WO2015007169A1 - 锂离子电池正极材料的制备方法 - Google Patents

锂离子电池正极材料的制备方法 Download PDF

Info

Publication number
WO2015007169A1
WO2015007169A1 PCT/CN2014/081685 CN2014081685W WO2015007169A1 WO 2015007169 A1 WO2015007169 A1 WO 2015007169A1 CN 2014081685 W CN2014081685 W CN 2014081685W WO 2015007169 A1 WO2015007169 A1 WO 2015007169A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
solution
lithium
manganese
metal
Prior art date
Application number
PCT/CN2014/081685
Other languages
English (en)
French (fr)
Inventor
戴仲葭
王莉
何向明
李建军
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Priority to JP2016526425A priority Critical patent/JP2016524311A/ja
Publication of WO2015007169A1 publication Critical patent/WO2015007169A1/zh
Priority to US14/996,242 priority patent/US20160130145A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a battery cathode material, in particular to a preparation method of a lithium ion battery cathode material.
  • Lithium iron phosphate (LiFePO 4 ) has been receiving great attention as a positive electrode material with good safety, low cost and environmental friendliness.
  • the voltage platform of lithium iron phosphate 3.4V severely limits the increase in energy density of lithium ion batteries.
  • lithium manganese phosphate (LiMnPO 4 ) can greatly increase the energy density of lithium ion batteries.
  • the electronic conductivity and the lithium ion diffusion rate of lithium manganese phosphate are low, so that the unmodified lithium manganese phosphate cathode material cannot meet the actual needs.
  • lithium manganese phosphate is usually doped with a metal element to modify the lithium manganese phosphate cathode material.
  • a currently reported method for preparing a metal element doped lithium manganese phosphate cathode material is a solid phase synthesis method.
  • the solid phase synthesis method specifically comprises: mixing a phosphorus source, a lithium source, a manganese source, a metal element source and a solvent in a certain ratio and ball milling; and then calcining at a high temperature in an inert atmosphere to obtain a metal element doped lithium manganese phosphate cathode material.
  • the solid phase synthesis method is simple, however, the metal element doped lithium manganese phosphate cathode material prepared by the method has the defects of large particle size and uneven particle size, and the performance of the metal element doped lithium manganese phosphate cathode material is obtained. The stability is low, thereby affecting the cycle performance of the metal element doped lithium manganese phosphate cathode material.
  • the positive electrode material of the lithium ion battery obtained by the preparation method has high electron conductivity and lithium ion diffusion rate, and has a good cycle. performance.
  • a preparation method of a cathode material for a lithium ion battery comprising: respectively providing a manganese source solution, a metal M source solution, a lithium source solution and a phosphate source solution, the manganese source solution, the metal M source solution, the lithium source solution and the phosphoric acid
  • the root solution is obtained by dissolving a manganese source, a metal M source, a lithium source and a phosphate source in an organic solvent, and the manganese source and the metal M source are strong acid salts; mixing the manganese source solution, the metal M source solution, and the lithium source solution And a phosphate source solution to form a mixed solution, wherein the total concentration of the manganese source, the metal M source, the lithium source, and the phosphate source is less than or equal to 3 mol/L; and the mixed solution is passed through a solvothermal reaction method
  • the heat treatment is carried out to obtain a chemical formula of the reaction product represented by LiMn (1-x) M x PO 4 where
  • the manganese source, the metal M source, the lithium source and the phosphate source are mixed in a liquid solvent, so that the manganese source, the metal M source, the lithium source and the phosphate source can be mixed at an atomic level, thereby avoiding Segregation, agglomeration of solid phase mixing and large difference in stability of different mixing batches; pure phase LiMn (1-x) M x PO 4 nanoparticles can be obtained by the preparation method, and the LiMn (1-x) The M x PO 4 nanoparticles have a uniform nanometer size, thereby improving the cycle stability of the LiMn (1-x) M x PO 4 cathode material.
  • FIG. 1 is a flow chart of a method for preparing a positive electrode material for a lithium ion battery according to an embodiment of the present invention.
  • Example 2 is an XRD spectrum of a LiMn 0.9 Fe 0.1 PO 4 positive electrode material prepared in Example 1, Example 2, and Example 3 of the present invention.
  • Example 3 is an XRD comparative spectrum of a LiMn 0.9 Fe 0.1 PO 4 positive electrode material prepared in Example 1 of the present invention and a LiMnPO 4 positive electrode material.
  • Example 4 is a scanning electron micrograph of a LiMn 0.9 Fe 0.1 PO 4 positive electrode material prepared in Example 1 of the present invention.
  • Figure 5 is a scanning electron micrograph of a LiMn 0.9 Fe 0.1 PO 4 cathode material prepared in Example 2 of the present invention.
  • Figure 6 is a scanning electron micrograph of a LiMn 0.9 Fe 0.1 PO 4 cathode material prepared in Example 3 of the present invention.
  • Figure 7 is a scanning electron micrograph of a LiMn 0.9 Fe 0.1 PO 4 cathode material prepared in a comparative example of the present invention.
  • Fig. 8 is a graph showing the cycle performance test of the batteries of Example 4 and Example 5 of the present invention at a rate of 0.1 C.
  • Fig. 9 is a graph showing charge and discharge curves at a rate of 0.1 C at the first cycle, the 15th cycle, and the 30th cycle of the battery of Example 4 of the present invention.
  • Fig. 10 is a graph showing discharge cycles of batteries of Example 4 and Example 5 of the present invention at different magnifications.
  • an embodiment of the present invention provides a method for preparing a cathode material for a lithium ion battery, which includes the following steps:
  • the mixed solution is subjected to heat treatment by a solvothermal reaction method to obtain a reaction product LiMn (1-x) M x PO 4 wherein 0 ⁇ x ⁇ 0.1.
  • the manganese source, the metal M source, the lithium source and the phosphate source are all soluble in the organic solvent, that is, manganese ions, metal M ions, lithium ions and phosphoric acid are formed in the organic solvent. Root ion.
  • the metal element M in the metal M source may be one or more of an alkaline earth metal element, a group 13 element, a group 14 element, and a transition group element. It is preferably one or more of Fe, Co, Ni, Mg, and Zn.
  • the manganese source and the metal M source are all strong acid salts, that is, salts which can be completely ionized in an aqueous solution, such as nitrates, sulfates or chlorides.
  • the manganese source may be one or more of manganese sulfate, manganese nitrate, and manganese chloride.
  • the metal M source may be one or more of a nitrate, a sulfate, and a chloride salt containing the metal element M.
  • the lithium source may be selected from one or more of lithium hydroxide, lithium chloride, lithium sulfate, lithium nitrate, lithium dihydrogen phosphate, and lithium acetate.
  • the phosphate source may be selected from one or more of phosphoric acid, lithium dihydrogen phosphate, ammonium phosphate, diammonium phosphate, and ammonium dihydrogen phosphate.
  • the organic solvent is an organic solvent that can dissolve the manganese source, the metal M source, the lithium source, and the phosphate source. By using the organic solvent, hydrolysis of the reactants can be avoided, thereby making it easier to control the morphology of the reaction product.
