WO2018163739A1 - アクリル繊維処理剤及びその用途 - Google Patents

アクリル繊維処理剤及びその用途 Download PDF

Info

Publication number
WO2018163739A1
WO2018163739A1 PCT/JP2018/005172 JP2018005172W WO2018163739A1 WO 2018163739 A1 WO2018163739 A1 WO 2018163739A1 JP 2018005172 W JP2018005172 W JP 2018005172W WO 2018163739 A1 WO2018163739 A1 WO 2018163739A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
acrylic fiber
treatment agent
acetylene
amino
Prior art date
Application number
PCT/JP2018/005172
Other languages
English (en)
French (fr)
Inventor
吉田 昌彦
武圭 中山
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to CN201880011727.6A priority Critical patent/CN110291245B/zh
Priority to JP2019504414A priority patent/JP6535149B2/ja
Priority to KR1020197025374A priority patent/KR102405528B1/ko
Publication of WO2018163739A1 publication Critical patent/WO2018163739A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/342Amino-carboxylic acids; Betaines; Aminosulfonic acids; Sulfo-betaines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to an acrylic fiber treating agent and its use. More specifically, the treatment agent used when producing the acrylic fiber, the acrylic fiber for producing carbon fiber using the treatment agent (hereinafter sometimes referred to as a precursor), and the carbon fiber using the treatment agent It relates to a manufacturing method.
  • Carbon fibers are widely used for aerospace applications, sports applications, general industrial applications and the like as reinforcing fibers for composite materials with plastics called matrix resins, utilizing their excellent mechanical properties.
  • a method for producing carbon fibers first, an acrylic fiber for producing carbon fibers (sometimes referred to as a precursor) is produced (this precursor production process may be referred to as a yarn-making process). This precursor is converted to flame-resistant fibers in an oxidizing atmosphere at 200 to 300 ° C. (this process may be referred to as a flame-resistant treatment process hereinafter), followed by carbonization in an inert atmosphere at 300 to 2000 ° C.
  • the precursor is manufactured through a drawing process that is drawn at a high magnification even when compared with a normal acrylic fiber. At that time, the fibers tend to stick together and are not uniformly stretched at a high magnification, resulting in a non-uniform precursor.
  • the carbon fiber obtained by firing such a precursor has a problem that sufficient strength cannot be obtained. Further, when the precursor is fired, there is a problem that the single fibers are fused with each other, and the quality and quality of the obtained carbon fibers are deteriorated.
  • a silicone-based treating agent having a low fiber-to-fiber friction in a wet and high temperature environment and having excellent releasability particularly Many techniques have been proposed for imparting an amino-modified silicone treating agent that can further improve heat resistance by a crosslinking reaction by heat to a precursor (see Patent Documents 1 and 2).
  • Patent Documents 1 and 2 When a precursor produced by applying such a treatment agent is stored for a long period of time, there is a problem of causing deterioration of the precursor over time. Therefore, when carbon fiber is produced by firing a precursor that has been stored for a long period of time, there is a problem that fluff is generated in the firing step and the strength of the carbon fiber after firing is reduced.
  • the object of the present invention is to treat acrylic fibers that can suppress deterioration of the acrylic fibers for carbon fiber production when the acrylic fibers for carbon fiber production produced by applying a treatment agent are stored for a long period of time.
  • An agent, an acrylic fiber for producing carbon fiber using the treatment agent, and a method for producing carbon fiber using the treatment agent are provided.
  • the present inventors have found that the deterioration when the precursor produced by applying the treatment agent is stored for a long time is attributed to the amino group of the amino-modified silicone contained in the treatment agent. And the penetration of the emulsifier used to emulsify the amino-modified silicone into the fiber. If the amino-modified silicone (A), the Bronsted acid compound (B), and the acetylene surfactant (C) are used in combination, the precursor is deteriorated due to the amino group and the emulsifier penetrates into the fiber. The inventors have found that the deterioration of the precursor can be suppressed, and have reached the present invention.
  • the acrylic fiber treatment agent of the present invention contains an amino-modified silicone (A), a Bronsted acid compound (B), and an acetylene surfactant (C).
  • the ratio of the Bronsted acid compound (B) to 0.01 mol of the amino group of the amino-modified silicone (A) is preferably 0.01 to 2.5 molar equivalents.
  • the ratio of the acetylenic surfactant (C) to the amino-modified silicone (A) 100 parts by weight is preferably 0.1 to 12 parts by weight.
  • the acetylene-based surfactant (C) is selected from acetylene alcohol (C1), acetylene diol (C2), a compound obtained by adding alkylene oxide to acetylene alcohol (C3), and a compound obtained by adding alkylene oxide to acetylene diol (C4).
  • acetylene alcohol (C1) acetylene alcohol (C1), acetylene diol (C2), a compound obtained by adding alkylene oxide to acetylene alcohol (C3), and a compound obtained by adding alkylene oxide to acetylene diol (C4).
  • C1 acetylene alcohol
  • C3 acetylene diol
  • C4 a compound obtained by adding alkylene oxide to acetylene diol
  • the acetylene alcohol (C1) is preferably a compound represented by the following general formula (1).
  • the acetylene diol (C2) is preferably a compound represented by the following general formula (2).
  • the compound (C3) obtained by adding an alkylene oxide to the acetylene alcohol is preferably a compound represented by the following general formula (3).
  • the compound (C4) obtained by adding an alkylene oxide to the acetylene diol is preferably a compound represented by the following general formula (4).
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 7 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • AO is a carbon atom.
  • n is a number of 1 to 50.
  • R 3 , R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 7 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms, m and n are each independently It is a number from 1 to 50.
  • the weight ratio of the amino-modified silicone (A) in the nonvolatile content of the treatment agent is preferably 40 to 95% by weight.
  • the treatment agent for acrylic fibers of the present invention preferably further contains polyoxyalkylene alkyl ether (D).
  • the polyoxyalkylene alkyl ether (D) preferably contains a compound represented by the following general formula (5).
  • R 8 represents an alkyl group having 6 to 22 carbon atoms
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms
  • j is independently a number of 1 to 50.
  • the total ratio of the acetylenic surfactant (C) and the polyoxyalkylene alkyl ether (D) to 100 parts by weight of the amino-modified silicone (A) is preferably 5 to 50 parts by weight.
  • the carbon fiber-producing acrylic fiber of the present invention is obtained by adhering the above-mentioned acrylic fiber treating agent to the raw acrylic fiber of the carbon fiber-producing acrylic fiber.
  • the method for producing carbon fiber of the present invention comprises a spinning process in which the above fiber treatment agent is attached to a raw acrylic fiber for producing carbon fiber, and a flame resistant fiber in an oxidizing atmosphere at 200 to 300 ° C. And a carbonization treatment step of carbonizing the flameproof fiber in an inert atmosphere at 300 to 2000 ° C.
  • the acrylic fiber treatment agent of the present invention can suppress deterioration of the acrylic fiber for carbon fiber production when the carbon fiber production acrylic fiber produced by applying the treatment agent is stored for a long period of time. If the acrylic fiber for carbon fiber production of the present invention is used, even if an acrylic fiber bundle stored for a long period of time is used, generation of fluff in the firing process can be suppressed, and high strength and high quality carbon fiber can be obtained. According to the carbon fiber manufacturing method of the present invention, even when an acrylic fiber bundle stored for a long period of time is used, generation of fluff in the firing step can be suppressed, and high-strength and high-quality carbon fibers can be obtained.
  • the treatment agent of the present invention essentially contains an amino-modified silicone (A).
  • the amino group (including an organic group having an amino group) that is a modified group of the amino-modified silicone may be bonded to the side chain of the silicone that is the main chain, or may be bonded to the terminal. It may be bonded to both, but is preferably bonded to a side chain (having an amino group in the side chain) from the viewpoint of fiber protection in the flameproofing treatment step.
  • the amino group may be any of monoamine type, diamine type, and polyamine type, and both may coexist in one molecule. A monoamine type or a diamine type is preferable from the viewpoints of imparting it uniformly and protecting the fiber by forming a film of the treatment agent.
  • the amino-modified silicone (A) may be used alone or in combination of two or more.
  • the kinematic viscosity at 25 ° C. of the amino-modified silicone (A) is preferably 50 to 30000 mm 2 / s from the viewpoint of exerting the effect of the present application.
  • the kinematic viscosity is less than 50 mm 2 / s, the treatment agent is likely to be scattered, and when the aqueous emulsification is performed, the solution stability of the emulsion is deteriorated, and the treatment agent may not be uniformly applied to the fibers. . As a result, fiber fusion may not be prevented.
  • the kinematic viscosity is more than 30000 mm 2 / s, gum-up due to adhesiveness may be a problem.
  • the upper limit value of the kinematic viscosity is preferable in the order of 25000 mm 2 / s, 20000 mm 2 / s, 10000 mm 2 / s, 5000 mm 2 / s, 4000 mm 2 / s, 3000 mm 2 / s, and 2500 mm 2 / s.
  • the amino equivalent of the amino-modified silicone (A) is preferably from 300 to 10,000 g / mol, more preferably from 500 to 10,000 g / mol, and even more preferably from 1,000 to 9000 g / mol from the viewpoint of preventing sticking and fusion between fibers.
  • the amino equivalent is less than 300 g / mol, the treatment agent is thermally crosslinked at the initial stage of the flameproofing treatment step, and thus the treatment agent may not be uniformly applied to the inside of the fiber bundle.
  • the amino equivalent is 10,000 g / mol or more, the fiber may not be protected because thermal crosslinking of the treatment agent does not occur later in the flameproofing treatment step.
  • the amino equivalent means the mass of the siloxane skeleton per amino group or ammonium group.
  • the notation unit g / mol is a value converted per 1 mol of amino group or ammonium group. Therefore, the smaller the amino equivalent value, the higher the ratio of amino groups or ammonium groups in the molecule.
  • amino-modified silicone (A) a plurality of amino-modified silicones having different amino equivalents and different kinematic viscosities (25 ° C.) may be used in combination.
  • the amino equivalent means the amino equivalent of the whole amino-modified silicone (mixture)
  • the kinematic viscosity at 25 ° C. means the kinematic viscosity of the whole amino-modified silicone (mixture).
  • Examples of the amino-modified silicone include compounds represented by the following general formula (6).
  • R 9 represents an alkyl group or aryl group having 1 to 20 carbon atoms.
  • R 10 is a group represented by the following chemical formula (7).
  • R 11 represents R 9 , R 10 or —OR 17 (R 17 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • P is 10 ⁇ p ⁇ 10000, and q is 0.1 ⁇ q ⁇ 1000.)
  • R 9 represents an alkyl group or aryl group having 1 to 20 carbon atoms.
  • R 9 is preferably an alkyl group or aryl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and still more preferably a methyl group.
  • R ⁇ 9 > in Formula (6) may be the same, and may differ.
  • R 10 is a group represented by the following general formula (7).
  • R 11 is a group represented by R 9 , R 10 or —OR 17 , and preferably R 9 .
  • R ⁇ 11 > in Formula (6) may be the same, and may differ.
  • R 17 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • p is a number of 10 to 10,000, preferably 50 to 5000, and more preferably 100 to 2000.
  • q is a number of 0.1 to 1000, preferably 0.5 to 500, and more preferably 1 to 100.
  • R 12 and R 14 are each independently an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms.
  • R 13 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group, preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, Preferably it is a hydrogen atom.
  • r is a number from 0 to 6, preferably from 0 to 3, and more preferably from 0 to 1.
  • the fiber treatment agent of this invention contains a Bronsted acid compound (B) essential.
  • a Bronsted acid compound (B) refers to a proton donor, and examples thereof include carboxylic acid compounds, inorganic acids, sulfonic acid compounds, and phosphonic acid compounds.
  • the Bronsted acid compound (B) may be used alone or in combination of two or more.
  • a carboxylic acid compound refers to a compound containing a carboxyl group in the molecular structure. Although it does not specifically limit as a carboxylic acid compound, Aliphatic monocarboxylic acid, aliphatic polycarboxylic acid, aromatic carboxylic acid, aromatic polycarboxylic acid, an amino acid, etc. are mentioned.
  • Aliphatic monocarboxylic acids include acetic acid, lactic acid, butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristic acid, pentadecanoic acid, palmitic acid , Palmitoleic acid, isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, elca
  • acids tetracosanoic acid, isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, mel
  • Aliphatic polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, undencanic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid , Pentadecanedioic acid, polyoxyalkylene dicarboxylic acid, polyoxyalkylene alkyl ether dicarboxylic acid and derivatives thereof.
  • aromatic monocarboxylic acids examples include benzoic acid, cinnamic acid, naphthoic acid, toluic acid, and derivatives thereof.
  • aromatic polycarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid and pyromellitic acid, and derivatives thereof.
  • An amino acid is a compound having both an amino group and a carboxyl group in the molecular structure, and is alanine, valine, leucine, isoleucine, phenylalanine, tryptophan, methionine, proline, glycine, tyrosine, serine, threonine, cysteine, asparagine, glutamine. Lysine, arginine, histidine, aspartic acid, glutamic acid and the like.
  • An inorganic acid refers to an acid containing a nonmetallic atom as a component.
  • the inorganic acid include sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid and the like.
  • the sulfonic acid compound include alkylbenzene sulfonic acid, polyoxyalkylene alkyl ether sulfonic acid, higher fatty acid amide sulfonic acid, alkyl sulfuric acid monoester, polyoxyalkylene sulfuric acid monoester and the like.
  • Examples of the phosphonic acid compound include alkyl phosphonic acid, aromatic phosphonic acid, polyoxyalkylene alkyl ether phosphonic acid, and alkyl phosphonic acid alkyl phosphoric acid monoester.
  • the pKa of the Bronsted compound (B) is preferably 0 to 7, and more preferably 1 to 6.5 from the viewpoint of corrosion and safety of equipment and suppression of cross-linking over time due to the amino group of the amino-modified silicone. 2 to 6 are more preferable.
  • the acrylic fiber treatment agent of the present invention essentially contains an acetylene surfactant (C).
