WO2015021830A1 - 磷酸亚铁锂的制备方法 - Google Patents

磷酸亚铁锂的制备方法 Download PDF

Info

Publication number
WO2015021830A1
WO2015021830A1 PCT/CN2014/081524 CN2014081524W WO2015021830A1 WO 2015021830 A1 WO2015021830 A1 WO 2015021830A1 CN 2014081524 W CN2014081524 W CN 2014081524W WO 2015021830 A1 WO2015021830 A1 WO 2015021830A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium
temperature
solution
lithium iron
Prior art date
Application number
PCT/CN2014/081524
Other languages
English (en)
French (fr)
Inventor
何向明
王莉
高飞飞
戴仲葭
黄贤坤
王继贤
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Priority to JP2016530321A priority Critical patent/JP6182673B2/ja
Publication of WO2015021830A1 publication Critical patent/WO2015021830A1/zh
Priority to US15/011,637 priority patent/US20160145104A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a lithium ion positive electrode active material, in particular to a preparation method of a positive electrode active material lithium iron phosphate.
  • Lithium iron phosphate (LiFePO 4 ) has been receiving great attention as a positive active material for lithium ion batteries with good safety, low cost and environmental friendliness.
  • the voltage platform of lithium iron phosphate 3.4V severely limits the increase in energy density of lithium ion batteries.
  • Lithium manganese phosphate (LiMnPO 4 ) can greatly increase the energy density of lithium ion batteries compared to lithium iron phosphate.
  • the electronic conductivity and the lithium ion diffusion rate of lithium manganese phosphate are low, so that the unmodified lithium manganese phosphate positive active material cannot meet the actual needs.
  • the methods for preparing lithium iron phosphate in the prior art include a solid phase method, a coprecipitation method, a hydrothermal method, and a solvothermal method.
  • the above method mostly uses expensive divalent iron as an iron source to prepare lithium iron phosphate, and the use of the divalent iron source not only increases the cost, but also the divalent iron is more easily oxidized, thereby making it difficult to control the reaction conditions, and Affects the purity, electrochemical performance and production efficiency of the prepared lithium iron phosphate.
  • a ferric iron source is also used as a raw material to prepare lithium iron phosphate, but the prepared product is agglomerated severely, the size is not uniform, and the electrochemical performance is not high.
  • a method for preparing lithium iron phosphate comprising the steps of: providing a lithium source solution and an iron phosphate, the lithium source solution comprising an organic solvent and a lithium source compound dissolved in the organic solvent; and the lithium source solution and phosphoric acid Mixing iron to form a mixed solution; heating the mixed solution at a first temperature to form a precursor solution at a normal temperature, the first temperature ranging from 40 ° C to 90 ° C; and placing the precursor solution in a solvothermal reaction A solvothermal reaction is carried out in the kettle, the solvothermal reaction temperature being a second temperature, and the second temperature being higher than the first temperature.
  • the embodiment of the present invention uses a solvothermal method to prepare a lithium iron phosphate as a positive electrode active material, and reduces the cost of synthesizing lithium iron phosphate by using a ferric iron source as a raw material, and before the solvothermal reaction,
  • the mixed solution formed by the iron phosphate and the lithium source solution is heated in advance to form the precursor solution, and the heating process changes the morphology and the bonding mode of the raw materials, so that the distribution of the raw materials is more uniform, thereby reducing the heat of the solvent on the one hand.
  • the temperature of the reaction on the other hand, rapidly synthesized lithium iron phosphate having a good crystallinity and uniform dispersion of the particles.
  • the preparation method is simple and does not require a complicated process.
  • the lithium iron phosphate is used as a positive electrode active material and has good electrochemical performance.
  • FIG. 1 is a flow chart showing a method for preparing lithium iron phosphate according to an embodiment of the present invention.
  • Example 2 is an XRD chart of a solid phase substance in a precursor solution formed in the preparation process of lithium iron phosphate according to Example 1 of the present invention.
  • Figure 3 is a comparison of scanning electron micrographs of the iron phosphate of Example 1 of the present invention before and after heating in a water bath.
  • Example 4 is an XRD chart of lithium iron phosphate prepared in Example 1 of the present invention.
  • Figure 5 is a scanning electron micrograph of lithium iron phosphate prepared in Example 1 of the present invention.
  • Fig. 6 is a graph showing the first charge and discharge curves of lithium iron phosphate prepared in Example 1 of the present invention.
  • Fig. 7 is a XRD comparison chart of lithium iron phosphate prepared in Example 1-4 of the present invention.
  • Figure 8 is a scanning electron micrograph of lithium iron phosphate prepared in Comparative Example 5 of the present invention.
  • Figure 9 is a graph showing the first charge and discharge curves of lithium iron phosphate prepared in Comparative Example 5 of the present invention.
  • Figure 10 is an XRD chart of lithium iron phosphate prepared in Example 2 of the present invention.
  • Figure 11 is a scanning electron micrograph of lithium iron phosphate prepared in Example 2 of the present invention.
  • Figure 12 is a graph showing the first charge and discharge curves of lithium iron phosphate prepared in Example 2 of the present invention.
  • an embodiment of the present invention provides a method for preparing lithium iron phosphate as a positive electrode active material of a lithium ion battery, which comprises the following steps:
  • the precursor solution is placed in a solvothermal reaction vessel for a solvothermal reaction, the solvothermal reaction temperature is a second temperature, and the second temperature is higher than the first temperature.
  • the iron phosphate may be in the form of particles and may have a particle diameter of 50 nm to 2 ⁇ m.
  • the iron phosphate can be obtained by reacting a ferric source with a phosphate source.
  • the lithium source compound may be selected from one or more of lithium hydroxide, lithium chloride, lithium sulfate, lithium nitrate, lithium dihydrogen phosphate, and lithium acetate.
  • the organic solvent dissolves the lithium source compound. That is, the lithium source compound can form lithium ions in an organic solvent.
  • the organic solvent can also serve as a reducing agent to reduce trivalent iron ions to divalent ferrous ions during subsequent solvothermal reactions.
  • the organic solvent may be a glycol, a polyol or a polymer alcohol, preferably in the form of ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, butyl triol and polyethylene glycol.
  • the organic solvent can be selected depending on the kind of the lithium source compound.
  • the organic solvent in the examples of the present invention is ethylene glycol.
  • the solvent in the lithium source solution may be only the organic solvent, or may be a mixed solvent of an organic solvent and a small amount of water.
  • the lithium source compound or iron phosphate itself has crystal water
  • the volume ratio of the water to the organic solvent should be less than or equal to 1:10, preferably less than 1:50, within which the reaction product can be controlled to have a uniform morphology and structure. Otherwise it will easily affect the product morphology and structure.
