WO2015012316A1 - 液晶配向剤及びそれを用いた液晶配向膜 - Google Patents

液晶配向剤及びそれを用いた液晶配向膜 Download PDF

Info

Publication number
WO2015012316A1
WO2015012316A1 PCT/JP2014/069470 JP2014069470W WO2015012316A1 WO 2015012316 A1 WO2015012316 A1 WO 2015012316A1 JP 2014069470 W JP2014069470 W JP 2014069470W WO 2015012316 A1 WO2015012316 A1 WO 2015012316A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
diamine
polyamic acid
component
Prior art date
Application number
PCT/JP2014/069470
Other languages
English (en)
French (fr)
Inventor
淳彦 萬代
隆夫 堀
勇歩 野口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201480052496.5A priority Critical patent/CN105579897B/zh
Priority to JP2015528311A priority patent/JP6354759B2/ja
Priority to KR1020167004668A priority patent/KR102266366B1/ko
Publication of WO2015012316A1 publication Critical patent/WO2015012316A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a polyamic acid ester-containing liquid crystal aligning agent for producing a liquid crystal aligning film, and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
  • a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
  • a liquid crystal alignment film a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is used. Mainly used.
  • liquid crystal alignment films As liquid crystal display elements have become higher in definition, liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon. Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
  • a liquid crystal alignment film containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid as a liquid crystal alignment film having a short time until an afterimage generated by a DC voltage disappears for example, Patent Document 1
  • a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material for example, see Patent Document 2
  • liquid crystal alignment film having a high voltage holding ratio and a short time until an afterimage generated by a direct current voltage disappears, in addition to polyamic acid or an imidized polymer thereof, one carboxylic acid group is included in the molecule.
  • a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing, a compound containing one carboxylic anhydride group in the molecule, and a compound containing one tertiary amino group in the molecule (See, for example, Patent Document 3).
  • a liquid crystal alignment agent containing a polyamic acid obtained from a dianhydride and a specific diamine compound or an imidized polymer thereof for example, see Patent Document 4
  • a method of suppressing an afterimage caused by alternating current driving in a liquid crystal display element of a lateral electric field driving method a method of using a specific liquid crystal alignment film that has good liquid crystal alignment and large interaction with liquid crystal molecules (patent) Document 5) has been proposed.
  • liquid crystal alignment films to be used are required to have higher reliability than conventional liquid crystal alignment films. Not only the initial characteristics of the liquid crystal alignment films are good, but also, for example, they are longer at high temperatures. There is a need to maintain good properties even after time exposure.
  • polyamic acid ester is excellent in liquid crystal alignment stability and reliability because it does not cause a decrease in molecular weight due to heat treatment when imidizing it.
  • Patent Document 6 Since polyamic acid esters generally have problems such as high volume resistivity and a large amount of residual charge when a DC voltage is applied, a liquid crystal aligning agent blended with polyamic acid esters and polyamic acids excellent in electrical characteristics Is disclosed (see Patent Document 7).
  • Japanese Unexamined Patent Publication No. 9-316200 Japanese Unexamined Patent Publication No. 10-104633 Japanese Unexamined Patent Publication No. 8-76128 Japanese Unexamined Patent Publication No. 9-138414 Japanese Unexamined Patent Publication No. 11-38415 Japanese Unexamined Patent Publication No. 2003-26918 WO2011 / 158080
  • a liquid crystal alignment film obtained from a liquid crystal aligning agent obtained by blending such a polyamic acid ester and a polyamic acid has excellent liquid crystal alignment properties and electrical characteristics. That is, a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polyamic acid ester and a polyamic acid can have improved afterimage characteristics in AC / DC driving and long-term reliability.
  • the polyamic acid ester and the polyamic acid are contained. It has been found that the liquid crystal alignment film obtained from the liquid crystal aligning agent cannot satisfy the adhesiveness (adhesiveness) with the sealing agent or the substrate.
  • the present invention has been made to achieve the above problems and has the following gist. 1.
  • the liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and (C) component.
  • (A) Component From the group consisting of a tetracarboxylic acid dialkyl ester derivative containing 60 mol% or more of a tetracarboxylic acid dialkyl ester derivative represented by the following formula (1) and a diamine represented by the following formulas (2) to (5) A polyamic acid ester obtained by a polycondensation reaction with a diamine containing at least one selected diamine.
  • R 1 is an alkyl group having 1 to 5 carbon atoms
  • R 2 is a hydroxyl group or a chlorine atom
  • R X is an alkyl group having 1 to 6 carbon atoms.
  • a 1 is a single bond, ester bond, amide bond, thioester bond, or a divalent organic group having 2 to 10 carbon atoms
  • a 2 is a halogen atom, hydroxyl group, amino group, thiol group, nitro group, phosphorus group
  • B component: polyamic acid obtained by polycondensation reaction of tetracarboxylic dianhydride and diamine.
  • C Component: Bifunctional or polyfunctional (meth) acrylic acid or a derivative thereof.
  • the content ratio of the component (A) to the component (B) is 1/9 to 9/1 in terms of mass ratio (A / B), and the content of the component (C) 2.
  • the liquid crystal aligning agent according to 1 above which is 0.1 to 10% by mass relative to the sum (100% by mass) with component B).
  • the component (A) is obtained using a diamine containing 40 to 100 mol% of at least one diamine selected from the group consisting of the diamines represented by the above formulas (2) to (5) with respect to the total diamine.
  • the liquid crystal aligning agent according to 1 or 2 above which is a polyamic acid ester.
  • the component (A) is at least one diamine selected from the group consisting of the diamine represented by the formula (2) and the diamine represented by the formula (3), the diamine represented by the formula (4) and the formula ( 5.
  • the component (A) is a polyamic acid ester obtained using a diamine containing at least one diamine selected from the group consisting of the diamine represented by the formula (2) and the diamine represented by the formula (4). 5.
  • the liquid crystal aligning agent according to any one of 1 to 4 above.
  • a 2 in the formula (4) has a structure represented by the following formula (6).
  • a 3 in Formula (6) is a single bond, —O—, —S—, —NR ′ 3 —, an ester bond, an amide bond, a thioester bond, a urea bond, a carbonate bond, or a carbamate bond; 3 is selected from an alkyl group having 1 to 10 carbon atoms which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, and a group obtained by combining these, and these may have a substituent.
  • R ′ 3 is selected from a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a group obtained by combining these, and these may have a substituent.
  • the component (A) is a polyamic acid ester obtained by using a diamine containing at least one diamine selected from the group consisting of diamines of the following formulas (A-1) to (A-5): The liquid crystal aligning agent in any one.
  • the component (A) is a polyamic obtained by using a diamine containing the diamine of the above formula (2) and at least one diamine selected from the group consisting of the above formulas (A-1) to (A-5) 8.
  • the liquid crystal aligning agent according to 7 above which is an acid ester.
  • (B) Polyamic acid obtained by using a tetracarboxylic dianhydride containing at least one selected from the group consisting of tetracarboxylic dianhydrides of the following formulas (B-1) to (B-9): 9.
  • the component (B) is a polyamic acid obtained by using a diamine containing at least one selected from the group consisting of the following formulas (B-10) to (B-14): Liquid crystal aligning agent.
  • the component (B) is a polyamic acid obtained by using a diamine having 20 mol% or more of at least one diamine selected from the group consisting of the above formulas (B-10) to (B-14) based on the total diamine.
  • a liquid crystal aligning agent according to 11. 13 The liquid crystal aligning agent according to any one of the above 1 to 12, wherein the component (C) is dipentaerythritol hexaacrylate or glycerin diglycidyl ether acrylic acid adduct.
  • At least one organic solvent (D1) selected from the group consisting of ⁇ -butyrolactone and derivatives thereof, and N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone and derivatives thereof are selected.
  • At least one organic solvent (D2), and the content of the organic solvent (D1) is 2 to 30% by mass with respect to the total amount of the organic solvent (D1) and the organic solvent (D2) 14.
  • the liquid crystal aligning agent according to any one of the above 1 to 13, containing an organic solvent.
  • liquid crystal aligning agent according to any one of 1 to 14 above which is used for a liquid crystal alignment film that is subjected to photo-alignment treatment.
  • 16. 16 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 15 above to a substrate and baking it.
  • substrate can be formed.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has characteristics of the interface between the liquid crystal and the liquid crystal alignment film, such as reduction in afterimages due to AC driving, as well as voltage holding ratio, ion density, and DC voltage. Electrical characteristics such as residue are improved.
  • the polyamic acid ester used for this invention is a polyimide precursor for obtaining a polyimide, and is a polymer which has the site
  • the component (A) of the present invention includes a tetracarboxylic acid dialkyl ester derivative containing a tetracarboxylic acid dialkyl ester represented by the following formula (1) in an amount of 60 mol% or more of the total tetracarboxylic acid dialkyl ester derivative, and the following formulas (2) to It is a polyamic acid ester obtained by a polycondensation reaction with a diamine containing at least one diamine selected from the group consisting of diamines represented by (5).
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • R 2 is a hydroxyl group or a chlorine atom
  • R x is a linear or branched alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, particularly preferably a methyl group.
  • Specific examples of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, or a t-butyl group.
  • the polyamic acid ester has a higher temperature at which imidization proceeds as the number of carbon atoms in the alkyl group increases.
  • R 1 is preferably a methyl group or an ethyl group from the viewpoint of easiness of imidization by heat. Is particularly preferred.
  • R 2 is a chlorine atom, a bis (chlorocarbonyl) compound having a high reactivity with diamine is obtained, which is more preferable.
  • the diamine to be polycondensed with the tetracarboxylic acid dialkyl ester derivative represented by the formula (1) includes at least one diamine selected from the group consisting of diamines represented by the formulas (2) to (5).
  • at least one diamine selected from the group consisting of a diamine represented by formula (2) and a diamine represented by formula (3), a diamine represented by formula (4), and (5) It is preferable to include at least one diamine selected from the group consisting of diamines to be obtained, because the solubility of ⁇ -butyrolactone can be increased.
  • a liquid crystal alignment film having high liquid crystal alignment properties can be obtained. preferable.
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • the amide bond a structure represented by —C (O) NH—, —C (O) NR—, —NHC (O) —, or —NRC (O) — can be shown.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, a thioester bond, or a combination thereof.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • As the thioester bond a structure represented by —C (O) S— or —SC (O) — can be shown.
  • a 1 is a divalent organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (6).
  • a 4 , A 5 and A 6 are each independently a single bond, —O—, —S—, —NR 8 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond Or a carbamate bond.
  • R 8 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and the above-described alkyl group, alkenyl group, alkynyl group, and aryl group The same example can be given.
  • the ester bond, amide bond, and thioester bond can have the same structure as the ester bond, amide bond, and thioester bond described above.
  • the urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group. Can do.
  • a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group. Can do.
  • R 4 and R 5 in the formula (6) are each independently selected from a single bond or an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and a group obtained by combining these, May have a substituent. If one of R 4 and R 5 is a single bond, R 4 or R 5 is selected from the group formed by combining an alkylene group, an alkenylene group having 2 to 10 carbon atoms, an alkynylene group, an arylene group, and these, they You may have a substituent.
  • the structure remove
  • the structure remove
  • Examples of the alkynylene group include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • the arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
  • the above alkylene group, alkenylene group, alkynylene group, arylene group, and a combination thereof may have a substituent as long as the number of carbon atoms is 1 to 20 as a whole, and further a ring structure depending on the substituent. May be formed. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, aryl groups, alkyls. Group, alkenyl group, alkynyl group and the like.
  • halogen group as a substituent examples include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the organooxy group as a substituent can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group.
  • R examples include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkyloxy group include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like.
  • the organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, and a hexylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, and a tributylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R examples include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O).
  • the structure represented by R can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • the structure of A 1 is a single bond or the following formula (A1-1)
  • the structure of (A1-25) is more preferable.
  • a 2 is a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a monovalent organic group having 1 to 20 carbon atoms; Is an integer of 1 to 4, and when a is 2 or more, the structures of A 2 may be the same or different.
  • the halogen atom the same halogen atoms as those described above can be exemplified.
  • the amino group can have a structure represented by —NH 2 , —NHR, or —NR (R) —.
  • R represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group. Can do.
  • Examples of monovalent organic groups having 1 to 20 carbon atoms include organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyl groups, alkenyl groups, and alkynyl groups. Or an aryl group.
  • organooxy group a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group.
  • the organothio group can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group.
  • R include the above-described alkyl group, alkenyl group, and aryl group.
  • Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, and a hexylthio group.
  • the organosilyl group a structure represented by —Si— (R) 3 can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above.
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, and a tributylsilyl group.
  • the acyl group a structure represented by —C (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the above-described alkyl group, alkenyl group, and aryl group.
  • thioester group a structure represented by —C (S) O—R or —OC (S) —R can be shown.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • phosphate group a structure represented by —OP (O) — (OR) 2 can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above.
  • the amide group includes a structure represented by —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. Can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. Examples of the alkyl group, alkenyl group, alkynyl group, and aryl group are the same as the alkyl group, alkenyl group, alkynyl group, and aryl group described above.
  • the above alkyl group, alkenyl group, alkynyl group, and aryl group may have a substituent as long as the whole has 1 to 20 carbon atoms, and may further form a ring structure by the substituent. .
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, carbamate groups, An aryl group, an alkyl group, an alkenyl group, an alkynyl group, etc. can be mentioned.
  • halogen group as a substituent examples include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the organooxy group as a substituent can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • alkyloxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group.
  • the organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, and a laurylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • the substituent carbamate group includes a structure represented by —O—C (O) NH 2 , —O—C (O) NHR, —NHC (O) —OR, or —NR—C (O) OR. Can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • the carbon number is preferably 1 to 14.
  • a 2 in the above formulas (4) and (5) is preferably a structure represented by the following formula (6).