  • acetylene surfactant (C) By using the Bronsted acid compound (B) and the acetylene surfactant (C) in combination with the amino-modified silicone, it is possible to suppress cross-linking over time due to the amino group of the amino-modified silicone, It is speculated that the emulsifier during aqueous emulsification can be prevented from penetrating into the fiber structure, and as a result, the deterioration of the precursor fiber when the precursor fiber is stored for a long period of time can be suppressed.
  • acetylene surfactant When other surfactants are used without using acetylene surfactant (C), the penetration of emulsifier into the fiber structure is suppressed even when Bronsted acid compound (B) is used. As a result, when carbon fiber is produced using the precursor fiber when the precursor fiber is stored for a long period of time, it is assumed that the strength decreases.
  • the acetylene surfactant is a compound having a acetylene group and a hydrophilic group such as a hydroxyl group in the molecular structure.
  • the acetylene-based surfactant (C) may be used alone or in combination of two or more.
  • the acetylene surfactant (C) is selected from acetylene alcohol (C1), acetylene diol (C2), a compound (C3) obtained by adding alkylene oxide to acetylene alcohol, and a compound (C4) obtained by adding alkylene oxide to acetylene diol.
  • acetylene alcohol C1
  • acetylene diol C2
  • a compound (C3) obtained by adding alkylene oxide to acetylene alcohol e.g., acetylene diol
  • a compound (C3) obtained by adding an alkylene oxide to acetylene alcohol and a compound (C4) obtained by adding an alkylene oxide to acetylene diol are preferable, and a compound (C4) obtained by adding an alkylene oxide to acetylene diol is more preferable.
  • Acetylene alcohol (C1) is a compound having an acetylene group and one hydroxyl group in the molecular structure.
  • the acetylene alcohol (C1) is preferably a compound represented by the general formula (1).
  • Acetylene diol (C2) is a compound having an acetylene group and two hydroxyl groups in the molecular structure.
  • Acetylene diol (C2) is preferably a compound represented by the general formula (2).
  • the compound (C3) obtained by adding alkylene oxide to acetylene alcohol is a compound obtained by adding alkylene oxide to the hydroxyl group of acetylene alcohol.
  • the compound (C3) obtained by adding alkylene oxide to acetylene alcohol is preferably a compound represented by the above general formula (3).
  • the compound (C4) obtained by adding an alkylene oxide to acetylene diol is a compound obtained by adding an alkylene oxide to at least one hydroxyl group of acetylene diol.
  • the compound (C4) obtained by adding alkylene oxide to acetylenic diol is preferably a compound represented by the above general formula (4).
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group may be linear or may have a branched structure.
  • the alkyl group preferably has 1 to 7 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 5 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group may be linear or may have a branched structure.
  • the alkyl group preferably has 1 to 7 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 5 carbon atoms.
  • R 7 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably 1 to 2 carbon atoms.
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms. That is, it represents an oxyethylene group, an oxypropylene group or an oxybutylene group.
  • the oxyalkylene group an oxyethylene group and an oxypropylene group are preferable, and an oxyethylene group is more preferable.
  • the number of AO constituting m may be one, or two or more. In the case of two or more types, any of a block adduct, an alternating adduct, and a random adduct may be used.
  • n is a number from 1 to 50. n is preferably 1 to 45, more preferably 1 to 40, and still more preferably 1 to 35.
  • m and n are each independently a number of 1 to 50. m and n are each independently preferably 1 to 45, more preferably 1 to 40, and still more preferably 1 to 35.
  • the HLB of the acetylene surfactant (C) is preferably 4 to 25, more preferably 5 to 20, and further preferably 6 to 18 from the viewpoint of emulsification.
  • the HLB in the present invention can be experimentally determined by the atlas method proposed by Griffin et al.
  • the acetylene surfactant (C) is a known compound and can be easily produced by a known method.
  • a compound can be obtained by a method called a Reppe reaction in which a ketone or an aldehyde is reacted with acetylene in the presence of a catalyst such as an alkali or a metal compound under pressure.
  • the compound (C3) or the compound (C4) is an acetylene alcohol (C1) or acetylene diol (C2), and an alkylene oxide (for example, ethylene oxide and / or propylene oxide) is converted to an alkali or metal compound catalyst. It can be obtained by addition polymerization in the presence.
  • the acrylic fiber treating agent of the present invention contains the amino-modified silicone (A), Bronsted acid compound (B), and acetylene surfactant (C).
  • the weight ratio of the amino-modified silicone (A) in the nonvolatile content of the treatment agent is preferably 40 to 95% by weight, more preferably 45 to 94% by weight, still more preferably 50 to 92% by weight, and particularly preferably 55 to 90%. % By weight.
  • the weight ratio is less than 40% by weight, the heat resistance of the treatment agent may be insufficient in the flameproofing treatment step.
  • the weight ratio exceeds 95% by weight, a stable aqueous emulsion may not be obtained when the treatment agent is water-based emulsified.
  • the weight ratio of the acetylene surfactant (C) in the non-volatile content of the treatment agent is preferably 0.1 to 20% by weight, more preferably 0.2 to 15% by weight, and still more preferably 0.3 to 13% by weight. %, Particularly preferably 0.5 to 10% by weight. If the weight ratio is less than 0.1% by weight, it may not be possible to suppress the penetration of the emulsifier into the fiber structure. On the other hand, when the weight ratio exceeds 20% by weight, stable operability may not be obtained.
  • the ratio of the acetylenic surfactant (C) is 0.1 to 12 parts by weight with respect to 100 parts by weight of the amino-modified silicone (A).
  • the ratio is preferably 0.2 to 11 parts by weight, more preferably 0.2 to 10 parts by weight, and still more preferably 0.5 to 8 parts by weight.
  • this ratio is less than 0.1 part by weight, the penetration of the emulsifier into the fiber structure may not be suppressed.
  • the ratio is more than 12 parts by weight, stable operability may not be obtained.
  • the proportion of the Bronsted acid compound (B) is 0.01 to 2 with respect to 1 mol of the amino group of the amino-modified silicone (A) from the viewpoint of suppressing the cross-linking over time due to the amino group of the amino-modified silicone. .5 molar equivalents are preferred.
  • the ratio is preferably 0.05 to 2.25 molar equivalent, more preferably 0.1 to 2.0 molar equivalent, and still more preferably 0.12 to 1.5 molar equivalent. When this ratio is less than 0.01 equivalent, the cross-linking over time due to the amino group of the amino-modified silicone may not be suppressed. On the other hand, when the ratio is more than 2.5 equivalents, gumming up in the process is promoted, and stable operability may not be obtained.
  • polyoxyalkylene alkyl ether (D) It is preferable that the processing agent of this invention contains polyoxyalkylene alkyl ether (D) from the point which can improve emulsifiability.
  • the polyoxyalkylene alkyl ether is a compound having a structure in which an alkylene oxide is added to a saturated aliphatic alcohol.
  • R 8 is an alkyl group
  • AO is an oxy of 2 to 4 carbon atoms.
  • An alkylene group, j is one or more.
  • Polyoxyalkylene alkyl ethers (D) may be used singly or in combination of two or more.
  • polyoxyalkylene alkyl ether examples include polyoxyethylene hexyl ether, polyoxyethylene heptyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene Polyoxyalkylene linear alkyl ethers such as tetradecyl ether and polyoxyethylene cetyl ether; polyoxyalkylene branched primary alkyls such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene isocetyl ether and polyoxyethylene isostearyl ether Ether: polyoxyethylene 1-hexyl hexyl ether, polyoxyethylene 1-octyl hexyl ether, poly Xylethylene 1-hexyl octyl ether, polyoxyethylene 1-pentyl heptyl ether, polyoxyethylene 1-heptyl pentyl ether, polyoxyethylene
  • the polyoxyalkylene alkyl ether (D) essentially contains the compound represented by the general formula (5) from the viewpoint of exerting the effect of the present application.
  • R 8 is an alkyl group having 6 to 22 carbon atoms. If R 8 carbon atoms in the hydrocarbon group and R 8 other than the alkyl group of 22 than by polyoxyalkylene alkyl ether is tar in the oxidization step, drawback of precursor is converted to flame-resistant structure Thus, the strength of the carbon fiber may be reduced.
  • R 8 preferably has 8 to 20 carbon atoms, more preferably 10 to 18 carbon atoms, and still more preferably 10 to 16 carbon atoms. The carbon number of R 8 may be distributed, and R 8 may be linear or branched.
  • A represents an alkylene group having 2 to 4 carbon atoms
  • AO represents an oxyalkylene group. That is, it represents an oxyethylene group, an oxypropylene group or an oxybutylene group.
  • the oxyalkylene group an oxyethylene group and an oxypropylene group are preferable, and an oxyethylene group is more preferable.
  • J which is the number of repeating oxyalkylene groups, is a number of 1 to 50, preferably 2 to 40, more preferably 3 to 30.
  • n is more than 30, when used in combination with the amino-modified silicone, the treatment agent may not be uniformly applied to the inside of the fiber bundle in the flameproofing treatment step, so that fusion may occur.
  • the AO constituting the polyoxyalkylene group (AO) j may be one type or two or more types. In the case of two or more types, any of a block adduct, an alternating adduct, and a random adduct may be used. J in AO is the number of added moles of the oxyalkylene group.
  • the weight ratio of the polyoxyalkylene alkyl ether (D) to the nonvolatile content of the treating agent is preferably 2 to 25% by weight. % By weight is more preferable, and 10 to 20% by weight is more preferable. When the weight ratio is less than 2% by weight, a stable aqueous emulsion may not be obtained when the treatment agent is water-based emulsified. On the other hand, when the weight ratio exceeds 25% by weight, the heat resistance of the treatment agent may be insufficient in the flameproofing treatment step.
  • the total ratio of the acetylene surfactant (C) and the polyoxyalkylene alkyl ether (D) is 5 to 50 with respect to 100 parts by weight of the amino-modified silicone (A). It is preferable that it is a weight part. When the ratio is less than 5 parts by weight, the emulsion stability may be deteriorated. On the other hand, when the weight part exceeds 50 parts by weight, stable operability may not be obtained.
  • the acrylic fiber treating agent of the present invention may contain a surfactant other than the acetylene surfactant (C) and the polyoxyalkylene alkyl ether (D) as long as the effects of the present invention are not impaired.
  • Surfactants are used as emulsifiers, antistatic agents and the like.
  • the surfactant is not particularly limited, and is a nonionic surfactant other than the acetylene surfactant (C) and polyoxyalkylene alkyl ether (D), an anionic surfactant, a cationic surfactant, and Known amphoteric surfactants can be appropriately selected and used.
  • One type of surfactant may be used, or two or more types may be used in combination.
  • nonionic surfactants other than the above acetylene surfactant (C) and polyoxyalkylene alkyl ether (D) include polyoxyalkylene alkenyl ethers such as polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether Polyoxyalkylene alkyl phenyl ethers such as polyoxyethylene nonyl phenyl ether and polyoxyethylene dodecyl phenyl ether; polyoxyethylene tristyryl phenyl ether, polyoxyethylene distyryl phenyl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene tri Polyoxya such as benzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene benzyl phenyl ether Xylene alkyl aryl phenyl ether; polyoxyethylene monolaurate, polyoxyethylene monooleate, polyoxyethylene monostearate, polyoxyethylene
  • anionic surfactant examples include fatty acid salts such as sodium oleate, potassium palmitate, triethanolamine oleate; hydroxyl group-containing carboxylates such as potassium hydroxyacetate and potassium lactate; polyoxy Polyoxyalkylene alkyl ether acetates such as ethylene tridecyl ether acetate sodium salt; Salts of carboxyl group polysubstituted aromatic compounds such as potassium trimellitic acid and potassium pyromellitic acid; Alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate Polyoxyalkylene alkyl ether sulfonates such as polyoxyethylene 2-ethylhexyl ether sulfonate potassium salt; stearoyl methyl taurine sodium, lauroyl methyl taurine sodium, milli Higher fatty acid amide sulfonates such as sodium toylmethyl taurate and sodium palmitoyl methyl taurate; N-acyl sarco
  • cationic surfactant examples include lauryl trimethyl ammonium chloride, myristyl trimethyl ammonium chloride, palmityl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, oleyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, coconut oil alkyl trimethyl.
  • Ammonium chloride beef tallow alkyltrimethylammonium chloride, stearyltrimethylammonium bromide, coconut oil alkyltrimethylammonium bromide, cetyltrimethylammonium methosulphate, oleyldimethylethylammonium ethosulphate, dioctyldimethylammonium chloride, di Alkyl quaternary ammonium salts such as uril dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, octadecyl diethyl methyl ammonium sulfate; (polyoxyethylene) lauryl amino ether lactate, stearyl amino ether lactate, di (polyoxyethylene) lauryl Methylaminoether dimethyl phosphate, di (polyoxyethylene) laurylethylammonium ethosulphate, di (polyoxyethylene) -cured tallow alkylethylamine ethosulphate, di (
  • amphoteric surfactants examples include 2-undecyl-N, N- (hydroxyethylcarboxymethyl) -2-imidazoline sodium and 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt.
  • Imidazoline-based amphoteric surfactants 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, lauryldimethylaminoacetic acid betaine, alkylbetaines, amide betaines, sulfobetaines, and other betaine-based amphoteric surfactants; N- Examples include amino acid type amphoteric surfactants such as lauryl glycine, N-lauryl ⁇ -alanine, N-stearyl ⁇ -alanine.
  • the acrylic fiber treatment agent of the present invention may contain other components other than the above-described components as long as the effects of the present invention are not impaired.
  • Other components include acid phosphate esters, phenolic, amine-based, sulfur-based, phosphorus-based and quinone-based antioxidants; sulfates of higher alcohols and higher alcohol ethers, sulfonates, higher alcohols and higher alcohols
  • Antistatic agents such as phosphate salts of alcohol ethers, quaternary ammonium salt type cationic surfactants, amine salt type cationic surfactants; smoothing agents such as alkyl esters of higher alcohols, higher alcohol ethers, waxes, etc.
  • the treatment agent of the present invention may contain a modified silicone other than the amino-modified silicone as long as the effects of the present invention are not impaired.
  • modified silicone include amino polyether-modified silicone, amide-modified silicone, amide-polyether-modified silicone, epoxy-modified silicone, polyether-modified silicone, epoxy-polyether-modified silicone (see, for example, Japanese Patent No. 4616934), carbinol-modified silicone. Alkyl-modified silicone, phenol-modified silicone, methacrylate-modified silicone, alkoxy-modified silicone, fluorine-modified silicone, and the like. One type of modified silicone may be used, or a plurality of modified silicones may be used in combination.
  • amino-modified silicone (A), Bronsted acid compound (B) and acetylene surfactant (C), and if necessary, polyoxyalkylene alkyl ether (D) are dissolved in water.
  • a solubilized, emulsified or dispersed state is preferred.