  • the concentration of lithium ions in the lithium source solution is from 0.5 mol/L to 0.7 mol/L. Within this concentration range, the greater the concentration of lithium ions, the better the crystallinity of the subsequently produced olivine-type lithium iron phosphate. When the concentration of lithium ions in the lithium source solution is less than the range, the subsequently formed lithium iron phosphate may contain a hetero phase. When the concentration of lithium ions in the lithium source solution is larger than the range, the crystallinity of the subsequently produced lithium iron phosphate decreases. Preferably, the concentration of lithium ions in the lithium source solution is 0.6 mol/L.
  • the lithium source solution and the iron phosphate are mixed at a molar ratio of lithium:iron of (1 to 2):1. That is, when the molar amount of iron is 1 part, the molar amount of lithium may be 1 to 2 parts. In the embodiment of the invention, the lithium:iron molar ratio is 1:1.
  • the iron phosphate may be dispersed in an organic solvent to form a dispersion, and then the dispersion is mixed with the lithium source solution.
  • the dispersion of iron phosphate is formed in advance to uniformly mix the iron phosphate and the lithium source compound in the mixed solution.
  • the organic solvent used in the dispersion may be the same as or different from the organic solvent in the lithium source solution.
  • the step S2 may further comprise a step of stirring to uniformly mix the iron phosphate with the lithium source solution.
  • the manner of stirring may be mechanical agitation or ultrasonic dispersion.
  • the stirring time may be from 0.5 hours to 2 hours.
  • the rate of agitation can range from 60 rpm to 600 rpm.
  • the mixing may be performed by adding the iron phosphate to the lithium source solution, or adding the lithium source solution to the iron phosphate for mixing.
  • the iron phosphate is gradually added to the lithium source solution, and stirring is continued during the addition to sufficiently mix the iron phosphate with the lithium source solution.
  • the total concentration of the lithium source compound and iron phosphate is less than or equal to 1.5 mol/L.
  • the total concentration of the lithium source compound and iron phosphate is from 1.1 mol/L to 1.4 mol/L. More preferably, the total concentration of the lithium source compound and iron phosphate is 1.2 mol/L.
  • step S3 the step of heating the mixed solution at the first temperature is carried out under a normal pressure environment. Further, the step of heating is carried out in an open environment.
  • the first temperature may be from 40 °C to 90 °C.
  • the first temperature may be from 60 °C to 80 °C. More preferably, the first temperature may be 80 °C.
  • lithium, iron, and phosphorus all become a solid phase.
  • the iron phosphate particles in the precursor solution are converted from a solid spherical shape to a loose porous shape, and a complex formed of lithium hydroxide and an organic solvent is adsorbed in the pores of the iron phosphate particles, and contains C, H, and O. element.
  • Heating the mixed solution at the first temperature on the one hand changes the morphology of the iron phosphate (porous iron phosphate), and on the other hand causes the lithium source compound and the organic solvent to adsorb to the porous form as a complex.
  • the iron phosphate so that the distribution of the lithium source compound, iron phosphate and the organic solvent which can be used as a reducing agent is more uniform, so that on the one hand, the temperature of the solvothermal reaction can be lowered, and on the other hand, the crystallization can be rapidly synthesized. Lithium iron phosphate with good degree and uniform dispersion of particles.
  • heating may be performed in such a manner that the mixed solution is uniformly heated.
  • the heating can be by water bath heating or oil bath heating.
  • the heating method may be: heating a heating device to the first temperature in advance, and then placing the mixed solution into the heating device for heat preservation.
  • the mixed solution is heated in a water bath. Specifically, the water bath device is heated to the first temperature in advance, and then the mixed solution is placed in the water bath device for heat preservation. Further, during the heating of the above step S3, the mixed solution may be further stirred to uniformly heat the mixed solution.
  • the mixed solution is heated for 1 hour to 8 hours.
  • the heating time is from 4 hours to 6 hours.
  • the steps S2 and S3 can be performed simultaneously.
  • the solvothermal reaction vessel may be a sealed autoclave, and the internal pressure of the reactor is raised by pressurizing the sealed autoclave or using the autogenous pressure of the steam inside the reactor to increase the internal pressure of the reactor.
  • the body solution is reacted under high temperature and high pressure conditions.
  • the internal pressure of the reactor may be 5 MPa to 30 MPa.
  • the filling rate of the precursor solution in the solvothermal reactor is 60% to 80%. Preferably, the filling rate is 80%.
  • the solvothermal reactor can have the function of agitating the internal reactants and is a stirrable solvothermal reactor.
  • the solvothermal reactor was still sealed during the agitation process.
  • the precursor solution is stirred while heating the precursor solution.
  • This step of continuous agitation in the solvothermal reactor promotes a more uniform mass transfer process in the reaction, thereby making the reaction easier to carry out.
  • the stirring step can also control the crystal grain size, dispersity, and crystallinity of the produced lithium iron phosphate.
  • the rate of agitation is from 30 rpm to 100 rpm.
  • the solvothermal reaction vessel may be further placed in a blast drying oven to perform a solvothermal reaction.
  • the blast drying oven may raise the solvothermal reactor to a predetermined value for a specific time.
  • the blast oven can be used to better control the temperature of the solvothermal reactor.
  • the second temperature is greater than the first temperature and may be from 120 ° C to 250 ° C. Preferably, the second temperature is from 150 ° C to 200 ° C.
  • the precursor solution is gradually warmed to the second temperature after being placed in the solvothermal reactor.
  • the reaction time of the solvothermal reaction is from 3 hours to 12 hours. After the reaction is completed, the reaction vessel can be naturally cooled to room temperature to obtain the reaction product lithium iron phosphate.
  • the reaction product can be separated and purified from the mixed solution. Specifically, the reaction product may be separated from the liquid phase by filtration or centrifugation, then washed with deionized water and dried.
  • the reaction product is a fusiform lithium iron phosphate particle having a good dispersibility and a uniform particle size, and has a particle diameter of 50 nm to 200 nm.
  • the reaction product has a small particle size, and it can be confirmed by XRD analysis that the reaction product has a good crystallinity, and can be directly used as a positive electrode active material without further high-temperature calcination.
  • the reaction product lithium iron phosphate can be carbon-coated.
  • the method of encapsulating carbon may be: providing a solution of a carbon source compound; adding the lithium iron phosphate to the carbon source compound solution to form a mixture; and subjecting the mixture to heat treatment.
  • the carbon source compound is preferably a reducing organic compound which can be cracked into a simple substance of carbon such as amorphous carbon under heating, and no other solid phase substance is formed.
  • the carbon source compound may be sucrose, glucose, sban 80, phenolic resin, epoxy resin, furan resin, polyacrylic acid, polyacrylonitrile, polyethylene glycol or polyvinyl alcohol.
