WO2014187034A1 - 碳酸酯辅助制备磷酸铁锂的方法 - Google Patents

碳酸酯辅助制备磷酸铁锂的方法 Download PDF

Info

Publication number
WO2014187034A1
WO2014187034A1 PCT/CN2013/081638 CN2013081638W WO2014187034A1 WO 2014187034 A1 WO2014187034 A1 WO 2014187034A1 CN 2013081638 W CN2013081638 W CN 2013081638W WO 2014187034 A1 WO2014187034 A1 WO 2014187034A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium
source compound
preparation
iron phosphate
Prior art date
Application number
PCT/CN2013/081638
Other languages
English (en)
French (fr)
Inventor
郑洪河
李靖
张力
沈鸣
Original Assignee
江苏华盛精化工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华盛精化工股份有限公司 filed Critical 江苏华盛精化工股份有限公司
Publication of WO2014187034A1 publication Critical patent/WO2014187034A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention provides a hydrothermal preparation method of a high-purity, high-yield and high-performance lithium iron phosphate cathode material, in particular, an organic carbonate solvent-assisted growth of a nanometer iron phosphate cathode material on the basis of a hydrothermal method, in particular The electrochemical performance of lithium iron phosphate is increased by the addition of different types and amounts of carbonate. Background technique
  • lithium iron phosphate As a positive electrode material for a new generation of lithium ion secondary batteries, lithium iron phosphate has many advantages such as high open circuit voltage, high energy density, long cycle life, environmental friendliness, high safety performance, etc., making it a hot spot for power and energy storage battery research, power and Energy storage batteries have higher and higher requirements for high-current charge and discharge performance and long-term cycle life of batteries. Therefore, in recent years, research and development of lithium iron phosphate materials has focused on how to improve the rate performance and long-term cycle performance of materials. Since the electronic conductivity and ionic conductivity of lithium iron phosphate itself are relatively low, the current methods for improving the electrical conductivity of LiFeP0 4 are: metal cation doping, carbon coating and control material particle size. The industrial preparation methods are mainly: solid phase method, carbothermal reduction method, and the like.
  • the dissolution of iron ions in the electrolyte is the key factor affecting the life of lithium iron phosphate battery.
  • the dissolution of iron ions not only causes structural damage and capacity loss of the positive electrode material itself, but also the reduction and deposition of iron compounds on the surface of the carbon negative electrode.
  • the impedance of the material is greatly increased, resulting in battery failure.
  • lithium iron phosphate materials In order to improve the rate performance and long-term cycle performance of lithium iron phosphate materials, many researchers have shortened the lithium ion migration path by controlling the morphology and particle size of the material by liquid phase method.
  • the preparation of lithium iron phosphate by hydrothermal method is important for the preparation of this material.
  • One of the methods was first applied to synthetic lithium iron phosphate in 2001 by Shoufeng Yang et al. (Hydrothermal synthes is of lithium iron phosphate cathodes [J]. Electrochemi stry Communicat i ons 2001, 3: 505-508).
  • the hydrothermal method makes the raw materials mix at the atomic level, and the prepared materials have many advantages such as good dispersibility, uniform particle size, controllable composition, mild reaction, etc.
  • the lithium iron phosphate cathode material synthesized by the above method is synthesized. , although the performance has improved, but the material is Chemical properties still do not meet the demand for power batteries.
  • Dokko et al. Electrochemical propersies LiFeP0 4 prepared via hydrothermal route [J].
  • Lithium iron phosphate having a particle diameter of 500 nm was synthesized at °C. Although its 0.1 C discharge capacity is 140 mAh/g, its 1 C discharge capacity is only 110 mAh/g.
  • the hydrothermal preparation method of lithium iron phosphate is gradually used by some enterprises, such as Hydro Quebec of Canada, but the lithium iron phosphate prepared by this method has low yield, poor batch stability and low rate and cycle performance. Good question.
  • the object of the present invention is to provide a preparation method for preparing lithium iron phosphate as a positive electrode material for a lithium ion battery, which overcomes the current low yield, poor consistency, high rate performance and cycle performance of the lithium iron phosphate material prepared by hydrothermal method. Poor and other shortcomings.
  • the present invention provides a method for assisting in the preparation of a positive electrode material for a lithium ion battery, the method comprising:
  • the lithium ion concentration is 0. 0.
  • the lithium ion concentration is 0.
  • the lithium ion concentration is 0.
  • the lithium ion concentration is 0.
  • the lithium ion concentration is 0. 5 ⁇ 2mol/L and stirring the mixed aqueous solution under an inert protective atmosphere;
  • reaction product is sufficiently washed with deionized water, dried, and then mixed with a carbonaceous organic substance at a mass ratio of 100:1 to 20, tableted, and heat-treated under a protective atmosphere;
  • the lithium source compound, the phosphorus source compound and the iron source compound are not particularly special. Restriction, as long as the prior art preparation of lithium iron phosphate material can be used.
  • the lithium source compound is selected from one or more of Li 2 C0 3 , LiN0 3 , LiOH or LiAc.
  • the phosphorus source compound is selected from the group consisting of P0 4 and NH 4 H 2 P0 4 .
  • the iron source compound is selected from the group consisting of FeC 2 0 4 , Fe (Ac) 2 , FeS0 4 ,
  • One or more of FeCl 2 or Fe (N0 3 ) 2 is present.
  • the carbonate has a RO-CO-OR' structure, and includes a cyclic carbonate such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), Vinylene carbonate (VC), chain carbonate such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and its halogenated products One or more.
  • a cyclic carbonate such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), Vinylene carbonate (VC), chain carbonate such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and its halogenated products One or more.
  • the volume ratio of the carbonate to the mixed solution is from 1:1 to 10.
