WO2015015800A1 - 半導体基板および半導体基板の製造方法 - Google Patents

半導体基板および半導体基板の製造方法 Download PDF

Info

Publication number
WO2015015800A1
WO2015015800A1 PCT/JP2014/003974 JP2014003974W WO2015015800A1 WO 2015015800 A1 WO2015015800 A1 WO 2015015800A1 JP 2014003974 W JP2014003974 W JP 2014003974W WO 2015015800 A1 WO2015015800 A1 WO 2015015800A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superlattice
semiconductor substrate
superlattice layer
connection
Prior art date
Application number
PCT/JP2014/003974
Other languages
English (en)
French (fr)
Inventor
洋幸 佐沢
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to ATA9292/2014A priority Critical patent/AT521082A3/de
Priority to JP2015529391A priority patent/JP6385350B2/ja
Priority to DE112014003533.5T priority patent/DE112014003533T5/de
Priority to KR1020167004781A priority patent/KR20160037968A/ko
Priority to CN201480041977.6A priority patent/CN105431931A/zh
Publication of WO2015015800A1 publication Critical patent/WO2015015800A1/ja
Priority to US15/008,974 priority patent/US20160149000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present invention relates to a semiconductor substrate and a method for manufacturing the semiconductor substrate.
  • Non-Patent Document 1 discloses a structure in which a buffer layer, a superlattice structure, and a gallium nitride layer are sequentially stacked on a silicon (111) surface.
  • the gallium nitride layer becomes the active layer of the transistor.
  • this structure since the warp of the substrate is suppressed by the superlattice structure, there is an advantage that a relatively thick gallium nitride layer can be easily formed and a high breakdown voltage nitride semiconductor crystal layer can be easily obtained.
  • a first GaN / AlN superlattice layer in which a plurality of pairs of GaN layers and AlN layers are stacked is formed on a substrate so that GaN layers and AlN layers are alternately stacked.
  • a second GaN / AlN superlattice layer in which a plurality of pairs of GaN layers and AlN layers are laminated is formed so as to be in contact with the first GaN / AlN superlattice layer so that the GaN layers and the AlN layers are alternately laminated.
  • an element operation layer including a GaN electron transit layer and an AlGaN electron supply layer is formed on the second GaN / AlN superlattice layer.
  • the c-axis average lattice constant LC1 of the first GaN / AlN superlattice layer, the c-axis average lattice constant LC2 of the second GaN / AlN superlattice layer, and the c-axis average lattice constant LC3 of the GaN electron transit layer are LC1. It is disclosed that ⁇ LC2 ⁇ LC3 is satisfied.
  • Patent Document 2 discloses an epitaxial substrate in which a group III nitride layer group is formed on a (111) single crystal Si substrate so that the (0001) crystal plane is substantially parallel to the substrate surface.
  • the epitaxial substrate includes a buffer layer in which a first stack unit and a second stack unit are alternately stacked, and the uppermost layer and the lowermost layer are both configured by the first stack unit; And a crystal layer formed.
  • the first stack unit includes a composition modulation layer in which compression strain is contained by repeatedly and alternately laminating first unit layers and second unit layers having different compositions, and a compression strain in the composition modulation layer. And a first intermediate layer for strengthening.
  • the second stacked unit is formed to be a substantially unstrained second intermediate layer.
  • Patent Literature Japanese Patent Application Laid-Open No. 2011-238865
  • Patent Document 2 International Publication WO 2011/102045
  • Non-Patent Document "High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia", S. A. Nikishin et. Al., Applied Physics letter, Vol. 75, 2073 (1999)
  • the present inventor has conducted an experimental study of introducing impurity atoms such as carbon atoms into the underlying layer (superlattice layer) of the nitride semiconductor crystal layer for the purpose of obtaining a nitride semiconductor crystal layer having a high withstand voltage. .
  • impurity atoms such as carbon atoms into the underlying layer (superlattice layer) of the nitride semiconductor crystal layer for the purpose of obtaining a nitride semiconductor crystal layer having a high withstand voltage.
  • the technique for controlling the warpage amount of the substrate described in Patent Document 1 and Patent Document 2 described above is a state in which no impurity atoms are introduced for improving the withstand voltage, or the amount of introduced impurity atoms is small.
  • the technology described in Patent Document 1 and Patent Document 2 controls the amount of warping of the substrate when impurity atoms are introduced to such an extent that the effect of improving the withstand voltage is sufficiently obtained. It came to recognize that there is a problem that can not be.
  • the object of the present invention is to reduce the amount of warping even when an amount of impurity atoms is introduced into the superlattice layer, which is the underlayer of the nitride semiconductor crystal layer, so that the effect of improving the withstand voltage is sufficiently obtained.
  • An object of the present invention is to provide a semiconductor substrate having a layer structure in which a control effect is not lost or a method for manufacturing the same.
  • the semiconductor device includes a base substrate, a first superlattice layer, a connection layer, a second superlattice layer, and a nitride semiconductor crystal layer
  • the base substrate, the first superlattice layer, the connection layer, the second superlattice layer, and the nitride semiconductor crystal layer are in the order of the base substrate, the first superlattice layer, the connection layer, the second superlattice layer, and the nitride semiconductor crystal layer.
  • the first superlattice layer has a plurality of first unit layers composed of the first layer and the second layer
  • the second superlattice layer includes a plurality of second unit layers composed of the third layer and the fourth layer.
  • the first layer is made of Al x1 Ga 1-x1 N (0 ⁇ x1 ⁇ 1)
  • the second layer is made of Al y1 Ga 1-y1 N (0 ⁇ y1 ⁇ 1, x1> y1)
  • the third layer is made of Al x2 Ga 1-x2 N (0 ⁇ x2 ⁇ 1)
  • the fourth layer is Al y2 Ga 1-y2 N (0 ⁇ y2 ⁇ 1, x2>).
  • the average lattice constant of the first superlattice layer is different from the average lattice constant of the second superlattice layer, and one or more layers selected from the first superlattice layer and the second superlattice layer have resistance to Provided is a semiconductor substrate in which impurity atoms that improve voltage are included at a density exceeding 7 ⁇ 10 18 [atoms / cm 3 ].
  • the connection layer is preferably a crystal layer in contact with the first superlattice layer and the second superlattice layer.
  • the composition of the connection layer may continuously change from the first superlattice layer to the second superlattice layer in the thickness direction of the connection layer. Alternatively, the composition of the connection layer may change stepwise from the first superlattice layer toward the second superlattice layer in the thickness direction of the connection layer.
  • connection layer examples include those made of Al z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the thickness of the connection layer is preferably larger than any one of the first layer, the second layer, the third layer, and the fourth layer.
  • the average lattice constant of the connection layer is preferably smaller than the average lattice constant of either the first superlattice layer or the second superlattice layer.
  • a method for manufacturing a semiconductor substrate according to the first aspect wherein the first layer and the second layer are first unit layers, and the formation of the first unit layer is repeated n times.
  • forming a nitride semiconductor crystal layer and formed in one or more steps selected from the step of forming the first superlattice layer and the step of forming the second superlattice layer
  • a method for manufacturing a semiconductor substrate in which a layer is formed so that impurity atoms that improve the withstand voltage of the layer are included at a density exceeding 7 ⁇ 10 18 [atoms / cm 3 ].
  • the compositions of the first layer to the fourth layer, the first layer to the fourth layer, so that the warp on the surface of the nitride semiconductor crystal layer of the semiconductor substrate is 50 ⁇ m or less.
  • One or more parameters selected from the thicknesses n, the number n of unit layer repetitions in the first superlattice layer, and the number m of unit layer repetitions in the second superlattice layer can be adjusted.
  • the number n of unit layers in the first superlattice layer and the second superlattice layer so that the warp on the surface of the nitride semiconductor crystal layer of the semiconductor substrate is 50 ⁇ m or less. It is preferable to adjust the number m of repeating unit layers.
  • FIG. 3 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Example 1.
  • FIG. 5 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 1.
  • 10 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 2.
  • 10 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 3.
  • 6 is a graph showing the amount of warpage and the withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Example 2.
  • 6 is a graph showing the amount of warpage of the semiconductor substrates of Examples 1 and 2 and Comparative Examples 1 to 3 with respect to the carbon atom concentration. It is the graph which showed the amount of curvature and withstand voltage at the time of changing the number of layers of the 1st superlattice layer of the semiconductor substrate of Example 3, and the 2nd superlattice layer. 10 is a graph showing the amount of warpage when the number of first superlattice layers and second superlattice layers of the semiconductor substrate of Example 4 is changed. 6 is a graph showing the amount of warpage with respect to the average lattice constant difference of the semiconductor substrate of Example 5.
  • FIG. 1 shows a cross-sectional view of a semiconductor substrate 100 according to an embodiment of the present invention.
  • the semiconductor substrate 100 includes a base substrate 102, a buffer layer 104, a first superlattice layer 110, a connection layer 120, a second superlattice layer 130, and a nitride semiconductor crystal layer 140.
  • the base substrate 102, the first superlattice layer 110, the connection layer 120, the second superlattice layer 130, and the nitride semiconductor crystal layer 140 are the base substrate 102, the first superlattice layer 110, the connection layer 120, and the second superlattice layer. 130 and the nitride semiconductor crystal layer 140 are arranged in this order.