  • the weight ratio of water and the weight ratio of non-volatile content in the entire acrylic fiber treatment agent are just to determine suitably in consideration of the transport cost at the time of transporting the acrylic fiber processing agent of this invention, the handleability etc. resulting from emulsion viscosity, etc.
  • the weight ratio of water in the entire acrylic fiber treating agent is preferably 0.1 to 99.9% by weight, more preferably 10 to 99.5% by weight, and particularly preferably 50 to 99% by weight.
  • the weight ratio (concentration) of the nonvolatile component in the entire acrylic fiber treatment agent is preferably 0.01 to 99.9% by weight, more preferably 0.5 to 90% by weight, and particularly preferably 1 to 50% by weight.
  • the acrylic fiber treatment agent of the present invention can be produced by mixing the components described above.
  • the method for emulsifying and dispersing the components described above is not particularly limited, and a known method can be employed. As such a method, for example, each component constituting the acrylic fiber treatment agent is put into warm water under stirring and emulsified and dispersed, or each component constituting the acrylic fiber treatment agent is mixed, and then homogenizer, homogenizer is mixed. Examples include a method of phase inversion emulsification by gradually adding water while applying mechanical shearing force using a mixer, a ball mill, or the like.
  • the acrylic fiber treating agent of the present invention can be suitably used as a treating agent (precursor treating agent) for acrylic fibers (precursor) for producing carbon fibers. You may use as spinning oil agent of acrylic fibers other than a precursor.
  • the viscosity at 25 ° C. of the non-volatile content of the acrylic fiber treatment agent of the present invention is preferably 10 to 50000 mPa ⁇ s from the viewpoint of imparting good fiber bundle convergence in the precursor yarn-making process and the flameproofing process, and the viscosity is 10 mPa ⁇ s.
  • the viscosity is 10 mPa ⁇ s.
  • the viscosity exceeds 50000 mPa ⁇ s, the viscosity of the treating agent becomes too high and the handling property of the treating agent deteriorates even if good fiber bundle convergence in the precursor yarn forming process and the flameproofing process can be imparted.
  • the viscosity is preferably 10 to 25000 mPa ⁇ s, 10 to 15000 mPa ⁇ s, 10 to 10000 mPa ⁇ s, 10 to 5000 mPa ⁇ s, and 50 to 1000 mPa ⁇ s in this order.
  • the acrylic fiber for carbon fiber production (precursor) of the present invention is produced by attaching the above-mentioned acrylic fiber treatment agent to the precursor acrylic fiber of the precursor.
  • the method for producing a precursor according to the present invention includes a yarn production step in which the acrylic fiber treatment agent is attached to the raw material acrylic fiber of the precursor to produce a yarn.
  • the carbon fiber production method of the present invention includes a spinning process in which the acrylic fiber treatment agent is attached to the precursor acrylic fiber of the precursor to produce the precursor, and the precursor produced in the spinning process is oxidized at 200 to 300 ° C.
  • the acrylic fiber treatment agent of the present invention since the acrylic fiber treatment agent of the present invention is used, the treatment agent can be uniformly applied to the inside of the fiber bundle at the initial stage of the flame resistance treatment step, and the flame resistance is improved. Since the treatment agent can be made into a film at a later stage of the treatment process to protect the fiber, fusion between fibers and generation of fluff can be suppressed, and high-quality carbon fiber can be produced.
  • the yarn making process is a process of making a precursor by attaching an acrylic fiber treatment agent to the precursor raw acrylic fiber, and includes an adhesion treatment process and a stretching process.
  • the adhesion treatment process is a process of adhering the acrylic fiber treatment agent after spinning the precursor raw acrylic fiber. That is, the acrylic fiber treatment agent is adhered to the precursor raw acrylic fiber in the adhesion treatment step.
  • the precursor raw acrylic fiber is stretched immediately after spinning, and the high-strength stretching after the adhesion treatment step is particularly called a “stretching step”.
  • the stretching process may be a wet heat stretching method using high temperature steam or a dry heat stretching method using a hot roller.
  • the precursor is composed of acrylic fibers mainly composed of polyacrylonitrile obtained by copolymerizing at least 95 mol% or more of acrylonitrile and 5 mol% or less of the flame resistance promoting component.
  • the flame resistance promoting component a vinyl group-containing compound having copolymerizability with acrylonitrile can be suitably used.
  • the fineness of the single fiber of the precursor is not particularly limited, but is preferably 0.1 to 2.0 dTex from the balance between performance and production cost.
  • the number of single fibers constituting the precursor fiber bundle is not particularly limited, but is preferably 1,000 to 96,000 from the balance between performance and production cost.
  • the acrylic fiber treatment agent may be attached to the precursor raw acrylic fiber at any stage of the yarn-making process, but it is preferably attached once before the drawing process. It may be attached at any stage before the stretching process, for example, immediately after spinning. Further, it may be reattached at any stage after the stretching process, for example, it may be reattached immediately after the stretching process, it may be reattached at the winding stage, or it may be reattached immediately before the flameproofing process. You may let them. As for the attachment method, it may be attached using a roller or the like, or may be attached by a dipping method, a spray method or the like.
  • the application rate of the acrylic fiber treatment agent has the effect of preventing fiber-to-fiber sticking and prevention of fusion, and the carbonization treatment process prevents the deterioration of the quality of the carbon fiber due to the tar product of the treatment agent.
  • it is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight, based on the weight of the precursor.
  • the acrylic fiber treatment agent covers more than necessary between the single fibers, so that the supply of oxygen to the fibers is hindered in the flameproofing treatment step, and thus obtained.
  • the strength of the carbon fiber may decrease.
  • the provision rate of an acrylic fiber processing agent here is defined with the percentage of the non volatile matter weight to which the acrylic fiber processing agent adhered with respect to the precursor weight.
  • the flameproofing treatment step is a step of converting the precursor with the acrylic fiber treating agent attached thereto into flameproofing fibers in an oxidizing atmosphere at 200 to 300 ° C.
  • the oxidizing atmosphere is usually an air atmosphere.
  • the temperature of the oxidizing atmosphere is preferably 230 to 280 ° C.
  • the acrylic fiber after the adhesion treatment is applied for 20 to 100 minutes (preferably 30 minutes) while applying a tension of a stretch ratio of 0.90 to 1.10 (preferably 0.95 to 1.05). Heat treatment is performed for ⁇ 60 minutes.
  • a flameproof fiber having a flameproof structure is produced through intramolecular cyclization and oxygen addition to the ring.
  • the carbonization treatment step is a step of carbonizing the flameproof fiber in an inert atmosphere of 300 to 2000 ° C.
  • a tension of 0.95 to 1.15 is applied to the flame resistant fiber in a firing furnace having a temperature gradient from 300 ° C. to 800 ° C. in an inert atmosphere such as nitrogen or argon.
  • first carbonization treatment step it is preferable to carry out a pre-carbonization treatment step (first carbonization treatment step) by applying heat treatment for several minutes while applying.
  • a tension ratio of 0.95 to 1.05 is applied to the first carbonization treatment step in an inert atmosphere such as nitrogen or argon.
  • the maximum temperature is preferably set to 1000 ° C. or higher (preferably 1000 to 2000 ° C.) while applying a temperature gradient. This maximum temperature is appropriately selected and determined according to the required characteristics (tensile strength, elastic modulus, etc.) of the desired carbon fiber.
  • a graphitization treatment step can be performed subsequent to the carbonization treatment step.
  • the graphitization treatment step is usually performed at a temperature of 2000 to 3000 ° C. while applying tension to the fiber obtained in the carbonization treatment step in an inert atmosphere such as nitrogen or argon.
  • the carbon fiber thus obtained can be subjected to a surface treatment for increasing the adhesive strength with the matrix resin when made into a composite material, depending on the purpose.
  • a surface treatment method gas phase or liquid phase treatment can be adopted, and from the viewpoint of productivity, liquid phase treatment with an electrolytic solution of acid, alkali or the like is preferable.
  • various sizing agents having excellent compatibility with the matrix resin can be added to improve the processability and handleability of the carbon fiber.
  • ⁇ Application rate of treatment agent> The precursor after application of the treatment agent was alkali-melted with potassium hydroxide / sodium butyrate, dissolved in water, and adjusted to pH 1 with hydrochloric acid. This was added with sodium sulfite and ammonium molybdate to develop a color, and colorimetric determination (wavelength 815 m ⁇ ) of silicomomolybdenum blue was performed to determine the silicon content.
  • the application rate (% by weight) of the acrylic fiber treatment agent was calculated using the silicon content obtained here and the value of the silicon content in the treatment agent obtained in advance by the same method.
  • ⁇ Precursor strand hardness> The hardness of the precursor strand (length: about 50 cm) was measured with a texture tester (HANDLE-O-METERHOM-2, manufactured by Daiei Scientific Instruments Co., Ltd., slit width 5 mm). In addition, the measurement was performed 10 times, and it was judged that the precursor strand was more flexible as the average value was smaller. In the evaluation, a precursor immediately after production (within 7 days after production) and a precursor stored for 12 months at room temperature after production (indicated as “after storage” in the table) were used.
  • ⁇ Abrasion resistance> Using a TM-type friction conjugation force tester TM-200 (manufactured by Daiei Kagaku Seiki Co., Ltd.), the precursor strand (12K) is rubbed 1000 times with a tension of 50 g through three mirror-finished chrome-plated stainless needles arranged in a zigzag (reciprocating motion). The speed of the precursor strand was determined visually according to the following criteria. In the evaluation, a precursor immediately after production (within 7 days after production) and a precursor stored for 12 months at room temperature after production were used. ⁇ : No fluffing was observed as before rubbing ⁇ : Several fluffs were seen but good scratch resistance ⁇ : Slightly fuzzed and slightly inferior in scratch resistance ⁇ : Many fuzzed and marked single yarn breakage Seen poor scratch resistance
  • Carbon fiber strength Measurement was performed according to the epoxy resin impregnated strand method specified in JIS-R-7601, and the average value of 10 measurements was defined as the carbon fiber strength (GPa). In the evaluation, a precursor immediately after production (within 7 days after production) and a precursor stored at room temperature for 12 months after production were used.
  • Example 1 Amino-modified silicone aqueous emulsion obtained by mixing amino-modified silicone A1, Bronsted acid compound B1, polyoxyethylene alkyl ether D1 and water so as to have a non-volatile composition of the treating agent shown in Table 1 and water-based emulsification.
  • Acetylene-based surfactant C1 is added to the product, the weight percentage of amino-modified silicone A1 in the non-volatile content of the treatment agent is 80% by weight, the weight percentage of Bronsted acid compound B1 is 0.7% by weight, acetylene-based surfactant A treating agent (precursor treating agent) in which the weight ratio of the agent C1 was 2% by weight and the weight ratio of the polyoxyethylene alkyl ether D1 was 17.3% by weight was prepared. The non-volatile concentration of the treatment agent was 20% by weight. Subsequently, the prepared treating agent was further diluted with water to obtain a treating liquid having a nonvolatile content concentration of 3.0% by weight.
  • the treatment solution was attached to a precursor raw material acrylic fiber obtained by copolymerizing 97 mol% acrylonitrile and 3 mol% itaconic acid so that the application rate was 1.0%, and a stretching step (steam stretching, stretching ratio). 2.1 times) to prepare a precursor (single fiber fineness 0.8 dtex, 24,000 filaments).
  • the precursor was flameproofed in a flameproofing furnace at 250 ° C. for 60 minutes and then baked in a carbonization furnace having a temperature gradient of 300 to 1400 ° C. in a nitrogen atmosphere to convert into carbon fibers. Table 1 shows the evaluation results of the characteristic values.
  • Example 1 the precursor and carbon fiber after the treatment agent was adhered were obtained in the same manner as in Example 1 except that the treatment liquid was adjusted so as to have a nonvolatile composition of treatment agents shown in Tables 2 to 4. The evaluation results of each characteristic value are shown in Tables 1 to 4.
  • Carboxylic acid compound B1 Acetic acid carboxylic acid compound B2: Benzoic acid carboxylic acid compound B3: Arginine carboxylic acid compound B4: Phosphoric acid
  • Acetylene-based surfactant C2: 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethylene oxide 5-mole adduct (in the formula (4), R 3 and R 5 are both methyl groups) R 4 and R 6 are both isobutyl groups, R 7 is a hydrogen atom, AO is ethylene oxide, and n + m 5.
  • Acetylene-based surfactant C3 3,6-dimethyl-4-octyne-3,6-dio
  • Polyoxyalkylene alkyl ether (D)> Polyoxyethylene alkyl ether D1: Alkyl ether having 12 to 14 carbon atoms to which 5 moles of oxyethylene groups have been added Polyoxyethylene alkyl ether D2: Alkyl ether having 12 to 14 carbon atoms to which 7 moles of oxyethylene groups have been added Polyoxyethylene alkyl ether D3: alkyl ether having 12 to 14 carbon atoms to which 9 mol of oxyethylene group is added
  • the numerical value in parentheses of the Bronsted acid compound (B) indicates the molar equivalent of the Bronsted acid compound (B) with respect to 1 mol of the amino group of the amino-modified silicone (A).
  • the numerical value in parentheses of the acetylene surfactant (C) indicates the weight ratio of the acetylene surfactant (C) when the amino-modified silicone (A) is 100 parts by weight.
  • the numerical values in parentheses after storage of strand hardness and carbon fiber strength indicate the rate of change relative to the numerical values immediately after production.
  • the acrylic fiber treatment agent of the example was compared with the acrylic fiber treatment agent of the comparative example not containing the Bronsted acid compound (B) and / or the acetylene surfactant (C).
  • the acrylic fibers for producing carbon fibers are excellent in suppressing deterioration over time.
  • the acrylic fiber treatment agent of the present invention is a treatment agent used when producing an acrylic fiber for producing carbon fibers, and is useful for producing high-quality carbon fibers.
  • the acrylic fiber for producing carbon fiber of the present invention is treated with the treatment agent of the present invention and is useful for producing high-quality carbon fiber.
  • High quality carbon fibers can be obtained by the carbon fiber manufacturing method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)
  • Silicon Polymers (AREA)