  • the inorganic acid is selected from the group consisting of HC1, H 2 S0 4 , H 3 P0 4 , in the step (2), wherein the pH of the reaction is between 6. 0 and 12. 0.
  • the carbon-containing organic compound in the step (4) is one or more of glucose, sucrose, ascorbic acid, polyvinyl alcohol, and starch.
  • the carbon-coated lithium iron phosphate having a carbon content of between 0.5 to 10% by weight.
  • the carbonate-assisted hydrothermal technique can promote the growth of lithium iron phosphate and improve the yield and batch stability of the product, especially the lithium iron phosphate grown in the carbonate-containing solvent system is mainly composed of carbonate.
  • the solubility of the solvent in the electrolyte is small, which can significantly improve the cycle stability of the material. Therefore, this technology has important practical application value for the development of high-performance lithium iron phosphate materials.
  • Lithium iron phosphate products have high yield and high purity.
  • the invention uses the organic carbonate to promote the formation of lithium iron phosphate, and reduces the residual Fe ion content in the system, the purity of the product can reach 99.6% or more, and the yield can reach 98% or more;
  • the particle size distribution of the product is uniform, and the morphology is regular (see Figure 1), so that the particle size of the product can be effectively controlled between 100 and 400 nm, and the agglomeration phenomenon is not observed in the high temperature heat treatment;
  • the electrochemical properties of the material are excellent.
  • the carbon-coated lithium iron phosphate composite prepared by the method has a discharge capacity of more than 160 mAh/g, a discharge capacity of 10 C is greater than 140 mAh/g, and a discharge capacity of 30 C reaches 110 mAh/g (Fig. 2). , significantly exceeds the current level of industrial production of lithium iron phosphate, and due to the small solubility of the material in the organic carbonate, the cycle performance of the material is significantly improved (see Figure 3);
  • 1 is a scanning electron microscope (SEM) image of a lithium iron phosphate cathode material of the present invention.
  • 2 is a discharge curve of a carbon-coated lithium iron phosphate LiFeP0 4 /C of a positive electrode material of the present invention under different conditions.
  • Figure 3 is a graph showing the long-term cycle performance of the carbon-coated lithium iron phosphate LiFeP0 4 /C of the positive electrode material of the present invention compared to the carbonate-free preparation method.
  • the lithium source compound, the phosphorus source compound, and the iron source compound are in a molar ratio
  • Li: Fe: P 3. 0 ⁇ 3. 05 : 1 : 1 ⁇ 1.
  • the aqueous solution is mixed and stirred uniformly, and the concentration of the reactant is 0.5 mol/L, and the pH of the reactant is adjusted to 8 by H 2 S0 4 .
  • the entire stirring process is carried out under the protection of Ar.
  • the volume ratio of 50% ethylene carbonate (EC) and the above solution were thoroughly mixed and stirred for 30 minutes, and then quickly transferred to a 500 ml hydrothermal reaction vessel and reacted at 180 ° C for 600 minutes.
  • EC ethylene carbonate
  • LiFeP0 4 powder The above-described off-white LiFeP0 4 powder product with glucose at a mass ratio of 100: After 10 fully mixed, pressed under a pressure 20atm / C m 2 into pieces, and then at 5% H 2 protection / Ar mixed gas C to 600 ° After heat treatment for 10 hours under conditions, it was naturally cooled to room temperature, finely ground, and sieved to obtain a carbon-coated lithium iron phosphate positive electrode material LiFeP0 4 /C.
  • the ion concentration meter is 1 mol/L, and the pH of the reactant is adjusted to 10 by HCl.
  • an Ar shielding gas is introduced throughout the stirring process, and then the volume ratio is 20% propylene carbonate (PC).
  • PC propylene carbonate
  • the concentration of the substance is 0.5 mol/L in terms of lithium ion concentration, and the pH of the reactant is adjusted to 9 by H 3 P0 4 .
  • an Ar shielding gas is introduced throughout the stirring process, and then the volume ratio is 50.
  • Diethyl carbonate (DEC) was thoroughly mixed with the above solution for 30 minutes, and then quickly transferred to a 500 ml hydrothermal reaction vessel and reacted at 200 ° C for 600 minutes.
  • EMC ethyl methyl carbonate
  • Li:Fe:P 3.0 ⁇ 3.05: 1:1 ⁇ 1.05, respectively, mixed with an aqueous solution and stirred uniformly.
  • concentration of the reactant is 0.5 mol/L in terms of lithium ion concentration, and the pH of the reactant is adjusted to 9 by H 3 P0 4 .
  • the Ar shielding gas is introduced into the whole stirring process, and then the volume ratio of 50% methyl propyl carbonate (MPC) is thoroughly mixed with the above solution and stirred for 30 minutes, and then quickly transferred into a 500 ml hydrothermal reaction kettle. The reaction was carried out at 200 ° C for 500 minutes.
  • the product was washed with a mixture of deionized water and ethanol until the pH of the solution was neutral, and the filter cake was vacuum dried at 120 ° C for 2 hours to obtain an off-white LiFePO 4 powder.
  • the above grayish white LiFePO 4 powder product was thoroughly mixed with polyvinyl alcohol at a mass ratio of 100:4, and pressed into a tablet under a pressure of 15 a tm/cm 2 , followed by inertness at 5% Ar/H 2 .
  • the above electrode sheet and lithium metal sheet are used as the positive and negative electrodes of the battery, respectively, using Celgard
  • the rate of discharge is 4. 2V, discharge.
  • the charge is discharged at a rate of 0. 2C, 1C, 2C, 5C, 10C, 20C, and 30C.
  • the cutoff potential was 2. 5 V, and the third discharge capacity at different discharge rates was taken as the stable discharge capacity at the discharge rate.
  • the battery After the rate test is completed, the battery is charged and discharged at a rate of 1.0 C for 100 times. 5 ⁇ The stop potential is 2. 5V. The ratio of the discharge capacity of the battery at different cycle times to the initial capacity of the battery is referred to as the capacity retention rate of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种碳酸醋辅助制备锂离子电池正极材料的方法,包括:将锂源化合物、磷源化合物、铁源化合物按摩尔比Li:Fe:P=3.0-3.05:1:1-1.05形成混合水溶液;将有机碳酸酯加入到所述混合水溶液中,控制有机碳酸酯与水的体积比在1:1~10之间,pH值为6.0~12.0、锂离子浓度为0.5~2mol/L以及惰性保护气氛下搅拌所述混合水溶液;然后,于140°C~240°C下在密封容器中反应5~24小时;反应产物经去离子水充分清洗后干燥,再与含碳有机物以质量比100:1~20混合、压片、并在保护气氛下进行热处理;冷却、研细、过筛后获得碳包覆的磷酸铁裡正极材料。该方法所制备的产品粒径分布均匀(100~400nm),产率超过98%,物相纯度大于99.6%,电化学性能优异,批次稳定性好,倍率充放电性能大幅度提升。