  • the concentration of the carbon source compound solution is from about 0.005 g/ml to 0.05 g/ml.
  • the mixture may be further stirred to sufficiently coat the surface of the lithium iron phosphate solution.
  • the mixture of the lithium iron phosphate and the carbon source compound solution may be evacuated by a vacuuming step to sufficiently evacuate the air between the lithium iron phosphate particles.
  • lithium iron phosphate having a solution of a carbon source compound on the surface may be taken out from the solution of the carbon source compound and dried.
  • the heat treatment can be carried out in two steps. First, the temperature is maintained at a third temperature for a certain period of time, and then heated to a fourth temperature for calcination.
  • This heat treatment is performed in such a manner that carbon is uniformly coated on the surface of the lithium iron phosphate.
  • the third temperature is preferably from 150 ° C to 200 ° C, and the incubation time may be from 1 to 3 hours.
  • the fourth temperature is preferably from 300 ° C to 800 ° C, and the calcination time may be from 0.3 hours to 8 hours.
  • the heat treatment time is preferably from 0.3 hours to 8 hours.
  • the mixture was first incubated at 200 ° C for 1 hour and then further calcined at 650 ° C for 5 hours.
  • the lithium source compound is LiOH.H 2 O
  • the organic solvent is ethylene glycol.
  • the molar ratio of LiOH ⁇ H 2 O to FePO 4 was 1:1.
  • LiOH.H 2 O was dissolved in 40 mL of ethylene glycol to form a lithium source solution having a concentration of 0.6 mol/L.
  • the FePO 4 particles were then added to the lithium source solution for 30 minutes to form the mixed solution.
  • the mixed solution was placed in a water bath at 80 ° C for 4 hours to form the precursor solution.
  • XRD analysis of the solid phase material in the precursor solution revealed that the solid phase material was FePO 4 having good crystallinity.
  • Fe, Li, and P substantially all enter the solid phase and contain C, H, and O elements.
  • Fe, P, and O elements exist in the form of FePO 4 , and Li, C, H, and O are present in the pores of FePO 4 .
  • the mixed solution was transferred to a stirrable solvothermal reactor (filling rate: about 80%), stirred at a stirring rate of 50 rpm, and reacted at 200 ° C for 6 hours to obtain a reaction product, and the reaction product was ethanol. It was washed with water and dried at 80 ° C to obtain a lithium iron phosphate reaction product.
  • the XRD results show that the reaction product is a pure phase and a crystallinity of olivine-type lithium iron phosphate.
  • FIG. 5 it can be seen from the scanning electron micrograph of the reaction product that lithium iron phosphate has good dispersibility and is a shuttle-shaped particle having a uniform size and a particle diameter of 300 nm to 400 nm.
  • the reaction product lithium iron phosphate is further mixed with sucrose (carbon content is 5%), ground in an agate mortar for 20 minutes, and then placed in a tube furnace at 200 ° C for 1 hour, and then The carbon-coated lithium iron phosphate particles were obtained by calcination at 650 ° C for 5 hours. Thereafter, a positive electrode composed of a mixture of carbon-coated lithium iron phosphate, 5% acetylene black, 5% conductive graphite, and 10% polyvinylidene fluoride mixed with 80% by mass of carbon was formed.
  • Celgard 2400 microporous polypropylene film as the separator with 1mol/L LiPF 6 /EC+DMC+EMC (1:1:1 volume ratio) as the electrolyte, CR2032 is formed in the argon atmosphere glove box.
  • the button cell battery was tested for battery performance after standing at room temperature for a period of time.
  • the first charge-discharge specific capacity of the battery of Example 1 is 152.2 mAh/g and 151.5 mAh/g, respectively.
  • the first charge and discharge efficiency is as high as 99.6%, and the voltage difference between the charge and discharge curves is very small.
  • the battery had a capacity retention rate of 98.6% in a cycle of 20 times at a rate of 0.1 C.
  • This comparative example is basically the same as that of Example 1, except that the concentration of the lithium source solution is 0.2 mol/L.
  • This comparative example is basically the same as that of Example 1, except that the concentration of the lithium source solution is 0.4 mol/L.
  • This comparative example is basically the same as in Example 1, except that the concentration of the lithium source solution is 0.8 mol/L.
  • the present invention further compares the XRD patterns of lithium iron phosphate obtained in the preparation of Comparative Examples 1-4, see FIG. 7, and it can be seen from the figure that the concentration of the lithium source solution is 0.2 mol/L and 0.4 mol/L.
  • the resulting product contains iron phosphate impurities.
  • the product obtained by the concentration of the lithium source solution of 0.8 mol/L was a pure phase lithium iron phosphate, but the crystallinity was weaker than that of the product obtained at a concentration of 0.6 mol/L.
  • This comparative example was substantially the same as that of Example 1, except that the comparative example did not have a step of heating the mixed solution by a water bath, nor a step of stirring the mixed solution in a solvothermal reaction vessel.
  • the obtained reaction product lithium iron phosphate is severely agglomerated, and the size of lithium iron phosphate is not uniform, mainly has two sizes, one is 1 micrometer to 2 micrometers, and the other is The species is from 300 nm to 400 nm.
  • Fig. 9 it can be seen from the electrochemical performance test curve of the reaction product that the first charge-discharge specific capacity of the reaction product is very small, 86.5 mAh/g and 86.5 mAh/g, respectively.
  • This Example 2 is basically the same as Example 1, except that only the step of stirring the mixed solution in the solvothermal reactor is not included in the comparative example.
  • the XRD test results show that the reaction product obtained in this Example 2 is also an olivine-type lithium iron phosphate.
  • the intensity of the characteristic peak of lithium iron phosphate in FIG. 10 is slightly lower than the intensity of the characteristic peak of lithium iron phosphate in FIG.
  • the reaction product is uniformly distributed, and the reaction product of this Example 2 has only a small amount of agglomeration relative to Example 1.
  • the reaction product is a fusiform particle having a particle diameter of from 600 nm to 800 nm.
  • the first charge-discharge specific capacity of the reaction product obtained in this Example 2 was 150.6 mAh/g and 144.1 mAh/g, respectively.
  • the first Coulomb efficiency was 95.7%.
  • the capacity retention rate in the cycle of 20 times was 98%. It is shown that the lithium iron phosphate prepared in the second embodiment has better electrochemical cycle performance.
  • the positive electrode active material lithium iron phosphate is prepared by using a solvothermal method, and the cost of synthesizing lithium iron phosphate is reduced by using a ferric iron source as a raw material, and the iron phosphate and lithium are pre-treated before the solvothermal reaction.
  • the mixed solution formed by the source solution is heated to form the precursor solution, and the heating process changes the morphology of the raw material and the manner of bonding, so that the distribution of the raw materials is more uniform, thereby reducing the temperature of the solvothermal reaction on the one hand, and the other
  • lithium iron phosphate having a good crystallinity and uniform dispersion of particles is rapidly synthesized.
  • the preparation method is simple and does not require a complicated process.
  • the lithium iron phosphate is used as a positive electrode active material and has good electrochemical performance.

