WO2015008398A1 - 水質浄化材、その製造方法、および魚介類の養殖場の水質の浄化方法 - Google Patents

水質浄化材、その製造方法、および魚介類の養殖場の水質の浄化方法 Download PDF

Info

Publication number
WO2015008398A1
WO2015008398A1 PCT/JP2013/074339 JP2013074339W WO2015008398A1 WO 2015008398 A1 WO2015008398 A1 WO 2015008398A1 JP 2013074339 W JP2013074339 W JP 2013074339W WO 2015008398 A1 WO2015008398 A1 WO 2015008398A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
water
purification material
water purification
Prior art date
Application number
PCT/JP2013/074339
Other languages
English (en)
French (fr)
Inventor
晶子 西城
神谷 隆
阿部 信彦
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2015527137A priority Critical patent/JP6198827B2/ja
Publication of WO2015008398A1 publication Critical patent/WO2015008398A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water purification material, a method for producing the water purification material, and a water purification method for fishery products using the water purification material.
  • Patent Document 1 discloses a water tank purification method characterized by immersing a porous purification agent mainly composed of calcium silicate having a porosity of 50 to 90% in a water tank.
  • a porous purification material is obtained by adding a foaming agent such as aluminum powder to a slurry mainly composed of a siliceous raw material and a calcareous raw material, and hydrothermal reaction treatment under high temperature and high pressure. Or a crushed product obtained by crushing the molded product.
  • a porous purification material containing tobermorite as a main constituent, 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, 3 parts by weight of ordinary Portland cement, 0 parts of metal aluminum powder It is described that 0.008 parts by weight and 7 parts by weight of water were used.
  • Non-Patent Document 1 reports that monomeric aluminum ions contained in the wastewater of Kawayu Onsen are toxic to salmon fry.
  • mineral origin raw materials such as normal Portland cement
  • mineral-derived materials usually contain metal elements such as aluminum and titanium.
  • metal aluminum powder which is one of the raw materials of a tobermorite purification material has a very small addition amount, and therefore hardly affects the aluminum content contained in the tobermorite purification material.
  • Non-Patent Document 1 describes that monomeric aluminum ions are toxic to salmon fry.
  • the present invention relates to a water purification material capable of purifying the quality of breeding water without causing harm to the fish and shellfish due to the elution of harmful substances, etc. in a fishery farm, and a fish and seafood using the water purification material. It aims at providing the purification method of the water quality of aquaculture farm.
  • the present inventor is composed of porous granules containing calcium silicate hydrate as a main component, and the aluminum content is 10% by mass or less in terms of oxides and According to the water purification material having a titanium content of 1.0% by mass or less in terms of oxide, water in the breeding water can be used in fish farms without causing harm to the fish and shellfish due to elution of harmful substances.
  • the present inventors have found that the concentrations of sex phosphorus components and ammonium ions can be greatly reduced in a short period of time, and the quality of the breeding water can be sufficiently purified.
  • the present invention provides the following [1] to [10].
  • [1] It is composed of porous granules containing calcium silicate hydrate as a main component, the aluminum content is 10% by mass or less in terms of oxide, and the titanium content is 1.0% by mass in terms of oxide.
  • a water purification material characterized by: [2] The water purification material according to [1], wherein the porous particles are particles having a porosity of 50% or more. [3] In the total amount of the porous particles, the proportion of particles having a particle size of 0.01 mm or more and less than 0.1 mm is 5 to 30% by mass, and the particle size is 0.1 mm or more and less than 1.0 mm. 3.
  • the proportion of granules is 10 to 50% by mass, the proportion of granules having a particle size of 1.0 mm or more and less than 2.5 mm is 10 to 50% by mass, and the particle size is 2.5 mm or more.
  • Water purification material as described in 1.
  • [5] The water purification material according to any one of the above [1] to [4], wherein the water purification material is used by being sprayed on the breeding water of a seafood farm.
  • [6] A method for producing the water purification material according to any one of [1] to [5] above, wherein a hydrothermal reaction raw material containing a calcareous raw material, a siliceous raw material and water is pressurized and A hydrothermal reaction by heating to obtain a porous cured body, and a pulverizing step to pulverize the porous cured body to obtain the water purification material, and the hydrothermal reaction.
  • the total amount of raw materials excluding water is 100% by mass
  • the aluminum content is 10% by mass or less in terms of oxide and the titanium content is 1.0% by mass or less in terms of oxide.
  • a method for producing a water purification material characterized by using a material.
  • a step of preparing, a step of measuring each content of aluminum and titanium for each of the two or more kinds of porous particles, a content of aluminum of 10% by mass or less in terms of oxide, and a content of titanium A method for producing a water purification material comprising a step of selecting and recovering porous particles having a rate of 1.0% by mass or less in terms of oxide as a water purification material. [9] A method for purifying the water quality of a seafood farm, comprising spraying the water purification material according to any one of [1] to [5] above to the breeding water of a seafood farm. [10] The amount of the water purification material sprayed is 0.01 to 5 parts by mass per 100 parts by mass of the breeding water of the seafood farm. Purification method.
  • breeding water means the water stored in the water storage means in which fishery products can grow, such as a culture pond, and any of fresh water and seawater may be sufficient as it.
  • the seafood includes fish, shrimps, crabs, shellfish, amphibians (edible frogs) and the like.
  • the water purification material of the present invention is composed of porous particles containing calcium silicate hydrate as a main component, the aluminum content is 10% by mass or less in terms of oxide, and the titanium content is in terms of oxide. 1.0 mass% or less.
  • the main component of the porous particles is calcium silicate hydrate, so that calcium ions of the calcium silicate hydrate and water-soluble phosphorus components (for example, phosphate ions) in the breeding water are contained. In response, an insoluble calcium-containing substance is generated, and the concentration of the water-soluble phosphorus component in the breeding water can be reduced.
  • Examples of calcium silicate hydrates include tobermorite, zonotlite, CSH gel, foshygite, gyrolite, and Hilleblandite.
  • tobermorite is a crystalline calcium silicate hydrate, and is Ca 5 ⁇ (Si 6 O 18 H 2 ) ⁇ 4H 2 O (plate-like form), Ca 5 ⁇ (Si 6 O 18 H 2 ). It has a chemical composition such as (plate-like form), Ca 5 ⁇ (Si 6 O 18 H 2 ) ⁇ 8H 2 O (fibrous form).
  • Zonotolite is a crystalline calcium silicate hydrate and has a chemical composition such as Ca 6 ⁇ (Si 6 O 17 ) ⁇ (OH) 2 (fibrous form).
  • the porous particles constituting the water purification material of the present invention are calcium silicate hydrate in a proportion of 100% by volume of the solid phase excluding voids, preferably 50% by volume or more, more preferably 60% by volume or more. including. When the proportion is 50% by volume or more, the effect of water quality purification can be further enhanced. Since the porous granule constituting the water purification material of the present invention is porous, microorganisms are easily carried in the voids on the surface of the granule, and nitrification of ammonium ions by the microorganisms can be promoted.