  • the base substrate 102 is a substrate that supports each layer above the buffer layer 104 described below.
  • the material of the base substrate 102 is arbitrary as long as it has mechanical strength necessary to support each layer and has thermal stability when forming each layer by an epitaxial growth method or the like.
  • As the base substrate 102 a Si substrate, a sapphire substrate, a Ge substrate, a GaAs substrate, an InP substrate, or a ZnO substrate can be exemplified.
  • the buffer layer 104 is a layer that buffers a difference in lattice constant between the base substrate 102 and the first superlattice layer 110.
  • the buffer layer 104 can be formed by an epitaxial growth method with a reaction temperature (substrate temperature) of 500 ° C. to 1000 ° C.
  • a reaction temperature substrate temperature
  • an AlN layer can be exemplified as the buffer layer 104.
  • the thickness of the buffer layer 104 is preferably in the range of 10 nm to 300 nm, and more preferably in the range of 50 nm to 200 nm.
  • the first superlattice layer 110, the connection layer 120, and the second superlattice layer 130 control the amount of warp of the semiconductor substrate 100 even when a sufficient amount of impurity atoms is introduced for improving the withstand voltage.
  • Is a layer structure capable of The first superlattice layer 110 has a plurality of first unit layers 116, and the second superlattice layer 130 has a plurality of second unit layers 136.
  • the first unit layer 116 includes a first layer 112 and a second layer 114
  • the second unit layer 136 includes a third layer 132 and a fourth layer 134.
  • the first layer 112 is made of Al x1 Ga 1-x1 N (0 ⁇ x1 ⁇ 1)
  • the second layer 114 is made of Al y1 Ga 1-y1 N (0 ⁇ y1 ⁇ 1, x1> y1).
  • the third layer 132 is made of Al x2 Ga 1-x2 N (0 ⁇ x2 ⁇ 1)
  • the fourth layer 134 is made of Al y2 Ga 1-y2 N (0 ⁇ y2 ⁇ 1, x2> y2).
  • the first layer 112, the second layer 114, the third layer 132, and the fourth layer 134 can be formed using an epitaxial growth method.
  • the first layer 112 and the third layer 132 when x1 and x2 are 1, an AlN layer can be exemplified.
  • the thickness of the first layer 112 and the third layer 132 is preferably in the range of 1 nm to 10 nm, and more preferably in the range of 3 nm to 7 nm.
  • y1 and y2 are in the range of 0.05 to 0.25, that is, the range of the Al 0.05 Ga 0.95 N layer to the Al 0.25 Ga 0.75 N layer. It can be illustrated.
  • the thicknesses of the second layer 114 and the fourth layer 134 are preferably in the range of 10 nm to 30 nm, and more preferably in the range of 15 nm to 25 nm.
  • the first superlattice layer 110 is formed by forming a plurality of first unit layers 116 including the first layer 112 and the second layer 114.
  • the average lattice constant a1 of the first superlattice layer 110 can be changed.
  • the average lattice constant a1 of the first superlattice layer 110 can be defined as the lattice constant of the first layer 112 ⁇ the ratio of the first layer 112 + the lattice constant of the second layer 114 ⁇ the ratio of the second layer 114.
  • the number n of the first unit layers 116 included in the first superlattice layer 110 is preferably in the range of 1 to 200 layers, and more preferably in the range of 1 to 150 layers.
  • a plurality of second unit layers 136 composed of the third layer 132 and the fourth layer 134 are formed to constitute the second superlattice layer 130.
  • the average lattice constant a2 of the second superlattice layer 130 can be changed.
  • the average lattice constant a2 of the second superlattice layer 130 can be defined as the lattice constant of the third layer 132 ⁇ the ratio of the third layer 132 + the lattice constant of the fourth layer 134 ⁇ the ratio of the fourth layer 134.
  • the number m of the second unit layers 136 included in the second superlattice layer 130 is preferably in the range of 1 to 200 layers, and more preferably in the range of 1 to 150 layers.
  • the average lattice constant a1 of the first superlattice layer 110 and the average lattice constant a2 of the second superlattice layer 130 are different and are selected from the first superlattice layer 110 and the second superlattice layer 130.
  • the one or more layers formed include impurity atoms that improve the withstand voltage at a density exceeding 7 ⁇ 10 18 [atoms / cm 3 ].
  • the impurity atom include one or more atoms selected from the group consisting of C atom, Fe atom, Mn atom, Mg atom, V atom, Cr atom, Be atom, and B atom.
  • a C atom or an Fe atom is preferable, and a C atom is particularly preferable.
  • connection layer 120 connects the first superlattice layer 110 and the second superlattice layer 130.
  • the connection layer 120 can be formed by an epitaxial growth method.
  • An example of the connection layer 120 is Al z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the connection layer 120 may be a crystal layer in contact with the first superlattice layer 110 and the second superlattice layer 130.
  • the connection layer 120 may be a single layer or a multilayer.
  • the composition of the connection layer 120 may change in the thickness direction. Specifically, the composition of the connection layer 120 may continuously change from the first superlattice layer 110 toward the second superlattice layer 130 in the thickness direction of the connection layer 120.
  • the composition of the connection layer 120 may change stepwise from the first superlattice layer 110 toward the second superlattice layer 130 in the thickness direction of the connection layer 120.
  • the thickness of the connection layer 120 may be larger than any one of the first layer 112, the second layer 114, the third layer 132, and the fourth layer 134.
  • the average lattice constant of the connection layer 120 can be smaller than the average lattice constant of the first superlattice layer 110 and the second superlattice layer 130.
  • the thickness of the connection layer 120 can be 20 to 300 nm, preferably 25 to 200 nm, more preferably 30 to 200 nm, and still more preferably 30 to 150 nm.
  • the nitride semiconductor crystal layer 140 can have a device base layer 142 and an active layer 144. By increasing the thickness of the device base layer 142, the withstand voltage of the device can be increased. In the active layer 144, an active region such as a channel of a transistor is formed.
  • the semiconductor substrate 100 of the present embodiment by introducing impurity atoms at a density exceeding 7 ⁇ 10 18 [atoms / cm 3 ], a high withstand voltage of 450 V or more is realized, and at the same time, a nitride semiconductor crystal
  • the amount of warpage on the surface of the layer 140 can be 50 ⁇ m (absolute value) or less.
  • the amount of warpage refers to the elevation at the center of the substrate with respect to the edge, where the direction in which the nitride semiconductor crystal layer 140 side is convex is negative, the direction in which the nitride semiconductor crystal layer 140 is concave is positive.
  • the warpage amount of the semiconductor substrate 100 can be controlled to 50 ⁇ m (absolute value) or less.
  • the following mechanism can be considered as the reason.
  • the thermal expansion coefficient of the GaN-based crystal is larger than that of Si, so the GaN-based crystal on the Si substrate grown by lattice matching at high temperature is When the temperature is lowered, it will warp upward.
  • the concave on the upper side refers to a state in which the surface of the GaN-based crystal layer opposite to the Si substrate is concave.
  • a stack composed of an upper superlattice layer (USL layer) and a lower superlattice layer (LSL layer) is provided between the Si substrate and the GaN layer.
  • the stress due to the difference in average lattice constant between the USL layer and the LSL layer causes the USL A compressive stress acts on the layer, and a tensile stress acts on the LSL layer.
  • the stress acting on the laminated structure composed of the USL layer and the LSL layer (sometimes referred to as “USL / LSL structure” in this specification) is a force that warps upwards, and the warp due to the difference in thermal expansion coefficient described above. Is the force in the opposite direction. Therefore, the USL / LSL structure has an effect of reducing the warpage of the substrate.
  • the stress in the USL / LSL structure acts around the interface between the USL layer and the LSL layer as a fulcrum. Since there are dislocations and irregularities at the interface in the actual crystal, it seems that the fulcrum has a width of about several nanometers to several tens of nanometers (thickness in the growth direction). If the GaN crystal contains many impurity atoms such as carbon atoms, it tends to generate defects near the stack interface. If the USL / LSL structure contains many impurity atoms, the interface between the USL layer and the LSL layer or It is considered that many defects are generated at the superlattice interface in the USL layer and the LSL layer.
  • connection layer 120 is formed between the first superlattice layer 110 (corresponding to the LSL layer) and the second superlattice layer 130 (corresponding to the USL layer).
  • the connection layer 120 acts as a fulcrum for stress generated by the average lattice constant difference between the first superlattice layer 110 and the second superlattice layer 130.
  • the connection layer 120 is thicker than the first layer 112, the second layer 114, the third layer 132, and the fourth layer 134 constituting the first superlattice layer 110 and the second superlattice layer 130, and is in the growth direction (thickness direction). ) Has a small interface density per unit length. Therefore, it is hardly affected by the relaxation of the interface.
  • the stresses generated in the first superlattice layer 110 and the second superlattice layer 130 can be transmitted to each other. That is, it is possible to control the amount of warpage, and as a result, it is considered that the warpage of the semiconductor substrate 100 can be reduced.
  • the thickness of the connection layer 120 is larger than the thicknesses of the first layer 112, the second layer 114, the third layer 132, and the fourth layer 134 constituting the first superlattice layer 110 and the second superlattice layer 130. It also has the effect of reducing defects such as dislocations generated at the interface during the growth process. This occurs because dislocations having Burgers vectors with opposite signs coalesce during the growth process. As a result, it is considered that not only the interface but also defects in the bulk crystal can be suppressed and stress can be transmitted more efficiently. As a result, it is considered that the warpage of the substrate can be reduced even when the first superlattice layer 110 or the second superlattice layer 130 contains a high concentration of carbon atoms.
