリックス樹脂の接着性向上の点から、反応性成分に占める不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)の合計の割合は、90モル%以上が好ましく、95モル%以上がより好ましく、100モル%がさらに好ましい。
 また、強化繊維とマトリックス樹脂の接着性向上の点から、反応性成分は、不飽和二塩基酸のエステル化物を実質的に含まないほうが好ましい。具体的には、反応性成分に占める不飽和二塩基酸のエステル化物の割合は、2モル%以下が好ましく、1モル%以下がより好ましく、0モル%がさらに好ましい。
 不飽和ポリエステル(B)の酸価を下げるために、反応性成分として1官能の活性水素基を有する化合物を用いることが考えられるが、1官能の活性水素基を用いると、マトリックス樹脂との接着性が低下する場合があり、またサイジング剤の長期保管安定性が低下する可能性があり、反応性成分として1官能の活性水素基を用いることは好ましくない。詳細には、反応性成分に占める1官能の活性水素基を有する化合物の割合は、2モル%以下が好ましく、1モル%以下がより好ましく、0モル%がさらに好ましい。
 1官能の活性水素基を有する化合物としては、1価アルコール、2級アミン、1価チオール等が挙げられる。
 不飽和ポリエステル(B)の重量平均分子量は、500~5000が好ましく、800~4500がより好ましく、1000~3500がさらに好ましい。該分子量が500未満の場合、良好な接着性、耐熱性がともに得られないことがある。一方、該分子量が5000超の場合、溶液安定性が悪くなることがある。
 不飽和ポリエステル(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.2~2.1が好ましく、1.4~2.0がより好ましく、1.6~1.9がさらに好ましい。該分子量比が1.2未満の場合、良好な接着性、耐熱性がともに得られないことがある。一方、該分子量比が2.2超の場合、溶液安定性が悪くなることがある。
 なお、本発明でいう重量平均分子量(Mw)、数平均分子量(Mn)は、東ソー(株)製高速ゲルパーミエーションクロマトグラフィー装置HLC-8220GPCを用い、試料濃度2mg/mlで分離カラム(昭和電工(株)製Shodex(登録商標)KF-G、KF-402HQ、KF-403HQ)に注入し、RI検出器で測定されたチャートより算出した値のことをいう。移動相にテトラヒドロフラン(THF)、検量線作成標準物質にポリエチレングリコール(PEG)を使用し、カラム温度40℃、流速0.3ml/minで測定した。
 不飽和ポリエステル(B)の製造方法としては、特に限定はなく、公知の手法を採用できる。例えば、不飽和二塩基酸(b1)及びビスフェノール類のアルキレンオキサイド付加物(b2)を重縮合させることにより得られる。重縮合時の反応温度は、エステル化の促進及び反応生成物の酸価低下の観点から、好ましくは110℃~180℃、さらに好ましくは130℃~160℃である。重縮合時の反応時間は、エステル化の促進及び反応生成物の酸価低下の観点から、1~10時間、さらに好ましくは2時間~5時間である。重縮合反応を促進させるために、エステル化触媒を使用してもよい。
[脂肪酸エステル(C)]
 脂肪酸エステル(C)は、本発明のサイジング剤の必須成分である。エポキシ樹脂(A)及びエポキシ樹脂(A)と不飽和ポリエステル(B)に加え、さらには脂肪酸エステル(C)を含むことにより、本発明の強化繊維用サイジング剤は、強化繊維に対してマトリックス樹脂との優れた接着性を付与できる。また、強化繊維ストランドの毛羽発生及び経時硬化を抑制できる。さらには、長期保管安定性に優れる。
 脂肪酸エステル(C)は脂肪酸と一価アルコールがエステル結合した構造を持つ化合物である。
 脂肪酸としては、炭素数10~24の飽和脂肪酸又は炭素数10~24の不飽和脂肪酸が挙げられる。強化繊維ストランドの毛羽抑制の点から、炭素数10~24の不飽和脂肪酸が好ましい。脂肪酸の炭素数は、10~22が好ましく、12~20がより好ましく、14~20がさらに好ましい。
 脂肪酸の具体例としては、カプリン酸、ラウリン酸、ミリスチル酸、パルミチル酸、ステアリン酸、オレイン酸、アラキン酸、ベヘニン酸、リグノセレン酸等が挙げられる。
 一価アルコールとしては、炭素数8~20の一価アルコールが挙げられる。より詳細には、炭素数8~20の飽和の一価アルコール又は炭素数8~20不飽和の一価アルコールが挙げられる。一価アルコールの炭素数は、12~22が好ましく、14~20がより好ましく、16~20がさらに好ましい。
 一価アルコールの具体例として、オクチルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、オレイルアルコール、ノナデシルアルコール及びそれらの分岐のアルコール等が挙げられる。
 これらの中でも、強化繊維ストランドの毛羽抑制の点から、脂肪酸エステル(C)としては、炭素数10~24の不飽和脂肪酸と炭素数8~20の一価アルコールがエステル結合した構造を持つ化合物が好ましい。当該不飽和脂肪酸の炭素数は、10~22が好ましく、12~20がより好ましく、14~20がさらに好ましい。当該一価アルコールの炭素数は、12~22が好ましく、14~20がより好ましく、16~20がさらに好ましい。
 脂肪酸エステル(C)としては、下記一般式(9)で示すことがでる。
 R-COOR10   (9)
 一般式(9)において、Rは炭素数9~23のアルキル基、アルケニル基又は、アルキニル基である。Rはアルケニル基が好ましい。Rは直鎖であっても分岐であってもよい。Rの炭素数は、12~22が好ましく、14~20がより好ましく、16~20がさらに好ましい。
 一般式(9)において、R10は炭素数8~20のアルキル基、アルケニル基又は、アルキニル基である。R10は直鎖であっても分岐であってもよい。R10の炭素数は、10~20が好ましく、12~20がより好ましく、14~20がさらに好ましい。
 脂肪酸エステル(C)の具体例としては、例えば、ラウリン酸オクチル、ラウリン酸デシル、ラウリン酸ラウリル、ラウリン酸トリデシル、ラウリン酸ミリスチル、ラウリン酸セチル、ラウリン酸ヘプタデシル、ラウリン酸ステアリル、ラウリン酸オレイル、ラウリン酸ノナデシル、ミリスチル酸オクチル、ミリスチル酸デシル、ミリスチル酸ラウリル、ミリスチル酸トリデシル、ミリスチル酸ミリスチル、ミリスチル酸セチル、ミリスチル酸ヘプタデシル、ミリスチル酸ステアリル、ミリスチル酸オレイル、ミリスチル酸ノナデシル、パルミチル酸オクチル、パルミチル酸デシル、パルミチル酸ラウリル、パルミチル酸トリデシル、パルミチル酸ミリスチル、パルミチル酸セチル、パルミチル酸ヘプタデシル、パルミチル酸ステアリル、パルミチル酸オレイル、パルミチル酸ノナデシル、ステアリン酸オクチル、ステアリン酸デシル、ステアリン酸ラウリル、ステアリン酸トリデシル、ステアリン酸ミリスチル、ステアリン酸セチル、ステアリン酸ヘプタデシル、ステアリン酸ステアリル、ステアリン酸オレイル、ステアリン酸ノナデシル、オレイン酸オクチル、オレイン酸デシル、オレイン酸ラウリル、オレイン酸トリデシル、オレイン酸ミリスチル、オレイン酸セチル、オレイン酸ヘプタデシル、オレイン酸ステアリル、オレイン酸オレイル、オレイン酸ノナデシル等が挙げられる。
 これらの中でも、強化繊維ストランドの毛羽抑制の点から、オレイン酸オクチル、オレイン酸デシル、オレイン酸ラウリル、オレイン酸トリデシル、オレイン酸ミリスチル、オレイン酸セチル、オレイン酸ヘプタデシル、オレイン酸ステアリル、オレイン酸オレイル、オレイン酸ノナデシルが好ましく、オレイン酸セチル、オレイン酸ヘプタデシル、オレイン酸ステアリル、オレイン酸オレイル、オレイン酸ノナデシルがさらに好ましい。