Abstract

提供一种作为锂离子电池正极活性材料的磷酸亚铁锂的制备方法,其包括以下步骤:提供锂源溶液以及磷酸铁,所述锂源溶液包括有机溶剂以及溶解在该有机溶剂中的锂源化合物;将所述锂源溶液与磷酸铁混合形成混合溶液;常压下,在第一温度下加热该混合溶液形成一前驱体溶液,所述第一温度的范围为40°C至90°C;以及将该前驱体溶液放入溶剂热反应釜中进行溶剂热反应,该溶剂热反应温度为第二温度,所述第二温度高于所述第一温度。

Description

磷酸亚铁锂的制备方法 技术领域
本发明涉及一种锂离子正极活性材料的制备方法,尤其涉及一种正极活性材料磷酸亚铁锂的制备方法。
背景技术
磷酸亚铁锂(LiFePO4)作为一种具有较好安全性,价格低廉且对环境友好的锂离子电池正极活性材料一直受到人们极大的关注。然而磷酸亚铁锂3.4V的电压平台严重限制了锂离子电池能量密度的提高。与磷酸亚铁锂相比,磷酸锰锂(LiMnPO4)能极大地提高锂离子电池的能量密度。然而,磷酸锰锂的电子电导率和锂离子扩散速率较低,使得未经改性的磷酸锰锂正极活性材料无法满足实际需要。
现有技术中制备磷酸亚铁锂的方法有固相法、共沉淀法、水热及溶剂热法。然而,上述方法多采用昂贵的二价铁作为铁源来制备磷酸亚铁锂,二价铁源的使用不仅增加了成本,而且二价铁较容易被氧化,从而较难控制反应的条件,且影响制备的磷酸亚铁锂的纯度、电化学性能以及生产效率。
目前,现有技术中也有采用三价铁源作为原料来制备磷酸亚铁锂,但制备的的产物团聚严重,尺寸不均一,且电化学性能也不高。
发明内容
有鉴于此,确有必要提供一种制备成本低廉且具有较好电化学性能的磷酸亚铁锂的制备方法。
一种磷酸亚铁锂的制备方法,包括以下步骤:提供锂源溶液以及磷酸铁,所述锂源溶液包括有机溶剂以及溶解在该有机溶剂中的锂源化合物;将所述锂源溶液与磷酸铁混合形成混合溶液;常压下,在第一温度下加热该混合溶液形成一前驱体溶液,所述第一温度的范围为40℃至90℃;以及将该前驱体溶液放入溶剂热反应釜中进行溶剂热反应,该溶剂热反应温度为第二温度,所述第二温度高于所述第一温度。
相对于现有技术,本发明实施例利用溶剂热的方式来制备正极活性材料磷酸亚铁锂,通过采用三价铁源作为原料降低了合成磷酸亚铁锂的成本,另外在溶剂热反应之前,预先将磷酸铁与锂源溶液形成的混合溶液加热形成所述前驱体溶液,该加热的过程改变了原料的形貌以及结合方式,使得原料的分布更加均匀,从而一方面降低了所述溶剂热反应的温度,另一方面快速地合成了结晶度较好且颗粒均匀分散的磷酸亚铁锂。该制备方法简单,无需复杂的工艺。将该磷酸亚铁锂做为正极活性材料具有较好的电化学性能。
附图说明
图1是本发明实施例的磷酸亚铁锂的制备方法流程图。
图2是本发明实施例1磷酸亚铁锂制备过程中形成的前驱体溶液中的固相物质的XRD谱图。
图3是本发明实施例1磷酸铁在水浴加热前后的扫描电镜照片对比图。
图4是本发明实施例1制备得到的磷酸亚铁锂的XRD谱图。
图5是本发明实施例1制备得到的磷酸亚铁锂的扫描电镜照片。
图6是本发明实施例1制备得到的磷酸亚铁锂的首次充放电曲线。
图7是本发明实施例1-4制备得到的磷酸亚铁锂的XRD对比图谱。
图8是本发明对比例5制备得到的磷酸亚铁锂的扫描电镜照片。
图9是本发明对比例5制备得到的磷酸亚铁锂的首次充放电曲线。
图10是本发明实施例2制备得到的磷酸亚铁锂的XRD谱图。
图11是本发明实施例2制备得到的磷酸亚铁锂的扫描电镜照片。
图12是本发明实施例2制备得到的磷酸亚铁锂的首次充放电曲线。
具体实施方式
以下将结合附图详细说明本发明实施例磷酸亚铁锂的制备方法。
请参阅图1,本发明实施例提供一种作为锂离子电池正极活性材料的磷酸亚铁锂的制备方法,其包括以下步骤:
S1,提供锂源溶液以及磷酸铁,所述锂源溶液包括有机溶剂以及溶解在该有机溶剂中的锂源化合物;
S2,将所述锂源溶液与磷酸铁混合形成混合溶液;
S3,常压下,在第一温度下加热该混合溶液形成一前驱体溶液,所述第一温度的范围为40℃至90℃;以及
S4,将该前驱体溶液放入溶剂热反应釜中进行溶剂热反应,该溶剂热反应温度为第二温度,所述第二温度高于所述第一温度。
在上述步骤S1中,所述磷酸铁(FePO4)可为颗粒状,粒径可为50纳米至2微米。所述磷酸铁可利用三价铁源与磷酸根源反应获得。该锂源化合物可选择为氢氧化锂、氯化锂、硫酸锂、硝酸锂、磷酸二氢锂、醋酸锂中的一种或多种。所述有机溶剂可溶解该锂源化合物。即所述锂源化合物可在有机溶剂中形成锂离子。此外,该有机溶剂也可同时作为还原剂在后续溶剂热反应的过程中将三价的铁离子还原成二价的亚铁离子。所述有机溶剂可为二元醇、多元醇或聚合物醇,优选可以为乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇及聚乙二醇中的一种或多种。所述有机溶剂可根据所述锂源化合物的种类而进行选择。本发明实施例中所述有机溶剂为乙二醇。
所述锂源溶液中的溶剂可仅为该有机溶剂,也可以为有机溶剂和少量水形成的混合溶剂,例如,当该锂源化合物或磷酸铁本身带有结晶水,将该锂源化合物与所述有机溶剂混合或再与磷酸铁混合时,将水带入有机溶剂中。然而,在混合溶液中,该水和有机溶剂的体积比应小于或等于1:10,优选地,小于1:50,在该体积比范围内,可控制反应产物具有均一的形貌和结构,否则容易影响产物形貌和结构。
所述锂源溶液中锂离子的浓度为0.5mol/L至0.7mol/L。在该浓度范围内,锂离子的浓度越大,后续生成的橄榄石型的磷酸亚铁锂的结晶度越好。当所述锂源溶液中锂离子的浓度小于该范围时,后续生成的磷酸亚铁锂会含有杂相。当所述锂源溶液中锂离子的浓度大于该范围时,后续生成的磷酸亚铁锂的结晶度下降。优选地,所述锂源溶液中锂离子的浓度为0.6mol/L。