  • the semiconductor substrate 100 described above can be manufactured by the following manufacturing method. That is, after the buffer layer 104 is formed on the base substrate 102, the first layer 112 and the second layer 114 are used as the first unit layer 116, and the formation of the first unit layer 116 is repeated n times to form the first superlattice layer 110. Form. Then, the connection layer 120 is formed, the third layer 132 and the fourth layer 134 are used as the second unit layer 136, and the second unit layer 136 is formed m times to form the second superlattice layer 130. Furthermore, the nitride semiconductor crystal layer 140 can be formed.
  • impurity atoms that improve the withstand voltage of the formed layer are 7 ⁇
  • the layer is formed so as to be included at a density exceeding 10 18 [atoms / cm 3 ].
  • the first layer 112, the second layer 114, the connection layer 120, the third layer 132, the fourth layer 134, and the nitride semiconductor crystal layer 140 can be formed using an epitaxial growth method.
  • the epitaxial growth method include MOCVD (Metal Organic Chemical Vapor Deposition) method and MBE (Molecular Beam Epitaxy) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • the source gas include TMG (trimethyl gallium), TMA (trimethyl aluminum), and NH 3 (ammonia). Nitrogen gas or hydrogen gas may be used as the carrier gas.
  • the reaction temperature can be selected in the range of 400 ° C to 1300 ° C.
  • the carbon atom concentration can be controlled by changing at least one of the ratio of the group III source gas to the group V source gas, the reaction temperature, and the reaction pressure.
  • the higher the reaction temperature, the lower the carbon atom concentration, and the smaller the ratio of the group V source gas to the group III source gas the higher the carbon atom concentration.
  • the carbon atom concentration increases as the reaction pressure is lowered.
  • the carbon atom concentration can be detected by, for example, SIMS (secondary ion mass spectrometry).
  • the compositions of the first layer 112 to the fourth layer 134, the first layer so that the warp on the surface of the nitride semiconductor crystal layer 140 of the semiconductor substrate 100 is 50 ⁇ m or less.
  • One or more parameters selected from the thickness of each of the layers 112 to 134, the repeating number n of the unit layers in the first superlattice layer 110, and the repeating number m of the unit layers in the second superlattice layer 130 are adjusted. can do.
  • the number n of unit layers in first superlattice layer 110 and the number of repetitions of warp on the surface of nitride semiconductor crystal layer 140 of semiconductor substrate 100 become 50 ⁇ m or less.
  • the number m of repeating unit layers in the two superlattice layers 130 can be adjusted.
  • Example 1 A 4-inch Si substrate (thickness: 625 ⁇ m, p-type dope) having a plane orientation of (111) was used as the base substrate 102, and an AlN layer having a thickness of 150 nm was formed as the buffer layer 104 on the Si substrate.
  • an AlN layer is formed as a first layer 112 with a thickness of 5 nm
  • an Al 0.15 Ga 0.85 N layer is formed as a second layer 114 with a thickness of 16 nm
  • a first unit layer is formed.
  • 116 After 75 first unit layers 116 were formed to form the first superlattice layer 110, an AlN layer was formed as the connection layer 120 to a thickness of 70 nm.
  • an AlN layer having a thickness of 5 nm was formed as the third layer 132, and an Al 0.1 Ga 0.9 N layer having a thickness of 16 nm was formed as the fourth layer 134 to form the second unit layer 136.
  • a GaN layer is formed to a thickness of 800 nm as the device base layer 142, and an Al 0.2 Ga 0.
  • the 8 N layer was formed with a thickness of 20 nm.
  • a plurality of types of semiconductor substrates 100 were produced by changing the reaction temperature when forming the first superlattice layer 110.
  • the average lattice constant of the first superlattice layer 110 is 0.316187 nm
  • the average lattice constant of the second superlattice layer 130 is 0.316480 nm.
  • the average lattice constant of the connection layer 120 is 0.311200 nm.
  • Comparative example As comparative examples, the following comparative examples 1 to 3 were prepared.
  • FIG. 2 is a graph showing the amount of warpage and the withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Example 1.
  • FIG. 3 is a graph showing the amount of warpage and the withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 1.
  • FIG. 4 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 2.
  • FIG. 5 is a graph showing the amount of warpage and the withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Comparative Example 3.
  • the carbon atom concentration was an average concentration in SIMS depth analysis.
  • the amount of warpage was evaluated by measuring the height of each part of the substrate using laser light, with the direction in which the central portion of the substrate was higher than the peripheral portion being positive.
  • the withstand voltage is measured by measuring the current voltage between the 250 ⁇ m ⁇ 200 ⁇ m ohmic electrode formed on the active layer 144 and the ohmic electrode formed on the entire back surface of the base substrate 102, and the current value exceeds 1 ⁇ A / mm 2. Defined as voltage.
  • Example 2 In the semiconductor substrate of Example 2, the composition in the thickness direction of the connection layer 120 was continuously changed from AlN to Al 0.3 Ga 0.7 N from the first superlattice layer 110 toward the second superlattice layer 130. It formed similarly to Example 1 except having changed.
  • the carbon atom concentration was set at two levels of 1 ⁇ 10 19 and 6 ⁇ 10 19 (unit: cm ⁇ 3 ).
  • FIG. 6 is a graph showing the amount of warpage and withstand voltage with respect to the carbon atom concentration of the semiconductor substrate of Example 2.
  • FIG. 7 is shown for easy understanding of comparison with Example 1.
  • FIG. 7 is a graph showing the amount of warpage of the semiconductor substrates of Examples 1 and 2 and Comparative Examples 1 to 3 with respect to the carbon atom concentration. It can be seen that the amount of warpage of the semiconductor substrate of Example 2 is lower than that of the semiconductor substrate of Example 1 as well as Comparative Examples 1 to 3.
  • Example 3 The semiconductor substrate of Example 3 shows an example in which the number n of the first unit layers 116 in the first superlattice layer 110 and the number m of the second unit layers 136 in the second superlattice layer 130 are changed.
  • a semiconductor substrate was formed in the same manner as in Example 1 except that the carbon atom concentration was fixed to 1 ⁇ 10 19 (cm ⁇ 3 ) and the number of layers n and m were changed.
  • FIG. 8 is a graph showing the amount of warpage and the withstand voltage of the semiconductor substrate of Example 3. It can be seen that the amount of warpage can be controlled by changing the number of layers n and the number of layers m.
  • Example 4 The semiconductor substrate of Example 4 shows the case where a sapphire substrate is used as the base substrate 102.
  • FIG. 9 is a graph showing the amount of warpage of the semiconductor substrate of Example 4. Even when the base substrate 102 is a sapphire substrate, the amount of warpage can be controlled by changing the number n and the number m of unit layers in the first superlattice layer 110 and the second superlattice layer 130. .
  • Example 5 shows an example of a semiconductor substrate in which the Al composition of the AlGaN layer that is the fourth layer 134 is changed in the range of 0.15 to 0.10.
  • the carbon atom concentration was fixed at 1 ⁇ 10 19 (cm ⁇ 3 ), and the others were the same as in Example 1.
  • the Al composition was set to six levels of 0.15, 0.14, 0.13, 0.12, 0.11, and 0.10.
  • the Al composition level of 0.10 and 0.15 corresponds to the case where the carbon atom concentration of Example 1 and Comparative Example 2 is 1 ⁇ 10 19 (cm ⁇ 3 ), respectively.
  • the semiconductor substrates in the case of 0.10 and 0.15 the semiconductor substrates having the carbon atom concentration of 1 ⁇ 10 19 (cm ⁇ 3 ) in Example 1 and Comparative Example 2, respectively, were used.
  • the average lattice constants of the second superlattice layer 130 when the Al composition is 0.15, 0.14, 0.13, 0.12, 0.11 and 0.10 are 0.316187 and 0.316245, respectively. , 0.316304, 0.316363, 0.316421 and 0.316480 (unit: nm).
  • the average lattice constant of the first superlattice layer 110 is 0.316187 nm
  • the average lattice when the Al composition is 0.15, 0.14, 0.13, 0.12, 0.11 and 0.10
  • the constant difference (average lattice constant of the second superlattice layer 130 ⁇ average lattice constant of the first superlattice layer 110) is 0.000000, 0.000059, 0.000117, 0.000176, 0.000235 and 0, respectively. .000293 (unit: nm).
  • FIG. 10 is a graph showing the amount of warpage with respect to the average lattice constant difference of the semiconductor substrate of Example 5. It can be seen that the amount of warpage decreases as the average lattice constant difference increases. Then, when the average lattice constant of the second superlattice layer 130 is slightly larger than the average lattice constant of the first superlattice layer 110 (the average lattice constant difference is large), the amount of warpage changes, corresponding to the average lattice constant difference. Thus, it can be seen that the value of the warping amount is sensitively changed.
  • the stress generated in the first superlattice layer 110 and the second superlattice layer 130 is mutually controlled in the mechanism that can control the amount of warp of the semiconductor substrate even if impurity atoms are introduced at a high concentration. This indicates that the amount of warpage can be controlled.
  • the amount of warpage can be precisely controlled by the difference in average lattice constant, and that the amount of warpage tends to saturate when the average lattice constant difference is large is consistent with the mechanism described above, and the correctness of the mechanism is inferred. This is one of the facts.
  • DESCRIPTION OF SYMBOLS 100 Semiconductor substrate, 102 ... Base substrate, 104 ... Buffer layer, 110 ... First superlattice layer, 112 ... First layer, 114 ... Second layer, 116 ... First unit layer, 120 ... Connection layer, 130 ... First 2 superlattice layers, 132 ... third layer, 134 ... fourth layer, 136 ... second unit layer, 140 ... nitride semiconductor crystal layer, 142 ... device base layer, 144 ... active layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 第1超格子層が、第1層および第2層からなる第1単位層を複数有し、第2超格子層が、第3層および第4層からなる第2単位層を複数有し、第1層が、Alx1Ga1-x1N(0<x1≦1)からなり、第2層が、Aly1Ga1-y1N(0≦y1<1、x1>y1)からなり、第3層が、Alx2Ga1-x2N(0<x2≦1)からなり、第4層が、Aly2Ga1-y2N(0≦y2<1、x2>y2)からなり、第1超格子層の平均格子定数と第2超格子層の平均格子定数とが異なり、第1超格子層および第2超格子層から選択された1以上の層に、耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれる半導体基板を提供する。