  • a 3 in formula (6) is a single bond, —O—, —S—, —NR ′ 3 —, an ester bond, an amide bond, a thioester bond, a urea bond, a carbonate bond, or a carbamate bond, and R 3 Is selected from an optionally substituted alkyl group having 1 to 10, preferably 1 to 5 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, and a combination thereof. You may have.
  • R ′ 3 is selected from a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a group obtained by combining these, and these may have a substituent.
  • a 2 is a diamine having a leaving group that is eliminated by heating, the solubility of the polymer is improved, and the liquid crystal orientation and the pretilt angle are not affected.
  • structures represented by the following formulas (A2-1) to (A2-24) are preferable.
  • the ratio of the diamines represented by the above formulas (2) to (5) is preferably 5 to 100 mol% in the total diamine.
  • a diamine which is a raw material of (A) component at least 1 sort (s) of diamine chosen from the group which consists of the diamine represented by Formula (2) and the diamine represented by Formula (3), Formula ( It is preferable to include at least one diamine selected from the group consisting of the diamine represented by 4) and the diamine represented by formula (5).
  • the usage-amount of the diamine represented by Formula (2) or the total usage-amount of the diamine represented by Formula (2) and the diamine represented by Formula (3), and represented by Formula (4).
  • the amount of the diamine used, or the total amount of the diamine represented by the formula (4) and the diamine represented by the formula (5) is preferably 95/5 to 60/40, more preferably, in molar ratio. 90/10 to 80/20.
  • the diamine has a more rigid structure, a liquid crystal alignment film having excellent liquid crystal alignment can be obtained.
  • the following formula (A-1) to A diamine containing at least one diamine selected from the group consisting of formula (A-5) is preferred, and a diamine containing such a diamine and a diamine represented by formula (2) is particularly preferred.
  • the molar ratio between the amount of the diamine represented by the above formula (2) and the amount of at least one diamine selected from the group consisting of the diamine formula (A-1) to the formula (A-5) is , Preferably 95/5 to 60/40, more preferably 90/10 to 80/20.
  • the tetracarboxylic acid dialkyl ester represented by the above formula (1) is preferably 60 mol% or more, more preferably 80 mol% or more of the total tetracarboxylic acid dialkyl ester. Among them, the amount is more preferably 90 to 100 mol%.
  • a tetracarboxylic acid dialkyl ester derivative represented by the following formulas (10) to (11) may be used as the tetracarboxylic acid derivative together with the tetracarboxylic acid dialkyl ester derivative represented by the above formula (1).
  • X is a tetravalent organic group, and R 1 is the same as in formula (1) including preferred examples.
  • X is not particularly limited, and specific examples thereof include structures represented by the following X-1 to X-46. Two or more of these tetracarboxylic acid derivatives may be used.
  • the diamine represented by the above formulas (2) to (5) is preferably 5 to 100 mol%, more preferably 50 to 100 mol% of the total diamine.
  • a diamine represented by the following formula (12) may be used together with the diamine represented by the above formulas (2) to (5).
  • R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, or an alkynyl group which may have a substituent. Specific examples of these alkyl group, alkenyl group, or alkynyl group include the same ones as described above.
  • the above alkyl group, alkenyl group, or alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like. Specific examples of each substituent include the same ones as described above. In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal alignment may be lowered.
  • R 6 and R 7 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • Y is a divalent organic group.
  • Y is not particularly limited, but specific examples include structures represented by the following formulas Y-1 to Y-113. Two or more kinds of these diamines having Y may be used. Among these, in order to obtain good liquid crystal alignment, it is preferable to introduce a highly linear diamine into the polyamic acid ester, and Y is Y-7, Y-10 , Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y-45, Y- More preferred are diamines of 46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, or Y-98.
  • a diamine having a long chain alkyl group, aromatic ring, aliphatic ring, steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester.
  • the polyamic acid used for this invention is a polyimide precursor for obtaining a polyimide, and is a polymer which has the site
  • (B) component of this invention is a polyamic acid obtained by the polycondensation reaction of tetracarboxylic dianhydride and diamine.
  • Tetracarboxylic dianhydride can be represented by the following formula (13), wherein X 1 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the structures of the above formulas (X-1) to (X-46).
  • the diamine compound can be represented by the following formula (14), in which Y 1 is a divalent organic group, and the structure thereof is not particularly limited. Specific examples include structures of the above formulas (Y-1) to (Y-99) and (Y-110) to (Y-113).
  • R 6 and R 7 have the same definitions as those in the formula (12)).
  • the orientation of the liquid crystal may be hindered.
  • the component (A) can be unevenly distributed on the film surface, a liquid crystal alignment film excellent not only in liquid crystal alignment but also in reliability and afterimage characteristics can be obtained. Therefore, as the polyamic acid of the component (B), a polyamic acid having high polarity and high solubility that improves the surface migration of the component (A) is preferable. From such a point, the weight of a tetracarboxylic dianhydride containing at least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (B-1) to (B-9) and a diamine.
  • a polyamic acid obtained by a condensation reaction is preferred.
  • the use ratio of at least one tetracarboxylic dianhydride selected from the group consisting of formulas (B-1) to (B-9) is preferably 5 to 100 mol% with respect to the total tetracarboxylic dianhydrides. .
  • the polyamic acid of the component (B) can be unevenly distributed in the film and at the substrate interface.
  • the diamine having a highly polar substituent a diamine containing a secondary or tertiary amino group, hydroxyl group, amide group, urea group, or carboxyl group is preferable.
  • Y 1 in the above formula (14) may be Y-19, Y-31, Y-40, Y-45, Y-49 to Y-51, Y-61, Y-98, or Y— 99, and Y-98 or Y-99 containing a carboxyl group is more preferable.
  • the amount of the diamine compound having a highly polar substituent is preferably 5 to 100 mol% based on the total diamine.
  • the tetracarboxylic dianhydride that is the raw material of the component (B) includes at least one tetracarboxylic dianhydride selected from the group consisting of tetracarboxylic dianhydrides of the following formulas (B-1) to (B-9): Carboxylic dianhydrides are preferred.
  • the at least one tetracarboxylic dianhydride selected from the group consisting of formulas (B-1) to (B-9) is preferably all tetracarboxylic dianhydrides used as raw materials for the component (B). It is used in an amount of 20 mol% or more, more preferably 40 mol% or more. Among these, it is particularly preferable that (B-1) is used in an amount of 60 mol% or more.
  • the diamine which is a raw material of the component (B) a diamine containing at least one selected from the group consisting of the following formulas (B-10) to (B-13) is preferable.
  • the at least one diamine selected from the group consisting of the above formulas (B-10) to (B-13) is preferably at least 20 mol%, more preferably all diamines used as the raw material for the component (B). 40 mol% or more is used. Among these, (B-10) is particularly preferably used in an amount of 60 mol% or more.
  • the diamine having the photoreactive group as described above has characteristics such as liquid crystal alignment property, pretilt angle, voltage holding property, accumulated charge, etc. when used as a liquid crystal alignment film, and liquid crystal response speed when used as a liquid crystal display device. Depending on the situation, one kind or a mixture of two or more kinds may be used. Further, the diamine having such a photoreactive group is preferably used in an amount of 5 to 50 mol%, more preferably 10 to 20% of the total diamine component used for the synthesis of the component (A) and / or the component (B). Mol%.
  • [(C) component] (C) component of this invention is bifunctional or polyfunctional (meth) acrylic acid or its derivative (s).
  • the component (C) is preferably 0.1 to 10% by mass and more preferably 1 to 5% by mass with respect to the sum (100% by mass) of the components (A) and (B).
  • Preferred specific examples of the component (C) include Aronix M-210, M-240, M-6200 (manufactured by Toa Gosei Chemical Co., Ltd.), KAYARAD HDDA, HX-220, R-604, R -684 (manufactured by Nippon Kayaku Co., Ltd.), V260, V312, V335HP (manufactured by Osaka Organic Chemical Industry Co., Ltd.), light acrylate BA-4EA, BP-4PA, BP-2PA (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) Functional (meth) acrylic acid derivatives: Aronix M-400, M-405, M-450, M-7100, M-8030, M-8060 (manufactured by Toa Gosei Chemical Co., Ltd.), KAYARAD TMPTA, Trifunctional or more polyfunctional (such as DPCA-20, -30, -60, -120 (Nippon Kayaku Co., Ltd.), VGPT (
  • the liquid crystal aligning agent of the present invention usually contains an organic solvent for dissolving or dispersing the components (A) to (C).
  • the organic solvent is not limited.
  • examples of the organic solvent include a solvent capable of dissolving the polyamic acid ester and the polyamic acid (hereinafter referred to as a good solvent) and a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate (hereinafter referred to as poor). 2 types of solvents).
  • the good solvent is not particularly limited as long as it dissolves the polyamic acid ester (A) and the polyamic acid (B).
  • Specific examples are N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone.
  • the poor solvent is not particularly limited as long as it has low surface tension and improves coating film uniformity.
  • Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic
  • the organic solvent is at least one organic solvent (D1) selected from the group consisting of ⁇ -butyrolactone and derivatives thereof, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, and their At least one organic solvent (D2) selected from the group consisting of derivatives, wherein the content of the organic solvent (D2) is 2 to 2 with respect to the total amount of the organic solvent (D1) and the organic solvent (D2).
  • a mixed solvent of 30% by mass is preferred.
  • the content of the organic solvent (D2) is more preferably 5 to 20% by mass.
  • Examples of the organic solvent (D1), ⁇ -butyrolactone or a derivative thereof, are not particularly limited as long as the organic solvent has a lactone structure, but as a solvent for dissolving the polyamic acid ester of the component (A) of the present invention.
  • ⁇ -butyrolactone or ⁇ -valerolactone is particularly preferred because of its suitability.
  • Examples of the organic solvent (D2) N-methyl-2-pyrrolidone, 1,3-dimethylimidozolidinone, or derivatives thereof include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N- Examples include vinyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, or 1,3-dimethylimidozolidinone. If the boiling point is too high, the solvent may remain in the film, which may deteriorate the properties of the liquid crystal alignment film. Therefore, N-methyl-2-pyrrolidone or 1,3-dimethyl-2-imidazolidinone N-methyl-2-pyrrolidone is more preferable.
  • the polyamic acid ester of the component (A) of the present invention has high affinity for the organic solvent (D1) and can be easily dissolved in these organic solvents.
  • the polyamic acid ester of the component (A) has low affinity for the organic solvent (D2), and when the content increases, the polyamic acid ester of the component (A) precipitates, or the polyamic acid ester and the polyamic acid May affect the phase separation state. Therefore, the content of the organic solvent (D2) is 2 to 30% by mass, more preferably 2 to 20% by mass, particularly preferably the total amount of the organic solvent (D1) and the organic solvent (D2). 5 to 15% by mass.
  • the preferred range of the content of the organic solvent (D2) varies depending on the application method of the liquid crystal aligning agent.
  • the solvent composition hardly changes at the time of application.
  • the liquid crystal aligning agent becomes fine droplets at the time of coating, so the solvent composition before coating may be different from the solvent composition after the liquid crystal aligning agent is deposited on the substrate.
  • ⁇ -butyrolactone and its derivative having a high vapor pressure are volatilized at the time of coating, and the content of ⁇ -butyrolactone and its derivative when it is deposited on the substrate is reduced. Therefore, a solvent composition with more organic solvent (D1) is preferable, and the content of organic solvent (D2) is more preferably 2 to 15% by mass, and further preferably 2 to 10% by mass.
  • the polyamic acid ester which is (A) component of the liquid crystal aligning agent of this invention can be manufactured with a well-known manufacturing method. Specific examples include the following methods (a) and (b), but are not limited thereto.
  • the polyamic acid ester can be produced from a bis (chlorocarbonyl) compound and a diamine compound. Specifically, a bis (chlorocarbonyl) compound and a diamine compound are mixed in the presence of a base and an organic solvent at ⁇ 20 to 140 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 It can manufacture by making it react for time.
  • a base pyridine, triethylamine, or 4-dimethylaminopyridine can be used, but pyridine is preferable because the reaction proceeds gently. If the amount of the base is too large, removal is difficult, and if it is too small, the molecular weight is small. Therefore, it is 2 to 4 times mol, preferably 2 to 2.5 times mol, of the bis (chlorocarbonyl) compound.
  • the solvent used for the production of the polyamic acid ester is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. Good. If the concentration at the time of production is too high, polymer precipitation is likely to occur, and if it is too low, the molecular weight does not increase. Therefore, the total amount of the bis (chlorocarbonyl) compound and diamine compound in the reaction solution is preferably 1 to 30% by mass. 5 to 20% by mass is more preferable. In order to prevent hydrolysis of the bis (chlorocarbonyl) compound, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent contamination of the outside air.
  • Polyamic acid ester can be produced by condensing tetracarboxylic acid dialkyl ester and diamine compound with a condensing agent. Specifically, a dialkyl ester dicarboxylic acid and a diamine compound in the presence of a condensing agent, a base, and an organic solvent at 0 to 140 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be produced by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 moles, more preferably 2 to 2.5 moles, relative to the dialkyl ester dicarboxylic acid.
  • the base tertiary amines such as pyridine and triethylamine can be used. If the amount of the base added is too large, removal is difficult, and if it is too small, the molecular weight becomes small. Therefore, the amount is preferably 2 to 4 moles, more preferably 2.5 to 3 moles, relative to the diamine component.
  • the method (a) is particularly preferred because a high molecular weight polyamic acid ester is obtained.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well.
  • Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid that is the component (B) of the liquid crystal aligning agent of the present invention and is the raw material of the polyamic acid ester of the component (A) can be produced by polycondensation of a tetracarboxylic dianhydride and a diamine compound. it can.
  • the tetracarboxylic dianhydride and the diamine compound are preferably in the presence of an organic solvent at ⁇ 20 to 140 ° C., preferably at 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to It can be produced by reacting for 12 hours.
  • the organic solvent used in the production of the polyamic acid is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the monomer and the polymer, and these are one or more. May be used in combination. If the concentration at the time of production is too high, precipitation of the polymer tends to occur, and if it is too low, the molecular weight does not increase. Therefore, the total amount of tetracarboxylic dianhydride and diamine compound in the reaction solution is 1 to 30% by mass. Preferably, 5 to 20% by mass is more preferable.
  • the polyamic acid obtained as described above can use the reaction solution as the component (B).
  • the polymer in the case where it is not desired to include the solvent used for the polymerization in the liquid crystal aligning agent, the polymer is solid as a polymer. Can be used as the component (B) of the present invention.
  • the polymer can be precipitated and recovered by pouring into the poor solvent while thoroughly stirring the reaction solution. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid powder.
  • the said poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the ratio of the diamine component used for the polymerization reaction and the tetracarboxylic acid derivative is 1: 0.7 to 1: 1.2 in terms of molecular weight control. Preferably there is.
  • the molecular weight of the polyamic acid ester and the polyamic acid affects the viscosity of the varnish and the physical strength of the polyimide film. If the molecular weight of the polyamic acid ester and the polyamic acid is too large, the coating workability of the varnish and the coating film uniformity will be reduced.