 脂肪酸エステル(C)は、強化繊維ストランドの毛羽抑制の点から、その融点が5℃以下であること好ましく、5℃~-10℃がより好ましく、5℃~-5℃がさらに好ましい。融点が5℃超であると、冬季に強化繊維ストランド長期間保管すると、脂肪酸エステルが固状となり毛羽抑制効果が低減することがある。なお、本発明における融点は、次のように測定した。両端開管の毛細管(内径1mm、外径2mm以下、長さ50~80mm)に測定試料を約10mmの高さまで採取する。これをBUCHI製融点測定装置M-565へセットし、融点以下の温度より1℃/分で昇温する。測定試料が溶融し、透明になった温度を融点とする。
 脂肪酸エステル(C)の重量平均分子量は、300~700が好ましく、400~600がより好ましく、500~600が最も好ましい。該分子量が300未満であると脂肪酸エステルの耐熱性が低下し、強化ストランドの乾燥工程で揮散し、毛羽抑制効果が低減することがある。該分子量が700超であると、摩擦が高くなり、強化繊維ストランドの毛羽抑制効果が低減することがある。
[強化繊維用サイジング剤]
 本発明の強化繊維用サイジング剤は、前述のエポキシ樹脂(A)、不飽和ポリエステル(B)及び脂肪酸エステル(C)を必須に含有するものである。
 不飽和ポリエステル(B)は、エポキシ樹脂(A)100重量部に対して、30~300重量部であることが好ましく、35~250重量部がより好ましく、40~200重量部がさらに好ましい。30重量部未満の場合、ラジカル重合系のマトリックス樹脂に対して、強化繊維の接着性が低下することがある。一方、300重量部超の場合、強化繊維ストランドの風合いが硬くなり、加工工程での擦過毛羽が発生し易くなることがある。
 脂肪酸エステル(C)は、エポキシ樹脂(A)と不飽和ポリエステル(B)との合計100重量部に対して、1~15重量部であることが好ましく、3~12重量部がより好ましく、5~10重量部がさらに好ましい。1重量部未満の場合、強化繊維ストランドの毛羽抑制効果が低減することがある。一方、15重量部超の場合、マトリックス樹脂に対して、強化繊維の接着性が低下することがある。
 サイジング剤の不揮発分に占める、エポキシ樹脂(A)と不飽和ポリエステル(B)と脂肪酸エステル(C)の合計の重量割合は、70重量%以上であることが好ましく、70~95重量%がより好ましく、75~90重量%がさらに好ましい。70重量%未満の場合、マトリックス樹脂に対して、強化繊維の接着性が低下することがある。なお、本発明における不揮発分とは、サイジング剤を105℃で熱処理して溶媒等を除去し、恒量に達した時の絶乾成分をいう。
 本発明のサイジング剤は、取扱い時の人体への安全性や、火災等の災害防止、自然環境の汚染防止等の観点から、水を含有してもよい。本発明の効果を損なわない範囲で、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン等の有機溶剤を用いてもよい。
 本発明のサイジング剤は水に自己乳化及び/又は乳化分散してなるものである。サイジング剤の平均粒子径は、特に限定はないが、10μm以下が好ましく、0.01~1μmがより好ましく、0.01~0.5μmがさらに好ましい。該平均粒子径が10μm超の場合、強化繊維へ均一付着できないばかりか、サイジング剤自体が数日で分離してしまうおそれがあり、保管安定性が悪く実用的でないとなることがある。
 なお、本発明でいう平均粒子径とは、レーザー回折/散乱式粒度分布測定装置(堀場製LA-910)で測定された粒度分布より算出された平均値をいう。
 本発明のサイジング剤は、本発明の効果を損なわない範囲で、上記で説明したエポキシ樹脂(A)、不飽和ポリエステル(B)及び脂肪酸エステル(C)以外の他の成分を含んでもよい。他の成分としては、例えば、各種界面活性剤、各種平滑剤、酸化防止剤、難燃剤、抗菌剤、結晶核剤、消泡剤等を挙げることができ、1種又は2種以上を組み合わせて用いてもよい。
 界面活性剤は、エポキシ樹脂(A)や不飽和ポリエステル(B)や脂肪酸エステル(C)やその他サイジング剤中に水不溶性又は難溶性である樹脂を含有する場合、乳化剤として使用することによって、水系乳化を効率よく実施することができる。
 界面活性剤としては、特に限定されず、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤及び両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種又は2種以上を併用してもよい。
 非イオン性界面活性剤としては、たとえば、アルキレンオキサイド付加非イオン性界面活性剤(高級アルコール、高級脂肪酸、アルキルフェノール、スチレン化フェノール、ベンジルフェノール、グリセリン、ペンタエリスリット、ソルビット、ソルビタン、ソルビタンエステル、ヒマシ油、硬化ヒマシ油、高級脂肪族アミン、脂肪酸アミド、油脂等にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド(2種以上の併用可)を付加させたもの)、ポリアルキレングリコールに高級脂肪酸等を付加させたもの、エチレンオキサイド/プロピレンオキサイド共重合体、多価アルコールと脂肪酸のエステル、脂肪族アルカノールアミド等を挙げることができる。
 より詳細には、非イオン性界面活性剤としては、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシアルキレン直鎖アルキルエーテル;ポリオキシエチレン2-エチルヘキシルエーテル、ポリオキシエチレンイソセチルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシアルキレン分岐第一級アルキルエーテル;ポリオキシエチレン1-ヘキシルヘキシルエーテル、ポリオキシエチレン1-オクチルヘキシルエーテル、ポリオキシエチレン1-ヘキシルオクチルエーテル、ポリオキシエチレン1-ペンチルへプチルエーテル、ポリオキシエチレン1-へプチルペンチルエーテル等のポリオキシアルキレン分岐第二級アルキルエーテル;ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレントリスチリルメチルフェニルエーテル、ポリオキシエチレンジスチリルメチルフェニルエーテル、ポリオキシエチレンスチリルメチルフェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンアルキルアリールフェニルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノオレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノミリスチレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジオレート、ポリオキシエチレンジミリスチレート、ポリオキシエチレンジステアレート等のポリオキシアルキレン脂肪酸エステル;ソルビタンモノパルミテート、ソルビタンモノオレート等のソルビタンエステル;ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート等のポリオキシアルキレンソルビタン脂肪酸エステル;グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノパルミテート等のグリセリン脂肪酸エステル;ポリオキシアルキレンソルビトール脂肪酸エステル;ショ糖脂肪酸エステル;ポリオキシエチレンひまし油エーテル等のポリオキシアルキレンひまし油エーテル;ポリオキシエチレン硬化ひまし油エーテル等のポリオキシアルキレン硬化ひまし油エーテル;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル等のポリオキシアルキレンアルキルアミノエーテル;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体の末端アルキルエーテル化物;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体の末端ショ糖エーテル化物;等を挙げることができる。