Description

半導体基板および半導体基板の製造方法
 本発明は、半導体基板および半導体基板の製造方法に関する。
 高耐圧素子への応用を目的として、シリコン基板上に、高品質な窒化物半導体結晶層を形成する技術が望まれている。非特許文献1には、シリコン(111)面上に、バッファ層、超格子構造および窒化ガリウム層を順に積層した構造が開示されている。窒化ガリウム層は、トランジスタの活性層となる。当該構造では、超格子構造により基板の反りが抑えられるため、比較的厚い窒化ガリウム層が容易に形成でき、高い耐圧の窒化物半導体結晶層が得易いという利点がある。しかし、より高い耐圧を求めて窒化物半導体結晶層を厚膜化すると、基板の反りが大きくなり、デバイス作製工程において許容される反りの範囲を逸脱してしまう問題がある。基板の反り量を制御する技術として、特許文献1および特許文献2の技術が知られている。
 特許文献1の技術では、基板上に、GaN層およびAlN層が交互に積層されるように、GaN層およびAlN層の対を複数積層した第1GaN/AlN超格子層を形成する。また、GaN層およびAlN層が交互に積層されるように、GaN層およびAlN層の対を複数積層した第2GaN/AlN超格子層を、第1GaN/AlN超格子層に接するように形成する。そして第2GaN/AlN超格子層上に、GaN電子走行層およびAlGaN電子供給層からなる素子動作層を形成する。ここで、第1GaN/AlN超格子層のc軸平均格子定数LC1と、第2GaN/AlN超格子層のc軸平均格子定数LC2と、GaN電子走行層のc軸平均格子定数LC3とが、LC1<LC2<LC3を満たすようにすることが開示されている。
 特許文献2には、(111)単結晶Si基板の上に、基板面に対し(0001)結晶面が略平行となるようにIII族窒化物層群が形成されたエピタキシャル基板が開示されている。当該エピタキシャル基板は、第1の積層単位と第2の積層単位とが交互に積層され、かつ、最上部と最下部がいずれも第1の積層単位で構成されたバッファ層と、バッファ層の上に形成された結晶層と、を備えている。第1の積層単位は、組成が相異なる第1単位層と第2単位層とが繰り返し交互に積層されることで圧縮歪が内在された組成変調層と、組成変調層に内在された圧縮歪を強める第1中間層と、を含んでいる。第2の積層単位は、実質的に無歪の第2中間層であるように形成される。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2011-238685号公報
 [特許文献2]国際公開WO2011/102045号
 [非特許文献]
 [非特許文献1]"High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia", S. A. Nikishin et. al., Applied Physics letter, Vol.75, 2073(1999)
 本発明者は、耐電圧の高い窒化物半導体結晶層を得ることを目的に、窒化物半導体結晶層の下地層(超格子層)に炭素原子等の不純物原子を導入する実験検討を行ってきた。しかし、単に不純物原子を導入するだけでは、基板の反り量を制御するために設けた超格子層内の応力が緩和され、基板の反り量を制御する効果が低減する問題があることを認識した。すなわち、上記した特許文献1および特許文献2に記載の基板の反り量を制御するための技術は、耐電圧向上のための不純物原子が導入されていない状態、または、不純物原子の導入量が少ない状態においてのみ使用できる技術であり、耐電圧向上の効果が十分に得られる程度に不純物原子が導入されると、特許文献1および特許文献2に記載の技術では、基板の反り量を制御することができない課題があることを認識するに至った。
 本発明の目的は、窒化物半導体結晶層の下地層である超格子層に、耐電圧向上の効果が十分に得られる程度の量の不純物原子が導入された場合であっても、反り量の制御効果が失われない層構造を有する半導体基板あるいはその製造方法を提供することにある。
 上記課題を解決するために、本発明の第1の態様においては、下地基板と、第1超格子層と、接続層と、第2超格子層と、窒化物半導体結晶層とを有し、下地基板、第1超格子層、接続層、第2超格子層および窒化物半導体結晶層が、下地基板、第1超格子層、接続層、第2超格子層、窒化物半導体結晶層の順に位置し、第1超格子層が、第1層および第2層からなる第1単位層を複数有し、第2超格子層が、第3層および第4層からなる第2単位層を複数有し、第1層が、Alx1Ga1-x1N(0<x1≦1)からなり、第2層が、Aly1Ga1-y1N(0≦y1<1、x1>y1)からなり、第3層が、Alx2Ga1-x2N(0<x2≦1)からなり、第4層が、Aly2Ga1-y2N(0≦y2<1、x2>y2)からなり、第1超格子層の平均格子定数と第2超格子層の平均格子定数とが異なり、第1超格子層および第2超格子層から選択された1以上の層に、耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれる半導体基板を提供する。
 不純物原子として、C原子、Fe原子、Mn原子、Mg原子、V原子、Cr原子、Be原子およびB原子からなる群から選択された1種以上の原子を挙げることができる。不純物原子として、C原子またはFe原子が好ましい。接続層は、第1超格子層および第2超格子層に接する結晶層であることが好ましい。接続層の組成は、接続層の厚さ方向において第1超格子層から第2超格子層へ向かって連続的に変化するものであってもよい。あるいは、接続層の組成は、接続層の厚さ方向において第1超格子層から第2超格子層に向かって段階的に変化するものであってもよい。接続層として、AlGa1-zN(0≦z≦1)からなるものを挙げることができる。接続層の厚さは、第1層、第2層、第3層および第4層の何れの層の厚さより大きいことが好ましい。接続層の平均格子定数は、第1超格子層および第2超格子層のいずれの平均格子定数より小さいことが好ましい。
 本発明の第2の態様においては、第1の態様における半導体基板の製造方法であって、第1層および第2層を第1単位層とし、第1単位層の形成をn回繰り返して第1超格子層を形成するステップと、接続層を形成するステップと、第3層および第4層を第2単位層とし、第2単位層の形成をm回繰り返して第2超格子層を形成するステップと、窒化物半導体結晶層を形成するステップと、を有し、第1超格子層を形成するステップおよび第2超格子層を形成するステップから選択された1以上のステップにおいて、形成される層の耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれるよう当該層を形成する半導体基板の製造方法を提供する。
 窒化物半導体結晶層の組成および厚さに応じ、半導体基板の窒化物半導体結晶層の表面における反りが50μm以下となるよう、第1層~第4層の各組成、第1層~第4層の各厚さ、第1超格子層における単位層の繰り返し数nおよび第2超格子層における単位層の繰り返し数m、から選択された1以上のパラメータを調整することができる。窒化物半導体結晶層の組成および厚さに応じ、半導体基板の窒化物半導体結晶層の表面における反りが50μm以下となるよう、第1超格子層における単位層の繰り返し数nおよび第2超格子層における単位層の繰り返し数mを調整することが好ましい。
半導体基板100の断面図を示す。 実施例1の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。 比較例1の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。 比較例2の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。 比較例3の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。 実施例2の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。 実施例1および2並びに比較例1から3の半導体基板の炭素原子濃度に対する反り量を示したグラフである。 実施例3の半導体基板の第1超格子層および第2超格子層の層数を変化させた場合の反り量と耐電圧を示したグラフである。 実施例4の半導体基板の第1超格子層および第2超格子層の層数を変化させた場合の反り量を示したグラフである。 実施例5の半導体基板の平均格子定数差に対する反り量を示したグラフである。
 図1は、本発明の実施の形態である半導体基板100の断面図を示す。半導体基板100は、下地基板102と、緩衝層104と、第1超格子層110と、接続層120と、第2超格子層130と、窒化物半導体結晶層140とを有する。下地基板102、第1超格子層110、接続層120、第2超格子層130および窒化物半導体結晶層140は、下地基板102、第1超格子層110、接続層120、第2超格子層130、窒化物半導体結晶層140の順に位置する。
 下地基板102は、以下に説明する緩衝層104より上の各層を支持する基板である。各層を支持するに必要な機械的強度を有し、各層をエピタキシャル成長法等により形成する際の熱的安定性を有する限り、下地基板102の材質は任意である。下地基板102として、Si基板、サファイア基板、Ge基板、GaAs基板、InP基板、または、ZnO基板を例示することができる。
 緩衝層104は、下地基板102と第1超格子層110との間の格子定数の違いを緩衝する層である。緩衝層104は、反応温度(基板温度)が500℃~1000℃のエピタキシャル成長法により形成することができる。下地基板102としてSi(111)基板を用い、かつ、第1超格子層110としてAlGaN系の材料を用いる場合、緩衝層104としてAlN層を例示することができる。緩衝層104の厚さは、10nm~300nmの範囲が好ましく、50nm~200nmの範囲がより好ましい。
 第1超格子層110、接続層120および第2超格子層130は、耐電圧向上のための不純物原子が十分な量導入された場合であっても、半導体基板100の反り量を制御することが可能な層構造である。第1超格子層110は、複数の第1単位層116を有し、第2超格子層130は、複数の第2単位層136を有する。