  • the molecular weight of the polyamic acid ester and polyamic acid of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 300,000 in terms of weight average molecular weight. 100,000.
  • the content ratio of the component (A) to the component (B) is preferably 1/9 to 9/1 in terms of mass ratio (A / B), and 3/7 to 7 / 3 is more preferable. By setting the ratio within this range, it is possible to provide a liquid crystal aligning agent having good liquid crystal alignment properties and electrical characteristics. Further, the content of the component (C) in the liquid crystal aligning agent of the present invention is preferably 0.1% by mass or more with respect to the sum (100% by mass) of the component (A) and the component (B). 0 mass% or more is more preferable, and 3.0 mass% or more is further more preferable.
  • the content of the component (C) is preferably 15% by mass or less, particularly preferably 10% by mass or less.
  • the total content (concentration) of the component (A) and the component (B) in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the liquid crystal alignment film to be formed.
  • it is preferably 0.5% by mass or more based on the organic solvent, and 15% by mass or less, particularly 1 ⁇ 10% by weight is preferred.
  • the liquid crystal aligning agent of the present invention may further contain various additives such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of further improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon.
  • a silane coupling agent is given to the following, it is not limited to this.
  • the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 to 5.0% by weight is preferable, and 0.1 to 1.0% by weight is more preferable.
  • silane coupling agent when adding a silane coupling agent, add it to the polyamic acid ester solution, the polyamic acid solution, or both the polyamic acid ester solution and the polyamic acid solution before mixing the polyamic acid ester solution and the polyamic acid solution. Can do. Further, it can be added to a polyamic acid ester-polyamic acid mixed solution. Since the silane coupling agent is added for the purpose of improving the adhesion between the polymer and the substrate, as a method for adding the silane coupling agent, the solution is added to a polyamic acid solution that can be unevenly distributed in the film and at the substrate interface.
  • a method in which the polymer therein and the silane coupling agent are sufficiently reacted and then mixed with the polyamic acid ester solution is more preferable.
  • An imidization accelerator may be added to efficiently advance imidization of the polyamic acid ester when the coating film is baked.
  • each D is independently a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
  • a plurality of Ds exist in one formula, but these may be the same or different.
  • the content of the imidization accelerator is not particularly limited as long as the effect of promoting thermal imidization of the polyamic acid ester is obtained, but the following formula (included in the polyamic acid ester in the liquid crystal aligning agent ( The amount is preferably 0.01 mol or more, more preferably 0.05 mol or more, still more preferably 0.1 mol or more with respect to 1 mol of the amic acid ester moiety of 12). Further, from the point that the imidization accelerator itself remaining in the fired film minimizes adverse effects on various properties of the liquid crystal alignment film, the following formula (12) contained in the polyamic acid ester in the liquid crystal aligning agent is used. ) Is preferably 2 mol or less, more preferably 1 mol or less, and even more preferably 0.5 mol or less, per 1 mol of the amic acid ester moiety.
  • the polyamic acid ester of the component (A) and the polyamic acid of the component (B) of the present invention may each be two kinds or more.
  • the concentration (content) of the polymer containing the polyamic acid ester (component (A)) and the polyamic acid (component (B)) in the liquid crystal aligning agent of the present invention is appropriately changed depending on the thickness of the polyimide film to be formed.
  • the content is preferably 1 to 10% by mass, more preferably 2 to 8% by mass with respect to the organic solvent. If it is less than 1% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated.
  • the liquid crystal aligning agent of this invention contains the polyamic acid ester ((A) component) and polyamic acid ((B) component) which have a specific structure.
  • the ratio of the component (A) to the total amount of the components (A) and (B) is preferably 5 to 95% by mass. If the proportion of the component (A) is small, sufficient liquid crystal orientation may not be obtained, and if the proportion of the component (B) is small, the effects described in the present invention may not be obtained. Therefore, the proportion of the component (A) is more preferably 20 to 80% by mass, and further preferably 30 to 70% by mass.
  • the method of mixing the component (A) and the component (B) is a method of mixing the polyamic acid ester of the component (A) and the polyamic acid powder of the component (B) and dissolving them in an organic solvent, and the polyamic of the component (A).
  • Method of mixing acid ester powder and polyamic acid solution of component (B) Method of mixing polyamic acid ester solution of component (A) and polyamic acid powder of component (B), Polyamic acid ester of component (A)
  • the good solvent for dissolving the (A) component polyamic acid ester and the (B) component polyamic acid is different, it is possible to obtain a uniform (A) component polyamic acid ester- (B) component polyamic acid mixed solution. Therefore, the method of mixing the polyamic acid ester solution of the component (A) and the polyamic acid solution of the component (B) is more preferable.
  • a method for preparing the polyamic acid ester solution of component (A) As a method for preparing the polyamic acid ester solution of component (A), a method of dissolving the polyamic acid ester powder of component (A) with ⁇ -butyrolactone or a derivative thereof or other good solvent is more preferable, and ⁇ -butyrolactone is more preferable. Or the method of melt
  • the polymer concentration is preferably 10 to 30%, particularly preferably 10 to 15%.
  • the heating temperature is preferably 20 to 150 ° C, particularly preferably 20 to 80 ° C.
  • polyamic acid powder is dissolved in N-methyl-2-pyrrolidone, 1,3-dimethylpyrrolidinone, or the good solvent to obtain a polyamic acid solution.
  • a method and a method of using the polymerization reaction solution as it is and a method of using the polymerization reaction solution as it is is more preferable. More preferred is a method of obtaining a polyamic acid solution by using a mixed solvent of ⁇ -butyrolactone or a derivative thereof and N-methyl-2-pyrrolidone, 1,3-dimethylpyrrolidinone or a derivative thereof as a solvent for polymerizing the polyamic acid.
  • the polymer concentration is preferably 10 to 30%, particularly preferably 10 to 15%. Further, heating may be performed when the polymer powder is dissolved. The heating temperature is preferably 20 to 150 ° C, particularly preferably 20 to 80 ° C.
  • the polyamic acid ester solution of component (A) and the polyamic acid of component (B) can be added to both the acid solution or the polyamic acid ester solution of the component (A) and the polyamic acid solution of the component (B). Further, it can be added to the polyamic acid ester of component (A) and the polyamic acid mixed solution of component (B).
  • the addition method of the silane coupling agent is a polyamic acid solution of component (B) that can be unevenly distributed in the film and at the substrate interface. More preferably, the polymer and the silane coupling agent are sufficiently reacted with each other and then mixed with the polyamic acid ester solution of the component (A). If the addition amount of the silane coupling agent is too large, unreacted ones may adversely affect the liquid crystal orientation. If the addition amount is too small, the effect on the adhesion does not appear.
  • the content is preferably from 01 to 5.0% by mass, and more preferably from 0.1 to 1.0% by mass.
  • the polymer concentration is preferably 10 to 30%, particularly preferably 10 to 15%. Further, heating may be performed at the time of mixing, and the heating temperature is preferably 20 to 100 ° C, and particularly preferably 20 to 60 ° C.
  • a silane coupling agent or a crosslinking agent is added, it is preferably added before the poor solvent is added in order to prevent polymer precipitation.
  • the liquid crystal alignment of the present invention An agent is obtained.
  • the above liquid crystal aligning agent is preferably filtered, then applied to a substrate, dried and baked to form a coating film.
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • the use of a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving is formed is preferable from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • the coating film is preferably dried and baked. In order to sufficiently remove the organic solvent contained in the liquid crystal aligning agent, it is preferably dried at 50 to 120 ° C., preferably 1 to 10 minutes.
  • baking is preferably performed at 150 to 300 ° C., more preferably 150 to 250 ° C.
  • the firing time varies depending on the firing temperature, but is preferably 5 to 120 minutes, more preferably 5 to 60 minutes.
  • the thickness of the liquid crystal alignment film of the present invention is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • an orientation treatment such as rubbing
  • it can be used as a liquid crystal orientation film.
  • the method for orienting the coating film include a rubbing method and a photo-alignment treatment method.
  • the liquid crystal alignment film of the present invention is a liquid crystal alignment film to which liquid crystal alignment ability is imparted by irradiating polarized radiation. Furthermore, the liquid crystal can provide a uniform and good liquid crystal alignment even when the light irradiation range in which the liquid crystal alignment is expressed is wider than the conventional photo-alignment liquid crystal alignment film and the unevenness of the irradiation intensity in the substrate surface occurs. It is an alignment film.
  • the photo-alignment treatment method the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Is mentioned.
  • ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • Liquid crystal alignment element Two substrates on which the liquid crystal alignment film is formed as described above are manufactured, and the two substrates are separated by a gap (cell gap) so that the alignment treatment directions in the respective liquid crystal alignment films are orthogonal or antiparallel.
  • Liquid crystal cell by sealing and injecting liquid crystal into the cell gap defined by the surface of the substrate and the sealing agent. Configure. Then, on the outer surface of the liquid crystal cell, that is, on the other surface side of each substrate constituting the liquid crystal cell, a polarizing plate is aligned or orthogonal to the rubbing direction of the liquid crystal alignment film formed on one surface of the substrate.
  • a liquid crystal display element is obtained by pasting together.
  • the sealing agent for example, a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group is preferably used.
  • An inorganic filler may be blended in the sealing agent of the present invention for the purpose of improving adhesiveness and moisture resistance.
  • the inorganic filler that can be used is not particularly limited.
  • spherical silica, fused silica, crystalline silica titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc.
  • Two or more of the above inorganic fillers may be mixed and used.
  • Me methyl group
  • Bu n-butyl group
  • Boc t-butoxy group additive A: dipentaerythritol hexaacrylate (manufactured by Daicel Cytec)
  • Additive B Glycerin diglycidyl ether acrylic acid adduct (trade name: Epoxy ester 80MFA, manufactured by Kyoeisha Chemical Co., Ltd.)
  • the molecular weights of the polyamic acid ester and the polyamic acid were measured by a GPC (room temperature gel permeation chromatography) device, and converted into a polyethylene glycol (polyethylene oxide) conversion value as a number average molecular weight (hereinafter, also referred to as Mn) and a weight average molecular weight (hereinafter, Mw) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and Polymer Laboratories Polyethylene glycol manufactured (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000) was used. In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000,
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the liquid crystal alignment direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed at an angle of + 10 ° in the first region of the pixel, and the electrode of the pixel electrode is formed in the second region of the pixel. The elements are formed at an angle of -10 °. That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent was apply
  • the coated surface was irradiated with 500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • Liquid crystal cell AC drive seizure Using the liquid crystal cell produced above, an AC voltage of ⁇ 10 V was applied for 144 hours at a frequency of 30 Hz under a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • AC drive image sticking ⁇ was less than 0.1 and good, and more than that.
  • Example 1 4.40 g of the polyamic acid ester solution PAE-1 obtained in Synthesis Example 1 and 5.50 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.52 g of NMP, and 5.58 g of GBL. 4.01 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A1 was obtained. Using this liquid crystal aligning agent A1, a substrate for adhesion evaluation and a liquid crystal cell were prepared in the following procedure.
  • Two substrates thus obtained were prepared, and a 4 ⁇ m bead spacer was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm. The two bonded substrates were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation.
  • a sealing agent XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.
  • Example 2 ⁇ Example 2> 4.42 g of the polyamic acid ester solution PAE-1 obtained in Synthesis Example 1 and 5.48 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP and 5.60 g of GBL. 3.99 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A2 was obtained.
  • Example 3 4.40 g of the polyamic acid ester solution PAE-1 obtained in Synthesis Example 1 and 4.07 g of the polyamic acid solution PAA-2 obtained in Synthesis Example 3 were weighed, 0.06 g of NMP, and 7.46 g of GBL. , 3.98 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A3 was obtained.
  • Example 4 4.41 g of the polyamic acid ester solution PAE-1 obtained in Synthesis Example 1 and 4.04 g of the polyamic acid solution PAA-2 obtained in Synthesis Example 3 were weighed, 0.06 g of NMP, and 7.48 g of GBL. 4.00 g of BCS and 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A4 was obtained.
  • Example 5 4.41 g of the polyamic acid ester solution PAE-2 obtained in Synthesis Example 4 and 5.49 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A5 was obtained.
  • Example 6 4.42 g of the polyamic acid ester solution PAE-2 obtained in Synthesis Example 4 and 5.48 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP, and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A6 was obtained.
  • Example 7 4.42 g of the polyamic acid ester solution PAE-3 obtained in Synthesis Example 5 and 5.49 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A7 was obtained.
  • Example 8 4.42 g of the polyamic acid ester solution PAE-3 obtained in Synthesis Example 5 and 5.49 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A8 was obtained.
  • Example 9 4.42 g of the polyamic acid ester solution PAE-4 obtained in Synthesis Example 6 and 5.50 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP, and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A9 was obtained.
  • Example 10 4.40 g of the polyamic acid ester solution PAE-4 obtained in Synthesis Example 6 and 5.49 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP, and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A10 was obtained.
  • Example 11 4.42 g of the polyamic acid ester solution PAE-5 obtained in Synthesis Example 7 and 5.49 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP, and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive A were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A11 was obtained.
  • Example 12 4.42 g of the polyamic acid ester solution PAE-5 obtained in Synthesis Example 7 and 5.48 g of the polyamic acid solution PAA-1 obtained in Synthesis Example 2 were weighed, 0.50 g of NMP and 5.60 g of GBL. 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine, and 0.11 g of additive B were added at room temperature. It stirred for 3 hours and liquid crystal aligning agent A12 was obtained.
  • ⁇ Comparative example 2> 4.42 g of the polyamic acid ester solution PAE-1 obtained in Synthesis Example 1 and 4.07 g of the polyamic acid solution PAA-2 obtained in Synthesis Example 3 were weighed, 0.06 g of NMP, and 7.50 g of GBL. 4.01 g of BCS and 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent. B2 was obtained.
  • Example 1 Using the liquid crystal aligning agents obtained in Examples 1 to 4 and Comparative Examples 1 to 6, the liquid crystal cell obtained by the same method as in Example 1 was evaluated for adhesion and AC drive image sticking. The results are summarized in Table 1. Similarly, using the liquid crystal aligning agents obtained in Examples 5 to 12 and Comparative Examples 7 to 14, respectively, the adhesion evaluation and AC drive image sticking of the liquid crystal cell obtained by the same method as in Example 1 The results of the evaluation are summarized in Table 2.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal alignment film having excellent liquid crystal alignment and electrical characteristics, and also high seal adhesion, and the liquid crystal display element having the liquid crystal alignment film is driven by an alternating current.
  • image display fields such as large-screen and high-definition liquid crystal televisions that require high display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