  • the porosity of the porous particles is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more from the viewpoint of increasing the amount of microorganisms supported.
  • the upper limit of the porosity is not particularly limited, but is preferably 90% from the viewpoint of ensuring the mechanical strength (for example, compressive strength) of the granules.
  • a lightweight aerated concrete (ALC) waste material is pulverized from the viewpoint of reuse of building material waste. After pulverizing the lightweight cellular concrete waste material, if necessary, it is classified using a classification means such as a sieve, and by combining the particles of various particle sizes after classification, porous particles having a desired particle size distribution You can get a body.
  • the term “waste material” broadly includes product waste material, scrap material generated in the manufacturing process of the product, trial product in the factory, and the like.
  • the pulverized material of the waste material means both particles having a particle size of less than 1.0 mm and particles having a particle size of 1.0 mm or more.
  • the lightweight cellular concrete is made of tobermorite represented by a chemical formula of Ca 5 ⁇ (Si 6 O 18 H 2 ) ⁇ 4H 2 O and unreacted silica, and has a porosity of about 80% by volume.
  • the porosity means the ratio of the sum of the volume of all the voids in the entire volume of the particles (for example, particles made of lightweight cellular concrete).
  • the void refers to both a continuous void communicating with the space outside the particle and a non-continuous void formed only inside the particle without communicating with the space outside the particle. means.
  • the proportion of tobermorite in the lightweight cellular concrete is about 65 to 80% by volume, with the whole solid phase excluding voids inside the concrete being 100% by volume.
  • the preferred particle size distribution of the porous particles is as follows.
  • the proportion of particles having a particle size of 0.01 mm or more and less than 0.1 mm is preferably 5 to 30% by mass, more preferably 5 to 25% by mass.
  • the ratio is 5% by mass or more, the effect of reducing the concentration of the water-soluble phosphorus compound can be further enhanced.
  • the ratio is 30% by mass or less, the particle size distribution of the entire porous granule is not sharp (high mountain shape having a steep slope) but broad (low mountain shape having a gentle slope). Since there is a tendency, the balance between the effect of reducing the concentration of the water-soluble phosphorus compound and the effect of reducing the concentration of ammonium ions becomes better.
  • the proportion of particles having a particle size of 0.1 mm or more and less than 1.0 mm is preferably 10 to 50% by mass, more preferably 15 to 45% by mass.
  • the ratio is in the range of 10 to 50% by mass, the particle size distribution becomes broad, and the balance between the effect of reducing the concentration of the water-soluble phosphorus compound and the effect of reducing the concentration of ammonium ions becomes better.
  • the proportion of particles having a particle size of 1.0 mm or more and less than 2.5 mm is preferably 10 to 50% by mass, more preferably 15 to 45% by mass.
  • the proportion of particles having a particle size of 2.5 mm or more and 4.0 mm or less is 5 to 30% by mass, more preferably 5 to 25% by mass.
  • the proportion is 5% by mass or more, the effect of reducing the concentration of ammonium ions can be further enhanced.
  • the proportion of particles having a particle size of less than 0.01 mm or more than 4.0 mm is preferably 0 to 30% by mass, more preferably 0 to 25% by mass.
  • turbidity of breeding water during purification of water quality due to a large amount of granules having a particle size of less than 0.01 mm, and the amount of granules having a particle size of more than 4.0 mm are present.
  • the disadvantage of reducing the concentration of water-soluble phosphorus compound and ammonium ion per unit mass of the water purification material due to the large amount can be reduced.
  • Respective contents of aluminum (Al) and titanium (Ti) contained in the porous particles constituting the water purification material of the present invention are as follows.
  • the content of aluminum (Al) is 10% by mass or less, more preferably 9.5% by mass or less, and particularly preferably 9.0% by mass or less in terms of oxide. If the content exceeds 10% by mass, the seafood may be abnormal in swimming behavior or die.
  • the content of titanium (Ti) is 1.0% by mass or less, more preferably 0.9% by mass or less, in terms of oxide. If the content exceeds 1.0% by mass, the seafood may cause abnormal swimming behavior or die.
  • One example of the method for producing a water purification material of the present invention is (A) a hydrothermal reaction raw material containing a calcareous raw material, a siliceous raw material, and water, causing a hydrothermal reaction to cause a porous curing.
  • a reaction step for obtaining a body and (B) a pulverization step for pulverizing the porous cured body obtained in step (A) to obtain a water purification material.
  • each step will be described in detail.
  • Examples of the calcareous raw material include quick lime powder and slaked lime powder.
  • Examples of the siliceous raw material include quartzite powder and quartz sand.
  • Other solid raw materials that are optionally blended include cement (various Portland cements, etc.), aluminum powder, surfactant, gypsum and the like. Among these, aluminum powder and surfactant are foaming agents.
  • the proportion of the calcareous raw material in the total amount of the solid raw material is not particularly limited, but is preferably 5 to 30% by mass from the viewpoint of avoiding a large amount of unreacted raw material remaining after the reaction.
  • the ratio of the siliceous raw material in the total amount of the solid raw material is not particularly limited, but is preferably 30 to 65% by mass from the viewpoint of avoiding a large amount of unreacted raw material remaining after the reaction.
  • the proportion of the other solid raw material in the total amount of the solid raw material is not particularly limited, but is usually 5 to 40% by mass.
  • the proportion of cement in the total amount of the solid raw material is preferably 5 to 40% by mass from the viewpoint of increasing the compressive strength of the porous cured body.
  • the proportion of the foaming agent in the total amount of the solid raw material is preferably 0.005 to 0.1 mass from the viewpoint of giving an appropriate porosity to the porous cured body. %.
  • the amount of water is preferably 50 to 100 parts by mass per 100 parts by mass of the total amount of raw materials other than water (solid raw material) from the viewpoint of efficiently conducting a hydrothermal reaction.
  • the raw materials for hydrothermal reaction when the total amount of raw materials excluding water (for example, the total amount of quicklime powder, silica powder, cement and aluminum powder) is 100% by mass, the raw materials for hydrothermal reaction are aluminum and titanium. It is preferable to use a material having each content within the following range.
  • the content of aluminum (Al) is 10% by mass or less, more preferably 9.5% by mass or less, and particularly preferably 9.0% by mass or less in terms of oxide.
  • the content of titanium (Ti) is 1.0% by mass or less, more preferably 0.9% by mass or less, in terms of oxide. If each content rate of aluminum and titanium is within the above numerical range, each content rate of aluminum and titanium contained in the porous particles obtained by the hydrothermal reaction may be adjusted within the above numerical range. It becomes easy.
  • the raw material for hydrothermal reaction (a mixture of the solid raw material and water) may be granulated to an appropriate particle size.
  • the particle size of the raw material for hydrothermal reaction is preferably 5 to 100 mm.
  • the pressure of the hydrothermal reaction is preferably 3,000 to 30,000 hPa, more preferably 4,000 to 25,000 hPa, from the viewpoint of efficiently performing the hydrothermal reaction.