在上述步骤S2中,所述锂源溶液与磷酸铁以锂:铁的摩尔比为(1~2):1的比例进行混合。即以铁的摩尔量为1份时,锂的摩尔量可为1~2份。本发明实施例中所述锂:铁的摩尔比为1:1。
在所述步骤S2之前,可预先将所述磷酸铁分散于一所述有机溶剂中形成一分散液,然后再将该分散液与所述锂源溶液混合。预先形成磷酸铁的分散液可使所述磷酸铁与锂源化合物在混合溶液中均匀混合。该分散液所使用的有机溶剂与所述锂源溶液中的有机溶剂可以相同也可以不同。
所述步骤S2可进一步包括一搅拌的步骤使所述磷酸铁与所述锂源溶液均匀混合。所述搅拌的方式可以为机械搅拌或超声分散。所述搅拌的时间可以为0.5小时至2小时。该搅拌的速率可以为60转/分钟至600转/分钟。
在上述步骤S2中,所述混合的方式可以为将所述磷酸铁加入到所述锂源溶液中混合,或者将所述锂源溶液加入到所述磷酸铁中进行混合。本发明实施例中将所述磷酸铁逐步地加入到所述锂源溶液中,并在加入的过程中持续搅拌以使所述磷酸铁与锂源溶液充分混合。
所述混合溶液中,所述锂源化合物以及磷酸铁的总浓度小于或等于1.5mol/L。优选地,所述锂源化合物以及磷酸铁的总浓度为1.1mol/L至1.4mol/L。更为优选地,所述锂源化合物以及磷酸铁的总浓度为1.2mol/L。当所述锂源化合物以及磷酸铁的总浓度过大时,会导致后续反应体系不均一。
在上述步骤S3中,在所述第一温度下加热该混合溶液的步骤在一常压的环境下进行。进一步地,该加热的步骤在一开放的环境中进行。
所述第一温度可为40℃至90℃。优选地,所述第一温度可为60℃至80℃。更为优选地,所述第一温度可为80℃。在所述第一温度下加热该混合溶液形成的前驱体溶液中,锂、铁和磷全部成为固相。通过该加热步骤,该前驱体溶液中的磷酸铁颗粒由实心球状转化为疏松多孔状,氢氧化锂与有机溶剂形成的络合物吸附在磷酸铁颗粒的孔中,并且含有C、H和O元素。在所述第一温度下加热该混合溶液一方面改变了磷酸铁的形貌(多孔的磷酸铁),另一方面促使所述锂源化合物与所述有机溶剂以络合物的形式吸附于多孔的磷酸铁中,从而使得所述锂源化合物、磷酸铁以及后续可作为还原剂的有机溶剂的分布更加均匀,从而一方面可降低所述溶剂热反应的温度,另一方面可快速地合成结晶度较好且颗粒均匀分散的磷酸亚铁锂。
在上述步骤S3中,可采用使所述混合溶液均匀受热的方式来加热。该加热的方式可以为水浴加热或油浴加热。可加热的方式可为:预先将一加热装置加热到所述第一温度,然后再将所述混合溶液放到该加热装置中进行保温。本发明实施例中水浴加热所述混合溶液。具体地,预先将水浴装置加热到所述第一温度,然后再将所述混合溶液放到该水浴装置中进行保温。此外,在上述步骤S3加热的过程中,可进一步搅拌该混合溶液使该混合溶液均匀受热。
在所述步骤S3中,所述混合溶液加热的时间为1小时至8小时。优选地,加热的时间为4小时至6小时。
所述步骤S2和S3可同时进行。
在上述步骤S4中,所述溶剂热反应釜可为一密封高压釜,通过对该密封高压釜加压或利用反应釜内部蒸汽的自生压力使反应釜内部压力上升,从而使反应釜内部的前驱体溶液在高温高压条件下进行反应。该反应釜内部压力可以为5MPa~30MPa。
所述前驱体溶液在该溶剂热反应釜中的填充率为60%至80%。优选地,所述填充率为80%。
该溶剂热反应釜可具有搅拌内部反应物的功能,是可搅拌溶剂热反应釜。在搅拌过程中该溶剂热反应釜仍密封。
进一步地,在将所述前驱体溶液放入溶剂热反应釜密封后,对该前驱体溶液加热的同时搅拌该前驱体溶液。该在溶剂热反应釜中持续搅拌的步骤可促使反应中的传质过程更加均一,从而使得反应更易进行。此外,该搅拌的步骤也可控制生成的磷酸亚铁锂的晶粒尺寸、分散度和结晶度。该搅拌的速率为30转/分钟至100转/分钟。
在上述步骤S4中,可进一步将所述溶剂热反应釜置于一鼓风干燥箱内,进行溶剂热反应。所述鼓风干燥箱可将所述溶剂热反应釜升温到预定值并保温特定时间。采用该鼓风干燥箱可更好地控制所述溶剂热反应釜的温度。
所述第二温度大于所述第一温度,可为120℃至250℃。优选地,所述第二温度为150℃至200℃。在将所述前驱体溶液放入该溶剂热反应釜后逐步升温到所述第二温度。溶剂热反应的反应时间为3小时至12小时。在反应完毕后,所述反应釜可自然冷却至室温得到所述反应产物磷酸亚铁锂。
进一步地,在通过所述步骤S4得到所述反应产物后,可从所述混合溶液中将该反应产物分离提纯。具体地,可采用过滤或离心的方式将所述反应产物从液相中分离,然后用去离子水洗涤并干燥。
该反应产物为分散性好且粒径均一的梭形的磷酸亚铁锂颗粒,粒径为50纳米至200纳米。该反应产物具有较小的粒径,通过XRD分析可以证明该反应产物具有较好的结晶度,从而无需再高温煅烧即可直接作为正极活性材料使用。
进一步地,在通过步骤S4得到反应产物后,可将该反应产物磷酸亚铁锂进行包碳处理。该包碳的方法可以是:提供一碳源化合物的溶液;将所述磷酸亚铁锂加入该碳源化合物溶液中形成混合体;以及将该混合体进行热处理。所述碳源化合物优选为还原性有机化合物,该类有机化合物在加热条件下可裂解成碳单质,如无定形碳,且无其它固相物质生成。所述碳源化合物可为蔗糖、葡萄糖、司班80、酚醛树脂、环氧树脂、呋喃树脂、聚丙烯酸、聚丙烯腈、聚乙二醇或聚乙烯醇等。该碳源化合物溶液的浓度约为0.005g/ml至0.05g/ml。在将所述磷酸亚铁锂加入该碳源化合物溶液后,可进一步搅拌,使该碳源化合物溶液充分包覆该磷酸亚铁锂表面。另外,可采用一抽真空的步骤对该磷酸亚铁锂和碳源化合物溶液的混合体抽真空,使磷酸亚铁锂颗粒之间的空气充分排出。进一步地,在加热该混合体前,可先将表面具有碳源化合物溶液的磷酸亚铁锂从碳源化合物溶液中捞出并烘干。所述热处理可分两步进行,首先,在第三温度下保温一定时间,然后再升温到第四温度下煅烧。该热处理的方式可使碳均匀包覆在所述磷酸亚铁锂表面。所述第三温度优选为150℃至200℃,所述保温的时间可为1-3小时。所述第四温度优选为300℃至800℃,所述煅烧的时间可为0.3小时至8小时。该热处理的时间优选为0.3小时至8小时。本发明实施例中首先对所述混合体在200℃下保温1小时,然后在650℃下进一步煅烧5小时。