 液晶表示素子の作製時に使用されるシール剤や基板との密着性が大きく、かつ液晶との界面特性が改善された液晶配向膜が形成できる液晶配向剤を提供する。 下記の(A)成分、(B)成分及び(C)成分を含有する液晶配向剤。 (A)成分:式(1)で表されるテトラカルボン酸ジアルキルエステル誘導体を60mol%以上含むテトラカルボン酸ジアルキルエステル誘導体と下記式(2)~(5)で表されるジアミンからなる群から選ばれる少なくとも1つのジアミンを含むジアミンとの重縮合反応によって得られるポリアミック酸エステル。(R:炭素数1~5のアルキル基、R:ヒドロキシル基等、Me:メチル基等、A:結合等、A:ハロゲン原子等、a:1~4の整数) (B)成分:テトラカルボン酸二無水物とジアミンからとの重縮合反応によって得られるポリアミック酸。 (C)成分:2官能若しくは多官能の(メタ)アクリル酸又はその誘導体。

Description

液晶配向剤及びそれを用いた液晶配向膜
 本発明は、液晶配向膜を作製するためのポリアミック酸エステル含有液晶配向剤、及びこの液晶配向剤から得られる液晶配向膜に関する。
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し、焼成したポリイミド系の液晶配向膜が主として用いられている。
 液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。
 ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされている。例えば、直流電圧によって発生する残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて、特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やそのイミド化重合体などに加えて、分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば、特許文献3参照)が提案されている。
 また、液晶配向性に優れ、電圧保持率が高く、残像が少なく、信頼性に優れ、且つ高いプレチルト角を示す液晶配向膜として、特定構造のテトラカルボン酸二無水物とシクロブタンを有するテトラカルボン酸二無水物と特定のジアミン化合物から得られるポリアミド酸やそのイミド化重合体を含有する液晶配向剤を使用したもの(例えば、特許文献4参照)が知られている。また、横電界駆動方式の液晶表示素子において発生する交流駆動による残像を抑制する方法として、液晶配向性が良好で、且つ液晶分子との相互作用が大きい特定の液晶配向膜を使用する方法(特許文献5参照)が提案されている。
 しかし、近年では大画面で高精細の液晶テレビが主体となり、残像に対する要求はより厳しくなり、且つ過酷な使用環境での長期使用に耐えうる特性が要求されている。それとともに、使用される液晶配向膜は従来よりも信頼性の高いものが必要となってきており、液晶配向膜の諸特性に関しても、初期特性が良好なだけでなく、例えば、高温下に長時間曝された後であっても、良好な特性を維持することが求められている。
 一方、ポリイミド系の液晶配向剤を構成するポリマー成分として、ポリアミック酸エステルは、これをイミド化するときの加熱処理により、分子量低下を起こさないために、液晶の配向安定性・信頼性に優れることが報告されている(特許文献6参照)。ポリアミック酸エステルは、一般に、体積抵抗率が高く、直流電圧を印加した際の残留電荷が多いなどの問題があるため、ポリアミック酸エステルと、電気特性の点で優れるポリアミック酸をブレンドした液晶配向剤が開示されている(特許文献7参照)。
日本特開平9-316200号公報 日本特開平10-104633号公報 日本特開平8-76128号公報 日本特開平9-138414号公報 日本特開平11-38415号公報 日本特開2003-26918号公報 WO2011/15080号公報
 上記のように、かかるポリアミック酸エステルとポリアミック酸とをブレンドした液晶配向剤から得られる液晶配向膜は、液晶配向性や電気特性において優れた特性が得られることが報告されている。すなわち、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤から得られる液晶配向膜は交流・直流駆動における残像特性や、長期信頼性の点で改善された特性が得られる。
 しかし、液晶配向膜を形成した基板上の液晶配向膜面にシール剤を塗布して2枚の基板を接着して液晶表示素子を作製するときに、かかるポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤から得られる液晶配向膜は、シール剤や基板との接着性(密着性)が満足し得ないことが見出された。
 上記から、最近の液晶表示素子における有効画素面積の拡大化のためには、基版上の周辺外縁部で画素を形成しない、所謂額縁領域をますます小さくすることが要求され、かかる目的のために、ポリアミック酸エステルとポリアミック酸とをブレンドした液晶配向剤から得られる液晶配向膜のシール剤や基板に対する接着性を向上させることが課題となる。
 さらに、上記のごとき液晶配向膜のシール剤や基板との接着性の改善は、液晶配向膜の有する、液晶配向性や電気特性を低下させずに達成されることが必要となり、できれば、これらの特性をさらに向上させることが要求される。
 本発明は上記の課題を達成すべくなされたものであり、以下の要旨を有する。
1.下記の(A)成分、(B)成分、及び(C)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表されるテトラカルボン酸ジアルキルエステル誘導体を60mol%以上含むテトラカルボン酸ジアルキルエステル誘導体と下記式(2)~(5)で表されるジアミンからなる群から選ばれる少なくとも1つのジアミンを含むジアミンとの重縮合反応によって得られるポリアミック酸エステル。
Figure JPOXMLDOC01-appb-C000008
(Rは、炭素数1~5のアルキル基であり、Rはヒドロキシル基又は塩素原子でありRは炭素数1~6のアルキル基である。)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基であり、Aはハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。)
(B)成分:テトラカルボン酸二無水物とジアミンとの重縮合反応によって得られるポリアミック酸。
(C)成分:2官能若しくは多官能の(メタ)アクリル酸又はその誘導体。
2.上記(A)成分と(B)成分との含有比率が、質量比(A/B)にて1/9~9/1であり、(C)成分の含有量が、(A)成分と(B)成分との和(100質量%)に対して0.1~10質量%である上記1に記載の液晶配向剤。
3.(A)成分が、上記式(2)~式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを全ジアミンに対して40~100モル%含むジアミンを用いて得られるポリアミック酸エステルである上記1又は2に記載の液晶配向剤。
4.(A)成分が、式(2)で表されるジアミン及び式(3)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、式(4)で表されるジアミン及び式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミンと、を含むジアミンを用いて得られるポリアミック酸エステルである上記1~3のいずれかに記載の液晶配向剤。
5.(A)成分が、式(2)で表されるジアミンと、式(4)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミンを用いて得られるポリアミック酸エステルである上記1~4のいずれかに記載の液晶配向剤。
6.上記式(4)のAが下記式(6)で表される構造である上記1~5のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
(式(6)中のAは、単結合、-O-、-S-、-NR´-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。R´は、水素原子、又はアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。)
7.(A)成分が、下記式(A-1)~(A-5)のジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミンを用いて得られるポリアミック酸エステルである上記1~6のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
8.(A)成分が、上記式(2)のジアミンと、上記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種のジアミンと、を含むジアミンを用いて得られるポリアミック酸エステルである上記7に記載の液晶配向剤。
9.(B)成分が、下記式(B-1)~(B-9)のテトラカルボン酸二無水物からなる群から選ばれる少なくとも1種を含むテトラカルボン酸二無水物を用いて得られるポリアミック酸である上記1~8のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
10.(B)成分が、上記式(B-1)~(B-9)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を20モル%以上含有するテトラカルボン酸二無水物とジアミンとの重縮合反応によって得られるポリアミック酸である上記1~9のいずれかに記載の液晶配向剤。
11.(B)成分が、下記式(B-10)~(B-14)からなる群から選ばれる少なくとも1種を含むジアミンを用いて得られるポリアミック酸である上記1~10のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
12.(B)成分が、上記式(B-10)~(B-14)からなる群から選ばれる少なくとも1種のジアミンを全ジアミンの20モル%以上有するジアミンを用いて得られるポリアミック酸である上記11に記載の液晶配向剤。
13.(C)成分が、ジペンタエリスリトールヘキサアクリレート、又はグリセリンジグリシジルエーテルアクリル酸付加物である、上記1~12のいずれかに記載の液晶配向剤。
14.さらに、γ-ブチロラクトン及びその誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D1)と、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン及びそれらの誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D2)とを含み、有機溶媒(D1)の含有量が、有機溶媒(D1)と有機溶媒(D2)の合計量に対して、2~30質量%である混合有機溶媒を含有する上記1~13のいずれかに記載の液晶配向剤。
15.光配向処理される液晶配向膜用である、上記1~14のいずれかに記載の液晶配向剤。
16.上記1~15のいずれかに記載の液晶配向剤を基板に塗布し、焼成して得られる液晶配向膜。
 本発明の液晶配向剤によれば、液晶表示素子の作製時に使用されるシール剤や基板との接着性(密着性)が十分に大きい液晶配向膜が形成できる。これにより、液晶表示素子における額縁領域の狭小化にも十分に対応が可能となる。
 加えて、本発明の液晶配向剤から得られる液晶配向膜は、交流駆動による残像が低減するなどの液晶と液晶配向膜との界面の特性、並びに、電圧保持率、イオン密度、及び直流電圧の残留などの電気的特性が改善される。
 [(A)成分]
 本発明に用いられるポリアミック酸エステルは、ポリイミドを得るためのポリイミド前駆体であり、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマーである。
Figure JPOXMLDOC01-appb-C000015
 本発明の(A)成分は、下記式(1)で表されるテトラカルボン酸ジアルキルエステルを全テトラカルボン酸ジアルキルエステル誘導体の60mol%以上含むテトラカルボン酸ジアルキルエステル誘導体と下記式(2)~式(5)で表されるジアミンからなる群から選ばれる少なくとも1つのジアミンを含むジアミンとの重縮合反応により得られるポリアミック酸エステルである。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(1)において、Rは炭素数1~4のアルキル基であり、Rはヒドロキシル基又は塩素原子である。Rは炭素数1~6の直鎖若しくは分岐アルキル基、好ましくは炭素数1~3のアルキル基、特に好ましくはメチル基である。
 Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、又はt-ブチル基が挙げられる。ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなるので、Rは、熱によるイミド化のしやすさの観点から、メチル基又はエチル基が好ましく、メチル基が特に好ましい。
 Rが塩素原子の場合、ジアミンとの反応性が高いビス(クロロカルボニル)化合物になるため、より好ましい。
 式(1)で表されるテトラカルボン酸ジアルキルエステル誘導体と重縮合させるジアミンは、式(2)~式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むことが好ましい。なかでも、式(2)で表されるジアミン及び式(3)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、式(4)で表されるジアミン及び(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含む場合、γ―ブチロラクトンの溶解性を高めることができるために好ましい。特に、式(2)で表されるジアミンと、式(4)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミン場合、液晶配向性の高い液晶配向膜が得られるので好ましい。
 式(3)及び式(5)において、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。
 Aにおいて、エステル結合は、-C(O)O-、又は-OC(O)-で表される。
 アミド結合としては、-C(O)NH-、-C(O)NR-、-NHC(O)-、又は-NRC(O)-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、チオエステル結合、若しくはこれらを組み合わせた基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 アリール基としては、例えばフェニル基が挙げられる。
 チオエステル結合としては-C(O)S-、又は-SC(O)-で表される構造を示すことができる。
 Aが炭素数2~10の2価の有機基である場合、下記式(6)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000019
 式(6)における、A4、A及びAはそれぞれ独立して、単結合、-O-、-S-、-NR-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合である。Rとしては、水素原子、又は炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらを組み合わせた基であり、前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 A、A及びAにおいて、エステル結合、アミド結合、及びチオエステル結合については、前記のエステル結合、アミド結合、及びチオエステル結合と同様の構造を示すことができる。
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらを組み合わせた基であり、前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらを組み合わせた基であり、前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 式(6)中のR及びRは、それぞれ独立して単結合、又は炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。RとRの何れかが単結合の場合、R又はRは炭素数2~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。
 上記アルケニレン基としては、前記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。
 アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
 アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 上記のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基は、全体として炭素数が1~20であれば置換基を有していてもよく、さらには置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アリール基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。
 置換基であるオルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基など-O-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられる。
 置換基であるオルガノチオ基としては、アルキルチオ基、アルケニルチオ基、アリールチオ基など-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 直線性が高い構造や剛直な構造を有するジアミンを用いた場合、良好な液晶配向性を有する液晶配向膜が得られるため、Aの構造としては、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記式(4)及び式(5)において、Aはハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。
 ハロゲン原子としては、前記のハロゲン原子の例と同様のものを挙げることができる。
 アミノ基としては、-NH、-NHR、又は-NR(R)-で表される構造を示すことできる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらを組み合わせた基であり、前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 炭素数1~20の1価の有機基としては、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基、又はアリール基を挙げることができる。
 オルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基など-O-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられる。
 オルガノチオ基としては、アルキルチオ基、アルケニルチオ基、アリールチオ基など-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基などが挙げられる。
 オルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基などが挙げられる。
 アシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 エステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。
 チオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 リン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。
 アミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。
 アルキル基、アルケニル基、アルキニル基、及びアリール基としては、前述したアルキル基、アルケニル基、アルキニル基、及びアリール基と同じものを挙げることができる。
 上記のアルキル基、アルケニル基、アルキニル基、及びアリール基は、全体として炭素数が1~20であれば置換基を有していてもよく、さらには置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、ヒドロキシル基、チオール基、ニトロ基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、カルバメート基、アリール基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。
 置換基であるオルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基など-O-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基などが挙げられる。
 置換基であるオルガノチオ基としては、アルキルチオ基、アルケニルチオ基、アリールチオ基など-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるカルバメート基としては、-O-C(O)NH、-O-C(O)NHR、-NHC(O)-OR、又は-NR-C(O)ORで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 式(4)及び式(5)において、Aがアルキル基、アルケニル基、アルキニル基、アリール基、又はこれらを組み合わせた基を有する場合は、炭素数は1~14であることが好ましい。Aが炭素数15以上のアルキル基、アルケニル基、アルキニル基、アリール基、又はこれらを組み合わせた基である場合、用いるジアミンの含有量に伴って液晶配向性が低下、若しくはプレチルト角の制御が困難になる可能性がある。
 上記式(4)及び式(5)におけるAは、下記式(6)で表される構造であるのが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(6)中のAは、単結合、-O-、-S-、-NR´-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、置換基を有してもよい炭素数1~10、好ましくは、1~5のアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。R´は、水素原子、又はアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。)
 さらに、Aの構造が、加熱により脱離する脱離基を有する構造のジアミンである場合は、ポリマーの溶解性を向上させ、且つ液晶配向性、及びプレチルト角には影響を与えることがない。加熱により脱離する脱離基を有するAの構造としては、下記式(A2-1)~(A2-24)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 上記式(2)~(5)で表されるジアミンの比率としては、全ジアミン中、5~100モル%が好ましい。上記式(2)~(5)で表されるジアミンの比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、40~100モル%がより好ましく、60~100モル%がさらに好ましい。
 なかでも、(A)成分の原料であるジアミンとしては、式(2)で表されるジアミン及び式(3)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、式式(4)で表されるジアミン及び式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むのが好ましい。(A)成分の原料であるジアミンとしては、特に、式(2)で表されるジアミンと、式(4)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを含むのが好ましい。これにより、特に、溶媒であるγ-ブチロラクトンにおける溶解性が高めることができる。
 この場合、式(2)で表されるジアミンの使用量、又は式(2)で表されるジアミンと式(3)で表されるジアミンの合計使用量と、式(4)で表されるジアミンの使用量、又は式(4)で表されるジアミンと式(5)で表されるジアミンの合計使用量とは、モル比率で、好ましくは95/5~60/40、より好ましくは、90/10~80/20である。
 ジアミンは、その構造が剛直な構造であるほど、液晶配向性に優れた液晶配向膜が得られるため、本発明のポリアミック酸エステルを得るためのジアミンとしては、下記の式(A-1)~式(A-5)からなる群から選ばれる少なくとも1種のジアミンを含有するジアミンが好ましく、特に、かかるジアミンと上記式(2)で表わされるジアミンとを含有するジアミンが好ましい。この場合、上記式(2)で表わされるジアミンの使用量と、ジアミン式(A-1)~式(A-5)からなる群から選ばれる少なくとも1種のジアミンの使用量とのモル比率は、好ましくは95/5~60/40、より好ましくは、90/10~80/20である。
Figure JPOXMLDOC01-appb-C000031
 本発明において、上記式(1)で表されるテトラカルボン酸ジアルキルエステルが全テトラカルボン酸ジアルキルエステルの好ましくは60モル%以上、より好ましくは80モル%以上である。中でも、更に好ましくは90~100モル%である。この場合、上記式(1)で表されるテトラカルボン酸ジアルキルエステル誘導体と共に、下記式(10)~(11)で表されるテトラカルボン酸ジアルキルエステル誘導体をテトラカルボン酸誘導体として用いてもよい。
Figure JPOXMLDOC01-appb-C000032
 上記式(10)~(11)において、Xは4価の有機基であり、Rは、好ましい例も含めて式(1)の場合と同じである。Xは、特に限定されるものではないが、その具体例を挙げるならば、下記X-1~X-46で表される構造が挙げられる。また、これらのテトラカルボン酸誘導体は2種以上使用してもよい。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 また、本発明において、上記式(2)~(5)で表されるジアミンは、全ジアミンの好ましくは5~100モル%、より好ましくは50~100モル%である。上記式(2)~(5)で表されるジアミンと共に、下記式(12)で表されるジアミンを用いてもよい。
Figure JPOXMLDOC01-appb-C000036
 式(12)において、R及びRは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、又はアルキニル基である。これらのアルキル基、アルケニル基、又はアルキニル基の具体例としては、前述したものと同じものを挙げることができる。
 上記のアルキル基、アルケニル基、又はアルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、さらには置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。各置換基の具体例としては、前述したものと同じものを挙げることができる。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、R及びRとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 上記式(12)において、Yは2価の有機基である。Yは特に限定されるものではないが、具体例を挙げるならば、下記式Y-1~Y-113で表される構造が挙げられる。また、これらのYを有するジアミンは2種以上を用いてもよい。なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリアミック酸エステルに導入することが好ましく、Yとして、Y-7、Y-10、Y-11、Y-12、Y-13、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-41、Y-42、Y-43、Y-44、Y-45、Y-46、Y-48、Y-61、Y-63、Y-64、Y-71、Y-72、Y-73、Y-74、Y-75、又はY-98のジアミンがより好ましい。また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリアミック酸エステルに導入することが好ましく、Yとして、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、又はY-97のジアミンがより好ましい。これらジアミンを全ジアミンの1~50モル%、より好ましくは5~20モル%添加することにより、任意のプレチルト角を発現させることができる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
[(B)成分]
 本発明に用いられるポリアミック酸は、ポリイミドを得るためのポリイミド前駆体であり、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマーである。
Figure JPOXMLDOC01-appb-C000055
 本発明の(B)成分は、テトラカルボン酸二無水物とジアミンとの重縮合反応により得られるポリアミック酸である。テトラカルボン酸二無水物は、下記式(13)で表すことができ、式中Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、上記式(X-1)~(X-46)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000056
 ジアミン化合物は、下記式(14)で表すことができ、式中、Yは2価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、上記式(Y-1)~(Y-99)及び(Y-110)~(Y-113)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000057
(式中、R及びRは上記式(12)のそれぞれの定義と同じである。)
 (B)成分が膜表面に偏在してしまうと、液晶の配向を阻害する可能性がある。一方、(A)成分を膜表面に偏在させることができれば、液晶配向性だけでなく、信頼性や残像特性に優れた液晶配向膜が得られる。よって、(B)成分のポリアミック酸としては、(A)成分の表面移行性を向上させるような、極性が高く、溶解性の高いポリアミック酸が好ましい。このような点から、上記式(B-1)~(B-9)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物と、ジアミンとの重縮合反応によって得られるポリアミック酸が好ましい。
 式(B-1)~(B-9)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物の使用割合は、全テトラカルボン酸二無水物に対して5~100モル%が好ましい。かかる使用割合が高いほど、ポリマーの極性及び溶解性を高くすることができるため、20~100モル%がより好ましく、40~100モル%がさらに好ましい。
 また同様の観点から、極性の高い置換基を有するジアミンを用いることで、(B)成分のポリアミック酸を膜内部及び基板界面に偏在させることができる。極性の高い置換基を有するジアミンとしては、2級又は3級のアミノ基、ヒドロキシル基、アミド基、ウレア基、又はカルボキシル基を含有するジアミンが好ましい。具体例として、上記式(14)のYとしては、Y-19、Y-31、Y-40、Y-45、Y-49~Y-51、Y-61、Y-98,又はY-99が挙げられ、カルボキシル基を含有するY-98又はY-99がより好ましい。
 極性の高い置換基を有するジアミン化合物の使用量としては、全ジアミンに対して、5~100モル%が好ましい。この使用量が高いほど、ポリマーの極性が向上し、(A)成分の膜表面割合が高くなるため、10~100モル%がより好ましく、30~100モル%がさらに好ましい。
 (B)成分の原料であるテトラカルボン酸二無水物としては、下記の式(B-1)~(B-9)のテトラカルボン酸二無水物からなる群から選ばれる少なくとも1種類を含むテトラカルボン酸二無水物が好ましい。
Figure JPOXMLDOC01-appb-C000058
 式(B-1)~(B-9)からなる群から選ばれる少なくとも1種類のテトラカルボン酸二無水物は、(B)成分の原料に使用される全テトラカルボン酸二無水物の好ましくは20モル%以上、より好ましくは40モル%以上使用される。中でも、(B-1)が60モル%以上使用されるのが特に好ましい。
 一方、(B)成分の原料であるジアミンとしては、下記の式(B-10)~(B-13)からなる群から選ばれる少なくとも1種類を含むジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000059
 上記の式(B-10)~(B-13)からなる群から選ばれる少なくとも1種類のジアミンは、(B)成分の原料に使用される全ジアミンの好ましくは20モル%以上、より好ましくは40モル%以上使用される。中でも、(B-10)が60モル%以上使用されるのが特に好ましい。
 上記のような光反応性基を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、及び液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用することもできる。
 また、このような光反応性基を有するジアミンは、(A)成分及び/又は(B)成分の合成に用いる全ジアミン成分の5~50モル%を用いることが好ましく、より好ましくは10~20モル%である。
[(C)成分]
 本発明の(C)成分は、2官能若しくは多官能の(メタ)アクリル酸又はその誘導体である。かかる(C)成分は、(A)成分と(B)成分との和(100質量%)に対して0.1~10質量%が好ましく、1~5質量%がより好ましい。
 かかる(C)成分の好ましい具体例としては、アロニックスM-210、同M-240、同M-6200(東亜合成化学工業社製)、KAYARAD HDDA、同HX-220、同R-604、同R-684(日本化薬社製)、V260、V312、V335HP(大阪有機化学工業社製)、ライトアクリレートBA-4EA、同BP-4PA、同BP-2PA(共栄社油脂化学工業社製)などの2官能(メタ)アクリル酸誘導体;アロニックスM-400、同M-405、同M-450、同M-7100、同M-8030、同M-8060(東亜合成化学工業社製)、KAYARAD TMPTA、同DPCA-20、同-30、同-60、同-120(日本化薬社製)、VGPT(大阪有機化学工業社製)などの3官能以上の多官能(メタ)アクリル酸誘導体を挙げることができる。なかでも、ジペンタエリスリトールヘキサアクリレート、グリセリンジグリシジルエーテルアクリル酸付加物等が挙げられる。
[有機溶媒]
 本発明の液晶配向剤には、通常、(A)成分~(C)成分を溶解又は分散させための有機溶媒が含有される。有機溶媒は、限定されるものではない。
 かかる有機溶媒としては、ポリアミック酸エステル及びポリアミック酸を溶解させることができる溶媒(以下、良溶媒)と液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒(以下、貧溶媒)の2種が挙げられる。
 良溶媒としては、(A)成分のポリアミック酸エステルと(B)成分のポリアミック酸を溶解させるものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体を溶解させない溶媒であっても、重合体が析出しない範囲であれば、混合してもよく、2種以上の混合溶媒としてもよい。
 貧溶媒としては、低表面張力で、塗膜均一性を向上させるものであれば、特に限定されない。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。
 本発明では、有機溶媒は、γ-ブチロラクトン及びその誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D1)と、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン及びそれらの誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D2)とを含み、有機溶媒(D2)の含有量が、有機溶媒(D1)と有機溶媒(D2)の合計量に対して、2~30質量%である混合溶媒が好ましい。有機溶媒(D2)の含有量は、5~20質量%がより好ましい。
 有機溶媒(D1)である、γ-ブチロラクトン若しくはその誘導体の例としては、ラクトン構造を有する有機溶媒であれば、特に限定されないが、本発明の(A)成分のポリアミック酸エステルを溶解する溶媒として適していることから、γ-ブチロラクトン、又はγ-バレロラクトンが特に好ましい。
 有機溶媒(D2)である、N-メチル-2-ピロリドン、1,3-ジメチルイミドゾリジノン、又はそれらの誘導体としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、又は1,3-ジメチルイミドゾリジノンが挙げられる。沸点が高すぎると、溶媒が膜中に残存し、液晶配向膜としての特性を悪化させる可能性があるため、N-メチル-2-ピロリドン、又は1,3-ジメチル-2-イミダゾリジノンが好ましく、N-メチル-2-ピロリドンがより好ましい。
 本発明の(A)成分のポリアミック酸エステルは、有機溶媒(D1)に対して、親和性が高く、これらの有機溶媒に容易に溶解することができる。しかし、(A)成分のポリアミック酸エステルは、有機溶媒(D2)に対して親和性が低く、その含有量が多くなると(A)成分のポリアミック酸エステルが析出する、又はポリアミック酸エステルとポリアミック酸の相分離状態に影響を与える可能性がある。従って、有機溶媒(D2)の含有量は、有機溶媒(D1)と有機溶媒(D2)の合計量に対して、2~30質量%、より好ましくは、2~20質量%、特に好ましくは、5~15質量%である。
 有機溶媒(D2)の含有量は、液晶配向剤の塗布方法によっても好適な範囲が異なり、フレキソ印刷法の場合は、塗布の際に溶媒組成が変化しにくいため、5~30質量%がより好ましく、5~15質量%がさらに好ましい。
 一方、インクジェット塗布法の場合は、塗布の際に、液晶配向剤が微小な液滴となるため、塗布前の溶媒組成と、基板に液晶配向剤が着液した後の溶媒組成が異なる可能性がある。具体的には、蒸気圧の高いγ-ブチロラクトン及びその誘導体が塗布の際に揮発し、基板に着液した際のγ-ブチロラクトン及びその誘導体の含有量が少なくなる。このため、有機溶媒(D1)がより多い溶媒組成が好ましく、有機溶媒(D2)の含有量は、2~15質量%がより好ましく、2~10質量%がさらに好ましい。
[ポリアミック酸エステルの製造方法]
 本発明の液晶配向剤の(A)成分である、ポリアミック酸エステルは公知の製造方法により製造することができる。具体的には、以下の(a)、及び(b)の方法が挙げられるが、これに限定されない。
(a)酸クロライドとジアミン化合物からポリアミック酸エステルを製造する方法
 ポリアミック酸エステルは、ビス(クロロカルボニル)化合物とジアミン化合物から製造することができる。
 具体的には、ビス(クロロカルボニル)化合物とジアミン化合物とを、塩基と有機溶媒の存在下で-20~140℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。前記塩基には、ピリジン、トリエチルアミン、又は4-ジメチルアミノピリジンが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、多すぎると除去が難しく、少なすぎると分子量が小さくなるため、ビス(クロロカルボニル)化合物に対して、2~4倍モル、好ましくは2~2.5倍モルである。