 アニオン性界面活性剤としては、例えば、カルボン酸(塩)、高級アルコール・高級アルコールエーテルの硫酸エステル塩、スルホン酸塩、高級アルコール・高級アルコールエーテルのリン酸エステル塩等を挙げることができる。
 より詳細には、アニオン性界面活性剤としては、オレイン酸、パルミチン酸、オレイン酸ナトリウム塩、パルミチン酸カリウム塩、オレイン酸トリエタノールアミン塩等の脂肪酸(塩);ヒドロキシ酢酸、ヒドロキシ酢酸カリウム塩、乳酸、乳酸カリウム塩等のヒドロキシル基含有カルボン酸(塩);ポリオキシエチレントリデシルエーテル酢酸(ナトリウム塩)等のポリオキシアルキレンアルキルエーテル酢酸(塩);トリメリット酸カリウム、ピロメリット酸カリウム等のカルボキシル基多置換芳香族化合物の塩;ドデシルベンゼンスルホン酸(ナトリウム塩)等のアルキルベンゼンスルホン酸(塩);ポリオキシエチレン2-エチルヘキシルエーテルスルホン酸(カリウム塩)等のポリオキシアルキレンアルキルエーテルスルホン酸(塩);ステアロイルメチルタウリン(ナトリウム)、ラウロイルメチルタウリン(ナトリウム)、ミリストイルメチルタウリン(ナトリウム)、パルミトイルメチルタウリン(ナトリウム)等の高級脂肪酸アミドスルホン酸(塩);ラウロイルサルコシン酸(ナトリウム)等のN-アシルサルコシン酸(塩);オクチルホスホネート(カリウム塩)等のアルキルホスホン酸(塩);フェニルホスホネート(カリウム塩)等の芳香族ホスホン酸(塩);2-エチルヘキシルホスホネートモノ2-エチルヘキシルエステル(カリウム塩)等のアルキルホスホン酸アルキルリン酸エステル(塩);アミノエチルホスホン酸(ジエタノールアミン塩)等の含窒素アルキルホスホン酸(塩);2-エチルヘキシルサルフェート(ナトリウム塩)等のアルキル硫酸エステル(塩);ポリオキシエチレン2-エチルヘキシルエーテルサルフェート(ナトリウム塩)等のポリオキシアルキレン硫酸エステル(塩);ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N-ラウロイルグルタミン酸ナトリウム、N-ステアロイル-L-グルタミン酸ジナトリウム等の長鎖N-アシルグルタミン酸塩;等を挙げることができる。
 カチオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムクロライド、パルミチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オレイルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシ油アルキルトリメチルアンモニウムクロライド、牛脂アルキルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムブロマイド、ヤシ油アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムメトサルフェート、オレイルジメチルエチルアンモニウムエトサルフェート、ジオクチルジメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、オクタデシルジエチルメチルアンモニウムサルフェート、等のアルキル第四級アンモニウム塩;(ポリオキシエチレン)ラウリルアミノエーテル乳酸塩、ステアリルアミノエーテル乳酸塩、ジ(ポリオキシエチレン)ラウリルメチルアミノエーテルジメチルホスフェート、オレイルメチルエチルアンモニウムエトサルフェート、ジ(ポリオキシエチレン)ラウリルエチルアンモニウムエトサルフェート、ジ(ポリオキシエチレン)硬化牛脂アルキルエチルアミンエトサルフェート、ジ(ポリオキシエチレン)ラウリルメチルアンモニウムジメチルホスフェート、ジ(ポリオキシエチレン)ステアリルアミン乳酸塩等の(ポリオキシアルキレン)アルキルアミノエーテル塩;N-(2-ヒドロキシエチル)-N,N-ジメチル-N-ステアロイルアミドプロピルアンモニウムナイトレート、ラノリン脂肪酸アミドプロピルエチルジメチルアンモニウムエトサルフェート、ラウロイルアミドエチルメチルジエチルアンモニウムメトサルフェート等のアシルアミドアルキル第四級アンモニウム塩;ジパルミチルポリエテノキシエチルアンモニウムクロライド、ジステアリルポリエテノキシメチルアンモニウムクロライド等のアルキルエテノキシ第四級アンモニウム塩;ラウリルイソキノリニウムクロライド等のアルキルイソキノリニウム塩;ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等のベンザルコニウム塩;ベンジルジメチル{2-[2-(p-1,1,3,3-テトラメチルブチルフェノオキシ)エトオキシ]エチル}アンモニウムクロライド等のベンゼトニウム塩;セチルピリジニウムクロライド等のピリジニウム塩;オレイルヒドロキシエチルイミダゾリニウムエトサルフェート、ラウリルヒドロキシエチルイミダゾリニウムエトサルフェート等のイミダゾリニウム塩;N-ココイルアルギニンエチルエステルピロリドンカルボン酸塩、N-ラウロイルリジンエチルエチルエステルクロライド等のアシル塩基性アミノ酸アルキルエステル塩;ラウリルアミンクロライド、ステアリルアミンブロマイド、硬化牛脂アルキルアミンクロライド、ロジンアミン酢酸塩等の第一級アミン塩;セチルメチルアミンサルフェート、ラウリルメチルアミンクロライド、ジラウリルアミン酢酸塩、ステアリルエチルアミンブロマイド、ラウリルプロピルアミン酢酸塩、ジオクチルアミンクロライド、オクタデシルエチルアミンハイドロオキサイド等の第二級アミン塩;ジラウリルメチルアミンサルフェート、ラウリルジエチルアミンクロライド、ラウリルエチルメチルアミンブロマイド、ジエタノールステアリルアミドエチルアミントリヒドロキシエチルホスフェート塩、ステアリルアミドエチルエタノールアミン尿素重縮合物酢酸塩等の第三級アミン塩;脂肪酸アミドグアニジニウム塩;ラウリルトリエチレングリコールアンモニウムハイドロオキサイド等のアルキルトリアルキレングリコールアンモニウム塩等を挙げることができる。
 両性界面活性剤としては、例えば、2-ウンデシル-N,N-(ヒドロキシエチルカルボキシメチル)-2-イミダゾリンナトリウム、2-ココイル-2-イミダゾリニウムヒドロキサイド-1-カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2-ヘプタデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリウムベタイン、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N-ラウリルグリシン、N-ラウリルβ-アラニン、N-ステアリルβ-アラニン、ラウリルアミノプロピオン酸ナトリウム等のアミノ酸型両性界面活性剤等が挙げられる。
 界面活性剤を含む場合のサイジング剤の不揮発分に占める界面活性剤の重量割合は、5~30重量%以が好ましく、10~25重量%がより好ましく、15~25重量%がさらに好ましい。
 本発明のサイジング剤の不揮発分の濃度については、特に限定はなく、水分散体としての安定性や、製品として取り扱いやすい粘度等を考慮して適宜選択されるものである。製品の輸送コスト等を考慮すれば、サイジング剤全体に占める不揮発分の重量割合は、10~100重量%が好ましく、15~100重量%がさらに好ましく、20~100重量%が特に好ましい。