实施例1
本实施例中,所述锂源化合物为LiOH·H2O,所述有机溶剂为乙二醇。LiOH·H2O与FePO4的摩尔比为1:1。首先,将LiOH·H2O溶于40mL乙二醇中形成浓度为0.6mol/L的锂源溶液。然后将FePO4颗粒加入到该锂源溶液中超声30分钟形成所述混合溶液。将该混合溶液置于水浴锅中80℃中保温4小时形成所述前驱体溶液。请参阅图2,对该前驱体溶液中的固相物质进行XRD分析可知,该固相物质为结晶度良好的FePO4。此外,请参阅图3,从图中对比可以看出,作为原料的FePO4在水浴过程后,形貌从实心颗粒变为疏松多孔状。请进一步参阅表1,采用电感耦合等离子体原子发射光谱法(ICP-AES)对该前驱体溶液进行元素检测,从表中可以看出,该前驱体溶液中的上层清液中,几乎不含Fe和P,而且Li的含量也很少。所述固相物质中,Fe和Li的摩尔比近似为1:1(Fe和Li的质量比占32.594%,其它元素的质量比占67.406%)。对该固相物质进一步检测分析得知,该固相物质中含有C和H元素。结合图2-3以及表1可知,经过所述水浴过程后,Fe、Li和P基本全部进入固相,并且含有C、H和O元素。Fe、P、O元素以FePO4的形式存在,Li、C、H、和O存在于FePO4的微孔中。
表1
水浴上层清液 μm/mL 固相物质 质量% 固相物质 质量%
Fe 51.59 Fe 28.88 C 7.03
Li 90.88 Li 3.714 H 1.42
P 3.908
然后将该混合溶液转移至可搅拌溶剂热反应釜中(填充率约为80%)搅拌,搅拌速率为50转/分,并在200℃下反应6小时获得反应产物,将该反应产物用乙醇和水洗涤,并在80℃下干燥获得反应产物磷酸亚铁锂。
请参阅图4,XRD结果显示,反应产物为纯相且结晶度较好的橄榄石型磷酸亚铁锂。请参阅图5,从反应产物的扫描电镜照片中可以看出,磷酸亚铁锂分散性较好,且为尺寸均一的梭形颗粒,粒径为300纳米至400纳米。
本实施例进一步将反应产物磷酸亚铁锂与蔗糖混合(含碳量为5%),置于玛瑙研钵中研磨20分钟,然后置于管式炉中在200℃下保温1小时,然后在650摄氏度煅烧5小时获得碳包覆的磷酸亚铁锂颗粒。之后,形成一由质量百分比为80%的碳包覆的磷酸亚铁锂、5%的乙炔黑、5%的导电石墨及10%的聚偏氟乙烯混合组成的正极。以金属锂为负极,Celgard 2400微孔聚丙烯膜为隔膜,以1mol/L LiPF6/EC+DMC+EMC(1:1:1体积比)为电解液,在氩气气氛手套箱中组成CR2032型纽扣电池,在室温下静置一段时间后进行电池性能测试。
请参阅图6,从图中可以看出,实施例1的电池的首次充放电比容量较高,分别为152.2mAh/g和151.5mAh/g。首次充放电效率高达99.6%,并且充放电曲线间的电压差非常小。此外,该电池在0.1C倍率下,循环20次容量保持率为98.6%。
对比例2
本对比例与实施例1基本相同,区别在于,锂源溶液的浓度为0.2 mol/L。
对比例3
本对比例与实施例1基本相同,区别在于,锂源溶液的浓度为0.4 mol/L。
对比例4
本对比例与实施例1基本相同,区别在于,锂源溶液的浓度为0.8 mol/L。
本发明进一步将对比例1-4制备获得的磷酸亚铁锂的XRD图谱进行对比,请参阅图7,从图中可以看出,锂源溶液的浓度为0.2 mol/L和0.4 mol/L制得的产物中有磷酸铁杂质。另外,锂源溶液的浓度为0.8 mol/L制得的产物为纯相的磷酸亚铁锂,但是结晶度弱于0.6mol/L浓度下制得的产物。
对比例5
本对比例与实施例1基本相同,区别在于,该对比例中没有水浴加热所述混合溶液的步骤,也没有在溶剂热反应釜中搅拌所述混合溶液的步骤。
请参阅图8,从图中可以看出,得到的反应产物磷酸亚铁锂团聚严重,且磷酸亚铁锂的尺寸不均一,主要有两种尺寸,一种为1微米至2微米,另一种为300纳米至400纳米。请参阅图9,从该反应产物的电化学性能测试曲线中可以看出,该反应产物的首次充放电比容量非常小,分别为86.5mAh/g和86.5mAh/g。
实施例2
本实施例2与实施例1基本相同,区别在于,该对比例中仅没有在溶剂热反应釜中搅拌所述混合溶液的步骤。
请参阅图10,XRD测试结果显示,该实施例2获得反应产物也为橄榄石型的磷酸亚铁锂。但图10中磷酸亚铁锂的特征峰的强度比图4中磷酸亚铁锂特征峰的强度稍低。请进一步参阅图11,从图中可以看出,反应产物均匀分布,相对于实施1,该实施例2的反应产物仅有少量的团聚。反应产物为梭形颗粒,粒径为600纳米至800纳米。
进一步地,请参阅图12,从图中可以看出,该实施例2获得的反应产物的首次充放电比容量分别为150.6mAh/g和144.1mAh/g。首次库仑效率达95.7%。此外,在0.1C倍率下,循环20次容量保持率为98%。表明该实施例2制备的磷酸亚铁锂具有较好的电化学循环性能。
本发明实施例利用溶剂热的方式来制备正极活性材料磷酸亚铁锂,通过采用三价铁源作为原料降低了合成磷酸亚铁锂的成本,另外在溶剂热反应之前,预先将磷酸铁与锂源溶液形成的混合溶液加热形成所述前驱体溶液,该加热的过程改变了原料的形貌以及结合方式,使得原料的分布更加均匀,从而一方面降低了所述溶剂热反应的温度,另一方面快速地合成了结晶度较好且颗粒均匀分散的磷酸亚铁锂。该制备方法简单,无需复杂的工艺。将该磷酸亚铁锂做为正极活性材料具有较好的电化学性能。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