Abstract

処理剤を付与し製造された炭素繊維製造用アクリル繊維を長期間保存した際、炭素繊維製造用アクリル繊維の劣化を抑制できるアクリル繊維用処理剤、該処理剤を用いた炭素繊維製造用アクリル繊維及び該処理剤を用いた炭素繊維の製造方法を提供する。 本発明のアクリル繊維処理剤は、アミノ変性シリコーン(A)、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)を含むものである。本発明の炭素繊維製造用アクリル繊維は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、本発明のアクリル繊維処理剤を付着させてなるものである。

Description

アクリル繊維処理剤及びその用途
 本発明は、アクリル繊維処理剤及びその用途に関する。より詳しくは、アクリル繊維を製造する際に使用する処理剤と、該処理剤を用いた炭素繊維製造用アクリル繊維(以下、プレカーサーと称することがある)と、該処理剤を用いた炭素繊維の製造方法とに関する。
 炭素繊維はその優れた機械的特性を利用して、マトリックス樹脂と称されるプラスチックとの複合材料用の補強繊維として、航空宇宙用途、スポーツ用途、一般産業用途等に幅広く利用されている。
 炭素繊維を製造する方法としては、まず炭素繊維製造用アクリル繊維(プレカーサーということがある)を製造する(このプレカーサーの製造工程を製糸工程と称することがある)。このプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換し(この工程を以下、耐炎化処理工程と称することがある)、続いて300~2000℃の不活性雰囲気中で炭素化する(この工程を以下、炭素化処理工程と称することがある)方法が一般的である(以下、耐炎化処理工程と炭素化処理工程をあわせて、焼成工程と称することがある)。このプレカーサーの製造には通常のアクリル繊維と比較しても高倍率に延伸される延伸工程を経る。その際、繊維同士の膠着が起こり易く、均一に高倍率延伸が行われない為に、不均一なプレカーサーとなる。この様なプレカーサーを焼成して得られる炭素繊維は十分な強度が得られないという問題がある。また、プレカーサーの焼成時には、単繊維同士の融着が発生し、得られた炭素繊維の品質、品位を低下させるという問題がある。
 プレカーサーの膠着防止、炭素繊維の融着防止のために、プレカーサーに付与する処理剤として、湿潤時および高温環境下で繊維-繊維間摩擦が低く、優れた剥離性を有するシリコーン系処理剤、特に熱による架橋反応により耐熱性をさらに向上できるアミノ変性シリコーン系処理剤をプレカーサーに付与する技術が多数提案されている(特許文献1~2参照)。
 このような処理剤を付与し製造されたプレカーサーを長期間保存した際、プレカーサーの経時劣化を引き起こす問題があった。そのため、長期間保存したプレカーサーを焼成して炭素繊維を製造した場合、焼成工程で毛羽が発生し、焼成後の炭素繊維強度が低下する等の問題があった。
日本国特開2001-172879号公報 日本国特開2002-129481号公報
 かかる従来の技術背景に鑑み、本発明の目的は、処理剤を付与し製造された炭素繊維製造用アクリル繊維を長期間保存した際、炭素繊維製造用アクリル繊維の劣化を抑制できるアクリル繊維用処理剤、該処理剤を用いた炭素繊維製造用アクリル繊維及び該処理剤を用いた炭素繊維の製造方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、処理剤を付与し製造されたプレカーサーを長期保管した際の劣化が、処理剤中に含まれるアミノ変性シリコーンのアミノ基に起因していることと、アミノ変性シリコーンを乳化するために使用される乳化剤の繊維内部への浸透が起因していることを見出した。そして、アミノ変性シリコーン(A)とブレンステッド酸化合物(B)とアセチレン系界面活性剤(C)とを併用すれば、アミノ基に起因するプレカーサーの劣化及び乳化剤の繊維内部への浸透に起因するプレカーサーの劣化を抑制できることを見出し、本願発明に到達した。
 すなわち本発明のアクリル繊維処理剤は、アミノ変性シリコーン(A)、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)を含むものである。
 前記アミノ変性シリコーン(A)のアミノ基1モルに対して、ブレンステッド酸化合物(B)の割合が、0.01~2.5モル当量であることが好ましい。
 前記アミノ変性シリコーン(A)100重量部に対して、前記アセチレン系界面活性剤(C)の割合は0.1~12重量部であることが好ましい。
 前記アセチレン系界面活性剤(C)は、アセチレンアルコール(C1)、アセチレンジオール(C2)、アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)及びアセチレンジオールにアルキレンオキサイドを付加した化合物(C4)から選ばれた少なくとも1種であることが好ましい。
 前記アセチレンアルコール(C1)は、下記一般式(1)で表される化合物であることが好ましい。前記アセチレンジオール(C2)は、下記一般式(2)で表される化合物であることが好ましい。前記アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)は、下記一般式(3)で表される化合物であることが好ましい。前記アセチレンジオールにアルキレンオキサイドを付加した化合物(C4)は下記一般式(4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、R及びR2は、それぞれ独立して炭素数1~8のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、R、R、R及びRは、それぞれ独立して炭素数1~8のアルキル基である。)
Figure JPOXMLDOC01-appb-C000008
(式(3)中、R及びR2は、それぞれ独立して炭素数1~8のアルキル基である。Rは水素原子、または炭素数1~5のアルキル基である。AOは炭素数2~4のオキシアルキレン基を示す。nは1~50の数である。)
Figure JPOXMLDOC01-appb-C000009
(式(4)中、R、R、R及びRは、それぞれ独立して炭素数1~8のアルキル基である。Rは水素原子、または炭素数1~5のアルキル基である。なお、式(4)における複数のRは、同一であってもよく異なっていてもよい。AOは炭素数2~4のオキシアルキレン基を示す。m、nはそれぞれ独立して1~50の数である。)
 処理剤の不揮発分に占める前記アミノ変性シリコーン(A)の重量割合は、40~95重量%であることが好ましい。
 本発明のアクリル繊維用処理剤は、さらに、ポリオキシアルキレンアルキルエーテル(D)を含有することが好ましい
 前記ポリオキシアルキレンアルキルエーテル(D)は、下記一般式(5)で示される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
(一般式(5)中、Rは炭素数6~22のアルキル基を示す。AOは炭素数2~4のオキシアルキレン基を示す。jはそれぞれ独立して1~50の数である。)
 前記アミノ変性シリコーン(A)100重量部に対して、前記アセチレン系界面活性剤(C)と前記ポリオキシアルキレンアルキルエーテル(D)の合計の割合は5~50重量部であることが好ましい。
 本発明の炭素繊維製造用アクリル繊維は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記のアクリル繊維処理剤を付着させてなるものである。
 本発明の炭素繊維の製造方法は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記の繊維処理剤を付着させて製糸する製糸工程と、200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含むものである。
 本発明のアクリル繊維処理剤は、処理剤を付与し製造された炭素繊維製造用アクリル繊維を長期間保存した際、炭素繊維製造用アクリル繊維の劣化を抑制できる。本発明の炭素繊維製造用アクリル繊維を用いれば、長期間保存したアクリル繊維束を用いても、焼成工程での毛羽の発生を抑制でき、高強度、高品質の炭素繊維を得ることができる。本発明の炭素繊維の製造方法によれば、長期間保存したアクリル繊維束を用いても、焼成工程での毛羽の発生を抑制でき、高強度、高品質の炭素繊維を得ることができる。
(アミノ変性シリコーン(A))
 本発明の処理剤は、アミノ変性シリコーン(A)を必須に含有する。アミノ変性シリコーンの変性基であるアミノ基(アミノ基を有する有機基を含む)は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、また両方と結合していてもよいが、耐炎化処理工程での繊維保護の観点から、側鎖と結合している(側鎖にアミノ基を有する)方が好ましい。また、そのアミノ基は、モノアミン型、ジアミン型、ポリアミン型のいずれであってもよく、1分子中に両者が併存していてもよいが、耐炎化処理工程で繊維束内部にまで処理剤を均一に付与し、かつ、処理剤を皮膜化させて繊維を保護する点から、モノアミン型又はジアミン型が好ましい。アミノ変性シリコーン(A)は、一種単独でもよく、二種以上を組み合わせて用いてもよい。
 アミノ変性シリコーン(A)の25℃での動粘度は、本願効果を発揮させる点から、50~30000mm/sが好ましい。動粘度が50mm/s未満の場合、処理剤が飛散しやすくなり、また水系乳化した際にエマルジョンの溶液安定性が悪くなり、処理剤を繊維へ均一に付与することができなくなることがある。その結果、繊維の融着を防止できないことがある。動粘度が30000mm/s超の場合、粘着性に起因するガムアップが問題となることがある。当該動粘度の上限値は、25000mm/s、20000mm/s、10000mm/s、5000mm/s、4000mm/s、3000mm/s、2500mm/sの順で好ましい。
 アミノ変性シリコーン(A)のアミノ当量は、繊維間の膠着や融着の防止の点から、300~10000g/molが好ましく、500~10000g/molがより好ましく、1000~9000g/molがさらに好ましい。該アミノ当量が300g/mol未満の場合、耐炎化処理工程の初期で処理剤が熱架橋するため処理剤を均一に繊維束内部にまで付与することができないことがある。また、該アミノ当量が10000g/mol以上の場合、耐炎化処理工程の後期で処理剤の熱架橋が起こらないために繊維保護が出来ないことがある。ここで、アミノ当量とは、アミノ基又はアンモニウム基1個当たりのシロキサン骨格の質量を意味している。表記単位のg/molはアミノ基又はアンモニウム基1mol当たりに換算した値である。従って、アミノ当量の値が小さいほど分子内でのアミノ基又はアンモニウム基の比率が高いことを示している。
 アミノ変性シリコーン(A)は、アミノ当量や動粘度(25℃)の異なる複数のアミノ変性シリコーンを併用してもよい。2種以上のアミノ変性シリコーンを用いる場合、上記アミノ当量はアミノ変性シリコーン全体(混合物)のアミノ当量を意味し、上記の25℃における動粘度はアミノ変性シリコーン全体(混合物)の動粘度を意味する。
 上記アミノ変性シリコーンとしては、例えば、下記一般式(6)で示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
(式(6)中、Rは炭素数が1~20のアルキル基又はアリール基を示す。R10は下記化学式(7)で示される基である。R11は、R、R10又は-OR17(R17は水素原子又は炭素数が1~6のアルキル基)である。pは10≦p≦10000、qは0.1≦q≦1000である。)
 式(6)中、Rは炭素数が1~20のアルキル基又はアリール基を示す。Rは、好ましくは炭素数が1~10のアルキル基又はアリール基であり、より好ましくは炭素数1~5のアルキル基であり、さらに好ましくはメチル基である。なお、式(6)における複数のRは、同一であってもよく異なっていてもよい。R10は下記一般式(7)で示される基である。R11は、R、R10又は-OR17で示される基であり、好ましくはRである。なお、式(6)における複数のR11は、同一であってもよく異なっていてもよい。
 R17は、水素原子又は炭素数が1~6のアルキル基であり、好ましくは水素原子又は炭素数1~4のアルキル基であり、さらに好ましくは水素原子又はメチル基である。pは、10~10000の数であり、好ましくは50~5000であり、さらに好ましくは100~2000である。qは、0.1~1000の数であり、好ましくは0.5~500であり、さらに好ましくは1~100である。
Figure JPOXMLDOC01-appb-C000012
 式(7)中、R12及びR14は、それぞれ独立して、炭素数が1~6のアルキレン基であり、好ましくは炭素数1~3のアルキレン基である。R13、R15及びR16は、それぞれ独立して、水素原子、炭素数が1~10のアルキル基又はアリール基であり、好ましくは水素原子又は炭素数1~5のアルキル基であり、さらに好ましくは水素原子である。rは0~6の数であり、好ましくは0~3であり、さらに好ましくは0~1である。
(ブレンステッド酸化合物(B))
 本発明の繊維処理剤は、ブレンステッド酸化合物(B)を必須に含有する。ブレンステッド酸(B)を用いない場合、必須成分であるアセチレン系界面活性剤(C)を用いた場合であっても、アミノ変性シリコーンのアミノ基に起因する経時的な架橋の抑制ができない。ブレンステッド酸化合物(B)とはプロトン供与体をいい、カルボン酸化合物、無機酸、スルホン酸化合物、ホスホン酸化合物等が挙げられる。ブレンステッド酸化合物(B)は、一種単独でもよく、二種以上を組み合わせて用いてもよい。
 カルボン酸化合物とは、分子構造中にカルボキシル基を含む化合物をいう。カルボン酸化合物としては、特に限定されないが、脂肪族モノカルボン酸、脂肪族ポリカルボン酸、芳香族カルボン酸、芳香族ポリカルボン酸、アミノ酸等が挙げられる。