Description

碳酸酯辅助制备磷酸铁锂的方法 技术领域
本发明提供了一种高纯度、 高产率和高性能的磷酸铁锂正极材料的水 热制备方法, 具体是在水热法的基础上通过有机碳酸酯溶剂辅助生长纳米 磷酸铁正极材料, 尤其是通过添加不同碳酸酯的种类和用量提高磷酸铁锂 的电化学性能。 背景技术
磷酸铁锂作为新一代锂离子二次电池的正极材料具有开路电压高、 能 量密度大、 循环寿命长、 环境友好、 安全性能高等诸多优点, 使其成为动 力和储能电池研究的热点, 动力和储能电池对于电池大电流充放电性能和 长期循环寿命的要求越来越高, 因此, 近年来磷酸铁锂材料研究和开发的 重点是如何提高材料的倍率性能和长期循环性能。 由于磷酸铁锂本身的电 子电导率和离子电导率比较低, 目前改善 LiFeP04导电性能的方法主要有: 金属阳离子掺杂、 碳包覆和控制材料粒径等。 工业化的制备方法主要为: 固相法、 碳热还原法等。
铁离子在电解液中的溶解是影响磷酸铁锂电池寿命的关键原因, 铁离 子的溶解不仅造成正极材料自身的结构破坏和容量损失, 铁的化合物在碳 负极表面的还原和沉积也会造成负极材料的阻抗大幅度升高, 从而造成电 池的失效。
为了提高磷酸铁锂材料的倍率性能和长期循环性能, 很多研究者通过 液相法控制材料的形貌和粒径来縮短锂离子迁移路径, 其中水热法制备磷 酸铁锂成为该材料制备的重要方法之一, 在 2001年首次被 Shoufeng Yang 等 ( Hydrothermal synthes i s of l ithium iron phosphate cathodes [J] . Electrochemi stry Communicat i ons 2001, 3 : 505-508 ) 运用到合成磷 酸铁锂上来。 与固相法相比, 水热法使得原料混合处于原子水平, 制备的 材料分散性好、 粒径均一、 组分可控、 反应温和等许多诸多优点, 然而通 过上述方法合成的磷酸铁锂正极材料, 虽然性能有所提升, 但是材料的电 化学性能仍然不能满足作为动力电池的需求。 Dokko等(Electrochemical propert ies of LiFeP04 prepared via hydrothermal route [J] . Journal of Power Sources 165 (2007) : 656-659 )采用水热合成技术, 以 LiOH、 FeS04 和 NH4H2P04在 170 °C合成了粒径为 500nm的磷酸铁锂。虽然其 0. 1C的放电容 量为 140mAh/g, 但是其 1C放电容量仅有 110 mAh/g。 目前, 磷酸铁锂的水 热制备方法也逐渐被一些企业, 如加拿大的 Hydro Quebec等使用, 但这种 方法制备的磷酸铁锂存在产率低、 批次稳定性不好和倍率与循环性能欠佳 的问题。
因此, 现有技术急需一种新的磷酸铁锂的水热制备方法, 以克服了目 前水热法制备磷酸铁锂材料产率低、 一致性不好、 高倍率性能不佳和循环 性能差等缺点。 发明内容
本发明目的是提供一种制备锂离子电池正极材料磷酸铁锂的制备方 法, 该方法克服了目前水热法制备磷酸铁锂材料产率低、 一致性不好、 高 倍率性能不佳和循环性能差等缺点。
一方面, 本发明提供一种碳酸酯辅助制备锂离子电池正极材料的方法, 所述方法包括:
(1 ) 将锂源化合物、 磷源化合物、 铁源化合物按照摩尔比 Li : Fe : P=3. 0〜 3. 05 : 1 : 1〜 1. 05形成混合水溶液;
(2)将有机碳酸酯加入到所述混合水溶液中, 控制有机碳酸酯与水的体积 比在 1 : 1〜10之间, 在 pH值为 6. 0〜12. 0、锂离子浓度为 0. 5〜2mol/L以及 惰性保护气氛下搅拌所述混合水溶液;
(3) 然后, 于 140°C〜240°C下在密封容器 (例如, 刚性密封容器)中反应 5-24小时;
(4) 反应产物经去离子水充分清洗后干燥, 再与含碳有机物以质量比 100 : 1〜20混合、 压片、 并在保护气氛下进行热处理;
(5) 冷却、 研细、 过筛后获得碳包覆的磷酸铁锂正极材料。
在本发明中, 所述锂源化合物、磷源化合物和铁源化合物没有什么特别的 限制, 只要能使用现有技术的制备磷酸铁锂材料即可。 在本发明优选的实施 方式中, 所述锂源化合物选自 Li2C03、 LiN03、 LiOH或 LiAc中的一种或者多种。