  • the solvent may be a glycol or a polyol, preferably one or more of ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, and butyl triol.
  • the type of the organic solvent can be selected depending on the type of manganese source, metal M source, lithium source, and phosphate source used.
  • the manganese source solution, the metal M source solution, the lithium source solution and the phosphate source solution may each adopt different organic solvents, but since the solutions are mixed with each other in step S2, the organic solvent should be capable of simultaneously dissolving the manganese source, Metal M source, lithium source and phosphate source.
  • the solvent in the manganese source solution, the metal M source solution, the lithium source solution, and the phosphate source solution may be only the organic solvent, or may be a mixed solvent of an organic solvent and a small amount of water, for example, the manganese source, the iron source, The metal M source, the lithium source, and the phosphate source themselves carry crystal water, and when the manganese source, the iron source, the metal M source, the lithium source, or the phosphate source are mixed with the organic solvent, the water is carried into the organic solvent.
  • the volume ratio of the water to the organic solvent should be less than or equal to 1:10, preferably less than 1:50.
  • the lithium source solution, the manganese source solution, the metal M source solution, and the phosphate source solution may have a molar ratio of Li:(M+Mn):P of (2 ⁇ 3):1:(0.8 ⁇ 1.5).
  • the ratio is mixed, that is, when the total amount of the manganese and the metal M is 1 part, the amount of the substance of lithium is 2 to 3 parts, and the amount of the substance of phosphorus is 0.8 to 1.5 parts.
  • the manner of mixing the manganese source solution, the metal M source solution, the lithium source solution, and the phosphate source solution includes two types.
  • the first method is to first mix the phosphate source, the manganese source, and the metal M source solution to form a first Mixing the liquid, and then adding the lithium source to the first mixed liquid to form a second mixed liquid.
  • the second method is to first mix the lithium source solution and the phosphate source solution to form a third mixed liquid, and then The manganese source and metal M source solution are added to the third mixture to form a fourth mixture.
  • the manganese source, the metal M source, the lithium source, and the phosphate source are mixed in a liquid phase solvent, and both are dissolved in the liquid phase solvent, thereby enabling the manganese source, the metal M source, the lithium source, and the phosphoric acid.
  • the root source can reach the atomic level mixing, avoiding the problem of segregation, agglomeration and solid mixture mixing stability of solid phase mixing.
  • the mixed solution may be stirred, and the stirring may be mechanical stirring or magnetic stirring.
  • the total concentration of the manganese source, the metal M source, the lithium source and the phosphate source in the above mixed solution should be less than or equal to 3 mol/L.
  • the manganese source and the metal M source are weak acid salts, it is also easy to cause a hetero phase such as Li 3 PO 4 in the product . Therefore, in order to obtain pure phase LiMn (1-x) M x PO 4 , the manganese source and the metal M source should be strong acid salts, and in the mixed solution, the manganese source, the metal M source, the lithium source, and the phosphate source The total concentration should be less than or equal to 3 mol/L.
  • the solvothermal reaction is carried out in a solvothermal reaction vessel, which may be a sealed autoclave, by pressurizing the sealed autoclave or utilizing the steam inside the reactor.
  • the pressure causes the internal pressure of the reactor to rise, so that the reaction raw material inside the reactor is reacted under high temperature and high pressure conditions.
  • the internal pressure of the reactor may be 5 MPa to 30 MPa, the heating temperature is 150 ° C to 250 ° C, and the reaction time is 1 hour to 24 hours, thereby obtaining a nanoparticle having a reaction product of LiMn (1-x) M x PO 4 .
  • the reaction vessel can be naturally cooled to room temperature.
  • the reaction product can be taken out from the reaction vessel, washed and dried.
  • the step of washing may be washing, filtering or centrifuging the reaction product with deionized water.
  • the drying can be vacuum filtration or heat drying.
  • the step S4 may be further included, and the reaction product LiMn (1-x) M x PO 4 is subjected to carbonization treatment.
  • the method of encapsulating carbon may be: providing a solution of a carbon source compound; adding the LiMn (1-x) M x PO 4 to the carbon source compound solution to form a mixture; and subjecting the mixture to heat treatment.
  • the carbon source compound is preferably a reducing organic compound which can be cracked into a simple substance of carbon such as amorphous carbon under heating, and no other solid phase substance is formed.
  • the carbon source compound may be sucrose, glucose, sban 80, phenolic resin, epoxy resin, furan resin, polyacrylic acid, polyacrylonitrile, polyethylene glycol or polyvinyl alcohol.
  • concentration of the carbon source compound solution is from about 0.005 g/ml to 0.05 g/ml.
  • further stirring may be performed to sufficiently coat the LiMn (1-x) M x PO 4 nanoparticles with the carbon source compound solution.
  • a vacuum pumping step may be used to evacuate the mixture of LiMn (1-x) M x PO 4 and the carbon source compound solution to provide sufficient air between the LiMn (1-x) M x PO 4 nanoparticles.
  • LiMn (1-x) M x PO 4 having a solution of a carbon source compound on the surface may be taken out from the solution of the carbon source compound and dried before the mixture is heated.
  • the temperature of the heat treatment is preferably from 300 ° C to 800 ° C.
  • the heat treatment time is preferably from 0.3 hours to 8 hours.
  • the manganese source and the metal M source are coprecipitated to form a pure phase material LiMn (1-x) M x PO 4 .
  • the LiMn (1-x) M x PO 4 has good crystallinity and has a uniform nanometer scale. The nanoparticles are less than 100 nanometers in size.
  • the LiMn (1-x) M x PO 4 nanoparticles have good dispersibility, and the LiMn (1-x) M x PO 4 is an elongated strip-shaped or short-sheet-shaped nanoparticle.
  • the morphology of the LiMn (1-x) M x PO 4 nanoparticles is related to the mixing mode of the above step S2 and the type of manganese source, metal M source, lithium source or phosphate source added, and the same reaction conditions are formed.
  • the morphology of LiMn (1-x) M x PO 4 nanoparticles is consistent.
  • the lithium source is lithium hydroxide (LiOH ⁇ H 2 O)
  • the M source is ferrous sulfate (FeSO 4 ⁇ 7H 2 O)
  • the manganese source is manganese chloride (MnCl 2 ⁇ 4H 2 O)
  • the phosphate source is phosphoric acid (H 3 PO 4 )
  • the organic solvent is ethylene glycol.
  • the Fe 2+ concentration is 0.02 mol/L
  • the Li + concentration is 0.54 mol/L
  • the PO 4 3- concentration is 0.2 mol/L.
  • the molar ratio between Li + , (Fe 2+ + Mn 2+ ) and PO 4 3- was 2.7:1:1.
  • the mixture was placed in a solvothermal reaction vessel, and reacted at a temperature of 180 ° C for 12 hours.
  • the reaction vessel was opened, naturally cooled to room temperature, and the product was washed 5 times with deionized water and dried at 80 ° C.
  • XRD test please refer to FIG. 2 and FIG.
  • curve b is the XRD pattern of the product, and it can be seen that the diffraction peak of the XRD pattern of the product is consistent with the diffraction peak of the standard spectrum of the lithium manganese phosphate material, and the product obtained by the above reaction is proved.
  • It is pure phase LiMn 0.9 Fe 0.1 PO 4 .