  • the temperature of the hydrothermal reaction is preferably 100 to 250 ° C., more preferably 120 to 230 ° C., and particularly preferably 150 to 210 ° C. from the viewpoint of efficiently performing the hydrothermal reaction.
  • the time for the hydrothermal reaction is not particularly limited, but is usually 5 to 15 hours. Examples of means for performing the hydrothermal reaction include an autoclave.
  • a pulverizing medium not containing aluminum and titanium and an accommodating means are preferable.
  • preferable crushing means include a crusher having a material that does not contain aluminum and titanium as a material for obtaining particles having a large particle size (for example, particles having a particle size of 1 mm or more).
  • particles having a particle size of 1 mm or more include an iron ball mill containing an iron ball as a grinding medium.
  • the obtained pulverized product is classified by sieving or the like, and then the obtained two or more types of particle sizes are combined and mixed at an appropriate ratio. And an operation for obtaining a porous cured body having the above-mentioned preferred particle size distribution.
  • the water purification material of the present invention is a pulverized product of lightweight cellular concrete
  • an example of a method for producing the water purification material is as follows. First, 30 to 65 mass% silica powder, 5 to 30 mass% quicklime powder, 5 to 40 mass% ordinary Portland cement, 0.005 to 0.1 mass% aluminum powder (foaming agent) (total amount above: 100 mass) %) To obtain a mixture. Next, 100 parts by mass of this mixture and 60 to 80 parts by mass of water are mixed to obtain a slurry. This slurry is accommodated in a box-shaped formwork having an internal dimension of 1,000 to 2,000 mm (length) ⁇ 600 to 1,000 mm (width) ⁇ 500 to 1,000 mm (height).
  • Other examples of the method for producing a water purification material of the present invention include: (a) a step of preparing two or more types of porous granules containing calcium silicate hydrate as a main component; and (b) two or more types of these.
  • the types of porous particles prepared in step (a) are 2 or more, preferably 3 or more, more preferably 5 or more, and particularly preferably 8 or more.
  • the porous particles not recovered in the step (c) are porous particles having an aluminum content of 10% by mass or less in terms of oxide and a titanium content of 1.0% by mass or less in terms of oxide. If the aluminum content is 10% by mass or less in terms of oxide and the content of titanium is 1.0% by mass or less in terms of oxide as a whole mixture after mixing with granules, the present invention It can be used as a part of water purification material.
  • the method for purifying the water quality of a fishery farm according to the present invention is to spray the water purification material described above on the breeding water of a fishery farm.
  • the application amount of the water purification material is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, preferably 0.1 to 2 parts by mass per 100 parts by mass of the breeding water in the fishery farm. Part.
  • the amount is less than 0.01 parts by mass, it is difficult to sufficiently reduce the concentrations of the water-soluble phosphorus compound and ammonium ion, and the purification of water quality is insufficient.
  • the amount exceeds 5 parts by mass the amount of the water purification material is large, so that the cost of water purification increases.
  • the application of the water purification material to the breeding water of the farm is preferably performed in a state where there is no seafood in the breeding water.
  • the fish and shellfish in the breeding water of the farm are captured and put in another breeding water. Return to the breeding water.
  • water purification is carried out, and after completion of the water purification, fresh fish and other fish are put into the breeding water. Is mentioned.
  • the present invention will be described by way of examples.
  • the present invention is not limited to those described in the examples, and various embodiments can be adopted as long as they are included in the scope of the claims.
  • the Al (aluminum) content and the Ti (titanium) content are both oxide equivalent values.
  • Example 1 (1) Preparation of water purification material Silica stone powder (Al content: 4.6% by mass, Ti content: 0.1% by mass) 50% by mass, quick lime powder (Al content: 1.2% by mass) , Ti content: 0.0% by mass) 20% by mass, ordinary Portland cement (Al content: 5.0% by mass, Ti content: 0.1% by mass), 30% by mass, aluminum powder (foaming) Agent) 0.01% by mass (total amount: 100% by mass) was mixed to obtain a mixture. Next, 100 parts by mass of the mixture and 70 parts by mass of water were mixed to obtain a slurry.
  • This slurry was accommodated in a box-shaped mold having an internal dimension of 400 mm (length) ⁇ 100 mm (width) ⁇ 100 mm (height) and cured at room temperature (20 ° C.) for 5 hours. Thereafter, the cured body in the mold was removed from the mold, and this cured body was hydrothermally reacted in an autoclave at a temperature of 180 ° C., a pressure of 10,000 hPa, and a reaction time of 10 hours.
  • Part of the porous cured body after the hydrothermal reaction is pulverized using an iron crusher, and the remainder is pulverized using an iron ball mill having an iron ball as a pulverization medium, and then these pulverized products.
  • Each of the products is classified using a sieve, and the obtained particles of a plurality of types of particle sizes are combined at an appropriate blending ratio to obtain porous particles having the following particle size distribution (tobermorite content: solid A water purification material A comprising 70% by volume and porosity of 80% by volume in the phase was obtained.
  • the aluminum content was 8.8% by mass and the titanium content was 0.1% by mass.
  • the porosity of this porous particle was 80%.
  • This porous granule has a chemical composition and porosity corresponding to the pulverized material of lightweight cellular concrete waste.
  • the killing rate of medaka refers to the ratio (%) obtained by dividing the number of medaka dead at the time of March by the number of medaka (100) at the time of spraying the water purification material.
  • Abnormal response rate of medaka is the number of medakas observed abnormal in balance, swimming behavior, breathing, body color, etc. in March, divided by the number of medakas (100) when spraying water purification material. Percentage (%). The results are shown in Table 1.
  • Example 2 Instead of silica powder (Al content: 4.6 mass%, Ti content: 0.1 mass%), silica powder (Al content: 1.6 mass%, Ti content: 1. The experiment was performed in the same manner as in Example 1 except that 5% by mass) was used. In the obtained water purification material B, the aluminum content was 4.2 mass% and the titanium content was 0.9 mass%. The particle size distribution and porosity of this porous granule were the same as in Example 1. Table 1 shows the results of the killing rate and response abnormality rate of medaka.
  • Example 2 when an experiment similar to “(3) Experiment for confirming the effect of water purification” in Example 1 was performed, the content of phosphate ions was reduced from 1633 mg / liter to 211 mg / liter. Further, the ammonium ion content was reduced from 350 mg / liter to 95 mg / liter.
  • Example 1 The experiment was performed in the same manner as in Example 1 except that 1% by mass) was used.
  • the aluminum content was 8.5 mass% and the titanium content was 1.2 mass%.
  • the particle size distribution and porosity of this porous granule were the same as in Example 1.
  • Table 1 shows the results of the killing rate and response abnormality rate of medaka.
  • An experiment was performed in the same manner as in “(2) Breeding experiment using medaka” in Example 1 except that the water purification material was not used. Table 1 shows the results of the killing rate and response abnormality rate of medaka.