在本发明优选的实施方式中, 所述磷源化合物选自 P04、 NH4H2P04
(NH4) 2HP04中的一种或者多种。
在本发明优选的实施方式中,所述铁源化合物选自 FeC204、Fe (Ac) 2、FeS04
FeCl2或 Fe (N03) 2中的一种或者多种。
在本发明优选的实施方式中, 所述碳酸酯具有 RO-CO-OR'结构, 包括环 状碳酸酯如碳酸乙烯酯 (EC)、 碳酸丙烯酯 (PC)、 碳酸丁烯酯 (BC)、 碳酸亚乙烯 酯 (VC),链状碳酸酯如碳酸二甲酯 (DMC)、碳酸二乙酯 (DEC)、碳酸甲乙酯 (EMC)、 碳酸甲丙酯 (MPC)及其卤代产物中的一种或者多种。
在本发明优选的实施方式中, 步骤 (2 ) 中, 碳酸酯与混合溶液的体积比 为 1 : 1〜10。
在本发明优选的实施方式中, 步骤 (2)中, 通过无机酸调节反应 pH值在 6. 0〜12. 0之间, 所述无机酸选自 HC1、 H2S04、 H3P04、 HAc、 H2C204中的一种或 者多种。
在本发明优选的实施方式中, 步骤 (4 ) 中的含碳有机化合物为葡萄糖、 蔗糖、 抗坏血酸、 聚乙烯醇、 淀粉中的一种或者多种。
在本发明优选的实施方式中, 所述碳包覆的磷酸铁锂的碳含量在 0. 5〜10 重量%之间。
在本发明中, 碳酸酯辅助水热技术可以促进磷酸铁锂的生长, 提高产 品的产率和批次稳定性, 特别是在含碳酸酯的溶剂体系中生长的磷酸铁锂 在碳酸酯为主体溶剂的电解液中溶解性小, 可以显著提高材料的循环稳定 性, 因此, 这一技术对对发展高性能磷酸铁锂材料具有重要的实际应用价 值。
相比现有技术中制备磷酸铁锂的方法, 本发明所述制备方法的有益效 益包括:
( 1 ) 磷酸铁锂产品的产率高、 纯度高。 本发明是采用有机碳酸酯促进 了磷酸铁锂的形成, 减小了体系内部残余的 Fe离子的含量, 产物的纯度可 达 99. 6%以上, 且产率可达到 98%以上; (2) 产品的颗粒粒径分布均匀, 形貌规则 (见图 1) , 使产物的粒径 可以有效控制在 100〜400nm之间, 且高温热处理无团聚现象;
(3)材料的电化学性能优异, 本方法制备的碳包覆磷酸铁锂复合材料 0.1C放电容量大于 160mAh/g, 10C放电容量大于 140mAh/g, 30C放电容量 达到 110mAh/g (图 2) , 显著超过了当前产业化生产磷酸铁锂的水平, 而 且由于材料在有机碳酸酯中的溶解度小, 材料的循环性能显著提高 (见图 3) ;
(4)产品的批次稳定性好;
(5)本发明的制备方法简单易行, 利于实施、 适应与推广应用。 附图说明
图 1是本发明的正极材料磷酸铁锂的扫描电子显微镜 (SEM) 图像。 图 2是本发明的正极材料碳包覆磷酸铁锂 LiFeP04/C在不同倍率条件下 的放电曲线。
图 3是与无碳酸酯辅助的制备方法相比, 本发明的正极材料碳包覆磷 酸铁锂 LiFeP04/C的长期循环性能。 具体实施方式
下面结合实施例对本发明作进一步描述, 有必要在此指出的是以下实 施例只能用于对于本发明的进一步说明, 不能理解为对本发明的保护范围 进行限定, 在此基础上的非本质的改进和调整仍属本发明的保护范围。 为了达到本发明的技术目的, 本发明采用的技术方案具体可以包括如 下步骤:
(1) 将锂源化合物、 磷源化合物、 铁源化合物按照摩尔比
Li:Fe:P=3.0〜3.05:1:1〜1.05 分别加入到一定量的去离子水溶液中或者 与去离子水溶液混合; 其中, 所述锂源化合物选自 Li2C03、 LiN03、 LiOH或 LiAc 中的一种或者多种; 所述磷源化合物选自 P04、 NH4H2P04、 (NH4)2HP04 中的一种或者多种; 所述铁源化合物选自 FeC204、 Fe(Ac)2)2、 FeS04、 FeCl2 或 Fe (N03) 2中的一种或者多种;
(2) 将一定量碳酸酯化合物先后加入到上述混合溶液中, 通过无机酸 来调节反应 pH值在 6. 0〜12. 0之间, 为了防止二价铁被氧化, 整个搅拌过 程中通入 Ar保护气体; 其中, 所述碳酸酯化合物选自碳酸乙烯酯(EC)、 碳 酸丙烯酯(PC)、 碳酸丁烯酯(BC)、 碳酸亚乙烯酯(VC)、 碳酸二甲酯(DMC)、 碳酸二乙酯(DEC)、 碳酸甲乙酯(EMC)、 碳酸甲丙酯(MPC)及其衍生物中的一 种或者多种; 所述碳酸酯化合物与混合溶液的体积比为 1 : 1〜10; 且所述无 机酸选自 HC1、 H2S04、 H3P04、 HAc、 H2C204中的一种或者多种;