  • the above product was observed by scanning electron microscopy. It was found that the product LiMn 0.9 Fe 0.1 PO 4 has a uniform morphology and a long strip structure with a length of less than 100 nm, a width of less than 30 nm, and a thickness of less than 30. Nano.
  • the lithium source is lithium hydroxide (LiOH ⁇ H 2 O)
  • the M source is ferrous chloride (FeCl 2 ⁇ 4H 2 O)
  • the manganese source is manganese chloride (MnCl 2 ) 4H 2 O)
  • the phosphate source is phosphoric acid (H 3 PO 4 )
  • the organic solvent is ethylene glycol.
  • the Mn 2+ concentration is 0.18 mol/L
  • the Fe 2+ concentration is 0.02 mol/L
  • the Li + concentration is 0.54 mol/L
  • the PO 4 3- The concentration is 0.2 mol/L.
  • the molar ratio between Li + , (Fe 2+ + Mn 2+ ) and PO 4 3- was 2.7:1:1.
  • the mixture was placed in a solvothermal reaction vessel, and reacted at a temperature of 180 ° C for 12 hours. The reaction vessel was opened, naturally cooled to room temperature, and the product was washed 5 times with deionized water and dried at 80 ° C. And performing XRD test, please refer to FIG.
  • phase Mn 0.9 Fe 0.1 PO 4 is the XRD pattern of the product, and the diffraction peak of the XRD pattern of the product is consistent with the diffraction peak of the product obtained in the above Example 1, and the product obtained by the above reaction is also pure.
  • Phase Mn 0.9 Fe 0.1 PO 4 Referring to FIG. 5, the above product was observed by scanning electron microscopy, and it was found that the product LiMn 0.9 Fe 0.1 PO 4 has a uniform morphology and a short sheet-like structure with a thickness of less than 30 nm.
  • This embodiment is basically the same as the above-described Embodiment 2 except that the M source is ferrous sulfate (FeSO 4 ⁇ 7H 2 O).
  • the product obtained in this example was subjected to XRD test. Please refer to Fig. 2, curve c is the XRD pattern of the product, and the XRD pattern of the product is consistent with the diffraction peak of the pattern of the above Example 1, which proves that the product obtained by the above reaction is also Pure phase LiMn 0.9 Fe 0.1 PO 4 .
  • the above product was observed by a scanning electron microscope, and it was found that the particle size of the product LiMn 0.9 Fe 0.1 PO 4 was substantially the same as that of the LiMn 0.9 Fe 0.1 PO 4 obtained in the above Example 2, and the morphology was still a short film. The structure is more uniform.
  • This comparative example is substantially the same as the above-described Example 1, except that the manganese source is Mn(CH 3 COO) 2 and the M source is ferrous chloride (FeCl 2 ⁇ 4H 2 O).
  • the product obtained in this example was subjected to XRD test, see Fig. 2 and Fig. 3, and curve d is an XRD pattern of the product, and it was found that Li 3 PO 4 appeared in the obtained product. It can be seen that when the manganese source is Mn(CH 3 COO) 2 , pure phase LiMn 0.9 Fe 0.1 PO 4 cannot be obtained. Referring to Fig. 7, the above products were observed by scanning electron microscopy and found to have a particle size much larger than that of the products obtained in the above Examples 1, 2 and 3.
  • the sucrose solution LiMn 0.9 Fe 0.1 PO 4 was added mass% obtained in Example 1 was 12% and stirred for 30 minutes to give a mixture, after which the mixture is calcined in a nitrogen atmosphere at 650 o C 5 hours to obtain LiMn 0.9 Fe 0.1 PO 4 and carbon composite. Thereafter, a positive electrode composed of a composite material of LiMn 0.9 Fe 0.1 PO 4 and carbon having a mass percentage of 80%, 5% acetylene black, 5% conductive graphite, and 10% polyvinylidene fluoride was formed.
  • Celgard 2400 microporous polypropylene film as the separator with 1mol/L LiPF 6 /EC+DMC+EMC (1:1:1 volume ratio) as the electrolyte, CR2032 is formed in the argon atmosphere glove box.
  • the button cell battery was tested for battery performance after standing at room temperature for a period of time.
  • the sucrose solution LiMn 0.9 Fe 0.1 PO 4 was added mass percentage obtained in Example 3 was 12% and stirred for 30 minutes to give a mixture, after which the mixture is calcined in a nitrogen atmosphere at 650 o C 5 hours to obtain LiMn 0.9 Fe 0.1 PO 4 and carbon composite. Thereafter, a positive electrode composed of a composite material of LiMn 0.9 Fe 0.1 PO 4 and carbon having a mass percentage of 80%, 5% acetylene black, 5% conductive graphite, and 10% polyvinylidene fluoride was formed.
  • Celgard 2400 microporous polypropylene film as the separator with 1mol/L LiPF 6 /EC+DMC+EMC (1:1:1 volume ratio) as the electrolyte, CR2032 is formed in the argon atmosphere glove box.
  • the button cell battery is tested for battery performance after standing at room temperature for a period of time.
  • FIG. 8 to FIG. 10 Please refer to FIG. 8 to FIG. 10 for comparison of battery performance test results of the embodiment 4 and the embodiment 5.
  • the curve m is a cycle performance curve of the battery obtained in the above Example 4 at a rate of 0.1 C
  • the curve n is a cycle performance curve of the battery obtained in the above Example 5 at a rate of 0.1 C.
  • the battery of the above Example 4 had a first charge-discharge specific capacity of 129.7 mAh/g at a rate of 0.1 C, and a capacity retention rate of 98% after 30 cycles.
  • the battery of the above Example 5 had a first charge-discharge specific capacity of 87 mAh/g at a rate of 0.1 C, and a capacity retention rate of 96% after 30 cycles.
  • the LiMn 0.9 Fe 0.1 PO 4 positive electrode active material formed by the above solvothermal reaction method has stable electrochemical performance and can greatly improve the capacity retention rate of the lithium ion battery.
  • the first discharge specific capacity of the positive electrode active material prepared by the above-described Example 4 is much larger than the first discharge specific capacity of the above-described Example 5 because the positive electrode active material obtained by the above Example 4 has not only a small thickness but also Moreover, the smaller width greatly shortens the diffusion path of lithium ions and increases the diffusion rate of lithium ions, so that the lithium ion battery has a larger specific capacity.
  • the positive electrode active material obtained in the above Example 5 has a small thickness, the width thereof is larger than the width of the positive electrode active material obtained in the above Example 4, so that the diffusion rate of lithium ions is smaller than that of the above positive electrode active material, thereby Lithium-ion batteries have a small specific capacity.
  • FIG. 9 is a charge-discharge curve of the battery of Example 4 at the first cycle, the 15th cycle, and the 30th cycle at a rate of 0.1 C. It can be seen that there are two reversible discharge voltage platforms for the discharge curve of the electrode material, which are 3.5V and 4.1V, respectively.
  • the ratio of the widths of the two discharge voltage platforms is equal to the molar ratio of Fe 2+ and Mn 2+ in the electrode material, that is, the ratio of the voltage platform width of 3.5V to the voltage platform width of 4.1V is 1:9, It was further confirmed that the obtained electrode material was pure phase LiMn 0.9 Fe 0.1 PO 4 .
  • a curve m1 is a discharge cycle curve of the battery of Example 4 at different magnifications
  • a curve n1 is a discharge cycle curve of the battery of Example 5 at different magnifications.
  • the specific capacity of the battery of Example 4 is 95.2 mAh g -1 at 1 C rate
  • the specific capacity of the battery of Example 5 is 65 mAh g -1
  • the implementation The specific capacity of the battery of Example 4 and the battery of Example 5 drastically decreased because the battery may be polarized at this high rate of discharge.
  • the batteries of the fourth embodiment and the fifth embodiment each have a high capacity retention rate when discharged at different magnifications.