  • the water purification material of the present invention showed that the water-soluble phosphorus component and ammonium contained in the breeding water of the seafood farm It can be seen that the concentration of ions can be greatly reduced in a short period of time and the quality of the breeding water can be sufficiently purified.

Abstract

 魚介類の養殖場において、有害物質の溶出等によって魚介類に害を与えることなく、飼育水の水質を浄化することができる水質浄化材を提供する。 珪酸カルシウム水和物を主成分として含む多孔質の粒体からなり、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下である水質浄化材。水質浄化材は、好ましくは、0.01mm以上、0.1mm未満の粒体の割合が、5~30質量%、粒度が0.1mm以上、1.0mm未満の粒体の割合が、10~50質量%、粒度が1.0mm以上、2.5mm未満の粒体の割合が、10~50質量%、粒度が2.5mm以上、4.0mm以下の粒体の割合が、5~30質量%、粒度が0.01mm未満または4.0mmを超える粒体の割合が0~30質量%、の粒度分布を有する。

Description

水質浄化材、その製造方法、および魚介類の養殖場の水質の浄化方法
 本発明は、水質浄化材、その製造方法、および該水質浄化材を用いた魚介類の養殖場の水質の浄化方法に関する。
 魚、エビ、カニ等の魚介類の養殖場の飼育水中において、餌の残渣や魚介類の排泄物等に由来する水溶性リン成分、アンモニウムイオン等は、飼育水の水質を低下させ、魚介類の生育に悪影響を及ぼす。
 そのため、飼育水から水溶性リン成分やアンモニウムイオンを除去するための種々の方法が、従来、提案されている。
 例えば、特許文献1に、50~90%の空隙率を有する珪酸カルシウムを主たる構成物とする多孔質浄化剤を水槽中に浸漬することを特徴とする水槽の浄化方法が、記載されている。
 また、この文献には、多孔質浄化材が、珪酸質原料と石灰質原料とを主原料とするスラリーにアルミニウム粉末などの気泡剤を添加して高温高圧下で水熱反応処理して得られる成形物、あるいはこの成形物を破砕して得られる破砕物であることが、記載されている。
 さらに、この文献には、トバモライトを主たる構成物として含む多孔質浄化材を製造する際に、原料として、珪石粉末5重量部、生石灰粉末2重量部、普通ポルトランドセメント3重量部、金属アルミニウム粉末0.008重量部、および水7重量部を用いたことが、記載されている。
 一方、非特許文献1に、川湯温泉の廃水に含まれているモノマー態アルミニウムイオンが、サケ稚魚に対して毒性を有することが報告されている。
特開昭63-42788号公報
「温泉廃水による環境破壊-I」、橋本進、さけ・ますふ研報(北海道さけ・ますふ化場の研究報告)、43巻、第29~38頁、1989年
 上述のとおり、特許文献1の実施例では、トバモライト浄化材の原料として、普通ポルトランドセメント等の鉱物由来原料を用いている。これら鉱物由来原料は、通常、アルミニウム、チタン等の金属元素を含む。なお、トバモライト浄化材の原料の一つである金属アルミニウム粉末は、添加量が非常に小さいため、トバモライト浄化材に含まれるアルミニウムの含有率にはほとんど影響を与えないと考えられる。
 一方、上述のとおり、非特許文献1に、モノマー態アルミニウムイオンが、サケ稚魚に対して毒性を有することが記載されている。
 これらの文献の記載によれば、水質浄化材を、魚介類の養殖場の飼育水の浄化のために用いる場合、水質浄化材の中に、アルミニウム等の有害物質が高い含有率で含まれていないか否かに配慮する必要がある。
 本発明は、魚介類の養殖場において、有害物質の溶出等によって魚介類に害を与えることなく、飼育水の水質を浄化することができる水質浄化材、および、該水質浄化材を用いた魚介類の養殖場の水質の浄化方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意検討した結果、珪酸カルシウム水和物を主成分として含む多孔質の粒体からなり、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下である水質浄化材によれば、魚介類の養殖場において、有害物質の溶出等によって魚介類に害を与えることなく、飼育水中の水溶性リン成分およびアンモニウムイオンの各濃度を短期間で大幅に低減し、飼育水の水質を十分に浄化することができることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1] 珪酸カルシウム水和物を主成分として含む多孔質の粒体からなり、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下であることを特徴とする水質浄化材。
[2] 上記多孔質の粒体が、50%以上の空隙率を有する粒体である、上記[1]に記載の水質浄化材。
[3] 上記多孔質の粒体の全量中、粒度が0.01mm以上、0.1mm未満の粒体の割合が、5~30質量%であり、粒度が0.1mm以上、1.0mm未満の粒体の割合が、10~50質量%であり、粒度が1.0mm以上、2.5mm未満の粒体の割合が、10~50質量%であり、粒度が2.5mm以上、4.0mm以下の粒体の割合が、5~30質量%であり、粒度が0.01mm未満または4.0mmを超える粒体の割合が0~30質量%である、上記[1]又は[2]に記載の水質浄化材。
[4] 上記多孔質の粒体が、軽量気泡コンクリートの廃材からなる、上記[1]~[3]のいずれかに記載の水質浄化材。
[5] 上記水質浄化材が、魚介類の養殖場の飼育水に散布して用いるためのものである、上記[1]~[4]のいずれかに記載の水質浄化材。
[6] 上記[1]~[5]のいずれかに記載の水質浄化材を製造するための方法であって、石灰質原料、珪酸質原料および水を含む水熱反応用原料を、加圧および加熱して水熱反応を生じさせ、多孔質の硬化体を得る反応工程と、上記多孔質の硬化体を粉砕して、上記水質浄化材を得る粉砕工程とを含み、かつ、上記水熱反応用原料として、水を除く原料の全量を100質量%とした場合、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下であるものを用いることを特徴とする水質浄化材の製造方法。
[7] 上記粉砕工程の粉砕手段として、アルミニウムおよびチタンを含まないものを用いる、上記[6]に記載の水質浄化材の製造方法。
[8] 上記[1]~[5]のいずれかに記載の水質浄化材を製造するための方法であって、珪酸カルシウム水和物を主成分として含む多孔質の粒体を、2種以上用意する工程と、これら2種以上の多孔質の粒体の各々について、アルミニウムおよびチタンの各含有率を測定する工程と、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下の多孔質の粒体を、水質浄化材として選別して回収する工程とを含む水質浄化材の製造方法。