 ポリアミック酸エステルの製造に用いる溶媒は、単量体及び重合体の溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 製造時の濃度は、高すぎると重合体の析出が起こりやすく、低すぎると分子量が上がらないので、ビス(クロロカルボニル)化合物とジアミン化合物の反応液中の合計量が1~30質量%が好ましく、5~20質量%がより好ましい。また、ビス(クロロカルボニル)化合物の加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
(b)ジアルキルエステルジカルボン酸とジアミン化合物からポリアミック酸エステルを製造する方法
 ポリアミック酸エステルは、テトラカルボン酸ジアルキルエステルとジアミン化合物を縮合剤により縮合することにより製造することができる。
 具体的には、ジアルキルエステルジカルボン酸とジアミン化合物を縮合剤、塩基、及び有機溶媒の存在下で0~140℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、ジアルキルエステルジカルボン酸に対して2~3倍モルであることが好ましく、2~2.5倍モルがより好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、多すぎると除去が難しく、少なすぎると分子量が小さくなるため、ジアミン成分に対して2~4倍モルであることが好ましく、2.5~3倍モルがより好ましい。
 上記2つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、(a)の方法が特に好ましい。
 以上のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
[ポリアミック酸の製造]
 本発明の液晶配向剤の(B)成分であり、また、(A)成分のポリアミック酸エステルの原料であるポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物との重縮合により製造することができる。
 ポリアミック酸を製造する場合、テトラカルボン酸二無水物とジアミン化合物とは、好ましくは有機溶媒存在下で-20~140℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって製造することができる。
 ポリアミック酸の製造に用いる有機溶媒は、単量体及び重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、高すぎると重合体の析出が起こりやすく、低すぎると分子量が大きくならないので、テトラカルボン酸二無水物とジアミン化合物の反応液中の合計量は、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、その反応溶液を(B)成分とすることができるが、重合に用いた溶媒を液晶配向剤中に含有させたくない場合等では、重合体として固体で回収した後、本発明の(B)成分として使用することができる。
 重合体は、反応溶液をよく撹拌させながら貧溶媒に注入することで、析出させて、回収することができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸の粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 重合反応に用いるジアミン成分とテトラカルボン酸誘導体(テトラカルボン酸二無水物、テトラカルボン酸ジアルキル誘導体等)の比率は分子量制御の観点から、モル比で1:0.7~1:1.2であることが好ましい。このモル比が1:1に近いほど得られるポリイミド前駆体の分子量は大きくなる。ポリアミック酸エステル及びポリアミック酸の分子量は、ワニスの粘度や、ポリイミド膜の物理的な強度に影響を与え、ポリアミック酸エステル及びポリアミック酸の分子量が大きすぎるとワニスの塗布作業性や塗膜均一性が悪くなる場合がある。また、分子量が小さすぎると得られるポリイミド膜の強度が不十分となる場合がある。
 従って、本発明のポリアミック酸エステル及びポリアミック酸の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
〔液晶配向剤〕
 本発明の液晶配向剤における、(A)成分と(B)成分との含有比率は、質量比(A/B)で好ましくは、1/9~9/1であり、3/7~7/3がより好ましい。かかる比率をこの範囲にせしめることにより、液晶配向性と電気特性のいずれもが良好な液晶配向剤を提供することができる。
 また、本発明の液晶配向剤における(C)成分の含有量は、(A)成分と(B)成分との和(100質量%)に対して、0.1質量%以上が好ましく、1.0質量%以上がより好ましく、3.0質量%以上がさらに好ましい。(C)成分の含有量が少ない場合には、液晶配向剤から得られた液晶配向膜のシール剤及び基板に対する接着性の改善の効果が十分でない。一方、液晶配向性の観点から、(C)成分の含有量は、好ましくは15質量%以下、特には10質量%以下が好ましい。
 一方、本発明の液晶配向剤中の(A)成分、及び(B)成分の合計の含有量(濃度)は、形成させようとする液晶配向膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるためという点から,有機溶媒に対して0.5質量%以上であることが好ましく、溶液の保存安定性の点からは15質量%以下、特には1~10質量%が好ましい。
 本発明の液晶配向剤は、さらに、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性をさらに向上させる目的で添加される。以下にシランカップリング剤の具体例を挙げるが、これに限定されるものではない。
 3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-アミノプロピルジエトキシメチルシランなどのアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシランなどのビニル系シランカップリング剤;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤;ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシランなどのメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒドなどのアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3-トリエトキシシリルプロピル)-t-ブチルカルバメートなどのカルバメート系シランカップリング剤。
 上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01~5.0重量%が好ましく、0.1~1.0重量%がより好ましい。
 上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。また、シランカップリング剤を添加する場合は、ポリアミック酸エステル溶液とポリアミック酸溶液を混合する前に、ポリアミック酸エステル溶液、ポリアミック酸溶液、又はポリアミック酸エステル溶液とポリアミック酸溶液の両方に添加することができる。また、ポリアミック酸エステル-ポリアミック酸混合溶液に添加することができる。シランカップリング剤はポリマーと基板との密着性を向上させる目的で添加するため、シランカップリング剤の添加方法としては、膜内部及び基板界面に偏在することができるポリアミック酸溶液に添加し、溶液中のポリマーとシランカップリング剤を十分に反応させてから、ポリアミック酸エステル溶液と混合する方法がより好ましい。
 塗膜を焼成する際にポリアミック酸エステルのイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。以下にポリアミック酸エステルのイミド化促進剤の具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 上記式(D-1)~(D-17)におけるDは、それぞれ独立して、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。なお、(D-14)~(D-17)には、ひとつの式に複数のDが存在するが、これらは互いに同一であっても異なってもよい。
 ポリアミック酸エステルの熱イミド化を促進する効果が得られる範囲であれば、イミド化促進剤の含有量は特に制限されるものではないが、液晶配向剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、更に好ましくは0.1モル以上である。また、焼成後の膜中に残留するイミド化促進剤自体が、液晶配向膜の諸特性に及ぼす悪影響を最小限に留めるという点から、液晶配向剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくはイミド化促進剤が2モル以下、より好ましくは1モル以下、更に好ましくは0.5モル以下である。
Figure JPOXMLDOC01-appb-C000062
 イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
 本発明の液晶配向剤に、さらに架橋剤などの各種添加剤を使用しても構わないことは言うまでもない。また、本発明の(A)成分のポリアミック酸エステル及び(B)成分のポリアミック酸はそれぞれ2種上であってもよい。
 本発明の液晶配向剤におけるポリアミック酸エステル((A)成分)とポリアミック酸((B)成分)を含むポリマーの濃度(含有量)は、形成させようとするポリイミド膜の厚みの設定によって適宜変更することができるが、有機溶媒に対して1~10質量%とすることが好ましく、2~8質量%がより好ましい。1質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。
[液晶配向剤の製造方法]
 本発明の液晶配向剤は、特定構造を有するポリアミック酸エステル((A)成分)とポリアミック酸((B)成分)を含有する。
 (A)成分と(B)成分の合計量に対する(A)成分の割合としては、5~95質量%が好ましい。(A)成分の割合が少ないと、十分な液晶配向性が得られない可能性があり、(B)成分の割合が少ないと、本発明に記載の効果が得られない可能性がある。そのため、(A)成分の割合としては、20~80質量%がより好ましく、30~70質量%がさらに好ましい。
 (A)成分と(B)成分を混合する方法としては(A)成分のポリアミック酸エステル及び(B)成分のポリアミック酸の粉末を混合し、有機溶媒に溶解する方法、(A)成分のポリアミック酸エステルの粉末と(B)成分のポリアミック酸溶液を混合する方法、(A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸の粉末を混合する方法、(A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸溶液を混合する方法がある。(A)成分のポリアミック酸エステルと(B)成分のポリアミック酸を溶解する良溶媒が異なる場合でも、均一な(A)成分のポリアミック酸エステル-(B)成分のポリアミック酸混合溶液を得ることができるため、(A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸溶液を混合する方法がより好ましい。
 (A)成分のポリアミック酸エステル溶液を調製する方法としては、(A)成分のポリアミック酸エステルの粉末を、γ-ブチロラクトン又はその誘導体やその他の良溶媒で溶解する方法がより好ましく、γ-ブチロラクトン又はその誘導体で溶解する方法がさらに好ましい。この時、ポリマー濃度は10~30%が好ましく、10~15%が特に好ましい。また、(A)成分のポリアミック酸エステルの粉末を溶解する際に加熱してもよい。加熱温度は、20~150℃が好ましく、20~80℃が特に好ましい。
 (B)成分のポリアミック酸溶液を調製する方法としては、ポリアミック酸の粉末を、N-メチル-2-ピロリドン、1,3-ジメチルピロリジノン、又は前記良溶媒に溶解させて、ポリアミック酸溶液とする方法、重合反応溶液をそのまま用いる方法があり、重合反応溶液をそのまま用いる方法がより好ましい。ポリアミック酸を重合する際の溶媒をγ-ブチロラクトン又はその誘導体と、N-メチル-2-ピロリドン、1,3-ジメチルピロリジノン又はその誘導体の混合溶媒とし、ポリアミック酸溶液を得る方法がさらに好ましい。ポリアミック酸粉末を再溶解する場合、ポリマー濃度は10~30%が好ましく、10~15%が特に好ましい。また、重合体の粉末を溶解する際に加熱してもよい。加熱温度は、20~150℃が好ましく、20~80℃が特に好ましい。
 シランカップリング剤を添加する場合は、(A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸溶液を混合する前に、(A)成分のポリアミック酸エステル溶液、(B)成分のポリアミック酸溶液、又は(A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸溶液の両方に添加することができる。また、(A)成分のポリアミック酸エステル-(B)成分のポリアミック酸混合溶液に添加することができる。シランカップリング剤はポリマーと基板との密着性を向上させる目的で添加するため、シランカップリング剤の添加方法としては、膜内部及び基板界面に偏在することができる(B)成分のポリアミック酸溶液に添加し、ポリマーとシランカップリング剤を十分に反応させてから、(A)成分のポリアミック酸エステル溶液と混合する方法がより好ましい。シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01~5.0質量%が好ましく、0.1~1.0質量%がより好ましい。
 (A)成分のポリアミック酸エステル溶液と(B)成分のポリアミック酸溶液を混合する際は、ポリマー濃度は10~30%が好ましく、10~15%が特に好ましい。また混合する際に加熱してもよく、加熱温度は、20~100℃が好ましく、20~60℃が特に好ましい。
 シランカップリング剤や架橋剤を添加する場合は、ポリマーの析出を防ぐため、貧溶媒を加える前に添加するのが好ましい。また、塗膜を焼成する際にポリアミック酸エステルのイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
 得られた(A)成分のポリアミック酸エステルと(B)成分のポリアミック酸混合溶液に前記良溶媒及び前記貧溶媒を加え、所定のポリマー濃度になるように希釈することで、本発明の液晶配向剤が得られる。
[液晶配向膜]
 本発明の液晶配向膜は、上記の液晶配向剤を、好ましくはろ過した後、基板に塗布し、乾燥し、焼成して塗膜とすることができる。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後、塗膜は好ましくは乾燥し、焼成される。液晶配向剤に含有されていた有機溶媒を十分に除去するため、好ましくは50~120℃、好ましくは1~10分乾燥させる。次いで、好ましくは150~300℃、より好ましくは150~250℃で焼成される。焼成時間は、焼成温度によっても異なるが、好ましくは5~120分、より好ましくは5~60分で行われる。
 本発明の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。この塗膜面をラビング等の配向処理をすることにより、液晶配向膜として使用することができる。この塗膜を配向処理する方法は、ラビング法、光配向処理法などが挙げられる。
 本発明の液晶配向膜は、偏光された放射線を照射することにより、液晶配向能が付与される液晶配向膜である。さらに、従来の光配向液晶配向膜に比べて液晶配向性を発現する光照射範囲が広く、照射強度の基板面内ムラが発生するような場合でも、均一且つ良好な液晶配向性が得られる液晶配向膜である。
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有する紫外線が特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
[液晶配向素子]
 上記のようにして液晶配向膜が形成された基板を2枚作製し、それぞれの液晶配向膜における配向処理方向が直交又は逆平行となるように、2枚の基板を、間隙(セルギャップ)を介して対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填し、注入孔を封止して液晶セルを構成する。そして、液晶セルの外表面、すなわち、液晶セルを構成するそれぞれの基板の他面側に、偏光板を、その偏光方向が当該基板の一面に形成された液晶配向膜のラビング方向と一致又は直交するように貼り合わせることにより、液晶表示素子が得られる。
 本発明において、シール剤としては、例えば、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。ただし、液晶に対する汚染性が低いものであれば何ら限定されるものではない。本発明のシール剤には接着性、耐湿性の向上を目的として無機充填剤を配合しても良い。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、又は珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。
 以下に実施例を挙げて、さらに、本発明を具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。なお、以下における、化合物の略号、及び各特性の測定方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
IPA:2-プロパノール
DE-1:下記式(DE-1)参照;
DA-1:下記式(DA-1)参照;
DA-2:下記式(DA-2)参照;
DA-3:下記式(DA-3)参照;
DA-4:下記式(DA-4)参照;
 Me:メチル基、Bu:n-ブチル基、Boc:t-ブトキシ基
添加剤A:ジペンタエリスリトールヘキサアクリレート(ダイセル・サイテック社製)
添加剤B:グリセリンジグリシジルエーテルアクリル酸付加物(商品名:エポキシエステル80MFA、共栄社化学社製)
Figure JPOXMLDOC01-appb-C000063
 [粘度]
 ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計のTVE-22H(東機産業社製)を用い、サンプル量1.1ml、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 ポリアミック酸エステル及びポリアミック酸の分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール(ポリエチレンオキシド)換算値として、数平均分子量(以下、Mnとも言う)と重量平均分子量(以下、Mwとも言う)を算出した。
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、及びKD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、及び30,000)及びポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、及び1,000)を用いた。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプル、及び150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルを別々に実施した。
[FFS駆動液晶セルの作製]
 始めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の液晶配向方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を500mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
[液晶セルの交流駆動焼付き]