Abstract

一种锂离子电池正极材料的制备方法,该制备方法包括:分别提供锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液,该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液分别为锰源、金属M源、锂源及磷酸根源在有机溶剂中溶解得到,所述锰源及金属M源为强酸盐;混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成一混合溶液,在该混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度小于或等于3mol/L;以及将该混合溶液通过溶剂热反应法进行热处理,得到反应产物LiMnxM(1-x)PO4,其中x≥0.9。

Description

锂离子电池正极材料的制备方法 技术领域
本发明涉及一种电池正极材料的制备方法,尤其涉及一种锂离子电池正极材料的制备方法。
背景技术
磷酸铁锂(LiFePO4)作为一种具有较好安全性,价格低廉且对环境友好的锂离子电池正极材料一直受到人们极大的关注。然而磷酸铁锂3.4V的电压平台严重限制了锂离子电池能量密度的提高。与磷酸铁锂相比,磷酸锰锂(LiMnPO4)能极大地提高锂离子电池的能量密度。然而,磷酸锰锂的电子电导率和锂离子扩散速率较低,使得未经改性的磷酸锰锂正极材料无法满足实际需要。
为提高磷酸锰锂正极材料的电子电导率和锂离子扩散速率,人们通常用金属元素掺杂磷酸锰锂以对磷酸锰锂正极材料改性。目前已报道的制备金属元素掺杂磷酸锰锂正极材料的方法有固相合成法。该固相合成法具体为:按一定比例将磷源、锂源、锰源、金属元素源及溶剂混合并球磨;之后在惰性氛围下高温煅烧获得金属元素掺杂的磷酸锰锂正极材料。该固相合成法工艺简单,然而,通过该方法制备的金属元素掺杂的磷酸锰锂正极材料具有颗粒大、粒径不均一等缺点,使得该金属元素掺杂的磷酸锰锂正极材料的性能稳定性较低,从而影响了该金属元素掺杂的磷酸锰锂正极材料的循环性能。
发明内容
有鉴于此,确有必要提供一种锂离子电池正极材料的制备方法,通过该制备方法获得的锂离子电池正极材料既有较高的电子电导率及锂离子扩散速率,又具有较好的循环性能。
一种锂离子电池正极材料的制备方法,该制备方法包括:分别提供锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液,该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液分别为锰源、金属M源、锂源及磷酸根源在有机溶剂中溶解得到,所述锰源及金属M源为强酸盐;混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成一混合溶液,在该混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度小于或等于3mol/L;以及将该混合溶液通过溶剂热反应法进行热处理,得到反应产物的化学式由LiMn(1-x)MxPO4表示,其中0<x≤0.1。
在上述制备方法中,所述锰源、金属M源、锂源及磷酸根源在液相溶剂中混合,从而可使锰源、金属M源、锂源及磷酸根源能达到原子级的混合,避免了固相混合的偏析、团聚以及不同混合批次稳定性差异较大的问题;通过该制备方法可获得纯相的LiMn(1-x)MxPO4纳米颗粒,该LiMn(1-x)MxPO4纳米颗粒具有均一的纳米尺寸,从而提高了该LiMn(1-x)MxPO4正极材料的循环稳定性。
附图说明
图1是本发明实施例的锂离子电池正极材料制备方法流程图。
图2是本发明实施例1、实施例2及实施例3制备得到的LiMn0.9Fe0.1PO4正极材料的XRD谱图。
图3是本发明实施例1制备得到的LiMn0.9Fe0.1PO4正极材料与LiMnPO4正极材料的XRD比较谱图。
图4是本发明实施例1制备得到的LiMn0.9Fe0.1PO4正极材料的扫描电镜照片。
图5是本发明实施例2制备得到的LiMn0.9Fe0.1PO4正极材料的扫描电镜照片。
图6是本发明实施例3制备得到的LiMn0.9Fe0.1PO4正极材料的扫描电镜照片。
图7为本发明对比例制备得到的LiMn0.9Fe0.1PO4正极材料的扫描电镜照片。
图8是本发明实施例4和实施例5的电池在0.1C倍率下的循环性能测试图。
图9是本发明实施例4的电池在第1次循环、第15次循环及第30次循环时,在0.1C倍率下的充放电曲线。
图10是本发明实施例4和实施例5的电池在不同倍率下的放电循环曲线。
具体实施方式
以下将结合附图详细说明本发明实施例锂离子电池正极材料的制备方法。
请参阅图1,本发明实施例提供一种锂离子电池正极材料的制备方法,其包括以下步骤:
S1,分别提供锰(Mn)源溶液、锂(Li)源溶液、磷酸根(PO4)源溶液及金属M源溶液,该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液分别为锰源、金属M源、锂源及磷酸根源在有机溶剂中溶解得到,所述锰源及金属M源为强酸盐;
S2,混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成一混合溶液,在该混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度小于或等于3mol/L;以及
S3,将该混合溶液通过溶剂热反应法进行热处理,得到反应产物LiMn(1-x)MxPO4,其中0<x≤0.1。
在所述步骤S1中,所述锰源、金属M源、锂源和磷酸根源均可溶于所述有机溶剂,也就是在所述有机溶剂中形成锰离子、金属M离子、锂离子及磷酸根离子。所述金属M源中的金属元素M可为碱土金属元素、第13族元素、第14族元素及过渡族元素中的一种或者几种。优选为Fe、Co、Ni、Mg和Zn中的一种或几种。所述锰源及金属M源均为强酸盐,即在水溶液中能完全电离的盐,如硝酸盐、硫酸盐或氯化盐等。该锰源可为硫酸锰、硝酸锰和氯化锰中的一种或几种。该金属M源可为含金属元素M的硝酸盐、硫酸盐及氯化盐中的一种或多种。所述锂源可选择为氢氧化锂、氯化锂、硫酸锂、硝酸锂、磷酸二氢锂及醋酸锂中的一种或多种。所述磷酸根源可选择为磷酸、磷酸二氢锂、磷酸铵、磷酸氢二铵及磷酸二氢铵中的一种或多种。