[9] 上記[1]~[5]のいずれかに記載の水質浄化材を、魚介類の養殖場の飼育水に散布することを特徴とする魚介類の養殖場の水質の浄化方法。
[10] 上記水質浄化材の散布量が、魚介類の養殖場の飼育水100質量部当たり、0.01~5質量部である、上記[9]に記載の魚介類の養殖場の水質の浄化方法。
 魚介類の養殖場の飼育水において、餌の残渣や魚介類の排泄物等に由来する水溶性リン化合物(例えば、リン酸塩)、アンモニウムイオン等の濃度が高くなったときに、本発明の水質浄化材を用いれば、当該水質浄化材からアルミウムおよびチタンが溶出して魚介類に害を与えることなく、水溶性リン化合物およびアンモニウムイオンの各濃度を短期間で大幅に低減し、飼育水の水質を十分に浄化することができる。
 なお、本明細書中、飼育水とは、養殖池等の、魚介類が生育可能な水貯留手段の中に貯留された水を意味し、淡水と海水のいずれであってもよい。また、魚介類とは、魚、エビ、カニ、貝、両生類(食用ガエル)等を含む。
 本発明の水質浄化材は、珪酸カルシウム水和物を主成分として含む多孔質の粒体からなり、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下のものである。
 本発明において、多孔質の粒体の主成分が、珪酸カルシウム水和物であることによって、当該珪酸カルシウム水和物のカルシウムイオンと、飼育水中の水溶性リン成分(例えば、リン酸イオン)が反応して、不溶性カルシウム含有物質が生じ、飼育水中の水溶性リン成分の濃度を低減することができる。
 珪酸カルシウム水和物の例としては、トバモライト、ゾノトライト、CSHゲル、フォシャジャイト、ジャイロライト、ヒレブランダイト等が挙げられる。
 このうち、トバモライトは、結晶性の珪酸カルシウム水和物であり、Ca5・(Si6182)・4H2O(板状の形態)、Ca5・(Si6182)(板状の形態)、Ca5・(Si6182)・8H2O(繊維状の形態)等の化学組成を有するものである。
 ゾノトライトは、結晶性の珪酸カルシウム水和物であり、Ca6・(Si617)・(OH)2(繊維状の形態)等の化学組成を有するものである。
 CSHゲルは、αCaO・βSiO2・γH2O(ただし、α/β=0.7~2.3、γ/β=1.2~2.7である。)、例えば、3CaO・2SiO2・3H2Oの化学組成を有する珪酸カルシウム水和物である。
 本発明の水質浄化材を構成する多孔質の粒体は、空隙部分を除く固相100体積%中、好ましくは50体積%以上、より好ましくは60体積%以上の割合で、珪酸カルシウム水和物を含む。該割合が50体積%以上であると、水質の浄化の効果をより高めることができる。
 本発明の水質浄化材を構成する多孔質の粒体は、多孔質であるため、粒体の表面の空隙に微生物が担持され易く、微生物によるアンモニウムイオンの硝化を促進することができる。
 多孔質の粒体の空隙率は、微生物が担持される量を大きくする観点から、好ましくは50%以上、より好ましくは60%以上、特に好ましくは70%以上である。該空隙率の上限値は、特に限定されないが、粒体の機械的強度(例えば、圧縮強度)を確保する観点から、好ましくは90%である。
 多孔質の粒体の好ましい例としては、建築資材の廃材の再利用の観点から、軽量気泡コンクリート(ALC)の廃材の粉砕物が挙げられる。軽量気泡コンクリートの廃材を粉砕した後、必要に応じて、篩等の分級手段を用いて分級し、分級後の種々の粒度の粒体を組み合わせることによって、所望の粒度分布を有する多孔質の粒体を得ることができる。
 なお、本明細書中、廃材とは、製品の廃材、製品の製造過程で生じる端材、工場内の試製品等を広く含むものである。また、廃材の粉砕物とは、1.0mm未満の粒度を有する粒体と、1.0mm以上の粒度を有する粒体の両方を意味する。
 軽量気泡コンクリートは、Ca5・(Si6182)・4H2Oの化学式で表されるトバモライト、および、未反応の珪石からなるものであり、80体積%程度の空隙率を有する。
 本明細書中、空隙率とは、粒体(例えば、軽量気泡コンクリートからなる粒体)の体積全体中に占めるすべての空隙の体積の総和の割合をいう。ここで、空隙とは、粒体の外部の空間と連通する連続的な空隙と、粒体の外部の空間と連通せずに粒体の内部にのみ形成される非連続的な空隙の両方を意味する。
 軽量気泡コンクリート中のトバモライトの割合は、コンクリートの内部の空隙部分を除く固相の全体を100体積%として、65~80体積%程度である。
 本発明において、多孔質の粒体の好ましい粒度分布は、次のとおりである。
 粒度が0.01mm以上、0.1mm未満の粒体の割合は、好ましくは5~30質量%、より好ましくは5~25質量%である。該割合が5質量%以上であると、水溶性リン化合物の濃度の低減効果をより高めることができる。該割合が30質量%以下であると、多孔質の粒体全体の粒度分布がシャープ(急な傾斜を有する高い山の形)でなく、ブロード(緩やかな傾斜を有する低い山の形)になる傾向があるので、水溶性リン化合物の濃度の低減効果とアンモニウムイオンの濃度の低減効果のバランスがより良好になる。
 粒度が0.1mm以上、1.0mm未満の粒体の割合は、好ましくは10~50質量%、より好ましくは15~45質量%である。該割合が10~50質量%の範囲内であると、粒度分布がブロードになり、水溶性リン化合物の濃度の低減効果とアンモニウムイオンの濃度の低減効果のバランスがより良好になる。
 粒度が1.0mm以上、2.5mm未満の粒体の割合は、好ましくは10~50質量%、より好ましくは15~45質量%である。該割合が10~50質量%の範囲内であると、粒度分布がブロードになり、水溶性リン化合物の濃度の低減効果とアンモニウムイオンの濃度の低減効果のバランスがより良好になる。
 粒度が2.5mm以上、4.0mm以下の粒体の割合は、5~30質量%、より好ましくは5~25質量%である。該割合が5質量%以上であると、アンモニウムイオンの濃度の低減効果をより高めることができる。該割合が30質量%以下であると、粒度分布がブロードになり、水溶性リン化合物の濃度の低減効果とアンモニウムイオンの濃度の低減効果のバランスがより良好になる。
 粒度が0.01mm未満または4.0mmを超える粒体の割合は、好ましくは0~30質量%、より好ましくは0~25質量%である。該割合が30質量%以下であると、粒度が0.01mm未満の粒体の量が多いことによる、水質の浄化時の飼育水の濁りや、粒度が4.0mmを超える粒体の量が多いことによる、水質浄化材の単位質量当たりの水溶性リン化合物およびアンモニウムイオンの各濃度の低減効果の低下といった不利な点を軽減することができる。
 本発明の水質浄化材を構成する多孔質の粒体に含まれるアルミニウム(Al)およびチタン(Ti)の各含有率は、次のとおりである。
 アルミニウム(Al)の含有率は、酸化物換算で、10質量%以下、より好ましくは9.5質量%以下、特に好ましくは9.0質量%以下である。該含有率が10質量%を超えると、魚介類が、遊泳行動等に異常をきたしたり、死ぬことがある。
 チタン(Ti)の含有率は、酸化物換算で、1.0質量%以下、より好ましくは0.9質量%以下である。該含有率が1.0質量%を超えると、魚介類が、遊泳行動等に異常をきたしたり、死ぬことがある。
 本発明の水質浄化材の製造方法の一例は、(A)石灰質原料、珪酸質原料および水を含む水熱反応用原料を、加圧および加熱して水熱反応を生じさせ、多孔質の硬化体を得る反応工程と、(B)工程(A)で得た多孔質の硬化体を粉砕して、水質浄化材を得る粉砕工程を含む。以下、各工程について詳しく説明する。