 上記で作製した液晶セルを用い、60℃の恒温環境下、周波数30Hzで±10Vの交流電圧を144時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。交流駆動焼き付きΔが0.1未満を良好とし、それ以上を不良とした。
<合成例1>
 撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを4.58g(42.4mmol)、DA-1を1.79g (4.71mmol)、NMPを84.7g、GBLを254g、及び塩基としてピリジン8.40g(106mmol) を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を14.4g(44.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを1.23g (13.6mmol) 加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1477gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、738gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末17.3gを得た。収率は、96.9%であった。また、このポリアミック酸エステルの分子量はMn=14,288、Mw=29,956であった。
 得られたポリアミック酸エステル樹脂粉末3.69gを100mL三角フラスコにとりGBLを33.2g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液PAE-1を得た。
<合成例2>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を0.91g(5.98mmol)、4,4’-ジアミノジフェニルアミンを4.78g(23.9mmol)、NMPを13.3g、及びGBLを6.66g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を4.76g(24.0mmol)添加し、GBLを9.99g加えて、室温で2時間攪拌した。次に、GBLを20.0g加えて攪拌した後、ピロメリット酸二無水物を1.31g(6.00mmol)添加し、GBLを4.80g加えて、室温で24時間攪拌し、ポリアミック酸溶液(PAA-1)を得た。得られたポリアミック酸溶液の25℃における粘度は4,147mPa・sであった。また、ポリアミック酸の分子量はMn=24,333、Mw=60,010であった。
<合成例3>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を0.30g(1.98mmol)、4,4’-ジアミノジフェニルメチルアミンを1.71g(8.02mmol)、NMPを2.25g、及びGBLを11.3g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を1.72g(8.68mmol)添加し、GBLを4.50g加えて、室温で2時間攪拌した。次に、ピロメリット酸二無水物を0.22g(1.01mmol)添加し、GBLを4.50g加えて、室温で24時間攪拌し、ポリアミック酸溶液(PAA-2)を得た。得られたポリアミック酸溶液の25℃における粘度は232mPa・sであった。また、ポリアミック酸の分子量はMn=9,870、Mw=20,054であった。
<合成例4>
 撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを2.50g(23.1mmol)、DA-3を0.59g(1.22mmol)、NMPを42.8g、GBLを129g、及び塩基としてピリジン4.34g(54.9mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を7.44g(22.9mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.63g(7.01mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、574gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、382gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末8.82gを得た。収率は、97.8%であった。また、このポリアミック酸エステルの分子量はMn=16,617、Mw=37,387であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを100mL三角フラスコにとりGBLを7.20g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液PAE-2を得た。
<合成例5>
 撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを1.23g(11.3mmol)、4,4’-エチレンジアニリンを0.80g(3.77mmol)、NMPを27.0g、GBLを91.2g、及び塩基としてピリジン2.69g(34.0mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を4.61g(14.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.39g(4.34mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、384gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、256gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末5.11gを得た。収率は、89.6%であった。また、このポリアミック酸エステルの分子量はMn=14,806、Mw=32,719であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを100mL三角フラスコにとりGBLを7.20g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液PAE-3を得た。
<合成例6>
 撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを2.80g(25.9mmol)、DA-2を1.45g(6.47mmol)、NMPを111g、及び塩基としてピリジン6.18g(78.1mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を9.89g(30.4mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.38g(4.21mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1230gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1230gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末10.2gを得た。収率は、83.0%であった。また、このポリアミック酸エステルの分子量はMn=20,786、Mw=40,973であった。
 得られたポリアミック酸エステル樹脂粉末0.798gを100mL三角フラスコにとりGBLを7.18g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液PAE-4を得た。
<合成例7>
 撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、DA-4を14.4g(58.8mmol)、DA-1を2.48g(6.53mmol)、NMPを622g、及び塩基としてピリジン11.6g(147mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を20.0g(61.4mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを1.70g(18.8mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、2691gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1345gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末31.4gを得た。収率は、95.9%であった。また、このポリアミック酸エステルの分子量はMn=13,012、Mw=25,594であった。
 得られたポリアミック酸エステル樹脂粉末3.70gを100mL三角フラスコにとりNMPを33.3g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液PAE-5を得た。
[液晶配向剤の調製]
(実施例1)
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.40g、合成例2で得られたポリアミック酸溶液PAA-1を5.50g秤量し、NMPを0.52g、GBLを5.58g、BCSを4.01g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A1を得た。
 この液晶配向剤A1を用いて、下記に示すような手順で密着性評価用基板及び液晶セルの作製を行った。
<密着性評価>
<<サンプル作製>>
 密着性評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤A1を塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を500mJ/cm照射し、液晶配向膜付き基板を得た。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学社製XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃で1時間熱硬化させて、密着性評価用のサンプルを作製した。
<<密着性の測定>>
 その後、サンプル基板を島津製作所社製の卓上形精密万能試験機(AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。測定した基板の剥離箇所について観察を行い、シール/膜間、又は膜/基板間での剥離が起きず、シール剤全体もしくはシール剤一部で断裂したものを○と判定した。シール/膜間で剥離した場合、シール/膜間の密着性を×とし、膜/基板で剥離した場合、膜/基板間の密着性を×と判定した。
<実施例2>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.48g秤量し、NMPを0.50g、GBLを5.60g、BCSを3.99g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A2を得た。
<実施例3>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.40g、合成例3で得られたポリアミック酸溶液PAA-2を4.07g秤量し、NMPを0.06g、GBLを7.46g、BCSを3.98g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A3を得た。
<実施例4>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.41g、合成例3で得られたポリアミック酸溶液PAA-2を4.04g秤量し、NMPを0.06g、GBLを7.48g、BCSを4.00g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A4を得た。
<実施例5>
 合成例4で得られたポリアミック酸エステル溶液PAE-2を4.41g、合成例2で得られたポリアミック酸溶液PAA-1を5.49g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A5を得た。
<実施例6>
 合成例4で得られたポリアミック酸エステル溶液PAE-2を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.48g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A6を得た。
<実施例7>
 合成例5で得られたポリアミック酸エステル溶液PAE-3を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.49g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A7を得た。
<実施例8>
 合成例5で得られたポリアミック酸エステル溶液PAE-3を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.49g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A8を得た。
<実施例9>
 合成例6で得られたポリアミック酸エステル溶液PAE-4を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.50g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A9を得た。
<実施例10>
 合成例6で得られたポリアミック酸エステル溶液PAE-4を4.40g、合成例2で得られたポリアミック酸溶液PAA-1を5.49g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A10を得た。
<実施例11>
 合成例7で得られたポリアミック酸エステル溶液PAE-5を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.49g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤A11を得た。
<実施例12>
 合成例7で得られたポリアミック酸エステル溶液PAE-5を4.42g、合成例2で得られたポリアミック酸溶液PAA-1を5.48g秤量し、NMPを0.50g、GBLを5.60g、BCSを4.00g、N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Bを0.11g加え、室温で3時間攪拌し、液晶配向剤A12を得た。
<比較例1>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.39g、合成2で得られたポリアミック酸溶液PAA-1を5.52g秤量し、NMPを0.50g、GBLを5.57g、BCSを4.02g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B1を得た。
<比較例2>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を4.42g、合成例3で得られたポリアミック酸溶液PAA-2を4.07g秤量し、NMPを0.06g、GBLを7.50g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B2を得た。
<比較例3>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を11.0g、GBLを4.99g、BCSを4.02g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤B3を得た。
<比較例4>
 合成例1で得られたポリアミック酸エステル溶液PAE-1を11.0g、GBLを5.00g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B4を得た。
<比較例5>
 合成2で得られたポリアミック酸溶液PAA-1を9.17g秤量し、NMPを1.37g、GBLを5.47g、BCSを3.99g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.13g加え、室温で3時間攪拌し、液晶配向剤B5を得た。
<比較例6>
 合成例3で得られたポリアミック酸溶液PAA-2を6.79g秤量し、NMPを1.84g、GBLを7.37g、BCSを4.00g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B6を得た。
<比較例7>
 合成例4で得られたポリアミック酸エステル溶液PAE-2を11.0g、GBLを4.99g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤B7を得た。
<比較例8>
 合成例4で得られたポリアミック酸エステル溶液PAE-2を11.0g、GBLを5.00g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B8を得た。
<比較例9>
 合成例5で得られたポリアミック酸エステル溶液PAE-3を11.0g、GBLを5.00g、BCSを4.00g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤B9を得た。
 <比較例10>
 合成例5で得られたポリアミック酸エステル溶液PAE-3を11.0g、GBLを5.00g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B10を得た。
<比較例11>
 合成例6で得られたポリアミック酸エステル溶液PAE-4を11.1g、GBLを4.98g、BCSを4.02g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤B11を得た。
<比較例12>
 合成例6で得られたポリアミック酸エステル溶液PAE-4を11.0g、GBLを5.00g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B12を得た。
<比較例13>
 合成例7で得られたポリアミック酸エステル溶液PAE-5を11.0g、GBLを4.98g、BCSを4.02g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.11g加え、室温で3時間攪拌し、液晶配向剤B13を得た。
<比較例14>
 合成例7で得られたポリアミック酸エステル溶液PAE-5を11.0g、GBLを5.00g、BCSを4.01g、及びN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加え、室温で3時間攪拌し、液晶配向剤B14を得た。
 この液晶配向剤B14を用いた以外は、実施例1と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
 上記実施例1~4、及び比較例1~6でそれぞれ得られた液晶配向剤を用いて、実施例1と同様な方法により得られた液晶セルについての密着性評価及び交流駆動焼き付き評価を行った結果を、表1にまとめて示す。
 同様に、上記実施例5~12、及び比較例7~14でそれぞれ得られた液晶配向剤を用いて、実施例1と同様な方法により得られた液晶セルについての密着性評価及び交流駆動焼き付き評価を行った結果を、表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 本発明の液晶配向剤を用いることにより、優れた液晶配向性や電気特性、さらには高いシール密着性を有する液晶配向膜を得ることができ、該液晶配向膜を有する液晶表示素子は、交流駆動により生じる残像、直流電圧の残留電荷による表示焼きつき等が抑制され、高い表示品質が要求される、大画面で高精細の液晶テレビなどの画像表示分野での利用が可能である。