所述有机溶剂为可溶解该锰源、金属M源、锂源及磷酸根源的有机溶剂。通过采用该有机溶剂,可避免所述反应物发生水解,从而更容易控制所述反应产物的形貌。所述有剂溶剂可为二元醇及多元醇,优选为乙二醇、丙三醇、二甘醇、三甘醇、四甘醇及丁三醇中的一种或多种。所述有机溶剂的种类可根据使用的锰源、金属M源、锂源及磷酸根源的种类而进行选择。该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液可以分别采用不同的有机溶剂,但由于在步骤S2中,该些溶液要相互混合,该有机溶剂应能同时溶解该锰源、金属M源、锂源及磷酸根源。
所述锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液中的溶剂可以仅为该有机溶剂,也可以为有机溶剂和少量水形成的混合溶剂,例如,该锰源、铁源、金属M源、锂源及磷酸根源自身带有结晶水,将该锰源、铁源、金属M源、锂源或磷酸根源与该有机溶剂混合时,将水带入有机溶剂中。该水与有机溶剂的体积比应小于或等于1:10,优选小于1:50。
在所述步骤S2中,该锂源溶液、锰源溶液、金属M源溶液及磷酸根源溶液发生化学反应生成LiMn(1-x)MxPO4的理论摩尔比为Li:(M+Mn):P=1:1:1,然而,可以适当使锂过量或放宽磷的比例,并不影响反应的进行。具体地,所述锂源溶液、锰源溶液、金属M源溶液和磷酸根源溶液可以按照Li:(M+Mn):P的摩尔比为(2~3):1:(0.8~1.5)的比例进行混合,即锰和金属M的总的物质的量为1份时,锂的物质的量为2~3份,磷的物质的量为0.8~1.5份。
具体地,混合所述锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液的方式包括两种,第一种方式为先将磷酸根源、锰源和金属M源溶液混合形成一第一混合液,之后再将所述锂源加入所述第一混合液中形成一第二混合液,第二种方式为先将锂源溶液和磷酸根源溶液混合形成一第三混合液,之后再将所述锰源和金属M源溶液加入所述第三混合液中以形成第四混合液。在该步骤中,所述锰源、金属M源、锂源及磷酸根源在液相溶剂中混合,且均溶解在该液相溶剂中,从而可使锰源、金属M源、锂源及磷酸根源能达到原子级的混合,避免了固相混合的偏析、团聚以及不同混合批次稳定性差异较大的问题。
进一步地,为使所述锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液充分混合,可搅拌所述混合溶液,所述搅拌的方式可为机械搅拌或磁力搅拌等。
为避免形成LiMPO4或LiMnPO4 分相,上述混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度应小于或等于3mol/L。另外,当该锰源及金属M源为弱酸盐时,也容易使产物中产生杂相,如Li3PO4。因此,为了获得纯相的LiMn(1-x)MxPO4,该锰源及金属M源应为强酸盐,且混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度应小于或等于3mol/L。
在所述步骤S3中,所述溶剂热反应在一溶剂热反应釜中进行,所述溶剂热反应釜可为一密封高压釜,通过对该密封高压釜加压或利用反应釜内部蒸汽的自生压力使反应釜内部压力上升,从而使反应釜内部的反应原料在高温高压条件下进行反应。该反应釜内部压力可以为5MPa~30MPa,该加热温度为150℃至250℃,反应时间为1小时至24小时,即可得到反应产物为LiMn(1-x)MxPO4的纳米颗粒。在反应完毕后,所述反应釜可自然冷却至室温。
进一步地,在通过步骤S3得到反应产物后,可从反应釜中将该反应产物取出,并进行洗涤及干燥。该洗涤的步骤可以是采用去离子水对该反应产物进行洗涤、过滤或离心分离。该干燥可以是真空抽滤或加热干燥。
进一步地,在通过步骤S3得到反应产物后,可进一步包括步骤S4,将该反应产物LiMn(1-x)MxPO4进行包碳处理。该包碳的方法可以是:提供一碳源化合物的溶液;将所述LiMn(1-x)MxPO4加入该碳源化合物溶液中形成混合体;以及将该混合体进行热处理。所述碳源化合物优选为还原性有机化合物,该类有机化合物在加热条件下可裂解成碳单质,如无定形碳,且无其它固相物质生成。所述碳源化合物可为蔗糖、葡萄糖、司班80、酚醛树脂、环氧树脂、呋喃树脂、聚丙烯酸、聚丙烯腈、聚乙二醇或聚乙烯醇等。该碳源化合物溶液的浓度约为0.005g/ml至0.05g/ml。在将所述LiMn(1-x)MxPO4加入该碳源化合物溶液后,可进一步搅拌,使该碳源化合物溶液充分包覆该LiMn(1-x)MxPO4纳米颗粒。另外,可采用一抽真空的步骤对该LiMn(1-x)MxPO4和碳源化合物溶液的混合体抽真空,使LiMn(1-x)MxPO4纳米颗粒之间的空气充分排出。进一步地,在加热该混合体前,可先将表面具有碳源化合物溶液的LiMn(1-x)MxPO4从碳源化合物溶液中捞出并烘干。该热处理的温度优选为300℃至800℃。该热处理的时间优选为0.3小时至8小时。
通过控制上述溶剂热法的反应条件,使得所述锰源、金属M源共沉淀形成纯相物质LiMn(1-x)MxPO4。该LiMn(1-x)MxPO4具有良好的结晶度,且具有均一的纳米尺度。该纳米颗粒的尺寸小于100纳米。该LiMn(1-x)MxPO4纳米颗粒具有良好的分散性,且该LiMn(1-x)MxPO4为细长条形或短片状纳米颗粒。该LiMn(1-x)MxPO4纳米颗粒的形貌与上述步骤S2的混合方式及加入的锰源、金属M源、锂源或磷酸根源的种类有关,且相同的反应条件所形成的LiMn(1-x)MxPO4纳米颗粒形貌一致。
实施例1
本实施例中,所述锂源为氢氧化锂(LiOH·H2O),所述M源为硫酸亚铁(FeSO4·7H2O),所述锰源为氯化锰(MnCl2·4H2O),所述磷酸根源为磷酸(H3PO4),所述有机溶剂为乙二醇。首先,将氯化亚铁溶液、氯化锰溶液及磷酸溶液混合并搅拌形成所述第一混合液。其次,将氢氧化锂溶液逐滴加入所述第一混合液,并搅拌30分钟,以形成所述第二混合液,在该第二混合液中,所述Mn2+浓度为0.18mol/L,所述Fe2+浓度为0.02mol/L,所述Li+浓度为0.54mol/L,所述PO4 3-的浓度为0.2 mol/L。在该第二混合液中,该Li+、(Fe2++Mn2+)与PO4 3-之间的摩尔比为2.7:1:1。最后,将该混合液放入溶剂热反应釜中,在180℃的温度下反应12小时,打开反应釜,自然降温至室温,将产物通过去离子水洗涤5次并在80℃下烘干,并进行XRD测试,请参阅图2和图3,曲线b为该产物的XRD图谱,可见该产物的XRD图谱的衍射峰与磷酸锰锂材料的标准图谱的衍射峰一致,证明上述反应得到的产物为纯相LiMn0.9Fe0.1PO4。请参阅图4,将上述产物通过扫描电镜进行观察,可以发现该产物LiMn0.9Fe0.1PO4的形貌均一,且为长条形结构,其长度小于100纳米,宽度小于30纳米,厚度小于30纳米。