 脂肪族モノカルボン酸としては、酢酸、乳酸、酪酸、クロトン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、パルミトレイン酸、イソセチル酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、エライジン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、イソエイコサ酸、ガドレイン酸、エイコセン酸、ドコサン酸、イソドコサン酸、エルカ酸、テトラコサン酸、イソテトラコサン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸、ポリオキシアルキレンモノカルボン酸、ポリオキシアルキレンアルキルエーテルモノカルボン酸等が挙げられる。
 脂肪族ポリカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバチン酸、ウンデンカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ポリオキシアルキレンジカルボン酸、ポリオキシアルキレンアルキルエーテルジカルボン酸およびこれらの誘導体が挙げられる。
 芳香族モノカルボン酸としては、安息香酸、ケイ皮酸、ナフトエ酸、トルイル酸、およびこれらの誘導体が挙げられる。
 芳香族ポリカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸およびピロメリット酸、およびこれらの誘導体などが挙げられる。
 アミノ酸とは、分子構造中にアミノ基とカルボキシル基の両方を有する化合物であり、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、トリプトファン、メチオニン、プロリン、グリシン、チロシン、セリン、スレオニン、システイン、アスパラギン、グルタミン、リシン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸等が挙げられる。
 無機酸とは非金属原子を成分とする酸をいう。無機酸としては、硫酸、硝酸、燐酸、塩酸等が挙げられる。
 スルホン酸化合物としては、アルキルベンゼンスルホン酸、ポリオキシアルキレンアルキルエーテルスルホン酸、高級脂肪酸アミドスルホン酸、アルキル硫酸モノエステル、ポリオキシアルキレン硫酸モノエステル等が挙げられる。
 ホスホン酸化合物としては、アルキルホスホン酸、芳香族ホスホン酸、ポリオキシアルキレンアルキルエーテルホスホン酸、アルキルホスホン酸アルキルリン酸モノエステル等が挙げられる。
 ブレンステッド化合物(B)のpKaは、設備の腐食や安全の点及びアミノ変性シリコーンのアミノ基に起因する経時的な架橋の抑制の点から、0~7が好ましく、1~6.5がより好ましく、2~6がさらに好ましい。
(アセチレン系界面活性剤(C))
 本発明のアクリル繊維処理剤は、アセチレン系界面活性剤(C)を必須に含有する。アミノ変性シリコーンに対して、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)を併用することにより、アミノ変性シリコーンのアミノ基に起因する経時的な架橋の抑制と、アミノ変性シリコーンを水系乳化する際の乳化剤が繊維構造内部に浸透することを抑制でき、その結果、プレカーサー繊維を長期間保存した際のプレカーサー繊維の劣化を抑制できるものと推測する。アセチレン系界面活性剤(C)を使用せずに、他の界面活性剤を用いた場合、ブレンステッド酸化合物(B)を用いた場合であっても、乳化剤の繊維構造内部への浸透を抑制することができず、その結果、プレカーサー繊維を長期間保存した際のプレカーサー繊維を用いて炭素繊維を製造すると、その強度は低下してしまうと推測する。なお、アセチレン系界面活性剤とは、分子構造中にアセチレン基と水酸基等の親水基を有する化合物をいう。アセチレン系界面活性剤(C)は一種単独でもよく、二種以上を組み合わせて用いてもよい。
 アセチレン系界面活性剤(C)は、アセチレンアルコール(C1)、アセチレンジオール(C2)、アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)及びアセチレンジオールにアルキレンオキサイドを付加した化合物(C4)から選ばれた少なくとも1種であることが好ましい。これらの中でも、アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)及びアセチレンジオールにアルキレンオキサイドを付加した化合物(C4)が好ましく、アセチレンジオールにアルキレンオキサイドを付加した化合物(C4)がさらに好ましい。
 アセチレンアルコール(C1)とは、分子構造中にアセチレン基と、1つの水酸基を有する化合物である。
 アセチレンアルコール(C1)は、上記一般式(1)で表される化合物であることが好ましい。
 アセチレンジオール(C2)とは、分子構造中にアセチレン基と、2つの水酸基を有する化合物である。
 アセチレンジオール(C2)は、上記一般式(2)で表される化合物であることが好ましい。
 アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)とは、アセチレンアルコールの水酸基にアルキレンオキサイドを付加させた化合物である。
 アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)とは、上記一般式(3)で表される化合物であることが好ましい。
 アセチレンジオールにアルキレンオキサイドを付加した化合物(C4)とは、アセチレンジオールの水酸基の少なくとも1つにアルキレンオキサイドを付加させた化合物である。
 アセチレンジオールにアルキレンオキサイドを付加した化合物(C4)は、上記一般式(4)で表される化合物であることが好ましい。
 式(1)及び式(3)中、R及びR2は、それぞれ独立して炭素数1~8のアルキル基である。当該アルキル基は直鎖でもよく、分岐構造を有していてもよい。当該アルキル基の炭素数は、好ましくは1~7、より好ましくは1~6、さらに好ましくは1~5である。
 式(2)及び(4)中、R、R、R及びRは、それぞれ独立して炭素数1~8のアルキル基である。当該アルキル基は直鎖でもよく、分岐構造を有していてもよい。当該アルキル基の炭素数は、好ましくは1~7、より好ましくは1~6、さらに好ましくは1~5である。
 式(3)及び式(4)中、Rは水素原子、または炭素数1~5のアルキル基である。当該アルキル基の炭素数は、好ましくは1~4、より好ましくは1~3、さらに好ましくは1~2である。
 式(3)及び式(4)中、AOは炭素数2~4のオキシアルキレン基を示す。つまり、オキシエチレン基、オキシプロピレン基又はオキシブチレン基を示す。オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基が好ましく、オキシエチレン基がさらに好ましい。(AO)又は(AO)を構成するAOは、1種でもよく、2種以上であってもよい。2種以上の場合、ブロック付加体、交互付加体、ランダム付加体のいずれであってもよい。
 式(3)中、nは1~50の数である。nは1~45が好ましく、1~40がより好ましく、1~35がさらに好ましい。
 式(4)中、m、nはそれぞれ独立して1~50の数である。m、nは、それぞれ独立して、1~45が好ましく、1~40がより好ましく、1~35がさらに好ましい。
 アセチレン系界面活性剤(C)のHLBは、乳化性の点から、4~25が好ましく、5~20がより好ましく、6~18がさらに好ましい。本発明におけるHLBは、Griffinらが提唱したアトラス法により、実験的に求めることができる。
 アセチレン系界面活性剤(C)は、公知の化合物であり、公知の方法により容易に製造することができる。例えば、このような化合物は、レッペ反応と呼ばれる、加圧下で、アセチレンにケトン又はアルデヒドを、アルカリや金属化合物などの触媒の存在下で反応させる方法により得ることができる。
 また、上記の化合物(C3)又は化合物(C4)は、それぞれ、アセチレンアルコール(C1)又はアセチレンジオール(C2)にアルキレンオキサイド(例えばエチレンオキサイド及び/又はプロピレンオキサイド)をアルカリや金属化合物などの触媒の存在下で付加重合させることにより得ることができる。
[アクリル繊維処理剤]
 本発明のアクリル繊維用処理剤は、上記のアミノ変性シリコーン(A)、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)を含むものである。
 処理剤の不揮発分に占めるアミノ変性シリコーン(A)の重量割合は、好ましくは40~95重量%、より好ましくは45~94重量%、さらに好ましくは50~92重量%、特に好ましくは55~90重量%である。該重量割合が40重量%未満の場合、耐炎化処理工程で処理剤の耐熱性が不足する場合がある。一方、該重量割合が95重量%超の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。
 処理剤の不揮発分に占めるアセチレン系界面活性剤(C)の重量割合は、好ましくは0.1~20重量%、より好ましくは0.2~15重量%、さらに好ましくは0.3~13重量%、特に好ましくは0.5~10重量%である。該重量割合が0.1重量%未満の場合、乳化剤の繊維構造内部への浸透を抑制することができない場合がある。一方、該重量割合が20重量%超の場合、安定した操業性が得られない場合がある。
 安定した操業性とプレカーサーの保管安定性を両立させる点から、アミノ変性シリコーン(A)100重量部に対して、アセチレン系界面活性剤(C)の割合は0.1~12重量部であることが好ましい。該割合は、好ましくは0.2~11重量部、より好ましくは0.2~10重量部、さらに好ましくは0.5~8重量部である。該割合が0.1重量部未満の場合、乳化剤の繊維構造内部への浸透を抑制することができない場合がある。一方、該割合が12重量部超の場合、安定した操業性が得られないことがある。
 ブレンステッド酸化合物(B)の割合は、アミノ変性シリコーンのアミノ基に起因する経時的な架橋を抑制する点から、アミノ変性シリコーン(A)のアミノ基1モルに対して、0.01~2.5モル当量であることが好ましい。該割合は、好ましくは0.05~2.25モル当量、より好ましくは0.1~2.0モル当量、さらに好ましくは0.12~1.5モル当量である。該割合が0.01当量未満の場合、アミノ変性シリコーンのアミノ基に起因する経時的な架橋の抑制ができない場合がある。一方、該割合が2.5当量超の場合、工程でのガムアップを促進し、安定した操業性が得られないことがある。
(ポリオキシアルキレンアルキルエーテル(D))
 本発明の処理剤は、乳化性を高めることができる点から、ポリオキシアルキレンアルキルエーテル(D)を含有することが好ましい。なお、ポリオキシアルキレンアルキルエーテルとは、飽和脂肪族アルコールにアルキレンオキサイドが付加した構造を持つ化合物であり、上記一般式(5)において、Rがアルキル基、AOは炭素数2~4のオキシアルキレン基、jは1以上の数のものをいう。ポリオキシアルキレンアルキルエーテル(D)は、一種単独でもよく、二種以上を組み合わせて用いてもよい。
 ポリオキシアルキレンアルキルエーテルとしては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンテトラデシルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシアルキレン直鎖アルキルエーテル;ポリオキシエチレン2-エチルヘキシルエーテル、ポリオキシエチレンイソセチルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシアルキレン分岐第一級アルキルエーテル;ポリオキシエチレン1-ヘキシルヘキシルエーテル、ポリオキシエチレン1-オクチルヘキシルエーテル、ポリオキシエチレン1-ヘキシルオクチルエーテル、ポリオキシエチレン1-ペンチルへプチルエーテル、ポリオキシエチレン1-へプチルペンチルエーテル、ポリオキシエチレン1-ヘキシルヘプチルエーテル、ポリオキシエチレン1-ヘプチルヘキシルエーテル、ポリオキシエチレン1-ペンチルカプチルエーテル、ポリオキシエチレン1-カプチルペンチルエーテル等のポリオキシアルキレン分岐第二級アルキルエーテル等を挙げることができる。
 ポリオキシアルキレンアルキルエーテル(D)は、本願効果を発揮させる点から、上記一般式(5)で示される化合物を必須に含むことが好ましい。一般式(5)において、Rは炭素数6~22のアルキル基である。Rがアルキル基以外の炭化水素基及びRの炭素数が22超の場合、耐炎化処理工程においてポリオキシアルキレンアルキルエーテルがタール化することにより、プレカーサーが耐炎化構造へ変換する際の欠点となり、炭素繊維の強度低下を引き起こすことがある。一方、Rの炭素数が6未満の場合、処理剤を水系乳化した際のエマルジョンの溶液安定性が悪くなることがある。Rの炭素数は、8~20が好ましく、10~18がより好ましく、10~16がさらに好ましい。Rの炭素数には分布があってもよく、またRは直鎖状であっても分岐を有していてもよい。
 Aは炭素数2~4のアルキレン基を示し、AOとしてはオキシアルキレン基を示す。つまり、オキシエチレン基、オキシプロピレン基又はオキシブチレン基を示す。オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基が好ましく、オキシエチレン基がさらに好ましい。オキシアルキレン基の繰り返し数であるjは1~50の数であり、2~40が好ましく、3~30がより好ましい。nが30超の場合、上記アミノ変性シリコーンと併用した場合耐炎化処理工程で処理剤が繊維束内部にまで均一に付与できないために融着が起こることがある。ポリオキシアルキレン基(AO)を構成するAOとしては、1種でもよく、2種以上であってもよい。2種以上の場合、ブロック付加体、交互付加体、ランダム付加体のいずれであってもよい。AOのjは、オキシアルキレン基の付加モル数である。