 また、サイジング剤全体に占める水と不揮発分の合計の重量割合は、90重量%以上が好ましく、95重量%以上がより好ましく、99重量%以上がさらに好ましく、100重量%が特に好ましい。90重量%未満の場合、すなわち、熱処理時に不揮発分として残存しない前述の有機溶剤やその他低沸点化合物を10重量%以上含有する場合、取扱い時の人体への安全性や、自然環境の汚染防止の観点で好ましくないことがある。
 なお、上記水分散体や水溶液には、前述の人体安全性や環境汚染防止の観点に加え、水分散体や水溶液の経時増粘・固化防止の観点から、有機溶剤等の水以外の溶媒を含有しないか、含有する場合であってもサイジング剤全体に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましく、1重量%以下であることがさらに好ましい。
 本発明のサイジング剤を水分散体として製造する方法については、特に限定はなく、公知の手法を採用できる。上述のように、サイジング剤を構成する各成分を製造する際にそれぞれを水分散体とし、それらを混合する方法、サイジング剤を構成する各成分を攪拌下の温水中に投入して乳化分散する方法、サイジング剤を構成する各成分を予め乳化分散した乳化分散液を混合する方法、サイジング剤を構成する各成分を混合し、得られた混合物を軟化点以上に加温後、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法等が挙げられる。
[強化繊維ストランド及びその製造方法]
 本発明の強化繊維ストランドは、原料強化繊維ストランドに対して、上記の強化繊維用サイジング剤を付着させたものであり、マトリックス樹脂を補強するための強化繊維である。本発明の強化繊維ストランドは、マトリックス樹脂との接着性に優れる。マトリックス樹脂は、本発明のサイジング剤による接着性向上効果がより高い点から、熱硬化性マトリックス樹脂が好ましい。本発明の強化繊維ストランドは、毛羽発生が少ないので工程通過性に優れ、強化繊維用サイジング剤の経時的な変化がない又は少ないため、長期保管性に優れる。
 原料強化繊維ストランドへのサイジング剤の不揮発分の付着量は適宜選択でき、強化繊維ストランドが所望の機能を有するための必要量とすればよいが、その付着量は原料強化繊維ストランドに対して0.1~20重量%であることが好ましい。長繊維形態の強化繊維ストランドにおいては、その付着量は原料強化繊維ストランドに対して0.1~10重量%であることがより好ましく、0.5~5重量%がさらに好ましい。また、チョップドファイバー形態(所定の長さに切断された状態)のストランドにおいては0.5~20重量%であることがより好ましく、1~10重量%がさらに好ましい。
 サイジング剤の付着量が少ないと、耐熱性、樹脂含浸性、接着性に関する本発明の効果が得られにくく、また、強化繊維ストランドの集束性が不足し、取扱い性が悪くなることがある。また、サイジング剤の付着量が多過ぎると、強化繊維ストランドが剛直になり過ぎて、かえって取扱い性が悪くなったり、コンポジット成型の際に樹脂含浸性が悪くなったりすることがあり好ましくない。
 強化繊維ストランドの製造方法は、前述のサイジング剤を含み、不揮発分の重量割合が0.5~10重量%であり、水と不揮発分の合計の重量割合が90重量%以上である処理液を調製する調製工程と、原料強化繊維ストランドに対して不揮発分の付着量が0.1~20重量%となるよう、原料強化繊維ストランドに該処理液を付着させる付着工程とを含むものである。
 調製工程において、処理液に占める不揮発分の重量割合は、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。水と不揮発分の合計の重量割合は、95重量%以上であることがより好ましく、99重量%以上であることがさらに好ましく、100重量%が特に好ましい。
 付着工程において、好ましい不揮発分の付着量については、前段落の通りである。サイジング剤を原料強化繊維ストランドに付着させる方法については、特に限定はないが、サイジング剤をキスローラー法、ローラー浸漬法、スプレー法その他公知の方法で、原料強化繊維ストランドに付着させる方法であればよい。これらの方法のうちでも、ローラー浸漬法が、サイジング剤を原料強化繊維ストランドに均一付着できるので好ましい。
 得られた付着物の乾燥方法については、特に限定はなく、例えば、加熱ローラー、熱風、熱板等で加熱乾燥することができる。
 なお、本発明のサイジング剤の原料強化繊維ストランドへの付着にあたっては、サイジング剤の構成成分全てを混合後に付着させてもよいし、構成成分を別々に二段階以上に分けて付着させてもよい。また、本発明の効果を阻害しない範囲で、エポキシ樹脂(A)、不飽和ポリエステル(B)及び脂肪酸エステル(C)以外であって、ビニルエステル樹脂、フェノール樹脂などの熱硬化性樹脂及び/又はポリオレフィン樹脂、ポリエステル樹脂、ナイロン樹脂、アクリル系樹脂などの熱可塑性樹脂を原料強化繊維ストランドに付着させてもよい。
 本発明の強化繊維ストランドは、各種樹脂をマトリックス樹脂とする複合材料の強化繊維として使用され、使用させる形態としては、長繊維形態でも、チョップドファイバー形態でもよい。
 本発明のサイジング剤を適用し得る(原料)強化繊維ストランドとしては、炭素繊維、ガラス繊維、セラミック繊維などの各種無機繊維、アラミド繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンサルフィド繊維、ポリケトン繊維などの各種有機繊維等のストランドが挙げられる。得られる繊維強化複合材料としての物性の観点から、(原料)強化繊維ストランドとしては、炭素繊維、アラミド繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンサルフィド繊維及びポリケトン繊維から選ばれる少なくとも1種のストランドが好ましく、炭素繊維ストランドがさらに好ましい。
[繊維強化複合材料]
 本発明の繊維強化複合材料は、マトリックス樹脂と前述の強化繊維ストランドを含むものである。強化繊維ストランドは本発明のサイジング剤により処理されて、サイジング剤が均一に付着しており、強化繊維ストランド及びマトリックス樹脂との親和性が良好となり、接着性に優れた繊維強化複合材料となる。ここで、マトリックス樹脂とは、熱硬化性樹脂又は熱可塑性樹脂からなるマトリックス樹脂をいい、1種又は2種以上含んでいてもよい。熱硬化性樹脂としては、特に制限はなく、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂、シアネートエステル樹脂、ポリイミド樹脂等が挙げられる。熱可塑性マトリックス樹脂としては、特に制限はなく、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアセタール樹脂、ABS樹脂、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂等が挙げられる。これらの中でも本発明のサイジング剤による接着性向上効果がより高い点から、熱硬化性マトリックス樹脂が好ましく、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂がさらに好ましく、エポキシ樹脂が最も好ましい。ここで、エポキシ樹脂とは、分子構造内に反応性のエポキシ基を有する化合物であり、硬化剤を混合して加熱することによりエポキシ基が架橋ネットワーク化することで硬化する。エポキシ樹脂としては、サイジング剤の必須成分である前述のエポキシ樹脂(A)と同様なものを挙げることができる。これらマトリックス樹脂は、強化繊維ストランドとの接着性をさらに向上させるなどの目的で、その一部又は全部が変性したものであっても差し支えない。