Claims (16)

  1.  下記の(A)成分、(B)成分、及び(C)成分を含有することを特徴とする液晶配向剤。
    (A)成分:下記式(1)で表されるテトラカルボン酸ジアルキルエステル誘導体を60mol%以上含むテトラカルボン酸ジアルキルエステル誘導体と下記式(2)~(5)で表されるジアミンからなる群から選ばれる少なくとも1つのジアミンを含むジアミンとの重縮合反応によって得られるポリアミック酸エステル。
    Figure JPOXMLDOC01-appb-C000001
    (Rは炭素数1~5のアルキル基であり、Rはヒドロキシル基又は塩素原子であり、Rは炭素数1~6のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (Aは、単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基であり、Aはハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。)
    (B)成分:テトラカルボン酸二無水物とジアミンとの重縮合反応によって得られるポリアミック酸。
    (C)成分:2官能若しくは多官能の(メタ)アクリル酸又はその誘導体。
  2.  上記(A)成分と(B)成分との含有比率が、質量比(A/B)にて1/9~9/1であり、(C)成分の含有量が、(A)成分と(B)成分との和に対して0.1~10質量%である請求項1に記載の液晶配向剤。
  3.  (A)成分が、上記式(2)~式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンを全ジアミンに対して40~100モル%含むジアミンを用いて得られるポリアミック酸エステルである請求項1又は2に記載の液晶配向剤。
  4.  (A)成分が、式(2)で表されるジアミン及び式(3)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、式(4)で表されるジアミン及び式(5)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、を含むジアミンを用いて得られるポリアミック酸エステルである請求項1~3のいずれかに記載の液晶配向剤。
  5.  (A)成分が、式(2)で表されるジアミンと、式(4)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンと、を含むジアミンを用いて得られるポリアミック酸エステルである請求項1~4のいずれかに記載の液晶配向剤。
  6.  上記式(4)のAが下記式(6)で表される構造である請求項1~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (Aは、単結合、-O-、-S-、-NR´-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。R´は、水素原子、又はアルキル基、アルケニル基、アルキニル基、アリール基、及びこれらを組み合わせた基から選ばれ、これらは置換基を有してもよい。)
  7.  (A)成分が、下記式(A-1)~(A-5)のジアミンからなる群から選ばれる少なくとも1種のジアミンを含むジアミンを用いて得られるポリアミック酸エステルである請求項1~6のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
  8.  (A)成分が、上記式(2)のジアミンと、上記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種のジアミンと、を含むジアミンを用いて得られるポリアミック酸エステルである請求項7に記載の液晶配向剤。
  9.  (B)成分が、下記式(B-1)~(B-9)のテトラカルボン酸二無水物からなる群から選ばれる少なくとも1種を含むテトラカルボン酸二無水物を用いて得られるポリアミック酸である請求項1~8のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
  10.  (B)成分が、上記式(B-1)~(B-9)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を全テトラカルボン酸二無水物の20モル%以上有するテトラカルボン酸二無水物とジアミンとの重縮合反応によって得られるポリアミック酸である請求項1~9のいずれかに記載の液晶配向剤。
  11.  (B)成分が、下記式(B-10)~(B-14)からなる群から選ばれる少なくとも1種を含むジアミンを用いて得られるポリアミック酸である請求項1~10のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
  12.  (B)成分が、上記式(B-10)~(B-14)からなる群から選ばれる少なくとも1種のジアミンを全ジアミンの20モル%以上有するジアミンを用いて得られるポリアミック酸である請求項11に記載の液晶配向剤。
  13.  (C)成分が、ジペンタエリスリトールヘキサアクリレート、又はグリセリンジグリシジルエーテルアクリル酸付加物である、請求項1~12のいずれかに記載の液晶配向剤。
  14.  さらに、γ-ブチロラクトン及びその誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D1)と、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン及びそれらの誘導体からなる群から選ばれる少なくとも1種の有機溶媒(D2)とからなり、有機溶媒(D1)の含有量が、有機溶媒(D1)と有機溶媒(D2)の合計量に対して、2~30質量%である混合有機溶媒を含有する請求項1~13のいずれか1項に記載の液晶配向剤。
  15.  光配向処理される液晶配向膜用である、請求項1~14のいずれかに記載の液晶配向剤。
  16.  請求項1~15のいずれかに記載の液晶配向剤を基板に塗布し、焼成して得られる液晶配向膜。
PCT/JP2014/069470 2013-07-24 2014-07-23 液晶配向剤及びそれを用いた液晶配向膜 WO2015012316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480052496.5A CN105579897B (zh) 2013-07-24 2014-07-23 液晶取向剂和使用了其的液晶取向膜
JP2015528311A JP6354759B2 (ja) 2013-07-24 2014-07-23 液晶配向剤及びそれを用いた液晶配向膜
KR1020167004668A KR102266366B1 (ko) 2013-07-24 2014-07-23 액정 배향제 및 그것을 사용한 액정 배향막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-153893 2013-07-24
JP2013153893 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012316A1 true WO2015012316A1 (ja) 2015-01-29

Family

ID=52393349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069470 WO2015012316A1 (ja) 2013-07-24 2014-07-23 液晶配向剤及びそれを用いた液晶配向膜

Country Status (5)

Country Link
JP (1) JP6354759B2 (ja)
KR (1) KR102266366B1 (ja)
CN (1) CN105579897B (ja)
TW (1) TWI643905B (ja)
WO (1) WO2015012316A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029465A (ja) * 2014-07-23 2016-03-03 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
JP2016057605A (ja) * 2014-09-09 2016-04-21 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017151296A (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 液晶表示パネルの製造方法
CN110023826A (zh) * 2016-09-29 2019-07-16 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
WO2019193854A1 (ja) * 2018-04-05 2019-10-10 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
WO2019219924A1 (en) * 2018-05-17 2019-11-21 L'oreal Para-phenylenediamine bases monosubstituted in position 2 with an aminoalkyl chain and use thereof for the oxidation dyeing of keratin fibres
JPWO2019244939A1 (ja) * 2018-06-19 2021-07-15 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239872B2 (ja) * 2016-12-21 2023-03-15 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
CN110325903B (zh) * 2016-12-21 2023-01-06 日产化学株式会社 液晶取向膜的制造方法、液晶取向膜和液晶表示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304509A (ja) * 2006-05-15 2007-11-22 Jsr Corp 液晶配向剤および液晶表示素子
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
WO2012133826A1 (ja) * 2011-03-31 2012-10-04 日産化学工業株式会社 液晶配向剤、及びそれを用いた液晶配向膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309351A (ja) * 1994-05-17 1995-11-28 Idemitsu Petrochem Co Ltd 咬合具付き袋
JP3201172B2 (ja) 1994-09-08 2001-08-20 ジェイエスアール株式会社 液晶配向剤
JP3550671B2 (ja) 1995-09-14 2004-08-04 Jsr株式会社 液晶配向剤
JP3613421B2 (ja) 1996-05-31 2005-01-26 Jsr株式会社 液晶配向剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
JPH1138415A (ja) 1997-07-22 1999-02-12 Hitachi Ltd 液晶表示素子
JP2002062537A (ja) * 2000-08-21 2002-02-28 Jsr Corp Stn型液晶表示素子用液晶配向剤およびstn型液晶表示素子
JP2003026918A (ja) 2001-07-13 2003-01-29 Hitachi Ltd 液晶配向膜用材料、液晶表示素子、その製造方法及び液晶表示装置
CN101990252A (zh) 2009-08-06 2011-03-23 中兴通讯股份有限公司 数据处理方法及装置
JP5556396B2 (ja) * 2009-08-28 2014-07-23 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、化合物及びこの化合物の製造方法
KR101818787B1 (ko) * 2010-03-15 2018-01-15 닛산 가가쿠 고교 가부시키 가이샤 폴리아믹산에스테르 액정 배향제 및 그것을 사용한 액정 배향막
WO2013031371A1 (ja) * 2011-08-31 2013-03-07 Jsr株式会社 液晶表示素子の製造方法、液晶配向剤及び液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304509A (ja) * 2006-05-15 2007-11-22 Jsr Corp 液晶配向剤および液晶表示素子
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
WO2012133826A1 (ja) * 2011-03-31 2012-10-04 日産化学工業株式会社 液晶配向剤、及びそれを用いた液晶配向膜

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029465A (ja) * 2014-07-23 2016-03-03 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
JP2016057605A (ja) * 2014-09-09 2016-04-21 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017151296A (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 液晶表示パネルの製造方法
WO2017145652A1 (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 液晶表示パネルの製造方法
CN108700782A (zh) * 2016-02-25 2018-10-23 富士胶片株式会社 液晶显示面板的制造方法
TWI708103B (zh) * 2016-02-25 2020-10-21 日商富士軟片股份有限公司 液晶顯示面板的製造方法
CN110023826A (zh) * 2016-09-29 2019-07-16 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
JPWO2019193854A1 (ja) * 2018-04-05 2020-12-03 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
WO2019193854A1 (ja) * 2018-04-05 2019-10-10 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
KR102404078B1 (ko) 2018-04-05 2022-05-30 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 소자 및 액정 소자의 제조 방법
KR20200098658A (ko) * 2018-04-05 2020-08-20 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 소자 및 액정 소자의 제조 방법
FR3081159A1 (fr) * 2018-05-17 2019-11-22 L'oreal Bases para-phenylenediamines monosubstituees en position 2 par une chaine aminoalkyle et son utilisation pour la coloration d'oxydation des fibres keratiniques
WO2019219924A1 (en) * 2018-05-17 2019-11-21 L'oreal Para-phenylenediamine bases monosubstituted in position 2 with an aminoalkyl chain and use thereof for the oxidation dyeing of keratin fibres
JPWO2019244939A1 (ja) * 2018-06-19 2021-07-15 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物
JP7401853B2 (ja) 2018-06-19 2023-12-20 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device

Also Published As

Publication number Publication date
TW201518408A (zh) 2015-05-16
JP6354759B2 (ja) 2018-07-11
JPWO2015012316A1 (ja) 2017-03-02
CN105579897B (zh) 2019-03-15
KR102266366B1 (ko) 2021-06-16
CN105579897A (zh) 2016-05-11
KR20160034391A (ko) 2016-03-29
TWI643905B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
JP6354759B2 (ja) 液晶配向剤及びそれを用いた液晶配向膜
JP5761174B2 (ja) ポリアミック酸エステル液晶配向剤及びそれを用いた液晶配向膜
KR101816940B1 (ko) 말단을 수식한 폴리아믹산에스테르 함유 액정 배향제, 및 액정 배향막
JP6048143B2 (ja) ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤及び液晶配向膜
JP6519583B2 (ja) ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
KR20130048726A (ko) 폴리아믹산에스테르 함유 액정 배향제 및 액정 배향막
KR101878519B1 (ko) 액정 배향제, 및 액정 배향막
JP6372009B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013054858A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR20130038243A (ko) 광 배향 처리법용의 액정 배향제, 및 그것을 사용한 액정 배향막
JP6791143B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR102278973B1 (ko) 액정 배향제 및 그것을 사용한 액정 표시 소자
JP6891814B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052496.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167004668

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14829553

Country of ref document: EP

Kind code of ref document: A1