 処理剤がポリオキシアルキレンアルキルエーテル(D)を含有する場合、処理剤の不揮発分に占めるポリオキシアルキレンアルキルエーテル(D)の重量割合は、2~25重量%であることが好ましく、5~20重量%がより好ましく、10~20重量%がさらに好ましい。該重量割合が2重量%未満の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。一方、該重量割合が25量%超の場合、耐炎化処理工程で処理剤の耐熱性が不足する場合がある。
 プレカーサーの長期保管安定性を向上させる点から、アミノ変性シリコーン(A)100重量部に対して、アセチレン系界面活性剤(C)とポリオキシアルキレンアルキルエーテル(D)の合計の割合が5~50重量部であることが好ましい。該割合が5重量部未満の場合、乳化安定性が悪くなることがある。一方、該重量部が50重量部超の場合、安定した操業性が得られないことがある。
(その他界面活性剤)
 本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、上記アセチレン系界面活性剤(C)とポリオキアルキレンアルキルエーテル(D)以外の界面活性剤を含有してもよい。界面活性剤は、乳化剤、制電剤等として使用される。界面活性剤としては、特に限定されず、上記アセチレン系界面活性剤(C)とポリオキアルキレンアルキルエーテル(D)以外の非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤及び両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種でもよく、2種以上を併用してもよい。
 上記アセチレン系界面活性剤(C)とポリオキアルキレンアルキルエーテル(D)以外の非イオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンアルキルアリールフェニルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノオレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノミリスチレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジオレート、ポリオキシエチレンジミリスチレート、ポリオキシエチレンジステアレート等のポリオキシアルキレン脂肪酸エステル;ソルビタンモノパルミテート、ソルビタンモノオレート等のソルビタンエステル;ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート等のポリオキシアルキレンソルビタン脂肪酸エステル;グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノパルミテート等のグリセリン脂肪酸エステル;ポリオキシアルキレンソルビトール脂肪酸エステル;ショ糖脂肪酸エステル;ポリオキシエチレンひまし油エーテル等のポリオキシアルキレンひまし油エーテル;ポリオキシエチレン硬化ひまし油エーテル等のポリオキシアルキレン硬化ひまし油エーテル;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体の末端ショ糖エーテル化物;等を挙げることができる。非イオン性界面活性剤の重量平均分子量は、2000以下が好ましく、200~1800がより好ましく、300~1500がより好ましく、500~1000がさらに好ましい。
 アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム塩、パルミチン酸カリウム塩、オレイン酸トリエタノールアミン塩等の脂肪酸塩;ヒドロキシ酢酸カリウム塩、乳酸カリウム塩等のヒドロキシル基含有カルボン酸塩;ポリオキシエチレントリデシルエーテル酢酸ナトリウム塩等のポリオキシアルキレンアルキルエーテル酢酸塩;トリメリット酸カリウム、ピロメリット酸カリウム等のカルボキシル基多置換芳香族化合物の塩;ドデシルベンゼンスルホン酸ナトリウム塩等のアルキルベンゼンスルホン酸塩;ポリオキシエチレン2-エチルヘキシルエーテルスルホン酸カリウム塩等のポリオキシアルキレンアルキルエーテルスルホン酸塩;ステアロイルメチルタウリンナトリウム、ラウロイルメチルタウリンナトリウム、ミリストイルメチルタウリンナトリウム、パルミトイルメチルタウリンナトリウム等の高級脂肪酸アミドスルホン酸塩;ラウロイルサルコシン酸ナトリウム等のN-アシルサルコシン酸塩;オクチルホスホネートカリウム塩等のアルキルホスホン酸塩;フェニルホスホネートカリウム塩等の芳香族ホスホン酸塩;2-エチルヘキシルホスホネートモノ2-エチルヘキシルエステルカリウム塩等のアルキルホスホン酸アルキルリン酸エステル塩;アミノエチルホスホン酸ジエタノールアミン塩等の含窒素アルキルホスホン酸塩;2-エチルヘキシルサルフェートナトリウム塩等のアルキル硫酸エステル塩;ポリオキシエチレン2-エチルヘキシルエーテルサルフェートナトリウム塩等のポリオキシアルキレン硫酸エステル塩;ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N-ラウロイルグルタミン酸モノナトリウム、N-ステアロイル-L-グルタミン酸ジナトリウム等の長鎖N-アシルグルタミン酸塩等を挙げる事ができる。
 カチオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムクロライド、パルミチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オレイルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシ油アルキルトリメチルアンモニウムクロライド、牛脂アルキルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムブロマイド、ヤシ油アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムメトサルフェート、オレイルジメチルエチルアンモニウムエトサルフェート、ジオクチルジメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、オクタデシルジエチルメチルアンモニウムサルフェート、等のアルキル第四級アンモニウム塩;(ポリオキシエチレン)ラウリルアミノエーテル乳酸塩、ステアリルアミノエーテル乳酸塩、ジ(ポリオキシエチレン)ラウリルメチルアミノエーテルジメチルホスフェート、ジ(ポリオキシエチレン)ラウリルエチルアンモニウムエトサルフェート、ジ(ポリオキシエチレン)硬化牛脂アルキルエチルアミンエトサルフェート、ジ(ポリオキシエチレン)ラウリルメチルアンモニウムジメチルホスフェート、ジ(ポリオキシエチレン)ステアリルアミン乳酸塩等の(ポリオキシアルキレン)アルキルアミノエーテル塩;N-(2-ヒドロキシエチル)-N,N-ジメチル-N-ステアロイルアミドプロピルアンモニウムナイトレート、ラノリン脂肪酸アミドプロピルエチルジメチルアンモニウムエトサルフェート、ラウロイルアミドエチルメチルジエチルアンモニウムメトサルフェート等のアシルアミドアルキル第四級アンモニウム塩;ジパルミチルポリエテノキシエチルアンモニウムクロライド、ジステアリルポリエテノキシメチルアンモニウムクロライド等のアルキルエテノキシ第四級アンモニウム塩;ラウリルイソキノリニウムクロライド等のアルキルイソキノリニウム塩;ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等のベンザルコニウム塩;ベンジルジメチル{2-[2-(p-1,1,3,3-テトラメチルブチルフェノオキシ)エトオキシ]エチル}アンモニウムクロライド等のベンゼトニウム塩;セチルピリジニウムクロライド等のピリジニウム塩;オレイルヒドロキシエチルイミダゾリニウムエトサルフェート、ラウリルヒドロキシエチルイミダゾリニウムエトサルフェート等のイミダゾリニウム塩;N-ココイルアルギニンエチルエステルピロリドンカルボン酸塩、N-ラウロイルリジンエチルエチルエステルクロライド等のアシル塩基性アミノ酸アルキルエステル塩;ラウリルアミンクロライド、ステアリルアミンブロマイド、硬化牛脂アルキルアミンクロライド、ロジンアミン酢酸塩等の第一級アミン塩;セチルメチルアミンサルフェート、ラウリルメチルアミンクロライド、ジラウリルアミン酢酸塩、ステアリルエチルアミンブロマイド、ラウリルプロピルアミン酢酸塩、ジオクチルアミンクロライド、オクタデシルエチルアミンハイドロオキサイド等の第二級アミン塩;ジラウリルメチルアミンサルフェート、ラウリルジエチルアミンクロライド、ラウリルエチルメチルアミンブロマイド、ジエタノールステアリルアミドエチルアミントリヒドロキシエチルホスフェート塩、ステアリルアミドエチルエタノールアミン尿素重縮合物酢酸塩等の第三級アミン塩;脂肪酸アミドグアニジニウム塩;ラウリルトリエチレングリコールアンモニウムハイドロオキサイド等のアルキルトリアルキレングリコールアンモニウム塩等を挙げることができる。
 両性界面活性剤としては、例えば、2-ウンデシル-N,N-(ヒドロキシエチルカルボキシメチル)-2-イミダゾリンナトリウム、2-ココイル-2-イミダゾリニウムヒドロキサイド-1-カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2-ヘプタデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N-ラウリルグリシン、N-ラウリルβ-アラニン、N-ステアリルβ-アラニン等のアミノ酸型両性界面活性剤等が挙げられる。
(その他成分)
 本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、上記した成分以外の他の成分を含有してもよい。他の成分としては、酸性リン酸エステル、フェノール系、アミン系、硫黄系、リン系、キノン系等の酸化防止剤;高級アルコール・高級アルコールエーテルの硫酸エステル塩、スルホン酸塩、高級アルコール・高級アルコールエーテルのリン酸エステル塩、第4級アンモニウム塩型カチオン系界面活性剤、アミン塩型カチオン系界面活性剤等の制電剤;高級アルコールのアルキルエステル、高級アルコールエーテル、ワックス類等の平滑剤;抗菌剤;防腐剤;防錆剤;および吸湿剤等が挙げられる。
 また、本発明の処理剤は、本発明の効果を阻害しない範囲で、上記のアミノ変性シリコーン以外の変性シリコーンを含んでいてもよい。変性シリコーンとしては、例えば、アミノポリエーテル変性シリコーン、アマイド変性シリコーン、アマイドポリエーテル変性シリコーン、エポキシ変性シリコーン、ポリエーテル変性シリコーン、エポキシポリエーテル変性シリコーン(例えば、特許4616934号参照)、カルビノール変性シリコーン、アルキル変性シリコーン、フェノール変性シリコーン、メタクリレート変性シリコーン、アルコキシ変性シリコーン、フッ素変性シリコーンなどが挙げられ、一種類の変性シリコーンを用いてもよいし、複数の変性シリコーンを併用してもよい。
 本発明のアクリル繊維処理剤は、アミノ変性シリコーン(A)、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)、必要に応じてポリオキシアルキレンアルキルエーテル(D)が水に溶解、可溶化、乳化又は分散された状態であることが好ましい。
 アクリル繊維処理剤全体に占める水の重量割合、不揮発分の重量割合については、特に限定はない。例えば、本発明のアクリル繊維処理剤を輸送する際の輸送コストや、エマルジョン粘度に因るところの取扱い性等を考慮して適宜決定すればよい。アクリル繊維処理剤全体に占める水の重量割合は、0.1~99.9重量%が好ましく、10~99.5重量%がさらに好ましく、50~99重量%が特に好ましい。アクリル繊維処理剤全体に占める不揮発分の重量割合(濃度)は、0.01~99.9重量%が好ましく、0.5~90重量%がさらに好ましく、1~50重量%が特に好ましい。
 本発明のアクリル繊維処理剤は、上記で説明した成分を混合することによって製造することができる。上記で説明した成分を乳化・分散させる方法については特に限定されず、公知の手法が採用できる。このような方法としては、たとえば、アクリル繊維処理剤を構成する各成分を攪拌下の温水中に投入して乳化分散する方法や、アクリル繊維処理剤を構成する各成分を混合し、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法等が挙げられる。
 本発明のアクリル繊維処理剤は、炭素繊維製造用アクリル繊維(プレカーサー)の処理剤(プレカーサー処理剤)として好適に使用できる。プレカーサー以外のアクリル繊維の紡糸油剤として使用してもよい。
 プレカーサー製糸工程や耐炎化工程における良好な繊維束の集束性を付与できる点から、本発明のアクリル繊維処理剤の不揮発分の25℃における粘度は、10~50000mPa・sが好ましく、該粘度が10mPa・s未満になると、プレカーサー製糸工程や耐炎化工程における繊維束の集束性が悪化する場合がある。また、該粘度が50000mPa・sを超えると、プレカーサー製糸工程や耐炎化工程における良好な繊維束の集束性を付与できても、処理剤の粘度が高くなり過ぎ、処理剤の取扱い性が悪化する場合がある。該粘度は、10~25000mPa・s、10~15000mPa・s、10~10000mPa・s、10~5000mPa・s、50~1000mPa・sの順で好ましい。
[炭素繊維製造用アクリル繊維、その製造方法及び炭素繊維の製造方法]
 本発明の炭素繊維製造用アクリル繊維(プレカーサー)は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸したものである。本発明のプレカーサーの製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸する製糸工程を含むものである。