 繊維強化複合材料の製造方法としては、特に限定はなく、チョップドファイバー、長繊維ペレットなどによるコンパウンド射出成型、UDシート、織物シートなどによるプレス成型、その他フィラメントワインディング成型など公知の方法を採用できる。
 熱硬化性マトリックス樹脂と強化繊維ストランドを混練する際には、硬化剤を混合して加圧または常圧下で加熱して繊維強化複合材料を製造する方法や、硬化剤、硬化促進剤を混合して常温で繊維強化複合材料を製造する方法がある。
 繊維強化複合材料中の強化繊維ストランドの含有量についても特に限定はなく、繊維の種類、形態、マトリックス樹脂の種類などにより適宜選択すればよいが、得られる繊維強化複合材料に対して、5~70重量%が好ましく、20~60重量%がより好ましい。
 以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)、部は特に限定しない限り、「重量%」、「重量部」を示す。各特性値の測定は以下に示す方法に基づいて行った。
<溶液安定性>
 不揮発分濃度が3.0重量%である各処理剤エマルジョンを50℃に調節された恒温槽で保管し、溶液の外観を目視で確認し、下記の評価基準で溶液安定性を判定した。
 ◎ :60日間分離無し。
 ○ :30日間分離無し、60日以内には分離。
 △ :7日間分離無し、30日以内に分離。
 × :7日間以内に分離。
 ××:乳化当日に分離、または乳化できない。
<接着性>
 複合材料界面特性評価装置HM410(東栄産業株式会社製)を使用し、マイクロドロップレット法により接着性を評価した。
 実施例及び比較例で得られた炭素繊維ストランドより、炭素繊維フィラメントを取り出し、試料ホルダーにセッティングする。硬化剤や硬化促進剤を混合した各マトリックス樹脂のドロップを炭素繊維フィラメント上に形成させ、下記の硬化方法によりドロップを硬化させ、測定用の試料を得た。測定試料を装置にセッティングし、ドロップを装置ブレードで挟み、炭素繊維フィラメントを装置上で0.06mm/分の速度で走行させ、炭素繊維フィラメントからドロップを引き抜く際の最大引き抜き荷重Fを測定した。
 次式により界面剪断強度τを算出し、炭素繊維フィラメントとマトリックス樹脂との接着性を評価した。
 界面剪断強度τ(単位:MPa)=F/πdl
(F:最大引き抜き荷重 d:炭素繊維フィラメント直径 l:ドロップの引き抜き方向の粒子径)
(各マトリックス樹脂のドロップの硬化方法)
 マトリックス樹脂は、実施例1~10及び比較例1~4、7~9ではエポキシ樹脂を、実施例11~14及び比較例5では不飽和ポリエステル樹脂を、実施例15~18及び比較例6ではビニルエステル樹脂を用いた。
 エポキシ樹脂:エポキシ樹脂JER828(三菱化学株式会社製)100重量部、DICY(三菱化学株式会社製)3重量部に調整されたマトリックス樹脂のドロップを80℃×1時間、150℃×3時間加熱し硬化させた。
 不飽和ポリエステル樹脂:不飽和ポリエステル樹脂リゴラックM540(昭和電工株式会社製)100重量部、パーメックN(日油株式会社製)2重量部に調整されたマトリックス樹脂のドロップを80℃×1時間、150℃×3時間加熱し硬化させた。
 ビニルエステル樹脂:ビニルエステル樹脂リポキシR-806(昭和電工株式会社製)100重量部、パーキュアーO(日油株式会社製)2重量部に調整されたマトリックス樹脂のドロップを80℃×1時間、150℃×3時間加熱し硬化させた。
<擦過毛羽性>
 TM式摩擦抱合力試験機TM-200(大栄科学精器製作所(株)製)を用い、ジグザグに配置した鏡面クロムメッキステンレス針3本を介して50gの張力で、実施例及び比較例で得られた炭素繊維ストランドを1000回擦過させ(往復運動速度300回/分)、炭素繊維ストランドの毛羽たちの状態を下記基準で目視判定した。
 ◎:擦過前と同じく毛羽発生が全く見られなかった。
 ○:数本の毛羽は見られたものの、実用上全く問題ないレベルであった。
 △:毛羽立ちが多くみられ、糸切れも若干確認できた。
 ×:毛羽立ち及び単糸の糸切れが非常に多く確認できた。
<繊維保管性>
 実施例及び比較例で得られた炭素繊維ストランドを100℃で10日間保管し、保管後の炭素繊維ストランドの硬度と保管前の炭素繊維ストランドの硬度の差を求め、差が小さいほど経時硬化が少ないと判断した。炭素繊維ストランド(長さ:約50cm)の硬度は、風合い試験機(HANDLE-O-METERHOM-2 大栄科学精器製作所(株)製、スリット幅10mm)で測定した。
[エポキシ樹脂(A)]
JER1001:三菱化学株式会社製、固形ビスフェノールA型エポキシ樹脂、エポキシ当量450~500
JER834:三菱化学株式会社製、半固形ビスフェノールA型エポキシ樹脂、エポキシ当量230~270
JER828:三菱化学株式会社製、液状ビスフェノールA型エポキシ樹脂、エポキシ当量184~194
JER807:三菱化学株式会社製、液状ビスフェノールF型エポキシ樹脂、エポキシ当量160~175
JER157S65:三菱化学株式会社製、ビスフェノールAノボラック型エポキシ樹脂、エポキシ当量200~220
[不飽和ポリエステル(B)の合成]
(合成例B-1)
 無水マレイン酸0.9モルとビスフェノールAのエチレンオキサイド4モル付加物1.0モルを140℃で5時間反応させて、酸価2.5の不飽和ポリエステル(B-1)を得た。重量平均分子量(Mw)は3051であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.6であった。
(合成例B-2)
 無水マレイン酸0.8モルとビスフェノールAのエチレンオキサイド2モル付加物1.0モルを140℃で3時間反応させて、酸価3.5の不飽和ポリエステル(B-2)を得た。重量平均分子量(Mw)は1626であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.7であった。
(合成例B-3)
 フマル酸0.85モルとビスフェノールAのエチレンオキサイド3モル付加物1.0モルを170℃で8時間反応させて、酸価4.5の不飽和ポリエステル(B-3)を得た。重量平均分子量(Mw)は3444であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.9であった。
(合成例B-4)
 無水マレイン酸0.9モルとビスフェノールAのプロピレンオキサイド3モル付加物1.0モルを150℃で5時間反応させて、酸価2.0の不飽和ポリエステル(B-4)を得た。重量平均分子量(Mw)は2903であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.7であった。
[不飽和ポリエステルの合成]
(合成例b-1)
 無水マレイン酸1.0モルとビスフェノールAのエチレンオキサイド2モル付加物1.0モルを135℃で2時間反応させて、酸価60の不飽和ポリエステル(b-1)を得た。重量平均分子量(Mw)は3872であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.0であった。
(合成例b-2)
 無水マレイン酸1.0モルとビスフェノールAのエチレンオキサイド2モル付加物1.0モルを135℃で5時間反応させて、更に170℃で5時間反応させて、酸価6.3の不飽和ポリエステル(b-2)を得た。重量平均分子量(Mw)は5736であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.3であった。