 第1単位層116は、第1層112および第2層114からなり、第2単位層136は、第3層132および第4層134からなる。第1層112は、Alx1Ga1-x1N(0<x1≦1)からなり、第2層114は、Aly1Ga1-y1N(0≦y1<1、x1>y1)からなる。第3層132は、Alx2Ga1-x2N(0<x2≦1)からなり、第4層134は、Aly2Ga1-y2N(0≦y2<1、x2>y2)からなる。
 第1層112、第2層114、第3層132および第4層134は、エピタキシャル成長法を用いて形成することができる。第1層112および第3層132として、x1およびx2が1の場合、すなわちAlN層を例示することができる。第1層112および第3層132の厚さは、1nm~10nmの範囲が好ましく、3nm~7nmの範囲がより好ましい。第2層114および第4層134として、y1およびy2が0.05から0.25の範囲、すなわちAl0.05Ga0.95N層からAl0.25Ga0.75N層の範囲を例示することができる。第2層114および第4層134の厚さは、10nm~30nmの範囲が好ましく、15nm~25nmの範囲がより好ましい。
 第1層112および第2層114からなる第1単位層116が複数層形成されて、第1超格子層110が構成される。第1層112および第2層114の組成(Al組成比)および厚さを変化することで第1超格子層110の平均格子定数a1を変化することができる。第1超格子層110の平均格子定数a1は、第1層112の格子定数×第1層112の割合+第2層114の格子定数×第2層114の割合、と定義することができる。第1超格子層110に含まれる第1単位層116の層数nは、1層~200層の範囲が好ましく、1層~150層の範囲がより好ましい。
 第3層132および第4層134からなる第2単位層136が複数層形成されて、第2超格子層130が構成される。第3層132および第4層134の組成(Al組成比)および厚さを変化することで第2超格子層130の平均格子定数a2を変化することができる。第2超格子層130の平均格子定数a2は、第3層132の格子定数×第3層132の割合+第4層134の格子定数×第4層134の割合、と定義することができる。第2超格子層130に含まれる第2単位層136の層数mは、1層~200層の範囲が好ましく、1層~150層の範囲がより好ましい。
 半導体基板100においては、第1超格子層110の平均格子定数a1と第2超格子層130の平均格子定数a2とが異なり、かつ、第1超格子層110および第2超格子層130から選択された1以上の層に、耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれる。不純物原子として、C原子、Fe原子、Mn原子、Mg原子、V原子、Cr原子、Be原子およびB原子からなる群から選択された1種以上の原子を挙げることができる。不純物原子として、C原子またはFe原子が好ましく、特に、C原子が好ましい。
 接続層120は、第1超格子層110と第2超格子層130とを接続する。接続層120は、エピタキシャル成長法により形成することができる。接続層120として、AlGa1-zN(0≦z≦1)を例示することができる。接続層120は、第1超格子層110および第2超格子層130に接する結晶層であってもよい。接続層120は、単層であってよく、多層であってもよい。また、接続層120は、厚さ方向で組成が変化してもよい。具体的には、接続層120の組成は、接続層120の厚さ方向において第1超格子層110から第2超格子層130へ向かって連続的に変化するものであってもよい。あるいは、接続層120の組成は、接続層120の厚さ方向において第1超格子層110から第2超格子層130に向かって段階的に変化するものであってもよい。接続層120の厚さは、第1層112、第2層114、第3層132および第4層134の何れの層の厚さより大きいものとすることができる。また、接続層120の平均格子定数は、第1超格子層110および第2超格子層130のいずれの平均格子定数より小さいものとすることができる。接続層120の厚さは、20~300nm、好ましくは25~200nm、より好ましくは30~200nm、さらに好ましくは30~150nmとすることができる。
 窒化物半導体結晶層140は、デバイス基層142および活性層144を有することができる。デバイス基層142を厚くすることでデバイスの耐電圧を大きくすることができる。活性層144にはトランジスタのチャネル等活性領域が形成される。
 本実施形態の半導体基板100によれば、不純物原子を7×1018[atoms/cm3]を超える密度で導入することにより、450V以上の高い耐電圧を実現しつつ、同時に、窒化物半導体結晶層140の表面における反り量を50μm(絶対値)以下とすることができる。ここで、反り量とは、窒化物半導体結晶層140の側が凸になる方向を負、凹になる方向を正とし、辺縁を基準とした基板中央の標高をいうものとする。
 450V以上の高い耐電圧が実現できる濃度(7×1018[atoms/cm3])で不純物原子を導入する場合であっても、半導体基板100の反り量を50μm(絶対値)以下に制御できる理由として、以下のようなメカニズムを考えることができる。
 Si基板上にGaN系の結晶層を積層する場合、GaN系の結晶の熱膨張率はSiの熱膨張率より大きいため、高温において格子整合して成長されたSi基板上のGaN系の結晶は、降温後に上側に凹に反ることになる。上側に凹とは、GaN系の結晶層の面のうち、Si基板とは逆側の面が凹の状態を指す。ここで、Si基板とGaN層の間に、上層超格子層(USL層)と下層超格子層(LSL層)とからなる積層を設ける。そして、USL層の平均格子定数aとLSL層の平均格子定数aとが、a>aの関係になるようにすると、USL層とLSL層の平均格子定数差による応力により、USL層には圧縮応力が働き、LSL層には引張応力が働くようになる。USL層とLSL層とからなる積層構造(本明細書では「USL/LSL構造」という場合がある)に働く応力は、上側に凸に反る力であり、上記した熱膨張係数差による反りとは反対方向の力である。したがって、USL/LSL構造は基板の反りを低減する効果がある。
 ところで、USL/LSL構造における応力は、USL層とLSL層の界面付近を支点として作用する。実際の結晶中には転位や界面の凹凸などがあるため、支点は数nmから数十nm程度の幅(成長方向の厚み)を有すると思われる。GaN結晶に炭素原子などの不純物原子を多く含むと、積層界面付近に欠陥が発生しやすくなる性質を有するため、USL/LSL構造に不純物原子を多く含むと、USL層とLSL層との界面あるいはUSL層およびLSL層内の超格子界面には多くの欠陥が発生していると考えられる。このような多くの欠陥を有する状態で界面に力が作用すると、結晶界面付近での結晶緩和が引き起こされると考えられる。結晶緩和によりUSL/LSL構造で発生する応力は吸収され、USL/LSL構造の応力は、結晶を上凸に反らすことに寄与しなくなる。つまりUSL/LSL構造によって基板の反り量を制御することができなくなる。したがって、炭素原子を多く含む半導体基板は、SiとGaNの熱膨張差に応じた力だけが作用し、結果として下凸に大きく反る結果を来たしていると考えられる。
 これに対し、本実施形態の半導体基板100では、接続層120を、第1超格子層110(上記のLSL層に相当)と第2超格子層130(上記のUSL層に相当)との間に設けている。接続層120は、第1超格子層110と第2超格子層130との平均格子定数差によって発生する応力の支点として作用する。接続層120は、第1超格子層110および第2超格子層130を構成する第1層112、第2層114、第3層132および第4層134に比べ厚く、成長方向(厚さ方向)における単位長さ当たりの界面密度が小さい。よって、界面の緩和の影響を受けにくい。このため、第1超格子層110または第2超格子層130に多くの炭素原子が含まれていても、第1超格子層110および第2超格子層130に発生した応力を相互に伝達でき、つまり反り量を制御することが可能となり、結果として、半導体基板100の反りを低減することが可能になると考えられる。
 また、接続層120の厚さは、第1超格子層110および第2超格子層130を構成する第1層112、第2層114、第3層132および第4層134の厚さより大きいため、界面で発生した転位等の欠陥を成長過程で低減する効果も有する。これは符号が逆のバーガースベクトルを有する転位が成長過程で合体することにより起こる。結果として、界面だけでなく、バルク結晶中の欠陥を抑制でき、より効率的に応力を伝達できると考えられる。これらの結果、第1超格子層110または第2超格子層130に高濃度の炭素原子を含む場合でも、基板の反りを低減できると考えられる。
 上記した半導体基板100は、以下のような製造方法によって製造することができる。すなわち、下地基板102に緩衝層104を形成した後、第1層112および第2層114を第1単位層116とし、第1単位層116の形成をn回繰り返して第1超格子層110を形成する。そして、接続層120を形成し、第3層132および第4層134を第2単位層136とし、第2単位層136の形成をm回繰り返して第2超格子層130を形成する。さらに窒化物半導体結晶層140を形成することができる。ここで、第1超格子層110を形成するステップおよび第2超格子層130を形成するステップから選択された1以上のステップにおいて、形成される層の耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれるよう当該層を形成する。
 第1層112、第2層114、接続層120、第3層132、第4層134および窒化物半導体結晶層140は、エピタキシャル成長法を用いて形成することができる。エピタキシャル成長法としてMOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法を例示することができる。MOCVD法を用いる場合、原料ガスとして、TMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、または、NH(アンモニア)を挙げることができる。キャリアガスとして窒素ガスまたは水素ガスを用いてもよい。反応温度は400℃~1300℃の範囲で選択できる。