(3) 将反应釜密封置于 140 °C〜240 °C下反应 5-24小时;
(4) 待上述反应完成后, 将沉淀物用去离子水和 /或乙醇等清洗至不含 二价铁离子且溶液的 pH值为中性, 得到的沉淀物于 60 °C〜120°C真空干燥
2〜12小时后得到灰白色 LiFeP04粉末;
(5) 将上述灰白色 LiFeP04粉末产物与含碳有机物按照质量比 100 : 1〜
20混合, 并将其在 15〜30大气压 /平方厘米 (atm/cm2) 的压力条件下压制 成片, 然后在惰性气体的保护下于 400 °C〜800°C条件下热处理 1〜24小时 后自然冷却至室温, 研细, 过筛, 即得到碳包覆的磷酸铁锂正极材料。
其中, 所述含碳有机化合物为葡萄糖、 蔗糖、 抗坏血酸、 聚乙烯醇、 或淀粉中的一种或者多种; 并且所述碳包覆的磷酸铁锂中碳含量在 0. 5〜
10%之间。 实施例 1
以 LiOH · H20、 H3P04、 FeS04 · 7H20 为基本原料, 按照摩尔比为 Li : Fe : P=3. 0〜3. 05 : 1 : 1〜1. 05分别配成水溶液混合搅拌均匀,反应物浓度 以锂离子浓度计为 0. 5mol/L,通过 H2S04调节反应物 pH值为 8, 为了防止二 价铁被氧化, 整个搅拌过程在 Ar保护下进行, 再将体积比为 50%碳酸乙烯 酯(EC)与上述溶液充分混合搅拌 30分钟后快速移入 500ml的水热反应釜中 于 180°C下反应 600分钟。
待上述反应完成后, 将生成的沉淀物用去离子水和乙醇清洗至溶液的 pH值为中性, 得到的沉淀物在 100°C真空条件下干燥 5小时后得到灰白色 LiFeP04粉末。 将上述灰白色 LiFeP04粉末产物与葡萄糖按照质量比 100:10 充分混合均匀后, 在 20atm/Cm2的压力下压制成片, 然后在 5% H2/Ar混合气 体的保护下于 600°C条件下热处理 10小时后自然冷却至室温,研细, 过筛, 即得到碳包覆的磷酸铁锂正极材料 LiFeP04/C。 实施例 2
以 LiOH* H20、 H3P04、 FeCl2为基本原料, 按照摩尔比为 Li: Fe: P=3.0〜 3.05:1: 1〜 1.05分别配成水溶液混合搅拌均匀, 反应物浓度以锂离子浓度 计为 lmol/L, 通过 HC1调节反应物 pH值为 10, 为了防止二价铁被氧化, 整个搅拌过程中通入 Ar保护气体, 然后将体积比为 20%碳酸丙烯酯 (PC)与 上述溶液充分混合搅拌 30分钟后快速移入 500ml的水热反应釜中于 180°C 下反应 600分钟。
待上述反应完成后, 将沉淀物用去离子水和乙醇混合液清洗至溶液的 pH值为中性, 得到的沉淀物于 120°C真空干燥 5小时后得到灰白色 LiFeP04 粉末。 将上述灰白色 LiFeP04粉末产物与葡萄糖按照质量比 100:10充分混 合均匀后, 在 20atm/Cm2的压力条件下压制成片, 然后在 5% H2/Ar惰性气体 的保护下于 650°C条件下热处理 5小时后自然冷却至室温, 研细, 过筛, 即 得到碳包覆的磷酸铁锂正极材料 LiFeP04/C。 实施例 3
以 Li2C03、 H3P04、 Fe (Ac) 2) 2为基本原料, 按照摩尔比为 Li :Fe:P=3.0〜 3.05:1: 1〜 1.05分别配成水溶液混合搅拌均匀, 反应物浓度以锂离子浓度 计为 0.5mol/L, 通过 H3P04调节反应物 pH值为 9, 为了防止二价铁被氧化, 整个搅拌过程中通入 Ar 保护气体, 然后将体积比为 50%碳酸二乙酯(DEC) 与上述溶液充分混合搅拌 30 分钟后快速移入 500ml 的水热反应釜中于 200 °C下反应 600分钟。
待上述反应完成后,将生成物用去离子水和乙醇清洗至溶液的 pH值为 中性, 得到的沉淀物于 120°C真空干燥 5小时后得到灰白色 LiFeP04粉末。 将上述灰白色 LiFeP04粉末产物与抗坏血酸按照质量比 100:10充分混合均 匀, 并将其在 15atm/cm2的压力条件下压制成片, 然后在 5% H2/Ar惰性气体 的保护下于 700°C条件下热处理 5小时后自然冷却至室温, 研细, 过筛, 即 得到碳包覆的磷酸铁锂正极材料 LiFeP04/C。 实施例 4