[(A)反応工程]
 石灰質原料としては、生石灰粉末、消石灰粉末等が挙げられる。
 珪酸質原料としては、珪石粉末、珪砂等が挙げられる。
 任意に配合される他の固体原料としては、セメント(各種ポルトランドセメント等)、アルミニウム粉末、界面活性剤、石膏等が挙げられる。このうち、アルミニウム粉末および界面活性剤は、発泡剤である。
 固体原料の全量中の石灰質原料の割合は、特に限定されないが、反応後に未反応の原料が多量に残存することを避ける等の観点から、好ましくは5~30質量%である。
 固体原料の全量中の珪酸質原料の割合は、特に限定されないが、反応後に未反応の原料が多量に残存することを避ける等の観点から、好ましくは30~65質量%である。
 固体原料の全量中の他の固体原料の割合は、特に限定されないが、通常、5~40質量%である。固体原料としてセメントを用いる場合、固体原料の全量中のセメントの割合は、多孔質の硬化体の圧縮強度等を高める観点から、好ましくは5~40質量%である。固体原料としてアルミニウム粉末等の発泡剤を用いる場合、固体原料の全量中の発泡剤の割合は、多孔質の硬化体に適度な空隙率を与える観点から、好ましくは0.005~0.1質量%である。
 水の量は、水熱反応を効率良く行う等の観点から、水以外の原料(固体原料)の全量100質量部当たり、好ましくは50~100質量部である。
 水熱反応用原料のうち、水を除く原料の全量(例えば、生石灰粉末、珪石粉末、セメントおよびアルミニウム粉末の合計量)を100質量%とした場合、水熱反応用原料として、アルミニウムおよびチタンの各含有率が次の範囲内のものを用いることが、好ましい。
 アルミニウム(Al)の含有率は、酸化物換算で、10質量%以下、より好ましくは9.5質量%以下、特に好ましくは9.0質量%以下である。
 チタン(Ti)の含有率は、酸化物換算で、1.0質量%以下、より好ましくは0.9質量%以下である。
 アルミニウムおよびチタンの各含有率が上記の数値範囲内であれば、水熱反応で得られる多孔質の粒体に含まれるアルミニウムおよびチタンの各含有率を、上述の数値範囲内に調整することが容易となる。
 水熱反応前に、水熱反応用原料(固体原料と水の混合物)を適当な粒度に造粒してもよい。この場合、水熱反応用原料の粒度は、好ましくは5~100mmである。
 水熱反応の圧力は、水熱反応を効率良く行う等の観点から、好ましくは3,000~30,000hPa、より好ましくは4,000~25,000hPaである。
 水熱反応の温度は、水熱反応を効率良く行う等の観点から、好ましくは100~250℃、より好ましくは120~230℃、特に好ましくは150~210℃である。
 水熱反応の時間は、特に限定されないが、通常、5~15時間である。
 水熱反応を行うための手段の例としては、オートクレーブ等が挙げられる。
[(B)粉砕工程]
 工程(A)で得た多孔質の硬化体を粉砕するための粉砕手段としては、アルミニウムおよびチタンを含まない粉砕媒体および収容手段を有するものが好ましい。
 好ましい粉砕手段の例としては、粒度の大きな粒体(例えば、1mm以上の粒度のもの)を得るためのものとして、アルミニウムおよびチタンを含まない材質を有するクラッシャー等が挙げられ、粒度の小さな粒体(例えば、1mm未満の粒度のもの)を得るためのものとして、鉄球を粉砕媒体として含む鉄製のボールミル等が挙げられる。
 粉砕工程は、多孔質の硬化体を粉砕した後に、得られた粉砕物を篩分け等によって分級し、次いで、得られた2種以上の粒度の粒体を適当な割合で組み合わせて混合して、上述の好ましい粒度分布を有する多孔質の硬化体を得る操作を含むことができる。
 本発明の水質浄化材が、軽量気泡コンクリートの粉砕物である場合、水質浄化材の製造方法の一例は、次のとおりである。
 まず、珪石粉末30~65質量%、生石灰粉末5~30質量%、普通ポルトランドセメント5~40質量%、アルミニウム粉末(発泡剤)0.005~0.1質量%(以上の合計量:100質量%)を混合して、混合物を得る。
 次いで、この混合物100質量部と、水60~80質量部を混合して、スラリーを得る。
 このスラリーを、1,000~2,000mm(長さ)×600~1,000mm(幅)×500~1,000mm(高さ)の内寸を有する箱形の型枠の中に収容して、室温(例えば、10~40℃)で、3~10時間、養生する。
 その後、型枠内の硬化体を脱型し、この硬化体をオートクレーブにて、150~250℃の温度、5,000~15,000hPaの圧力、および5~15時間の反応時間の条件下で、水熱反応し、多孔質の硬化体を得る。
 多孔質の硬化体の一部を、鉄製のクラッシャーを用いて破砕し、また、多孔質の硬化体の残部を、鉄球を粉砕媒体として有する鉄製のボールミルを用いて粉砕し、次いで、必要に応じて篩を用いて分級した後、得られた2種以上の粒度の粒体を適宜の配合比で組み合わせて、所望の粒度分布を有する多孔質の粒体からなる水質浄化材を得る。
 本発明の水質浄化材の製造方法の他の例は、(a)珪酸カルシウム水和物を主成分として含む多孔質の粒体を、2種以上用意する工程と、(b)これら2種以上の多孔質の粒体の各々について、アルミニウムおよびチタンの各含有率を測定する工程と、(c)アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下の多孔質の粒体を、水質浄化材として選別して回収する工程を含む。
 工程(a)において準備する多孔質の粒体の種類は、2種以上、好ましくは3種以上、より好ましくは5種以上、特に好ましくは8種以上である。
 工程(c)で回収されなかった多孔質の粒体は、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下の多孔質の粒体と混合して、混合後の混合物全体として、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下であれば、本発明の水質浄化材の材料の一部として使用することができる。
 本発明の魚介類の養殖場の水質の浄化方法は、上述の水質浄化材を、魚介類の養殖場の飼育水に散布するものである。
 水質浄化材の散布量は、魚介類の養殖場の飼育水100質量部当たり、好ましくは0.01~5質量部、より好ましくは0.05~3質量部、好ましくは0.1~2質量部である。該量が0.01質量部未満では、水溶性リン化合物およびアンモニウムイオンの各濃度を十分に低減させることが困難となり、水質の浄化が不十分となる。該量が5質量部を超えると、水質浄化材の量が大きいために、水質浄化のコストが増大する。
 本発明において、養殖場の飼育水への水質浄化材の散布は、好ましくは、飼育水に魚介類が存在しない状態で行われる。この実施形態の一例としては、水質浄化の前に、養殖場の飼育水の中の魚介類を捕獲して、別の飼育水の中に入れ、水質浄化が終了した後に、魚介類を元の飼育水の中に戻すことが挙げられる。他の例としては、養殖場の飼育水の中の魚介類を捕獲して出荷した後に、水質浄化を行い、水質浄化の終了後に、魚介類の稚魚等を新たに飼育水の中に入れることが挙げられる。
 以下、実施例によって本発明を説明する。本発明は、実施例に記載のものに限定されず、特許請求の範囲に包含される限りにおいて、種々の実施形態を採ることができる。
 以下の実施例および比較例中、Al(アルミニウム)の含有率およびTi(チタン)の含有率は、いずれも、酸化物換算値である。