实施例2
本实施例中,所述锂源为氢氧化锂(LiOH·H2O),所述M源为氯化亚铁(FeCl2·4H2O),所述锰源为氯化锰(MnCl2·4H2O),所述磷酸根源为磷酸(H3PO4),所述有机溶剂为乙二醇。首先,将氢氧化锂溶液和磷酸溶液混合以获得所述第三混合液。其次,将所述氯化亚铁溶液、氯化锰溶液加入所述第三混合液中并搅拌30分钟以形成所述第四混合液。在该第四混合液中,所述Mn2+浓度为0.18mol/L,所述Fe2+浓度为0.02mol/L,所述Li+浓度为0.54mol/L,所述PO4 3-的浓度为0.2 mol/L。在该第二混合液中,该Li+、(Fe2++Mn2+)与PO4 3-之间的摩尔比为2.7:1:1。最后,将该混合液放入溶剂热反应釜中,在180℃的温度下反应12小时,打开反应釜,自然降温至室温,将产物通过去离子水洗涤5次并在80℃下烘干,并进行XRD测试,请参阅图2,曲线a为该产物的XRD图谱,该产物的XRD图谱的衍射峰与上述实施例1所获得产物的图谱衍射峰一致,证明上述反应得到的产物也为纯相Mn0.9Fe0.1PO4。请参阅图5,将上述产物通过扫描电镜进行观察,可以发现该产物LiMn0.9Fe0.1PO4的形貌均一,且为短片状结构,其厚度小于30纳米。
实施例3
本实施例与上述实施例2基本相同,其区别仅在于所述M源为硫酸亚铁(FeSO4·7H2O)。将该实施例所获得产物进行XRD测试,请参阅图2,曲线c为该产物的XRD图谱,该产物的XRD图谱与上述实施例1的图谱的衍射峰一致,证明上述反应得到的产物也为纯相LiMn0.9Fe0.1PO4。请参阅图6,将上述产物通过扫描电镜进行观察,可以发现该产物LiMn0.9Fe0.1PO4的颗粒与上述实施例2得到的LiMn0.9Fe0.1PO4的颗粒尺寸基本一致,形貌仍为短片状结构且分布更加均一。
对比例
本对比例与上述实施例1基本相同,其区别仅在于所述锰源为Mn(CH3COO)2,所述M源为氯化亚铁(FeCl2·4H2O)。将该实施例所获得的产物进行XRD测试,请参阅图2及图3,曲线d为该产物的XRD图谱,发现该获得的产物中出现Li3PO4。可见,当该锰源为Mn(CH3COO)2时,并不能获得纯相LiMn0.9Fe0.1PO4。请参阅图7,将上述产物进行扫描电镜进行观察,发现该产物的颗粒尺寸远大于上述实施例1、实施例2及实施例3所获得的产物的颗粒尺寸。
实施例4
将上述实施例1得到的LiMn0.9Fe0.1PO4加入质量百分比为12%的蔗糖溶液中并搅拌30分钟得到一混合物,之后将该混合物在氮气氛围下650 oC煅烧5小时以获得LiMn0.9Fe0.1PO4与碳的复合材料。之后,形成一由质量百分比为80%的LiMn0.9Fe0.1PO4与碳的复合材料、5%的乙炔黑、5%的导电石墨及10%的聚偏氟乙烯混合组成的正极。以金属锂为负极,Celgard 2400微孔聚丙烯膜为隔膜,以1mol/L LiPF6/EC+DMC+EMC(1:1:1体积比)为电解液,在氩气气氛手套箱中组成CR2032型纽扣电池,在室温下静置一段时间后进行电池性能测试。
实施例5
将上述实施例3得到的LiMn0.9Fe0.1PO4加入质量百分比为12%的蔗糖溶液中并搅拌30分钟得到一混合物,之后将该混合物在氮气氛围下650 oC煅烧5小时以获得LiMn0.9Fe0.1PO4与碳的复合材料。之后,形成一由质量百分比为80%的LiMn0.9Fe0.1PO4与碳的复合材料、5%的乙炔黑、5%的导电石墨及10%的聚偏氟乙烯混合组成的正极。以金属锂为负极,Celgard 2400微孔聚丙烯膜为隔膜,以1mol/L LiPF6/EC+DMC+EMC(1:1:1体积比)为电解液,在氩气气氛手套箱中组成CR2032型纽扣电池,在室温下静置一段时间后在进行电池性能测试。
请参阅图8至图10为所述实施例4和该实施例5的电池性能测试结果比较图。
请参阅图8,其中曲线m为上述实施例4所获得的电池在0.1C倍率下的循环性能曲线,其中曲线n为上述实施例5所获得的电池在0.1C倍率下的循环性能曲线。从图中可以看出,上述实施例4的电池在0.1C倍率下的首次充放电比容量为129.7mAh/g,30次循环后的容量保持率为98%。上述实施例5的电池在0.1C倍率下的首次充放电比容量为87 mAh/g,30次循环后的容量保持率达96%。可见通过上述溶剂热反应法形成的LiMn0.9Fe0.1PO4正极活性材料具有稳定的电化学性能,可大大提高锂离子电池的容量保持率。且通过上述实施例4制备得到的正极活性材料的首次放电比容量远大于上述实施例5的首次放电比容量,这是因为,通过上述实施例4获得的正极活性材料不仅有较小的厚度,而且有较小的宽度,大大缩短了锂离子的扩散路径,增加了锂离子的扩散速率,从而使的锂离子电池具有较大的比容量。而上述实施例5获得的正极活性材料虽然也具有较小的厚度,但其宽度较上述实施例4获得的正极活性材料的宽度大,因此其锂离子的扩散速率较上述正极活性材料小,从而使锂离子电池具有较小的比容量。
请参阅图9,为实施例4的电池在第1次循环、第15次循环及第30次循环时,在0.1C倍率下的充放电曲线。可见,该电极材料的放电曲线存在两个可逆的放电电压平台,分别为3.5V和4.1V。该两个放电电压平台的宽度之比相等于该电极材料中的Fe2+和Mn2+的摩尔比,即3.5V的电压平台宽度与4.1V的电压平台宽度之比为1:9,更进一步证明了所获得的电极材料为纯相LiMn0.9Fe0.1PO4
请参阅图10,曲线m1为实施例4的电池在不同倍率下的放电循环曲线,曲线n1为实施例5的电池在不同倍率下的放电循环曲线。可见,在1C倍率下,所述实施例4的电池的比容量为95.2 mAh g-1,所述实施例5的电池的比容量为65 mAh g-1,并且在5C倍率下,所述实施例4的电池和实施例5的电池的比容量急剧下降,这是因为,电池在此高倍率下放电可能出现极化现象。另外,从该图10可以发现,该实施例4和实施例5的电池在不同倍率下放电时均具有较高的容量保持率。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