以 LiOH · H20、 H3P04、 FeS04 · 7H20 为基本原料, 按照摩尔比为 Li:Fe:P=3.0〜3.05:1:1〜1.05分别配成水溶液混合搅拌均匀,反应物浓度 以锂离子浓度计为 0.5mol/L,通过 H2S04调节反应物 pH值为 8, 为了防止二 价铁被氧化, 整个搅拌过程中通入 Ar保护气体, 然后将体积比为 20%碳酸 甲乙酯(EMC)与上述溶液充分混合搅拌 30分钟后快速移入 500ml 的水热反 应釜中于 180°C下反应 600分钟。
待上述反应完成后,将生成物用去离子水和乙醇清洗至溶液的 pH值为 中性, 得到的沉淀物在 100°C真空干燥 5小时后得到灰白色 LiFeP04粉末。 将上述灰白色 LiFeP04粉末产物与蔗糖按照质量比 100:5充分混合均匀后, 在 25atm/cm2的压力条件下压制成片, 然后在 5% H2/Ar惰性气体的保护下于 750°C条件下热处理 5小时后自然冷却至室温, 研细, 过筛, 即得到碳包覆 的磷酸铁锂正极材料 LiFeP04/C。 实施例 5
以 LiOH · H20、 H3P04、 FeS04 · 7H20 为基本原料, 按照摩尔比为
Li:Fe:P=3.0〜3.05:1:1〜1.05分别配成水溶液混合搅拌均匀,反应物浓度 以锂离子浓度计为 0.5mol/L,通过 H3P04调节反应物 pH值为 9, 为了防止二 价铁被氧化, 整个搅拌过程中通入 Ar保护气体, 然后将体积比为 50%碳酸 甲丙酯(MPC)与上述溶液充分混合搅拌 30分钟后快速移入 500ml 的水热反 应釜中于 200°C下反应 500分钟。
待上述反应完成后, 将生成物用去离子水和乙醇混合液清洗至溶液的 pH值为中性, 将得到滤饼与 120°C真空干燥 2 小时后得到灰白色 LiFeP04 粉末。将上述灰白色 LiFeP04粉末产物与聚乙烯醇按照质量比 100:4充分混 合均匀, 并将其在 15atm/cm2的压力条件下压制成片, 然后在 5%Ar/H2惰性 气体的保护下于 700°C条件下热处理 2小时后自然冷却至室温,研细,过筛, 即得到碳包覆的磷酸铁锂正极材料 LiFeP04/C。 以下说明采用本发明制备的碳包覆磷酸铁锂 LiFeP04/C 复合材料的电 化学性能测试。
(1) 正极片的制造
将 1. 2g碳包覆磷酸铁锂 LiFeP04/C复合材料与 0. 15g超级 (Super P ) 导电剂和聚偏氟乙烯 (PVDF ) 粘结剂均匀分散在一定量的 N-甲基吡咯垸酮 (丽 P ) 溶剂中, 以每分钟 10000转的转速搅拌半小时, 待浆料充分混合均 匀后, 在涂布机上涂布干燥; 电极片的干燥厚度控制在 60-80 μ ηι之间, 然 后使用辊压机将制得的电极片压制到 40-60 μ ηι之间。
(2) 扣式电池的制造
上述电极片和金属锂片分别作为电池的正极和负极, 使用 Celgard
2500隔膜, lmol/LiPF6/EC+DEC (体积比 1 : 1)溶液为电解液, 在手套箱中组 装扣式电池。 依照扣式电池制造的常用工艺, 经切割、 烘片、 组装、 注液 和封口压制后, 所得的电池进行化成。 (3) 材料电性能测试
电池的化成: 使用 0. lC ( lC=160mAh/g)的电流密度恒流充、 放电循环 3 次, 充电截止电位为 4. 2V, 放电截止电位为 2. 5V完成后对其进行倍率性能 电池倍率性能测试: 化成完成后, 电池以 0. 25C 的倍率进行充电, 分 别以 0. 2C、 1C、 2C、 5C、 10C、 20C和 30C倍率放电循环 3次, 充电截止电 位为 4. 2V, 放电截止电位为 2. 5V, 在不同放电倍率下第三次放电容量作为 在该放电倍率下的稳定放电容量。
电池循环性能测试:
倍率测试完成后, 电池以 1. 0C的倍率进行充放电循环 100次, 充电截 止电位为 4. 2V, 放电截止电位为 2. 5V。 电池在不同循环次数时的放电容量 与电池初始容量的比值称为电池的容量保持率。