(合成例b-3)
 無水マレイン酸1.0モルとビスフェノールAのエチレンオキサイド4モル付加物1.0モルを160℃で5時間反応させて、酸価10の不飽和ポリエステル(b-3)を得た。重量平均分子量(Mw)は4860であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.0であった。
(合成例b-4)
 無水マレイン酸1.0モルとビスフェノールAのエチレンオキサイド3モル付加物1.0モルを140℃で4時間反応させて、酸価30の不飽和ポリエステル(b-4)を得た。重量平均分子量(Mw)は4860であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.1であった。
[脂肪酸エステル(C)]
 オレイン酸オレイル:融点4℃
 オレイン酸ラウリル:融点11℃
 ステアリン酸イソオクチル:融点10℃
[実施例1]
 表1に示す処理剤の不揮発分組成になるように、JER1001、不飽和ポリエステル(B-1)、オレイン酸オレイル、POE(150)硬化ヒマシ油エーテル、PO/EO(25/75)ポリエーテル(分子量16000)を乳化装置に仕込み、撹拌下水を序々に加え転相乳化させ、不揮発分濃度30重量%のサイジング剤水分散体を得た。得られたサイジング剤水分散体を水で希釈して、不揮発分濃度3重量%のサイジング剤エマルジョンを調製し、サイジング剤未処理炭素繊維ストランド(繊度800tex、フィラメント数12000本)を浸漬・含浸させた後、105℃で15分間熱風乾燥させて、理論付着量が1.0%であるサイジング剤処理炭素繊維ストランドを得た。本サイジング剤及び本ストランドについて、前述の方法により各特性値を評価した。接着性と擦過毛羽性については、繊維保管性評価前の炭素繊維ストランドと繊維保管性評価後の炭素繊維ストランドを用いて、それぞれ評価した。その結果を表1に示した。
[実施例2~18、比較例1~9]
 実施例1において、表1~3に示す処理剤の不揮発分組成になるようにサイジング剤エマルジョンを調整した以外は実施例1と同様にして、サイジング剤処理炭素繊維ストランドを得て、各特性値を評価した。各特性値の評価結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1~3から明らかなように、実施例のサイジング剤は長期安定性に優れている。また、実施例の繊維ストランドは、マトリックス樹脂との接着性に優れ、毛羽発生も抑制されている。さらに、繊維保管性に優れ、繊維保管後においても接着性に優れ、毛羽発生が抑制されている。
 マトリックス樹脂を強化繊維で補強した繊維強化複合材料は、自動車用途、航空・宇宙用途、スポーツ・レジャー用途、一般産業用途等に用いられる。強化繊維としては、炭素繊維、ガラス繊維、セラミック繊維などの各種無機繊維、アラミド繊維、ポリアミド繊維、ポリエチレン繊維などの各種有機繊維が挙げられる。本発明のサイジング剤は、マトリックス樹脂を補強するための強化繊維に対して、好適に使用することができる。

Claims (12)

  1.  エポキシ樹脂(A)、酸価5未満の不飽和ポリエステル(B)及び脂肪酸エステル(C)を含有する、強化繊維用サイジング剤。
  2.  前記エポキシ樹脂(A)100重量部に対して、前記不飽和ポリエステル(B)が30~300重量部であり、前記エポキシ樹脂(A)と前記不飽和ポリエステル(B)との合計100重量部に対して、前記脂肪酸エステル(C)が1~15重量部である、請求項1に記載の強化繊維用サイジング剤。
  3.  前記不飽和ポリエステル(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2~2.1である、請求項1又は2に記載の強化繊維用サイジング剤。
  4.  前記不飽和ポリエステル(B)が、不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)との縮合物を含む、請求項1~3のいずれかに記載の強化繊維用サイジング剤。
  5.  前記不飽和ポリエステル(B)が、不飽和二塩基酸(b1)とビスフェノール類のアルキレンオキサイド付加物(b2)とを下記式(I)を満たす割合で含む反応性成分を反応させて得られたものである、請求項1~4のいずれかに記載の強化繊維用サイジング剤。
     不飽和二塩基酸(b1)のモル数<ビスフェノール類のアルキレンオキサイド付加物(b2)のモル数   (I)
  6.  前記不飽和ポリエステル(B)の酸価が4.5以下である、請求項1~5のいずれかに記載の強化繊維用サイジング剤。
  7.  前記脂肪酸エステル(C)の融点が5℃以下である、請求項1~6のいずれかに記載の強化繊維用サイジング剤。
  8.  前記脂肪酸エステル(C)が、炭素数10~24の不飽和脂肪酸と炭素数8~20の一価アルコールがエステル結合した構造を持つエステルである、請求項1~7のいずれかに記載の強化繊維用サイジング剤。
  9.  サイジング剤の不揮発分に占める、前記エポキシ樹脂(A)と前記不飽和ポリエステル(B)と前記脂肪酸エステル(C)の合計の重量割合が、70重量%以上である、請求項1~8のいずれかに記載の強化繊維用サイジング剤。
  10.  原料強化繊維ストランドに対して、請求項1~9のいずれかに記載の強化繊維用サイジング剤を付着させた、強化繊維ストランド。
  11.  マトリックス樹脂と、請求項10に記載の強化繊維ストランドとを含む、繊維強化複合材料。
  12.  前記マトリックス樹脂が熱硬化性樹脂である、請求項11に記載の繊維強化複合材料。
PCT/JP2014/070302 2013-09-27 2014-08-01 強化繊維用サイジング剤及びその用途 WO2015045618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015504801A JP5730457B1 (ja) 2013-09-27 2014-08-01 強化繊維用サイジング剤及びその用途
KR1020167005031A KR102190010B1 (ko) 2013-09-27 2014-08-01 강화섬유용 사이징제 및 그 용도
CN201480039921.7A CN105378176B (zh) 2013-09-27 2014-08-01 强化纤维用上浆剂及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013200699 2013-09-27
JP2013-200699 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045618A1 true WO2015045618A1 (ja) 2015-04-02

Family

ID=52742774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070302 WO2015045618A1 (ja) 2013-09-27 2014-08-01 強化繊維用サイジング剤及びその用途

Country Status (5)

Country Link
JP (1) JP5730457B1 (ja)
KR (1) KR102190010B1 (ja)
CN (1) CN105378176B (ja)
TW (1) TWI648451B (ja)
WO (1) WO2015045618A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004523A1 (ja) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 サイジング剤、強化繊維束、繊維強化樹脂成形材料及び繊維強化複合材料