[実施例1]
(1)水質浄化材の調製
 珪石粉末(Alの含有率:4.6質量%、Tiの含有率:0.1質量%)50質量%、生石灰粉末(Alの含有率:1.2質量%、Tiの含有率:0.0質量%)20質量%、普通ポルトランドセメント(Alの含有率:5.0質量%、Tiの含有率:0.1質量%)30質量%、アルミニウム粉末(発泡剤)0.01質量%(以上の合計量:100質量%)を混合して、混合物を得た。
 次いで、この混合物100質量部と水70質量部を混合して、スラリーを得た。
 このスラリーを、400mm(長さ)×100mm(幅)×100mm(高さ)の内寸を有する箱形の型枠の中に収容して、室温(20℃)で、5時間、養生した。
 その後、型枠内の硬化体を脱型し、この硬化体をオートクレーブにて、180℃の温度、10,000hPaの圧力、および10時間の反応時間の条件下で、水熱反応させた。
 水熱反応後の多孔質の硬化体について、その一部を、鉄製のクラッシャーを用いて粉砕し、残部を、鉄球を粉砕媒体として有する鉄製のボールミルを用いて粉砕し、次いで、これらの粉砕物の各々を、篩を用いて分級し、得られた複数の種類の粒度の粒体を適宜の配合割合で組み合わせて、次の粒度分布を有する多孔質の粒体(トバモライトの含有率:固相中の割合で70体積%、空隙率:80体積%)からなる水質浄化材Aを得た。この多孔質の粒体中、アルミニウムの含有率は8.8質量%、チタンの含有率は0.1質量%であった。この多孔質の粒体の空隙率は、80%であった。この多孔質の粒体は、軽量気泡コンクリートの廃材の粉砕物に相当する化学組成および空隙率を有する。
(粒度分布)
 粒度が0.01mm以上、0.1mm未満の粒体の割合:10質量%
 粒度が0.1mm以上、1.0mm未満の粒体の割合:35質量%
 粒度が1.0mm以上、2.5mm未満の粒体の割合:35質量%
 粒度が2.5mm以上、4.0mm以下の粒体の割合:15質量%
 粒度が0.01mm未満または4.0mmを超える粒体の割合:5質量%
(2)メダカを用いた飼育実験
 100リットルの水を貯めた水槽に、100匹のメダカを入れた。次いで、この水槽内の水に、「水質浄化材A」100gを散布した。散布した時から、3月が経過した時に、メダカの致死率および反応異常率を調べた。
 メダカの致死率とは、3月経過時に死んでいたメダカの数を、水質浄化材の散布時のメダカの数(100匹)で除した割合(%)をいう。
 メダカの反応異常率とは、3月経過時に、平衡、遊泳行動、呼吸、体色等に異常が観察されたメダカの数を、水質浄化材の散布時のメダカの数(100匹)で除した割合(%)をいう。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(3)水質浄化の効果を確認する実験
 池から採取した水に試薬(水溶性リン化合物:リン酸二水素ナトリウム、アンモニウム塩:塩化アンモニウム)を添加して、リン酸イオン(PO4 3-)の含有率が1633mg/リットルでかつアンモニウムイオン(NH4 )の含有率が350mg/リットルである試験用の飼育水を調製した。なお、リン酸イオンの含有率は、東亜ディーケーケー社のイオン分析計(製品の型番:IA-300)を用いて測定した。また、アンモニウムイオンの含有率は、インドフェノール青比色法を用いて測定した。
 次に、室温25℃の室内で、1000ミリリットルの飼育水(水温:25℃)に、上方から「水質浄化材A」10gを散布し、1分間撹拌した。
 散布した時から60分後に、飼育水を採取して、リン酸イオンの含有率を測定した。また、散布した時から7日後に、飼育水を採取して、アンモニウムイオンの含有率を測定した。
 その結果、リン酸イオンの含有率は、1633mg/リットルから216mg/リットルに低下していた。また、アンモニウムイオンの含有率は、350mg/リットルから96mg/リットルに低下していた。
[実施例2]
 珪石粉末(Alの含有率:4.6質量%、Tiの含有率:0.1質量%)に代えて、珪石粉末(Alの含有率:1.6質量%、Tiの含有率:1.5質量%)を用いた以外は実施例1と同様にして、実験した。
 得られた水質浄化材B中、アルミニウムの含有率は4.2質量%、チタンの含有率は0.9質量%であった。この多孔質の粒体の粒度分布および空隙率は、実施例1と同じであった。メダカの致死率および反応異常率の結果を、表1に示す。
 また、実施例1の「(3)水質浄化の効果を確認する実験」と同様の実験を行ったところ、リン酸イオンの含有率は、1633mg/リットルから211mg/リットルに低下していた。また、アンモニウムイオンの含有率は、350mg/リットルから95mg/リットルに低下していた。
[比較例1]
 珪石粉末(Alの含有率:4.6質量%、Tiの含有率:0.1質量%)に代えて、珪石粉末(Alの含有率:6.9質量%、Tiの含有率:0.9質量%)を用いた以外は実施例1と同様にして、実験した。
 得られた水質浄化材C中、アルミニウムの含有率は11.0質量%、チタンの含有率は0.6質量%であった。この多孔質の粒体の粒度分布および空隙率は、実施例1と同じであった。メダカの致死率および反応異常率の結果を、表1に示す。
[比較例2]
 珪石粉末(Alの含有率:4.6質量%、Tiの含有率:0.1質量%)に代えて、珪石粉末(Alの含有率:4.5質量%、Tiの含有率:2.1質量%)を用いた以外は実施例1と同様にして、実験した。
 得られた水質浄化材D中、アルミニウムの含有率は8.5質量%、チタンの含有率は1.2質量%であった。この多孔質の粒体の粒度分布および空隙率は、実施例1と同じであった。メダカの致死率および反応異常率の結果を、表1に示す。
[参考例1]
 水質浄化材を用いない以外は実施例1の「(2)メダカを用いた飼育実験」と同様にして、実験した。メダカの致死率および反応異常率の結果を、表1に示す。
 表1から、アルミニウムの含有率が10質量%を超える水質浄化材Cを用いた比較例1、および、チタンの含有率が1.0質量%を超える水質浄化材Dを用いた比較例2では、メダカの致死率および反応異常率が共に高く、魚介類の飼育水の水質浄化材として不適当であることがわかる。一方、アルミニウムの含有率が10質量%以下でかつチタンの含有率が1.0質量%以下である水質浄化材A、Bを用いた実施例1、2では、メダカの致死率および反応異常率が共にゼロであり、魚介類の飼育水の水質浄化材として適することがわかる。
 また、実施例1~2の「(3)水質浄化の効果を確認する実験」の結果から、本発明の水質浄化材によれば、魚介類の養殖場の飼育水中の水溶性リン成分およびアンモニウムイオンの各濃度を短期間で大幅に低減し、飼育水の水質を十分に浄化しうることがわかる。

Claims (10)

  1.  珪酸カルシウム水和物を主成分として含む多孔質の粒体からなり、アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下であることを特徴とする水質浄化材。
  2.  上記多孔質の粒体が、50%以上の空隙率を有する粒体である請求項1に記載の水質浄化材。
  3.  上記多孔質の粒体の全量中、粒度が0.01mm以上、0.1mm未満の粒体の割合が、5~30質量%であり、粒度が0.1mm以上、1.0mm未満の粒体の割合が、10~50質量%であり、粒度が1.0mm以上、2.5mm未満の粒体の割合が、10~50質量%であり、粒度が2.5mm以上、4.0mm以下の粒体の割合が、5~30質量%であり、粒度が0.01mm未満または4.0mmを超える粒体の割合が0~30質量%である請求項1又は2に記載の水質浄化材。