 本発明の炭素繊維の製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて、プレカーサーを製糸する製糸工程と、その製糸工程で製造されたプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含むものである。
 本発明の炭素繊維の製造方法によれば、本発明のアクリル繊維処理剤を用いているので、耐炎化処理工程の初期で繊維束内部にまで処理剤を均一に付与することができ、耐炎化処理工程の後期で処理剤を皮膜化させて繊維保護することができるため、繊維間の融着や毛羽発生を抑制でき高品質の炭素繊維を製造できる。
 製糸工程は、プレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させてプレカーサーを製糸する工程であり、付着処理工程と延伸工程とを含む。
 付着処理工程は、プレカーサーの原料アクリル繊維を紡糸した後、アクリル繊維処理剤を付着させる工程である。つまり、付着処理工程でプレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させる。またこのプレカーサーの原料アクリル繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気をもちいた湿熱延伸法でもよいし、熱ローラーをもちいた乾熱延伸法でもよい。
 プレカーサーは、少なくとも95モル%以上のアクリロニトリルと、5モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とするアクリル繊維から構成される。耐炎化促進成分としては、アクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。プレカーサーの単繊維繊度については、特に限定はないが、性能と製造コストのバランスから、好ましくは0.1~2.0dTexである。また、プレカーサーの繊維束を構成する単繊維の本数についても特に限定はないが、性能と製造コストのバランスから、好ましくは1,000~96,000本である。
 アクリル繊維処理剤は、製糸工程のどの段階でプレカーサーの原料アクリル繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。延伸工程前の段階であればどの段階でも、例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよく、例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化処理工程の直前に再度付着させてもよい。その付着方法に関しては、ローラー等を使用して付着してもよいし、浸漬法、スプレー法等で付着してもよい。
 付着処理工程において、アクリル繊維処理剤の付与率は、繊維-繊維間の膠着防止効果や融着防止効果を得ることと、炭素化処理工程において処理剤のタール化物によって炭素繊維の品質低下を防止することとのバランスからは、プレカーサーの重量に対して好ましくは0.1~2重量%であり、さらに好ましくは0.3~1.5重量%である。アクリル繊維処理剤の付与率が0.1重量%未満であると、単繊維間の膠着、融着を十分に防止できず、得られる炭素繊維の強度が低下することがある。一方、アクリル繊維処理剤の付与率が2重量%超であると、アクリル繊維処理剤が単繊維間を必要以上に覆うため、耐炎化処理工程において繊維への酸素の供給が妨げられ、得られる炭素繊維の強度が低下することがある。なお、ここでいうアクリル繊維処理剤の付与率とは、プレカーサー重量に対するアクリル繊維処理剤の付着した不揮発分重量の百分率で定義される。
 耐炎化処理工程は、アクリル繊維処理剤が付着したプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換する工程である。酸化性雰囲気とは、通常、空気雰囲気であればよい。酸化性雰囲気の温度は好ましくは230~280℃である。耐炎化処理工程では、付着処理後のアクリル繊維に対して、延伸比0.90~1.10(好ましくは0.95~1.05)の張力をかけながら、20~100分間(好ましくは30~60分間)にわたって熱処理が行われる。この耐炎化処理では、分子内環化および環への酸素付加を経て、耐炎化構造を持つ耐炎化繊維が製造される。
 炭素化処理工程は、耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる工程である。炭素化処理工程では、まず、窒素、アルゴン等の不活性雰囲気中、300℃から800℃まで温度勾配を有する焼成炉で、耐炎化繊維に対して、延伸比0.95~1.15の張力をかけながら、数分間熱処理して、予備炭素化処理工程(第一炭素化処理工程)を行うのが好ましい。その後、より炭素化を進行させ、且つグラファイト化を進行させるために、窒素、アルゴン等の不活性雰囲気中で、第一炭素化処理工程に対して延伸比0.95~1.05の張力をかけながら、数分間熱処理して、第二炭素化処理工程を行い、耐炎化繊維が炭素化される。第二炭素化処理工程における熱処理温度の制御については、温度勾配をかけながら、最高温度を1000℃以上(好ましくは1000~2000℃)とすることがよい。この最高温度は、所望する炭素繊維の要求特性(引張強度、弾性率等)に応じて適宜選択して決定される。
 本発明の炭素繊維の製造方法では、弾性率がさらに高い炭素繊維が所望される場合は、炭素化処理工程に引き続いて、黒鉛化処理工程を行うこともできる。黒鉛化処理工程は、通常、窒素、アルゴン等の不活性雰囲気中、炭素化処理工程で得られた繊維に対して張力をかけながら、2000~3000℃の温度で行われる。
 このようにして得られた炭素繊維には、目的に応じて、複合材料とした時のマトリックス樹脂との接着強度を高めるための表面処理を行うことができる。表面処理方法としては、気相または液相処理を採用でき、生産性の観点からは、酸、アルカリなどの電解液による液相処理が好ましい。さらに、炭素繊維の加工性、取り扱い性を向上させるために、マトリックス樹脂に対して相溶性の優れる各種サイジング剤を付与することもできる。
 以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)、部は特に限定しない限り、「重量%」、「重量部」を示す。各特性値の測定は以下に示す方法に基づいて行った。
<処理剤の付与率>
 処理剤付与後のプレカーサーを水酸化カリウム/ナトリウムブチラートでアルカリ溶融した後、水に溶解して塩酸でpH1に調整した。これを亜硫酸ナトリウムとモリブデン酸アンモニウムを加えて発色させ、ケイモリブデンブルーの比色定量(波長815mμ)を行い、ケイ素の含有量を求めた。ここで求めたケイ素含有量と予め同法で求めた処理剤中のケイ素含有量の値を用いて、アクリル繊維処理剤の付与率(重量%)を算出した。
<融着防止性>
 炭素繊維から無作為に20カ所を選び、そこから長さ10mmの短繊維を切り出し、その融着状態を観察し、下記の評価基準で判定した。
 ◎:融着無し
 ○:ほぼ融着無し
 △:融着少ない
 ×:融着多い
<プレカーサーのストランド硬度>
 プレカーサーストランド(長さ:約50cm)の硬度を、風合い試験機(HANDLE-O-METERHOM-2 大栄科学精器製作所(株)製、スリット幅5mm)で測定した。なお、測定は10回行い、その平均値が小さいほど、プレカーサーストランドが柔軟であると判断した。評価に際しては、製造直後(製造後7日以内)のプレカーサー、製造後常温で12ヶ月保管した(表では保管後と表記)プレカーサーを用いた。
<耐擦過性>
 TM式摩擦抱合力試験機TM-200(大栄科学精機社製)により、ジグザクに配置した鏡面クロムメッキステンレス針3本を介して50gの張力でプレカーサーストランド(12K)を1000回擦過させ(往復運動速度300回/分)、プレカーサーストランドの毛羽立ちの状態を下記基準で目視判定した。評価に際しては、製造直後(製造後7日以内)のプレカーサーと、製造後、常温で12ヶ月保管したプレカーサーを用いた。
  ◎:擦過前と同じく毛羽発生が全く見られない
  ○:数本の毛羽が見られるが耐擦過性良好
  △:毛羽立ちがやや多く若干耐擦過性に劣る
  ×:毛羽立ちが多く、著しい単糸切れが見られる 耐擦過性不良 
<炭素繊維強度>
 JIS-R-7601に規定されているエポキシ樹脂含浸ストランド法に準じ測定し、測定回数10回の平均値を炭素繊維強度(GPa)とした。評価に際しては、製造直後(製造後7日以内)のプレカーサー、製造後常温で12ヶ月保管したプレカーサーを用いた。
〔実施例1〕
 表1に示す処理剤の不揮発分組成になるように、アミノ変性シリコーンA1、ブレンステッド酸化合物B1、ポリオキシエチレンアルキルエーテルD1及び水を混合して水系乳化し、得られたアミノ変性シリコーン水系乳化物にアセチレン系界面活性剤C1を添加し、処理剤の不揮発分に占めるアミノ変性シリコーンA1の重量割合が80重量%、ブレンステッド酸化合物B1の重量割合が0.7重量%、アセチレン系界面活性剤C1の重量割合が2重量%、ポリオキシエチレンアルキルエーテルD1の重量割合が17.3重量%である処理剤(プレカーサー処理剤)を調製した。なお、処理剤の不揮発分濃度は20重量%とした。
 次いで、調整した処理剤をさらに水で希釈し、不揮発分濃度が3.0重量%である処理液を得た。
 処理液を97モル%のアクリロニトリルと3モル%のイタコン酸を共重合させて得られるプレカーサーの原料アクリル繊維に、付与率1.0%となるように付着し、延伸工程(スチーム延伸、延伸倍率2.1倍)を経てプレカーサーを作製した(単繊維繊度0.8dtex,24,000フィラメント)。このプレカーサーを250℃の耐炎化炉にて60分間耐炎化処理し次いで窒素雰囲気下300~1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換した。各特性値の評価結果を表1に示す。
〔実施例2~22、比較例1~17〕
 実施例1において、表2~4に示す処理剤の不揮発分組成になるように処理液を調整した以外は実施例1と同様にして、処理剤付着後のプレカーサーおよび炭素繊維を得た。各特性値の評価結果を表1~4に示す。
 なお、表1~4の不揮発分組成の詳細は以下である。
<アミノ変性シリコーン(A)>
アミノ変性シリコーンA1(25℃粘度:250mm/s、アミノ当量:7600g/mol、ジアミン型)
アミノ変性シリコーンA2(25℃粘度:1300mm/s、アミノ当量:1700g/mol、ジアミン型)
アミノ変性シリコーンA3(25℃粘度:1700mm/s、アミノ当量:3800g/mol、モノアミン型)
アミノ変性シリコーンA4(25℃粘度:20000mm/s、アミノ当量:1800g/mol、ジアミン型)
アミノ変性シリコーンA5(25℃粘度:1500mm/s、アミノ当量:3800g/mol、ジアミン型)
<ブレンステッド酸化合物(B)>
カルボン酸化合物B1:酢酸
カルボン酸化合物B2:安息香酸
カルボン酸化合物B3:アルギニン
カルボン酸化合物B4:リン酸
<アセチレン系界面活性剤(C)>
アセチレン系界面活性剤C1:2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド20モル付加物(式(4)において、R、Rがともにメチル基、R、Rがともにイソブチル基、Rが水素原子、AOがエチレンオキサイドであり、n+m=20である。)
アセチレン系界面活性剤C2:2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド5モル付加物(式(4)において、R、Rがともにメチル基、R、Rがともにイソブチル基、Rが水素原子、AOがエチレンオキサイドであり、n+m=5である。)
アセチレン系界面活性剤C3:3,6-ジメチル-4-オクチン-3,6-ジオール(式(2)において、R、Rがともにメチル基、R、Rがともにエチル基、Rが水素原子である。)
アセチレン系界面活性剤C4:2,4,7,9-テトラメチル-5-デシン-4,7-ジオール(式(2)において、R、Rがともにメチル基、R、Rがともにイソブチル基、Rが水素原子である。)
<ポリオキシアルキレンアルキルエーテル(D)>
ポリオキシエチレンアルキルエーテルD1:オキシエチレン基が5モル付加された炭素数が12~14のアルキルエーテル
ポリオキシエチレンアルキルエーテルD2:オキシエチレン基が7モル付加された炭素数が12~14のアルキルエーテル
ポリオキシエチレンアルキルエーテルD3:オキシエチレン基が9モル付加された炭素数が12~14のアルキルエーテル
 なお、表1~4において、ブレンステッド酸化合物(B)の括弧内の数値は、アミノ変性シリコーン(A)のアミノ基1モルに対するブレンステッド酸化合物(B)のモル当量を示す。また、アセチレン系界面活性剤(C)の括弧内の数値は、アミノ変性シリコーン(A)を100重量部としたときのアセチレン系界面活性剤(C)の重量割合を示す。また、ストランド硬度及び炭素繊維強度の保管後の括弧書きの数値は、製造直後の数値に対する変化率を示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表1~4から明らかなように、実施例のアクリル繊維処理剤は、ブレンステッド酸化合物(B)及び/又はアセチレン系界面活性剤(C)を含まない比較例のアクリル繊維処理剤と比較して、炭素繊維製造用アクリル繊維の経時劣化抑制に優れていることがわかる。
 本発明のアクリル繊維処理剤は、炭素繊維製造用アクリル繊維を製造する際に使用される処理剤であり、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維製造用アクリル繊維は、本発明の処理剤が処理されており、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維の製造方法によって、高品位の炭素繊維が得られる。