JP2020002518A (ja) * 2018-06-26 2020-01-09 三洋化成工業株式会社 繊維用集束剤、繊維束、繊維製品、プリプレグ及び成形体
JP2021055200A (ja) * 2019-09-27 2021-04-08 竹本油脂株式会社 炭素繊維用サイズ剤、及び炭素繊維
CN112679717A (zh) * 2020-12-04 2021-04-20 吉林乾仁新材料有限公司 一种多用途自乳化阴离子型不饱和聚酯碳纤维上浆剂的制备方法及其产品和应用
WO2022092194A1 (ja) * 2020-10-30 2022-05-05 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
EP4112807A1 (en) * 2021-06-28 2023-01-04 Formosa Plastics Corporation Sizing agent composition, carbon fiber material and composite material
US11787913B2 (en) * 2016-10-28 2023-10-17 Mitsubishi Chemical Corporation Sizing agent for carbon fibers, aqueous dispersion of sizing agent for carbon fibers, and sizing agent-adhered carbon fiber bundle
US11817342B2 (en) 2021-10-25 2023-11-14 Dly Technologies Inc. Wafer carrier, wafer access device and wafer carrier and access assembly having the same
CN114263043B (zh) * 2021-08-27 2024-03-22 台湾塑胶工业股份有限公司 用于碳纤维的上浆剂
JP7480244B2 (ja) 2021-11-01 2024-05-09 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484891B (zh) * 2018-03-12 2020-05-08 吉林乾仁新材料有限公司 自组装自乳化自稳定聚酯型高性能纤维界面改性助剂的制备及产品和应用
CN109180476B (zh) * 2018-08-27 2020-12-01 西南交通大学 一种高碳醇酯及其制备方法
DE112019005802T5 (de) * 2018-11-20 2021-08-26 Dic Corporation Faserschlichtemittel, Fasermaterial, Formmasse und Formteil
CN111005229B (zh) * 2019-12-27 2021-03-02 鸿羽腾风材料科技有限公司 一种碳纤维上浆剂及其制备方法
JP7235925B1 (ja) * 2022-05-16 2023-03-08 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP7220323B1 (ja) * 2022-05-16 2023-02-09 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392780A (ja) * 1986-09-30 1988-04-23 竹本油脂株式会社 炭素繊維用サイジング剤
JPS63315671A (ja) * 1987-06-16 1988-12-23 竹本油脂株式会社 炭素繊維用サイジング剤
JPH07505658A (ja) * 1991-07-12 1995-06-22 ピーピージー インダストリーズ インコーポレイテッド 安定性の良好な乳化エポキシを有するグラスファイバー用化学処理組成物および処理されたグラスファイバー
JPH07197381A (ja) * 1993-12-28 1995-08-01 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JPH08120069A (ja) * 1994-09-02 1996-05-14 Mitsui Toatsu Chem Inc 不飽和ポリエステル樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352796A (en) 1976-10-19 1978-05-13 Sanyo Chemical Ind Ltd Surface treating resin composition for carbon fiber and composite carbon fiber material containing said treated fiber
JPS5943298B2 (ja) 1981-12-16 1984-10-20 東レ株式会社 炭素繊維複合材料
JPS60104578A (ja) * 1983-11-05 1985-06-08 竹本油脂株式会社 炭素繊維用サイジング剤
JPH0718085B2 (ja) * 1987-04-27 1995-03-01 竹本油脂株式会社 炭素繊維用サイジング剤
JP3156990B2 (ja) * 1995-07-17 2001-04-16 竹本油脂株式会社 炭素繊維のサイジング方法
CN100339421C (zh) * 2003-01-30 2007-09-26 东邦泰纳克丝株式会社 碳纤维增强树脂复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392780A (ja) * 1986-09-30 1988-04-23 竹本油脂株式会社 炭素繊維用サイジング剤
JPS63315671A (ja) * 1987-06-16 1988-12-23 竹本油脂株式会社 炭素繊維用サイジング剤
JPH07505658A (ja) * 1991-07-12 1995-06-22 ピーピージー インダストリーズ インコーポレイテッド 安定性の良好な乳化エポキシを有するグラスファイバー用化学処理組成物および処理されたグラスファイバー
JPH07197381A (ja) * 1993-12-28 1995-08-01 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JPH08120069A (ja) * 1994-09-02 1996-05-14 Mitsui Toatsu Chem Inc 不飽和ポリエステル樹脂

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11787913B2 (en) * 2016-10-28 2023-10-17 Mitsubishi Chemical Corporation Sizing agent for carbon fibers, aqueous dispersion of sizing agent for carbon fibers, and sizing agent-adhered carbon fiber bundle
JP7281352B2 (ja) 2018-06-26 2023-05-25 三洋化成工業株式会社 繊維用集束剤、繊維束、繊維製品、プリプレグ及び成形体
JP2020002518A (ja) * 2018-06-26 2020-01-09 三洋化成工業株式会社 繊維用集束剤、繊維束、繊維製品、プリプレグ及び成形体