 不純物原子を炭素原子とする場合、炭素原子濃度は、III族原料ガスとV族原料ガスの比、反応温度、および、反応圧力の少なくともいずれかを変化させることで制御できる。他の条件が同じである場合、反応温度が高いほど炭素原子濃度は低下し、III族原料ガスに対するV族原料ガスの比を小さくするほど炭素原子濃度は大きくなる。また、反応圧力を下げるほど炭素原子濃度は大きくなる。炭素原子濃度は、たとえばSIMS(二次イオン質量分析)法により検出することができる。
 窒化物半導体結晶層140の組成および厚さに応じ、半導体基板100の窒化物半導体結晶層140の表面における反りが50μm以下となるよう、第1層112~第4層134の各組成、第1層112~第4層134の各厚さ、第1超格子層110における単位層の繰り返し数nおよび第2超格子層130における単位層の繰り返し数m、から選択された1以上のパラメータを調整することができる。窒化物半導体結晶層140の組成および厚さに応じ、半導体基板100の窒化物半導体結晶層140の表面における反りが50μm以下となるよう、第1超格子層110における単位層の繰り返し数nおよび第2超格子層130における単位層の繰り返し数mを調整することができる。
(実施例1)
 下地基板102として面方位が(111)の4インチSi基板(厚さ625μm、p型ドープ)を用い、Si基板上に緩衝層104としてAlN層を150nmの厚さで形成した。当該AlN層上に、第1層112としてAlN層を5nmの厚さで形成し、第2層114としてAl0.15Ga0.85N層を16nmの厚さで形成し、第1単位層116とした。第1単位層116を75層形成して第1超格子層110とした後、接続層120として、AlN層を70nmの厚さで形成した。さらに、第3層132としてAlN層を5nmの厚さで形成し、第4層134としてAl0.1Ga0.9N層を16nmの厚さで形成し、第2単位層136とした。第2単位層136を75層形成して第2超格子層130とした後、デバイス基層142として、GaN層を800nmの厚さで形成し、さらに活性層144として、Al0.2Ga0.8N層を20nmの厚さで形成した。なお、第1超格子層110を形成する際の反応温度を変えて複数種類の半導体基板100を作成した。これにより、炭素原子濃度を、1×1018、5×1018、7×1018、1×1019、6×1019(単位はcm-3)の5水準で変化させた複数の半導体基板100を作成した。第1超格子層110の平均格子定数は、0.316187nmであり、第2超格子層130の平均格子定数は、0.316480nmである。接続層120の平均格子定数は0.311200nmである。
(比較例)
 比較例として、以下の比較例1~3を作成した。
 [比較例1]:接続層120を設けず、第4層134のAl組成を0.15として第1超格子層110の平均格子定数と第2超格子層130の平均格子定数を同じとし、その他は実施例1と同じにしたもの
 [比較例2]:第4層134のAl組成を0.15として第1超格子層110の平均格子定数と第2超格子層130の平均格子定数を同じとし、その他は実施例1と同じにしたもの
 [比較例3]:接続層120を設けず、その他は実施例1と同じにしたもの
 図2は、実施例1の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。図3は、比較例1の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。図4は、比較例2の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。図5は、比較例3の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。炭素原子濃度はSIMS深さ分析における平均濃度とした。反り量は、基板中央部が周辺部より高い方向を正とし、レーザー光を用いた基板各部位の高さ測定により評価した。耐電圧は、活性層144上に形成した250μm×200μmのオーミック電極と下地基板102の裏面全面に形成したオーミック電極との間の電流電圧測定を行い、電流値が1μA/mmを超えた印加電圧と定義した。
 図2~図5の結果から、炭素原子濃度が5×1018(cm-3)を超える高い領域では、耐電圧が700V程度まで上昇することがわかる。しかし、炭素原子濃度が高い領域では、比較例1~3において反り量が100μmを超えて大きくなる。これに対し、実施例1では炭素原子濃度が高くなっても反り量は40μm程度以下であり、反り量を小さく維持できている。なお、炭素原子濃度が5×1018(cm-3)以下の低い領域では、実施例1と同程度に比較例2および比較例3においても反り量が小さく抑えられている。これは、接続層120の効果(比較例2)、第1超格子層110と第2超格子層130の平均格子定数差による効果(比較例3)が現れていると考えられる。しかし、当該比較例2および比較例3の効果は、炭素原子濃度が低い領域に限られる効果であり、炭素原子濃度が高い領域においては、これら効果は消失してしまっていることがわかる。
(実施例2)
 実施例2の半導体基板は、接続層120の厚さ方向における組成を、第1超格子層110から第2超格子層130に向かってAlNからAl0.3Ga0.7Nまで連続的に変化させた以外は、実施例1と同様に形成した。なお、炭素原子濃度は、1×1019、6×1019(単位はcm-3)の2水準とした。図6は、実施例2の半導体基板の炭素原子濃度に対する反り量と耐電圧を示したグラフである。実施例1との比較がわかりやすいよう、図7を示す。図7は、実施例1および2並びに比較例1から3の半導体基板の炭素原子濃度に対する反り量を示したグラフである。実施例2の半導体基板は、比較例1~3は勿論、実施例1の半導体基板より反り量が低く抑えられていることがわかる。
(実施例3)
 実施例3の半導体基板は、第1超格子層110における第1単位層116の層数nと第2超格子層130における第2単位層136の層数mを変えた例を示す。炭素原子濃度を1×1019(cm-3)に固定し、層数nと層数mを変化させたこと以外は、実施例1と同様に半導体基板を形成した。層数nおよび層数mは、n/m=75/75、100/50、1/149の3水準とした。図8は、実施例3の半導体基板の反り量と耐電圧を示したグラフである。層数nと層数mとを変化させることで、反り量が制御できることがわかる。
(実施例4)
 実施例4の半導体基板は、下地基板102としてサファイア基板を用いた場合を示す。下地基板102としてサファイア基板を用い、炭素原子濃度を1×1019(cm-3)に固定し、層数nと層数mを変化させたこと以外は、実施例1と同様に半導体基板を形成した。層数nおよび層数mは、n/m=75/75、50/100の2水準とした。図9は、実施例4の半導体基板の反り量を示したグラフである。下地基板102がサファイア基板の場合であっても、第1超格子層110および第2超格子層130における単位層の層数nおよび層数mを変化することで、反り量を制御できることがわかる。
(実施例5)
 実施例5は、第4層134であるAlGaN層のAl組成を、0.15から0.10の範囲で変化させた半導体基板の例を示す。炭素原子濃度は、1×1019(cm-3)で固定し、その他は実施例1と同じとした。Al組成は、0.15、0.14、0.13、0.12、0.11、0.10の6水準とした。Al組成の水準が0.10および0.15の場合は、各々、実施例1および比較例2の炭素原子濃度が1×1019(cm-3)の場合に対応するので、Al組成の水準が0.10および0.15の場合の半導体基板として、各々、実施例1および比較例2の炭素原子濃度が1×1019(cm-3)の場合の半導体基板を用いた。Al組成が0.15、0.14、0.13、0.12、0.11および0.10の場合の第2超格子層130の平均格子定数は、各々、0.316187、0.316245、0.316304,0.316363,0.316421および0.316480(単位はnm)である。第1超格子層110の平均格子定数が0.316187nmであることから、Al組成が0.15、0.14、0.13、0.12、0.11および0.10の場合の平均格子定数差(第2超格子層130の平均格子定数-第1超格子層110の平均格子定数)は、各々、0.000000、0.000059、0.000117、0.000176、0.000235および0.000293(単位はnm)である。
 図10は、実施例5の半導体基板の平均格子定数差に対する反り量を示したグラフである。平均格子定数差が大きくなるほど反り量が小さくなっていることがわかる。そして、第1超格子層110の平均格子定数より少しでも第2超格子層130の平均格子定数が大きく(平均格子定数差が大きく)なると、反り量に変化が表れ、平均格子定数差に対応して反り量の値が敏感に変化していることがわかる。これは、先に説明した、高濃度に不純物原子を導入しても半導体基板の反り量を小さく制御できるメカニズムにおいて、第1超格子層110および第2超格子層130に発生した応力が相互に伝達できており、反り量が制御できていることを示している。
 また、平均格子定数差が0.00017nmを超える頃から、平均格子定数差の増加に対し反り量の低下に飽和傾向が見られる。これは、平均格子定数差の増大に伴って応力が増加し、結晶界面における格子緩和が増加しつつある傾向を示していると思われる。格子緩和の増加は、応力の吸収を来し、反り量の制御性を低下させる。よって、反り量の制御性が担保された、平均格子定数差の範囲には、上限が存在すると考えられる。なお、平均格子定数差によって反り量が精密に制御できる点、平均格子定数差が大きくなると反り量が飽和傾向になる点は、先に説明したメカニズムと合致し、当該メカニズムの正しさを推認させる事実の一つといえる。
100…半導体基板、102…下地基板、104…緩衝層、110…第1超格子層、112…第1層、114…第2層、116…第1単位層、120…接続層、130…第2超格子層、132…第3層、134…第4層、136…第2単位層、140…窒化物半導体結晶層、142…デバイス基層、144…活性層