Claims (11)

  1.  アミノ変性シリコーン(A)、ブレンステッド酸化合物(B)及びアセチレン系界面活性剤(C)を含む、アクリル繊維用処理剤。
  2.  前記アミノ変性シリコーン(A)のアミノ基1モルに対して、ブレンステッド酸化合物(B)の割合が、0.01~2.5モル当量である、請求項1に記載のアクリル繊維用処理剤。
  3.  前記アミノ変性シリコーン(A)100重量部に対して、前記アセチレン系界面活性剤(C)の割合が0.1~12重量部である、請求項1又は2に記載のアクリル繊維用処理剤。
  4.  前記アセチレン系界面活性剤(C)が、アセチレンアルコール(C1)、アセチレンジオール(C2)、アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)及びアセチレンジオールにアルキレンオキサイドを付加した化合物(C4)から選ばれた少なくとも1種である、請求項1~3のいずれかに記載のアクリル繊維用処理剤。
  5.  前記アセチレンアルコール(C1)が下記一般式(1)で表される化合物であり、前記アセチレンジオール(C2)が下記一般式(2)で表される化合物であり、前記アセチレンアルコールにアルキレンオキサイドを付加した化合物(C3)が下記一般式(3)で表される化合物であり、前記アセチレンジオールにアルキレンオキサイドを付加した化合物(C4)が下記一般式(4)で表される化合物である、請求項4に記載のアクリル繊維用処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びR2は、それぞれ独立して炭素数1~8のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、R、R及びRは、それぞれ独立して炭素数1~8のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R及びR2は、それぞれ独立して炭素数1~8のアルキル基である。Rは水素原子、または炭素数1~5のアルキル基である。AOは炭素数2~4のオキシアルキレン基を示す。nは1~50の数である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R、R、R及びRは、それぞれ独立して炭素数1~8のアルキル基である。Rは水素原子、または炭素数1~5のアルキル基である。なお、式(4)における複数のRは、同一であってもよく異なっていてもよい。AOは炭素数2~4のオキシアルキレン基を示す。m、nはそれぞれ独立して1~50の数である。)
  6.  処理剤の不揮発分に占める前記アミノ変性シリコーン(A)の重量割合が40~95重量%である、請求項1~5のいずれかに記載のアクリル繊維用処理剤。
  7.  さらに、ポリオキシアルキレンアルキルエーテル(D)を含有する、請求項1~6のいずれかに記載のアクリル繊維用処理剤。
  8.  前記ポリオキシアルキレンアルキルエーテル(D)が、下記一般式(5)で示される化合物を含む、請求項7に記載のアクリル繊維用処理剤。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)中、Rは炭素数6~22のアルキル基を示す。AOは炭素数2~4のオキシアルキレン基を示す。jはそれぞれ独立して1~50の数である。)
  9.  前記アミノ変性シリコーン(A)100重量部に対して、前記アセチレン系界面活性剤(C)と前記ポリオキシアルキレンアルキルエーテル(D)の合計の割合が5~50重量部である、請求項7又は8に記載のアクリル繊維用処理剤。
  10. 炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1~9のいずれかに記載のアクリル繊維処理剤を付着させてなる、炭素繊維製造用アクリル繊維。
  11.  炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1~9のいずれかに記載の繊維処理剤を付着させて製糸する製糸工程と、200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む、炭素繊維の製造方法。
PCT/JP2018/005172 2017-03-09 2018-02-15 アクリル繊維処理剤及びその用途 WO2018163739A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880011727.6A CN110291245B (zh) 2017-03-09 2018-02-15 丙烯酸纤维用处理剂及其用途
JP2019504414A JP6535149B2 (ja) 2017-03-09 2018-02-15 アクリル繊維処理剤及びその用途
KR1020197025374A KR102405528B1 (ko) 2017-03-09 2018-02-15 아크릴 섬유 처리제 및 그 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044994 2017-03-09
JP2017-044994 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163739A1 true WO2018163739A1 (ja) 2018-09-13

Family

ID=63448565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005172 WO2018163739A1 (ja) 2017-03-09 2018-02-15 アクリル繊維処理剤及びその用途

Country Status (5)

Country Link
JP (1) JP6535149B2 (ja)
KR (1) KR102405528B1 (ja)
CN (1) CN110291245B (ja)
TW (1) TWI774738B (ja)
WO (1) WO2018163739A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102565A (ja) * 2019-12-25 2021-07-15 旭化成ワッカーシリコーン株式会社 水中油型エマルジョン組成物の変色を抑制する方法、該組成物の製造方法、および該組成物
JP7411296B1 (ja) 2023-07-27 2024-01-11 竹本油脂株式会社 炭素繊維前駆体用処理剤および炭素繊維前駆体
JP7448735B1 (ja) 2022-09-13 2024-03-12 松本油脂製薬株式会社 アクリル繊維用処理剤及びその用途
WO2024057740A1 (ja) * 2022-09-13 2024-03-21 松本油脂製薬株式会社 アクリル繊維用処理剤及びその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795238B1 (ja) * 2020-06-12 2020-12-02 竹本油脂株式会社 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法
JP6973837B1 (ja) * 2021-06-04 2021-12-01 竹本油脂株式会社 炭素繊維前駆体用処理剤、及び炭素繊維前駆体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247166A (ja) * 2002-02-22 2003-09-05 Toray Ind Inc 炭素繊維製造用油剤およびそれを用いた炭素繊維の製造方法
JP2004149937A (ja) * 2002-10-29 2004-05-27 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2007113141A (ja) * 2005-10-20 2007-05-10 Toray Ind Inc 炭素繊維前駆体繊維束の製造方法。
JP2013129946A (ja) * 2011-12-22 2013-07-04 Sumitomo Seika Chem Co Ltd 炭素繊維用サイジング剤および該サイジング剤で処理された炭素繊維束
JP2016056497A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維用油剤処理液

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA914152B (en) * 1990-06-01 1993-01-27 Unilever Plc Liquid fabric conditioner and dryer sheet fabric conditioner containing fabric softener,aminosilicone and bronsted acid compatibiliser
JPH06220722A (ja) * 1993-01-25 1994-08-09 Sumika Hercules Kk 高性能炭素繊維用プレカーサー用油剤組成物及びプレカーサー
JPH06220723A (ja) * 1993-01-25 1994-08-09 Sumika Hercules Kk 高性能炭素繊維用プレカーサー用油剤組成物及びプレカーサー
JP2001172879A (ja) 1999-10-08 2001-06-26 Sanyo Chem Ind Ltd 炭素繊維製造工程用油剤
JP4456253B2 (ja) 2000-10-16 2010-04-28 竹本油脂株式会社 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
CN102145267A (zh) * 2010-02-09 2011-08-10 天津赛菲化学科技发展有限公司 一种用于水基体系的多功能表面活性剂组合物及其制备方法
EP2821544B1 (en) * 2012-03-02 2018-05-16 Matsumoto Yushi-Seiyaku Co., Ltd. Acrylic-fiber finish for carbon-fiber production, acrylic fiber for carbon-fiber production, and carbon-fiber production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247166A (ja) * 2002-02-22 2003-09-05 Toray Ind Inc 炭素繊維製造用油剤およびそれを用いた炭素繊維の製造方法
JP2004149937A (ja) * 2002-10-29 2004-05-27 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2007113141A (ja) * 2005-10-20 2007-05-10 Toray Ind Inc 炭素繊維前駆体繊維束の製造方法。
JP2013129946A (ja) * 2011-12-22 2013-07-04 Sumitomo Seika Chem Co Ltd 炭素繊維用サイジング剤および該サイジング剤で処理された炭素繊維束
JP2016056497A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維用油剤処理液

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102565A (ja) * 2019-12-25 2021-07-15 旭化成ワッカーシリコーン株式会社 水中油型エマルジョン組成物の変色を抑制する方法、該組成物の製造方法、および該組成物
JP7419056B2 (ja) 2019-12-25 2024-01-22 旭化成ワッカーシリコーン株式会社 水中油型エマルジョン組成物の変色を抑制する方法、該組成物の製造方法、および該組成物
JP7448735B1 (ja) 2022-09-13 2024-03-12 松本油脂製薬株式会社 アクリル繊維用処理剤及びその用途
WO2024057740A1 (ja) * 2022-09-13 2024-03-21 松本油脂製薬株式会社 アクリル繊維用処理剤及びその用途
JP7411296B1 (ja) 2023-07-27 2024-01-11 竹本油脂株式会社 炭素繊維前駆体用処理剤および炭素繊維前駆体

Also Published As

Publication number Publication date
JPWO2018163739A1 (ja) 2019-06-27
KR102405528B1 (ko) 2022-06-03
TWI774738B (zh) 2022-08-21
JP6535149B2 (ja) 2019-06-26
KR20190119063A (ko) 2019-10-21
CN110291245B (zh) 2022-05-17
CN110291245A (zh) 2019-09-27
TW201842256A (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
WO2018163739A1 (ja) アクリル繊維処理剤及びその用途
JP6397601B2 (ja) 繊維処理剤及びその利用
WO2017169632A1 (ja) アクリル繊維処理剤及びその用途
KR101653160B1 (ko) 탄소섬유 제조용 아크릴섬유 유제, 탄소섬유 제조용 아크릴섬유 및 탄소섬유의 제조방법
WO2014050639A1 (ja) 炭素繊維製造用アクリル繊維処理剤及びその用途
JP5914780B1 (ja) アクリル繊維処理剤及びその用途
JP5309280B1 (ja) 炭素繊維製造用アクリル繊維処理剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP6190673B2 (ja) 炭素繊維製造用アクリル繊維処理剤及びその用途
JP2012102429A (ja) 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP6488104B2 (ja) アクリル繊維処理剤及びその用途
JP6752075B2 (ja) アクリル繊維処理剤及びその用途
JP5277005B2 (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP5592676B2 (ja) 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP6914745B2 (ja) アクリル繊維処理剤及びその用途
WO2024057740A1 (ja) アクリル繊維用処理剤及びその用途
JP2024063057A (ja) アクリル繊維用処理剤及びその用途
JP6204211B2 (ja) アクリル繊維処理剤及びその用途
JP2013159868A (ja) 炭素繊維製造用アクリル繊維処理剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025374

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763533

Country of ref document: EP

Kind code of ref document: A1