  1. 一种锂离子电池正极材料的制备方法,该制备方法包括:
    分别提供锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液,该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液分别为锰源、金属M源、锂源及磷酸根源在有机溶剂中溶解得到,所述锰源及金属M源为强酸盐;
    混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成一混合溶液,在该混合溶液中,所述锰源、金属M源、锂源及磷酸根源的总浓度小于或等于3mol/L;以及
    将该混合溶液通过溶剂热反应法进行热处理,得到反应产物LiMn(1-x)MxPO4,其中0<x≤0.1。
  2. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述锰源为硫酸锰、硝酸锰及氯化锰中的一种或几种。
  3. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述金属M源中的金属元素M为Fe、Co、Ni、Mg和Zn中的一种或几种,所述金属M源为含金属元素M的硝酸盐、硫酸盐及氯化盐中的一种或多种。
  4. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述锂源为氢氧化锂、氯化锂、硫酸锂、硝酸锂、磷酸二氢锂及醋酸锂中的一种或多种。
  5. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述磷酸根源为磷酸、磷酸二氢锂、磷酸铵、磷酸氢二铵及磷酸二氢铵中的一种或多种。
  6. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述有机溶剂为乙二醇、丙三醇、二甘醇、三甘醇、四甘醇及丁三醇中的一种或多种。
  7. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成所述混合溶液的步骤为:将该锰源溶液、磷酸根源溶液和金属M源溶液混合以形成一第一混合溶液;将所述锂源溶液加入所述第一混合溶液中形成第二混合溶液。
  8. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,混合该锰源溶液、金属M源溶液、锂源溶液和磷酸根源溶液以形成所述混合溶液的步骤为:将该锂源溶液和磷酸根源溶液混合以形成一第三混合液;将所述金属M源溶液和锰源溶液加入所述第三混合液中以形成第四混合液。
  9. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述加热温度为150℃至250℃,加热时间为1小时至24小时。
  10. 如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,所述混合溶液中的水与所述有机溶剂的体积比应小于或等于1:10。
PCT/CN2014/081685 2013-07-15 2014-07-04 锂离子电池正极材料的制备方法 WO2015007169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016526425A JP2016524311A (ja) 2013-07-15 2014-07-04 リチウムイオン電池正極材料の製造方法
US14/996,242 US20160130145A1 (en) 2013-07-15 2016-01-15 Method for making cathode material of lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310294345.8A CN103515578A (zh) 2013-07-15 2013-07-15 锂离子电池正极材料的制备方法
CN201310294345.8 2013-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/996,242 Continuation US20160130145A1 (en) 2013-07-15 2016-01-15 Method for making cathode material of lithium ion battery