Claims

权 利 要 求 书
1. 一种碳酸酯辅助制备锂离子电池正极材料的方法, 所述方法包括:
(1) 将锂源化合物、 磷源化合物、 铁源化合物按照摩尔比 Li:Fe:P=3.0〜 3.05:1: 1〜 1.05形成混合水溶液;
(2)将有机碳酸酯加入到所述混合水溶液中, 控制有机碳酸酯与水的体积 比在 1: 1〜10之间, 在 pH值为 6.0〜12.0、锂离子浓度为 0.5〜2mol/L以及 惰性保护气氛下搅拌所述混合水溶液;
(3) 然后, 于 140°C〜240°C下在密封容器中反应 5-24小时;
(4) 反应产物经去离子水充分清洗后干燥, 再与含碳有机物以质量比
100:1〜20混合、 压片、 并在保护气氛下进行热处理;
(5) 冷却、 研细、 过筛后获得碳包覆的磷酸铁锂正极材料。
2. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 所述锂源化合物选自 Li2C03、 LiN03、 LiOH或 LiAc中的一种或者多种。
3. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 所述磷源化合物选自 P04、 NH4H2P04、 (NH4)2HP04中的一种或者多种。 4. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 所述铁源化合物选自 FeC204、 Fe(Ac)2、 FeS04、 FeCl2或 Fe (N03)2中的一种或者 多种。
5. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 所述有机碳酸酯具有 RO-CO-OR'结构, 包括碳酸乙烯酯(EC)、 碳酸丙烯酯 (PC), 碳酸丁烯酯 (BC)、 碳酸亚乙烯酯 (VC)、 碳酸二甲酯 (DMC)、 碳酸二乙酯 (DEC) , 碳酸甲乙酯 (EMC)、 碳酸甲丙酯 (MPC)及其卤代衍生物中的一种或者多 种。
6. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 步骤(2)中,通过无机酸调节反应 pH值在 6. 0〜 12. 0之间,所述无机酸选自 HC1、 H2S04、 H3P04、 HAc、 H2C204中的一种或者多种。
7. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 步骤 (4) 中的含碳有机化合物为葡萄糖、 蔗糖、 抗坏血酸、 聚乙烯醇、 淀粉 中的一种或者多种。
8. 根据权利 1要求所述的锂离子电池正极材料的制备方法, 其特征在于: 所述碳包覆的磷酸铁锂的碳含量在 0. 5〜10重量 %之间。
PCT/CN2013/081638 2013-05-24 2013-08-16 碳酸酯辅助制备磷酸铁锂的方法 WO2014187034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310198569.9A CN104183843B (zh) 2013-05-24 2013-05-24 碳酸酯辅助制备磷酸铁锂的方法
CN201310198569.9 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014187034A1 true WO2014187034A1 (zh) 2014-11-27