  1. 一种磷酸亚铁锂的制备方法,其包括:
    提供锂源溶液以及磷酸铁,所述锂源溶液包括有机溶剂以及溶解在该有机溶剂中的锂源化合物;
    将所述锂源溶液与磷酸铁混合形成混合溶液;
    常压下,在第一温度下加热该混合溶液形成一前驱体溶液,所述第一温度的范围为40℃至90℃;以及
    将该前驱体溶液放入溶剂热反应釜中进行溶剂热反应,该溶剂热反应温度为第二温度,所述第二温度高于所述第一温度。
  2. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,进一步包括在将所述前驱体溶液放入所述溶剂热反应釜密封后搅拌该前驱体溶液的步骤。
  3. 如权利要求2所述的磷酸亚铁锂的制备方法,其特征在于,所述搅拌的速率为30转/分钟至100转/分钟。
  4. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,所述有机溶剂为二元醇、多元醇及聚合物醇中的一种或多种。
  5. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,在所述混合溶液中,所述锂源化合物以及磷酸铁的总浓度小于或等于1.5mol/L。
  6. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,所述前驱体溶液中,磷酸铁由实心状转变成多孔状结构。
  7. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,所述锂源溶液中锂离子的浓度为0.5mol/L至0.7mol/L。
  8. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,预先加热一加热装置到所述第一温度,然后再将所述混合溶液置入该加热装置中保温。
  9. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,所述第二温度为120℃至250℃。
  10. 如权利要求1所述的磷酸亚铁锂的制备方法,其特征在于,所述混合溶液在该溶剂热反应釜中的填充率为60%至80%。
PCT/CN2014/081524 2013-08-15 2014-07-02 磷酸亚铁锂的制备方法 WO2015021830A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016530321A JP6182673B2 (ja) 2013-08-15 2014-07-02 リン酸鉄リチウムの製造方法
US15/011,637 US20160145104A1 (en) 2013-08-15 2016-01-31 Method for making lithium iron phosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310354560.2 2013-08-15
CN201310354560.2A CN103500829B (zh) 2013-08-15 2013-08-15 磷酸亚铁锂的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/011,637 Continuation US20160145104A1 (en) 2013-08-15 2016-01-31 Method for making lithium iron phosphate