Publications (1)

Publication Number Publication Date
WO2015007169A1 true WO2015007169A1 (zh) 2015-01-22

Family

ID=49897944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081685 WO2015007169A1 (zh) 2013-07-15 2014-07-04 锂离子电池正极材料的制备方法

Country Status (4)

Country Link
US (1) US20160130145A1 (zh)
JP (1) JP2016524311A (zh)
CN (1) CN103515578A (zh)
WO (1) WO2015007169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212764A (zh) * 2021-11-30 2022-03-22 厦门厦钨新能源材料股份有限公司 一种磷酸盐正极材料前驱体、其制备方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545522A (zh) * 2013-07-10 2014-01-29 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法
CN104282887A (zh) * 2014-10-14 2015-01-14 江苏华东锂电技术研究院有限公司 锂离子电池电极活性材料的碳包覆方法
CN104600302A (zh) * 2015-01-27 2015-05-06 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备工艺
CN105129760A (zh) * 2015-07-21 2015-12-09 中国电子科技集团公司第十八研究所 一种利用多羟基溶剂热制备磷酸锰铁锂的湿化学方法
CN112018364B (zh) * 2020-09-05 2022-10-04 河南科技学院 等摩尔水热法制备LiMnPO4复合材料的方法及在锂电池中的应用
CN112645298A (zh) * 2020-12-03 2021-04-13 广东邦普循环科技有限公司 一种金属磷酸盐的制备方法及应用
CN115676792A (zh) * 2022-07-06 2023-02-03 宜宾天原锂电新材有限公司 利用磷铁渣为原料制备铁基磷酸盐锂电材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810664A (zh) * 2011-05-30 2012-12-05 中国科学院宁波材料技术与工程研究所 单分散纳米橄榄石型锰基磷酸盐正极材料的制备方法及其锂离子二次电池
CN103000898A (zh) * 2012-12-11 2013-03-27 中国电子科技集团公司第十八研究所 锂离子电池用碳复合磷酸锰铁锂的制备方法
CN103137972A (zh) * 2013-03-20 2013-06-05 青岛科技大学 一种球状锰掺杂磷酸铁锂微纳米材料的制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法
CN103545522A (zh) * 2013-07-10 2014-01-29 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097616A (zh) * 2011-01-11 2011-06-15 清华大学深圳研究生院 一种高能量和高功率密度型纳米磷酸铁锂粉体的制备方法
US9577249B2 (en) * 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
CN102694168B (zh) * 2011-09-14 2014-04-23 中国科学院宁波材料技术与工程研究所 一种磷酸锰锂正极材料及其制备方法
CN103137964B (zh) * 2011-11-24 2016-02-17 清华大学 磷酸铁锂二次结构及其制备方法以及锂离子电池
CN102956887B (zh) * 2012-11-14 2015-09-09 佛山市德方纳米科技有限公司 一种纳米级磷酸锰锂正极材料的制备方法
JP2016507453A (ja) * 2012-12-21 2016-03-10 ダウ グローバル テクノロジーズ エルエルシー オリビンリチウム遷移金属リン酸塩電極材料を作製するための共溶媒支援によるマイクロ波溶媒熱方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810664A (zh) * 2011-05-30 2012-12-05 中国科学院宁波材料技术与工程研究所 单分散纳米橄榄石型锰基磷酸盐正极材料的制备方法及其锂离子二次电池
CN103000898A (zh) * 2012-12-11 2013-03-27 中国电子科技集团公司第十八研究所 锂离子电池用碳复合磷酸锰铁锂的制备方法
CN103137972A (zh) * 2013-03-20 2013-06-05 青岛科技大学 一种球状锰掺杂磷酸铁锂微纳米材料的制备方法
CN103545522A (zh) * 2013-07-10 2014-01-29 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212764A (zh) * 2021-11-30 2022-03-22 厦门厦钨新能源材料股份有限公司 一种磷酸盐正极材料前驱体、其制备方法及应用
CN114212764B (zh) * 2021-11-30 2023-06-30 厦门厦钨新能源材料股份有限公司 一种磷酸盐正极材料前驱体、其制备方法及应用

Also Published As

Publication number Publication date
CN103515578A (zh) 2014-01-15
JP2016524311A (ja) 2016-08-12
US20160130145A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US10957903B2 (en) Layered lithium-rich manganese-based cathode material with olivine structured LIMPO4 surface modification and preparation method thereof
WO2015007169A1 (zh) 锂离子电池正极材料的制备方法
WO2015003568A1 (zh) 锂离子电池正极活性材料的制备方法
Gong et al. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries
JP5231535B2 (ja) リチウムイオン二次電池用の正極活物質としてのリチウムリン酸鉄の調製方法
Alsamet et al. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods
CN100502103C (zh) 一种核壳型纳米级碳包覆磷酸铁锂复合正极材料及其制备方法
Yao et al. Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries
TWI482346B (zh) 鋰蓄電池用正極活性物質之製造方法
Zhao et al. Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries
US20170040596A1 (en) Methods for making lithium manganese phosphate and lithium manganese phosphate/carbon composite material
JP2009532323A5 (zh)
CN102646810A (zh) 一种三维多孔石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
Zhu et al. Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries
Ma et al. Synthesis of hierarchical and bridging carbon-coated LiMn0. 9Fe0. 1PO4 nanostructure as cathode material with improved performance for lithium ion battery
CN109616651B (zh) 一种钠离子正极材料杂原子掺杂石墨烯基磷酸钒钠复合纳米材料
Liu et al. N-Methyl-2-pyrrolidone-assisted solvothermal synthesis of nanosize orthorhombic lithium iron phosphate with improved Li-storage performance
CN107482188B (zh) 一种中空核壳结构复合材料及其制备方法与应用
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries
CN114447321A (zh) 一种正极材料及包括该材料的正极片和电池
KR102229460B1 (ko) 인화철(FeP)의 제조방법
CN105006569B (zh) 纳米级磷酸锰锂材料及其制备方法和应用
CN113603141B (zh) 一种复合正极材料、制备方法及其应用
Gao et al. Synthesis of LiFePO 4/C as cathode material by a novel optimized hydrothermal method
WO2014187034A1 (zh) 碳酸酯辅助制备磷酸铁锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826262

Country of ref document: EP

Kind code of ref document: A1