Claims (14)

  1.  下地基板と、第1超格子層と、接続層と、第2超格子層と、窒化物半導体結晶層とを有し、
     前記下地基板、前記第1超格子層、前記接続層、前記第2超格子層および前記窒化物半導体結晶層が、前記下地基板、前記第1超格子層、前記接続層、前記第2超格子層、前記窒化物半導体結晶層の順に位置し、
     前記第1超格子層が、第1層および第2層からなる第1単位層を複数有し、
     前記第2超格子層が、第3層および第4層からなる第2単位層を複数有し、
     前記第1層が、Alx1Ga1-x1N(0<x1≦1)からなり、
     前記第2層が、Aly1Ga1-y1N(0≦y1<1、x1>y1)からなり、
     前記第3層が、Alx2Ga1-x2N(0<x2≦1)からなり、
     前記第4層が、Aly2Ga1-y2N(0≦y2<1、x2>y2)からなり、
     前記第1超格子層の平均格子定数と前記第2超格子層の平均格子定数とが異なり、
     前記第1超格子層および前記第2超格子層から選択された1以上の層に、耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれる
     半導体基板。
  2.  前記不純物原子が、C原子、Fe原子、Mn原子、Mg原子、V原子、Cr原子、Be原子およびB原子からなる群から選択された1種以上の原子である
     請求項1に記載の半導体基板。
  3.  前記不純物原子が、C原子またはFe原子である
     請求項2に記載の半導体基板。
  4.  前記接続層が、前記第1超格子層および前記第2超格子層に接する結晶層である
     請求項1から請求項3の何れか一項に記載の半導体基板。
  5.  前記接続層の組成が、前記接続層の厚さ方向において前記第1超格子層から前記第2超格子層へ向かって連続的に変化する
     請求項1から請求項4の何れか一項に記載の半導体基板。
  6.  前記接続層の組成が、前記接続層の厚さ方向において前記第1超格子層から前記第2超格子層に向かって段階的に変化する
     請求項1から請求項4の何れか一項に記載の半導体基板。
  7.  前記接続層が、AlGa1-zN(0≦z≦1)からなる
     請求項1から請求項6の何れか一項に記載の半導体基板。
  8.  前記接続層の厚さが、前記第1層、前記第2層、前記第3層および前記第4層の何れの層の厚さより大きい
     請求項1から請求項7の何れか一項に記載の半導体基板。
  9.  前記接続層の平均格子定数が、前記第1超格子層および前記第2超格子層のいずれの平均格子定数より小さい
     請求項1から請求項8の何れか一項に記載の半導体基板。
  10.  前記第1超格子層が、前記第1層および前記第2層からなる前記第1単位層を1層~200層有する請求項1から請求項9の何れか一項に記載の半導体基板。
  11.  前記第2超格子層が、前記第3層および前記第4層からなる前記第2単位層を1層~200層有する請求項1から請求項10の何れか一項に記載の半導体基板。
  12.  請求項1から請求項11の何れか一項に記載の半導体基板の製造方法であって、
     前記第1層および前記第2層を第1単位層とし、前記第1単位層の形成をn回繰り返して前記第1超格子層を形成するステップと、
     前記接続層を形成するステップと、
     前記第3層および前記第4層を第2単位層とし、前記第2単位層の形成をm回繰り返して前記第2超格子層を形成するステップと、
     前記窒化物半導体結晶層を形成するステップと、を有し、
     前記第1超格子層を形成するステップおよび前記第2超格子層を形成するステップから選択された1以上のステップにおいて、形成される層の耐電圧を向上する不純物原子が、7×1018[atoms/cm3]を超える密度で含まれるよう当該層を形成する
     半導体基板の製造方法。
  13.  前記窒化物半導体結晶層の組成および厚さに応じ、前記半導体基板の前記窒化物半導体結晶層の表面における反りが50μm以下となるよう、前記第1層~第4層の各組成、前記第1層~第4層の各厚さ、前記第1超格子層における単位層の繰り返し数nおよび前記第2超格子層における単位層の繰り返し数mから選択された1以上のパラメータを調整する
     請求項12に記載の半導体基板の製造方法。
  14.  前記窒化物半導体結晶層の組成および厚さに応じ、前記半導体基板の前記窒化物半導体結晶層の表面における反りが50μm以下となるよう、前記第1超格子層における単位層の繰り返し数nおよび前記第2超格子層における単位層の繰り返し数mを調整する
     請求項13に記載の半導体基板の製造方法。
PCT/JP2014/003974 2013-07-30 2014-07-29 半導体基板および半導体基板の製造方法 WO2015015800A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ATA9292/2014A AT521082A3 (de) 2013-07-30 2014-07-29 Halbleiterwafer und Verfahren zur Herstellung des Halbleiterwafers
JP2015529391A JP6385350B2 (ja) 2013-07-30 2014-07-29 半導体基板および半導体基板の製造方法
DE112014003533.5T DE112014003533T5 (de) 2013-07-30 2014-07-29 Halbleiterwafer und Verfahren zur Herstellung des Halbleiterwafers
KR1020167004781A KR20160037968A (ko) 2013-07-30 2014-07-29 반도체 기판 및 반도체 기판의 제조 방법
CN201480041977.6A CN105431931A (zh) 2013-07-30 2014-07-29 半导体基板以及半导体基板的制造方法
US15/008,974 US20160149000A1 (en) 2013-07-30 2016-01-28 Semiconductor wafer and method of producing semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158365 2013-07-30
JP2013158365 2013-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/008,974 Continuation-In-Part US20160149000A1 (en) 2013-07-30 2016-01-28 Semiconductor wafer and method of producing semiconductor wafer

Publications (1)

Publication Number Publication Date
WO2015015800A1 true WO2015015800A1 (ja) 2015-02-05

Family

ID=52431356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003974 WO2015015800A1 (ja) 2013-07-30 2014-07-29 半導体基板および半導体基板の製造方法

Country Status (8)