Family

ID=51932750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081638 WO2014187034A1 (zh) 2013-05-24 2013-08-16 碳酸酯辅助制备磷酸铁锂的方法

Country Status (2)

Country Link
CN (1) CN104183843B (zh)
WO (1) WO2014187034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119600A (zh) * 2017-06-26 2019-01-01 深圳市比亚迪锂电池有限公司 锂离子电池正极活性材料、其制备方法、正极、其制备方法及电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611842B (zh) * 2016-12-21 2021-01-22 上海杉杉科技有限公司 碳素类材料表面的类sei膜预先沉积修饰改性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117216A (zh) * 2007-07-23 2008-02-06 河北工业大学 一种锂离子电池正极材料磷酸铁锂的水热合成法
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
CN102356488A (zh) * 2009-03-27 2012-02-15 住友大阪水泥股份有限公司 锂离子电池用正极活性物质的制造方法和锂离子电池用正极活性物质及锂离子电池用电极以及锂离子电池
TW201308733A (zh) * 2011-04-22 2013-02-16 Showa Denko Kk 用於鋰二次電池之正極活性物質其製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641375B2 (ja) * 2003-10-20 2011-03-02 日立マクセル株式会社 オリビン型リン酸リチウムと炭素材料との複合体の製造方法
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117216A (zh) * 2007-07-23 2008-02-06 河北工业大学 一种锂离子电池正极材料磷酸铁锂的水热合成法
CN102356488A (zh) * 2009-03-27 2012-02-15 住友大阪水泥股份有限公司 锂离子电池用正极活性物质的制造方法和锂离子电池用正极活性物质及锂离子电池用电极以及锂离子电池
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
TW201308733A (zh) * 2011-04-22 2013-02-16 Showa Denko Kk 用於鋰二次電池之正極活性物質其製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119600A (zh) * 2017-06-26 2019-01-01 深圳市比亚迪锂电池有限公司 锂离子电池正极活性材料、其制备方法、正极、其制备方法及电池

Also Published As

Publication number Publication date
CN104183843A (zh) 2014-12-03
CN104183843B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
EP3353841B1 (en) Method of preparing and application of carbon-selenium composites
CN101159328A (zh) 一种LiFePO4/C纳米复合正极材料及其制备方法
WO2015003568A1 (zh) 锂离子电池正极活性材料的制备方法
CN102646810A (zh) 一种三维多孔石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN102569792A (zh) 原位水热碳化一步合成高倍率性能碳包覆磷酸铁锂正极材料的制备方法
WO2015007169A1 (zh) 锂离子电池正极材料的制备方法
Huang et al. LiMgxMn2− xO4 (x≤ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature
JP5804427B2 (ja) 二次電池用正極材活物質の製造方法
CN115911327A (zh) 钠离子正极材料及其制备方法、二次电池
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
CN114864896A (zh) 一种原位碳包覆纳米磷酸铁锂正极材料及其制备方法
CN109616651B (zh) 一种钠离子正极材料杂原子掺杂石墨烯基磷酸钒钠复合纳米材料
Niu et al. High-rate lithium storage of TiNb2O7/reduced graphene oxide
CN103094580A (zh) 一种复合正极材料及其合成方法与应用
Chen et al. Facile preparation of carbon-LiNi1/3Co1/3Mn1/3O2 with enhanced stability and rate capability for lithium-ion batteries
CN103746117A (zh) 镁离子掺杂锂离子电池正极磷酸钒锂/碳材料的制备方法
CN106450186B (zh) 一种锂离子电池正极材料硅酸锰锂/碳复合材料的制备方法、正极浆料及应用
KR101604003B1 (ko) 리튬이차전지용 실리콘 복합재 음극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
CN109802127B (zh) 一种银掺杂四氧化三铁纳米复合材料的制备方法
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
Wang et al. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process
Zhou et al. Capacitive nanosized spinel α-LiFe5O8 as high performance cathodes for lithium-ion batteries
WO2014187034A1 (zh) 碳酸酯辅助制备磷酸铁锂的方法
CN116344763B (zh) 一种金属/碳包覆氧化锂复合正极材料及其制备方法以及包含该正极材料的正极片和电池
Zhengwei et al. A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885024

Country of ref document: EP

Kind code of ref document: A1