CN112292488B (zh) * 2018-06-29 2023-12-29 三菱化学株式会社 上浆剂、增强纤维束、纤维增强树脂成型材料及纤维增强复合材料
CN112292488A (zh) * 2018-06-29 2021-01-29 三菱化学株式会社 上浆剂、增强纤维束、纤维增强树脂成型材料及纤维增强复合材料
US20210108363A1 (en) * 2018-06-29 2021-04-15 Mitsubishi Chemical Corporation Sizing agent, reinforcement fiber tow, fiber-reinforced resin-molding material, and fiber-reinforced composite material
WO2020004523A1 (ja) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 サイジング剤、強化繊維束、繊維強化樹脂成形材料及び繊維強化複合材料
JPWO2020004523A1 (ja) * 2018-06-29 2020-07-02 三菱ケミカル株式会社 サイジング剤、強化繊維束、繊維強化樹脂成形材料及び繊維強化複合材料
JP2021055200A (ja) * 2019-09-27 2021-04-08 竹本油脂株式会社 炭素繊維用サイズ剤、及び炭素繊維
JP7343699B2 (ja) 2020-10-30 2023-09-12 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
JPWO2022092194A1 (ja) * 2020-10-30 2022-05-05
WO2022092194A1 (ja) * 2020-10-30 2022-05-05 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
CN112679717A (zh) * 2020-12-04 2021-04-20 吉林乾仁新材料有限公司 一种多用途自乳化阴离子型不饱和聚酯碳纤维上浆剂的制备方法及其产品和应用
JP2023008888A (ja) * 2021-06-28 2023-01-19 臺灣塑膠工業股▲ふん▼有限公司 サイジング剤組成物、炭素繊維材料及び複合材料
EP4112807A1 (en) * 2021-06-28 2023-01-04 Formosa Plastics Corporation Sizing agent composition, carbon fiber material and composite material
JP7425833B2 (ja) 2021-06-28 2024-01-31 臺灣塑膠工業股▲ふん▼有限公司 サイジング剤組成物、炭素繊維材料及び複合材料
US11898306B2 (en) 2021-06-28 2024-02-13 Formosa Plastics Corporation Sizing agent composition, carbon fiber material and composite material
CN114263043B (zh) * 2021-08-27 2024-03-22 台湾塑胶工业股份有限公司 用于碳纤维的上浆剂
US11817342B2 (en) 2021-10-25 2023-11-14 Dly Technologies Inc. Wafer carrier, wafer access device and wafer carrier and access assembly having the same
JP7480244B2 (ja) 2021-11-01 2024-05-09 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料

Also Published As

Publication number Publication date
JP5730457B1 (ja) 2015-06-10
CN105378176B (zh) 2017-05-17
JPWO2015045618A1 (ja) 2017-03-09
TWI648451B (zh) 2019-01-21
KR102190010B1 (ko) 2020-12-11
TW201525233A (zh) 2015-07-01
CN105378176A (zh) 2016-03-02
KR20160061319A (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
JP5730457B1 (ja) 強化繊維用サイジング剤及びその用途
EP1403420B1 (en) Sizing agent for carbon fiber, aqeous dispersion thereof; carbon fiber treated by sizing; sheet;form object comprising the carbon fiber; and carbon fiber;reinforced composite material
JP2016151069A (ja) 強化繊維用サイジング剤及びその用途
JP5459815B1 (ja) 強化繊維用サイジング剤及びその用途
CN103748281B (zh) 碳纤维用上浆剂、其水分散液、附着有上浆剂的碳纤维束、片状物及碳纤维强化复合材
JP4887323B2 (ja) 繊維用集束剤
JPS60122756A (ja) ポリマ−性材料補強用ガラス繊維
JP2010126832A (ja) 繊維用集束剤
JP4887209B2 (ja) 炭素繊維用サイズ剤、その水分散液、炭素繊維、及び炭素繊維強化複合材料
JPWO2013042367A1 (ja) 繊維用集束剤組成物
CN108350645A (zh) 连续碳纤维束、片状模塑料和使用其进行成型的纤维增强复合材料
WO2018163739A1 (ja) アクリル繊維処理剤及びその用途
JP2016160549A (ja) 炭素繊維用サイジング剤、炭素繊維束、シート状基材及び炭素繊維強化複合材
JP7147107B1 (ja) 強化繊維用サイジング剤及びその用途
WO2023100901A1 (ja) 無機繊維用サイジング剤、及び無機繊維
JP6819792B2 (ja) サイジング剤、強化繊維束、繊維強化樹脂成形材料及び繊維強化複合材料
WO2014196372A1 (ja) 強化繊維用サイジング剤及びその用途
JP7269781B2 (ja) 繊維用集束剤、繊維束、繊維製品、プリプレグ及び成形体
JPS60104578A (ja) 炭素繊維用サイジング剤
CN107614784B (zh) 强化纤维用上浆剂及其用途
JP7214933B1 (ja) 強化繊維用サイジング剤及びその用途
JP4887208B2 (ja) 炭素繊維用サイズ剤、その水分散液、炭素繊維、及び炭素繊維強化複合材料
JP2002088655A (ja) 炭素繊維用サイジング剤及び炭素繊維のサイジング方法
JP2014162999A (ja) 炭素繊維束、およびそれを用いた炭素繊維強化複合材料
JP2006124877A (ja) 無機繊維用集束剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015504801

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167005031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848312

Country of ref document: EP

Kind code of ref document: A1