Publications (1)

Publication Number Publication Date
WO2015021830A1 true WO2015021830A1 (zh) 2015-02-19

Family

ID=49866015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081524 WO2015021830A1 (zh) 2013-08-15 2014-07-02 磷酸亚铁锂的制备方法

Country Status (4)

Country Link
US (1) US20160145104A1 (zh)
JP (1) JP6182673B2 (zh)
CN (1) CN103500829B (zh)
WO (1) WO2015021830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725374A (zh) * 2022-03-31 2022-07-08 华为数字能源技术有限公司 磷酸铁锂材料及其制备方法、电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500829B (zh) * 2013-08-15 2016-12-28 江苏华东锂电技术研究院有限公司 磷酸亚铁锂的制备方法
CN105140514A (zh) * 2015-08-06 2015-12-09 天津大学 一种制备小尺寸纳米磷酸锰锂材料的方法
EP3859825A4 (en) * 2018-09-28 2022-04-27 Ningbo Zhiliang New Energy Co., Ltd. POSITIVE ELECTRODE ADDITIVE AND METHOD OF PRODUCTION THEREOF, POSITIVE ELECTRODE AND METHOD OF PRODUCTION THEREOF, AND LITHIUM-ION BATTERY
CN109650366A (zh) * 2018-11-22 2019-04-19 湖北融通高科先进材料有限公司 一种磷酸铁锂及其制备方法
CN111653846B (zh) * 2020-07-27 2021-10-29 中南大学 一种废旧磷酸铁锂电池的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101121509A (zh) * 2007-07-23 2008-02-13 河北工业大学 锂离子电池正极材料磷酸铁锂的水热合成制备方法
CN102196992A (zh) * 2008-08-26 2011-09-21 巴斯夫欧洲公司 在水热条件下合成LiFePO4的方法
CN102272044A (zh) * 2008-12-29 2011-12-07 巴斯夫欧洲公司 在水热条件下合成锂-金属磷酸盐
CN103500829A (zh) * 2013-08-15 2014-01-08 江苏华东锂电技术研究院有限公司 磷酸亚铁锂的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420075C (zh) * 2005-12-22 2008-09-17 上海交通大学 一种锂离子电池正极材料磷酸铁锂的制备方法
JP5396942B2 (ja) * 2009-03-16 2014-01-22 Tdk株式会社 活物質の製造方法、活物質、当該活物質を用いた電極、及び当該電極を備えたリチウムイオン二次電池
CN101630733B (zh) * 2009-08-20 2011-06-01 四川川大中德环保技术有限公司 一种LiFePO4/C的制备方法
CN101659407A (zh) * 2009-09-25 2010-03-03 山东国瓷功能材料有限公司 一种磷酸铁锂超临界溶剂热连续合成方法
CN101693532B (zh) * 2009-10-16 2011-06-29 清华大学 一种磷酸亚铁锂的制备方法
CN101807698B (zh) * 2010-04-29 2011-12-28 广州市香港科大霍英东研究院 超/亚临界水热过程制备动力型锂离子电池正极材料工艺
CN102649546B (zh) * 2011-02-24 2014-10-22 中国科学院金属研究所 一种大幅度提高低温水热合成LiFePO4电化学性能的方法
CN102795611B (zh) * 2011-05-26 2015-08-26 比亚迪股份有限公司 一种磷酸铁锂材料的制备方法及一种锂离子电池
CN102522551A (zh) * 2011-12-26 2012-06-27 彩虹集团公司 一种动力电池正极材料LiFePO4超细粉的制备方法
CN102790214B (zh) * 2012-08-15 2014-07-16 四川大学 制备磷酸铁锂的方法
KR101542317B1 (ko) * 2013-01-10 2015-08-05 주식회사 엘지화학 리튬 인산철 나노분말 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101121509A (zh) * 2007-07-23 2008-02-13 河北工业大学 锂离子电池正极材料磷酸铁锂的水热合成制备方法
CN102196992A (zh) * 2008-08-26 2011-09-21 巴斯夫欧洲公司 在水热条件下合成LiFePO4的方法
CN102272044A (zh) * 2008-12-29 2011-12-07 巴斯夫欧洲公司 在水热条件下合成锂-金属磷酸盐
CN103500829A (zh) * 2013-08-15 2014-01-08 江苏华东锂电技术研究院有限公司 磷酸亚铁锂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725374A (zh) * 2022-03-31 2022-07-08 华为数字能源技术有限公司 磷酸铁锂材料及其制备方法、电池
CN114725374B (zh) * 2022-03-31 2024-05-03 华为数字能源技术有限公司 磷酸铁锂材料及其制备方法、电池

Also Published As

Publication number Publication date
JP2016531069A (ja) 2016-10-06
CN103500829B (zh) 2016-12-28
CN103500829A (zh) 2014-01-08
US20160145104A1 (en) 2016-05-26
JP6182673B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
CN112018367B (zh) 用于电池的负极活性材料及其制备方法、电池负极、电池
WO2015021830A1 (zh) 磷酸亚铁锂的制备方法
WO2015003568A1 (zh) 锂离子电池正极活性材料的制备方法
WO2016058492A1 (zh) 锂离子电池电极活性材料的碳包覆方法
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
CN100502103C (zh) 一种核壳型纳米级碳包覆磷酸铁锂复合正极材料及其制备方法
WO2015165347A1 (zh) 磷酸锰锂及磷酸锰锂/碳复合材料的制备方法
WO2020019311A1 (zh) 一种聚阴离子型钠离子电池正极材料及其制备方法
CN110620224A (zh) 用于锂电池的负极材料及其制备方法和锂电池
CN107359328B (zh) 一种锂离子电池用葡萄状氧化铌/碳复合电极材料的制备方法
WO2015007169A1 (zh) 锂离子电池正极材料的制备方法
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN113651303B (zh) 一种纳米片状磷酸铁的制备方法及应用其制得的LiFePO4/C正极活性材料
CN109616651B (zh) 一种钠离子正极材料杂原子掺杂石墨烯基磷酸钒钠复合纳米材料
TWI507375B (zh) 磷酸鐵鋰的製備方法
CN113346075A (zh) 耐低温框架复合物前驱体基磷酸铁锂及其制备方法和应用
CN104766975B (zh) 一种钒酸铁‑石墨烯负极复合材料的制备方法
CN110474029B (zh) 一种锂硫电池正极复合材料及其制备方法
CN114220951B (zh) 一种正极补锂添加剂及其制备方法和应用
CN110085823B (zh) 一种纳米复合负极材料及其制备方法与应用
CN105810911B (zh) 一种高倍率磷酸铁锂/石墨烯复合正极材料的制备方法
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN111682184B (zh) 锡基复合材料及其制备方法、负极片、锂离子电池
CN108565426B (zh) Li3VO4/LiVO2复合锂离子电池负极材料及其制备方法
CN110600710A (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836188

Country of ref document: EP

Kind code of ref document: A1