Country Link
US (1) US20160149000A1 (ja)
JP (2) JP6385350B2 (ja)
KR (1) KR20160037968A (ja)
CN (1) CN105431931A (ja)
AT (1) AT521082A3 (ja)
DE (1) DE112014003533T5 (ja)
TW (1) TWI611576B (ja)
WO (1) WO2015015800A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163050A (ja) * 2016-03-10 2017-09-14 株式会社東芝 半導体装置
JP2018174296A (ja) * 2017-01-23 2018-11-08 アイメック・ヴェーゼットウェーImec Vzw パワーエレクトロニクス装置用のiii−n系基板およびその製造方法
KR20180134928A (ko) * 2016-04-05 2018-12-19 엑사간 Iii-n 재료를 포함하는 반도체 구조
JP2019041134A (ja) * 2018-12-17 2019-03-14 株式会社東芝 半導体装置
WO2019111986A1 (ja) * 2017-12-08 2019-06-13 エア・ウォーター株式会社 化合物半導体基板
JP2019125672A (ja) * 2018-01-16 2019-07-25 クアーズテック株式会社 化合物半導体基板
JP2019208022A (ja) * 2018-05-28 2019-12-05 アイメック・ヴェーゼットウェーImec Vzw Iii−n半導体構造およびiii−n半導体構造の形成方法
JP2022105014A (ja) * 2016-05-26 2022-07-12 ジョルゲンソン,ロビー Iiia族窒化物成長システムおよび方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335799B2 (en) * 2015-03-26 2022-05-17 Chih-Shu Huang Group-III nitride semiconductor device and method for fabricating the same
CN110506338B (zh) * 2017-04-24 2023-08-04 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
EP3486939B1 (en) 2017-11-20 2020-04-01 IMEC vzw Method for forming a semiconductor structure for a gallium nitride channel device
KR102131619B1 (ko) * 2018-06-12 2020-07-08 한국과학기술연구원 인화계 기판의 결정결함을 방지하기 위해 박막층을 형성하는 방법
DE102018132263A1 (de) 2018-12-14 2020-06-18 Aixtron Se Verfahren zum Abscheiden einer Heterostruktur und nach dem Verfahren abgeschiedene Heterostruktur
US11387356B2 (en) * 2020-07-31 2022-07-12 Vanguard International Semiconductor Corporation Semiconductor structure and high-electron mobility transistor device having the same
CN115249741A (zh) * 2021-04-25 2022-10-28 联华电子股份有限公司 超晶格结构
CN115249740A (zh) * 2021-04-27 2022-10-28 中微半导体设备(上海)股份有限公司 一种半导体器件及其制造方法
JP2023096570A (ja) * 2021-12-27 2023-07-07 国立研究開発法人産業技術総合研究所 化合物半導体基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298091A (ja) * 1998-04-10 1999-10-29 Matsushita Electron Corp 半導体装置
JP2005527988A (ja) * 2002-12-04 2005-09-15 エムコア・コーポレイション 窒化ガリウムベース素子及び製造方法
JP2008218479A (ja) * 2007-02-28 2008-09-18 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2012009630A (ja) * 2010-06-24 2012-01-12 Panasonic Corp 窒化物半導体装置及び窒化物半導体装置の製造方法
JP2013074211A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112830B2 (en) * 2002-11-25 2006-09-26 Apa Enterprises, Inc. Super lattice modification of overlying transistor
JP5477685B2 (ja) * 2009-03-19 2014-04-23 サンケン電気株式会社 半導体ウェーハ及び半導体素子及びその製造方法
CN102460664B (zh) * 2009-05-11 2014-08-13 同和电子科技有限公司 电子器件用外延衬底及其制造方法
JP5576771B2 (ja) * 2009-11-04 2014-08-20 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル積層基板
JP5706102B2 (ja) * 2010-05-07 2015-04-22 ローム株式会社 窒化物半導体素子
JP5824814B2 (ja) * 2011-01-21 2015-12-02 サンケン電気株式会社 半導体ウエーハ及び半導体素子及びその製造方法
JP5912383B2 (ja) * 2011-10-03 2016-04-27 クアーズテック株式会社 窒化物半導体基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298091A (ja) * 1998-04-10 1999-10-29 Matsushita Electron Corp 半導体装置
JP2005527988A (ja) * 2002-12-04 2005-09-15 エムコア・コーポレイション 窒化ガリウムベース素子及び製造方法
JP2008218479A (ja) * 2007-02-28 2008-09-18 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2012009630A (ja) * 2010-06-24 2012-01-12 Panasonic Corp 窒化物半導体装置及び窒化物半導体装置の製造方法
JP2013074211A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 半導体装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163050A (ja) * 2016-03-10 2017-09-14 株式会社東芝 半導体装置
KR20180134928A (ko) * 2016-04-05 2018-12-19 엑사간 Iii-n 재료를 포함하는 반도체 구조
CN109155241A (zh) * 2016-04-05 2019-01-04 埃克斯甘公司 包含iii-n材料的半导体结构体
CN109155241B (zh) * 2016-04-05 2023-08-25 埃克斯甘公司 包含iii-n材料的半导体结构体
JP2019516254A (ja) * 2016-04-05 2019-06-13 エグザガン Iii−n材料を備える半導体構造
US11031492B2 (en) 2016-04-05 2021-06-08 Exagan Semiconductor structure comprising III-N material
KR102311927B1 (ko) * 2016-04-05 2021-10-13 엑사간 Iii-n 재료를 포함하는 반도체 구조
JP2022105014A (ja) * 2016-05-26 2022-07-12 ジョルゲンソン,ロビー Iiia族窒化物成長システムおよび方法
JP2018174296A (ja) * 2017-01-23 2018-11-08 アイメック・ヴェーゼットウェーImec Vzw パワーエレクトロニクス装置用のiii−n系基板およびその製造方法
JP7158842B2 (ja) 2017-01-23 2022-10-24 アイメック・ヴェーゼットウェー パワーエレクトロニクス装置用のiii-n系基板およびその製造方法
WO2019111986A1 (ja) * 2017-12-08 2019-06-13 エア・ウォーター株式会社 化合物半導体基板
JP2019102767A (ja) * 2017-12-08 2019-06-24 エア・ウォーター株式会社 化合物半導体基板
JP7034723B2 (ja) 2018-01-16 2022-03-14 クアーズテック株式会社 化合物半導体基板の製造方法
JP2019125672A (ja) * 2018-01-16 2019-07-25 クアーズテック株式会社 化合物半導体基板
JP2019208022A (ja) * 2018-05-28 2019-12-05 アイメック・ヴェーゼットウェーImec Vzw Iii−n半導体構造およびiii−n半導体構造の形成方法
JP7216615B2 (ja) 2018-05-28 2023-02-01 アイメック・ヴェーゼットウェー Iii-n半導体構造およびiii-n半導体構造の形成方法
JP2019041134A (ja) * 2018-12-17 2019-03-14 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
JP6385350B2 (ja) 2018-09-05
JP2018172284A (ja) 2018-11-08
JP6638033B2 (ja) 2020-01-29
DE112014003533T5 (de) 2016-04-14
KR20160037968A (ko) 2016-04-06
TWI611576B (zh) 2018-01-11
CN105431931A (zh) 2016-03-23
TW201511257A (zh) 2015-03-16
JPWO2015015800A1 (ja) 2017-03-02
AT521082A3 (de) 2020-01-15
AT521082A2 (de) 2019-10-15
US20160149000A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6638033B2 (ja) 半導体基板および半導体基板の製造方法
JP4592742B2 (ja) 半導体材料、半導体材料の製造方法及び半導体素子
JP6408344B2 (ja) Iii族窒化物半導体エピタキシャル基板およびその製造方法、ならびにiii族窒化物半導体発光素子
WO2013108733A1 (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP2011155241A (ja) 歪平衡発光デバイス及びその製造方法
JP2013026321A (ja) 窒化物系半導体層を含むエピタキシャルウエハ
JP7073446B2 (ja) 六方格子結晶構造を有するiii-v族半導体層を含んだ半導体構造
CN110544716B (zh) Iii-n半导体结构及形成iii-n半导体结构的方法
JP5788296B2 (ja) 窒化物半導体基板及びその製造方法
JP6302254B2 (ja) 窒化物半導体素子、窒化物半導体ウェーハ、及び、窒化物半導体素子の製造方法
JP6265328B2 (ja) 半導体積層構造およびこれを用いた半導体素子
JP2013014450A (ja) 窒化物半導体エピタキシャル基板及び窒化物半導体デバイス
WO2013168371A1 (ja) エピタキシャル基板、半導体装置及び半導体装置の製造方法
JP6138974B2 (ja) 半導体基板
JP2018067712A (ja) 半導体積層構造およびこれを用いた半導体素子
WO2013171975A1 (ja) 窒化物半導体装置の製造方法
US11522105B2 (en) Nitride semiconductor laminated structure, nitride semiconductor light emitting element, and method for manufacturing nitride semiconductor laminated structure
JP2015103665A (ja) 窒化物半導体エピタキシャルウエハおよび窒化物半導体
JP2008085123A (ja) 化合物半導体デバイス用基板およびそれを用いた化合物半導体デバイス
CN113921608A (zh) Iii族氮化物层叠物、半导体元件和iii族氮化物层叠物的制造方法
US20160118486A1 (en) Semiconductor device
JP2001308464A (ja) 窒化物半導体素子、窒化物半導体結晶の作製方法および窒化物半導体基板
JP2014039034A (ja) 半導体発光素子
JP2006005256A (ja) 半導体素子
WO2016152106A1 (ja) 半導体ウエハ、半導体装置及び半導体ウエハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041977.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529391

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: ATA 9292/2014

Country of ref document: AT

WWE Wipo information: entry into national phase

Ref document number: 112014003533

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167004781

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14831935

Country of ref document: EP

Kind code of ref document: A1