  4.  上記多孔質の粒体が、軽量気泡コンクリートの廃材からなる請求項1~3のいずれか1項に記載の水質浄化材。
  5.  上記水質浄化材が、魚介類の養殖場の飼育水に散布して用いるためのものである請求項1~4のいずれか1項に記載の水質浄化材。
  6.  請求項1~5のいずれか1項に記載の水質浄化材を製造するための方法であって、
     石灰質原料、珪酸質原料および水を含む水熱反応用原料を、加圧および加熱して水熱反応を生じさせ、多孔質の硬化体を得る反応工程と、
     上記多孔質の硬化体を粉砕して、上記水質浄化材を得る粉砕工程と
    を含み、かつ、上記水熱反応用原料として、水を除く原料の全量を100質量%とした場合、アルミニウムの含有率が酸化物換算で10%質量以下でかつチタンの含有率が酸化物換算で1.0質量%以下であるものを用いることを特徴とする水質浄化材の製造方法。
  7.  上記粉砕工程の粉砕手段として、アルミニウムおよびチタンを含まないものを用いる請求項6に記載の水質浄化材の製造方法。
  8.  請求項1~5のいずれか1項に記載の水質浄化材を製造するための方法であって、
     珪酸カルシウム水和物を主成分として含む多孔質の粒体を、2種以上用意する工程と、
     これら2種以上の多孔質の粒体の各々について、アルミニウムおよびチタンの各含有率を測定する工程と、
     アルミニウムの含有率が酸化物換算で10質量%以下でかつチタンの含有率が酸化物換算で1.0質量%以下の多孔質の粒体を、水質浄化材として選別して回収する工程と
    を含む水質浄化材の製造方法。
  9.  請求項1~5のいずれか1項に記載の水質浄化材を、魚介類の養殖場の飼育水に散布することを特徴とする魚介類の養殖場の水質の浄化方法。
  10.  上記水質浄化材の散布量が、魚介類の養殖場の飼育水100質量部当たり、0.01~5質量部である請求項9に記載の魚介類の養殖場の水質の浄化方法。
PCT/JP2013/074339 2013-07-16 2013-09-10 水質浄化材、その製造方法、および魚介類の養殖場の水質の浄化方法 WO2015008398A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015527137A JP6198827B2 (ja) 2013-07-16 2013-09-10 水質浄化材の製造方法、および魚介類の養殖場の水質の浄化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-147389 2013-07-16
JP2013147389 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008398A1 true WO2015008398A1 (ja) 2015-01-22

Family

ID=52345887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074339 WO2015008398A1 (ja) 2013-07-16 2013-09-10 水質浄化材、その製造方法、および魚介類の養殖場の水質の浄化方法

Country Status (3)

Country Link
JP (1) JP6198827B2 (ja)
MY (1) MY173824A (ja)
WO (1) WO2015008398A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163938A (ja) * 2016-03-18 2017-09-21 太平洋セメント株式会社 水棲生物の養殖方法
JP2019062775A (ja) * 2017-09-29 2019-04-25 太平洋セメント株式会社 貝類成長促進材および貝類の成長の促進方法
WO2021005860A1 (ja) * 2019-07-05 2021-01-14 太平洋セメント株式会社 養殖用資材及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200282A (ja) * 1992-01-28 1993-08-10 Mitsubishi Materials Corp 重金属イオン吸着材及びその製造方法
JPH05309385A (ja) * 1992-05-01 1993-11-22 Azuma Kawazoe 生物学的処理材およびその使用方法
JPH08126420A (ja) * 1994-11-01 1996-05-21 Fukuoka Pref Gov 果樹の栽培方法
JP2000005746A (ja) * 1998-06-23 2000-01-11 Onoda Autoclaved Light Weight Concrete Co Ltd 油吸着材
JP2000218281A (ja) * 1999-01-29 2000-08-08 Mitsubishi Materials Corp 脱リン機能を有する下水処理水の濾過装置
JP2004050072A (ja) * 2002-07-19 2004-02-19 Bio-Genesis Technology Japan Inc オイル吸着体
JP2005281087A (ja) * 2004-03-30 2005-10-13 Clion Co Ltd 建材の製造方法
JP2010137123A (ja) * 2008-12-09 2010-06-24 Gunma Univ ミネラル成分供給剤及び該供給剤を用いた水の処理方法
JP2012240017A (ja) * 2011-05-23 2012-12-10 Nittetsu Kankyo Engineering Kk 有害物質の処理材及び有害物質の処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342788A (ja) * 1986-08-08 1988-02-23 Onoda Ee L C Kk 魚介類生息水域用の多孔質浄化材
JPS63130184A (ja) * 1986-11-20 1988-06-02 Mitsubishi Mining & Cement Co Ltd アオコなどの汚水浄化法
JP2000070960A (ja) * 1998-09-04 2000-03-07 Mitsubishi Materials Corp 建築廃材を利用した脱リン材
JP2001121179A (ja) * 1999-10-21 2001-05-08 Clion Co Ltd 多孔質浄化材及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200282A (ja) * 1992-01-28 1993-08-10 Mitsubishi Materials Corp 重金属イオン吸着材及びその製造方法
JPH05309385A (ja) * 1992-05-01 1993-11-22 Azuma Kawazoe 生物学的処理材およびその使用方法
JPH08126420A (ja) * 1994-11-01 1996-05-21 Fukuoka Pref Gov 果樹の栽培方法
JP2000005746A (ja) * 1998-06-23 2000-01-11 Onoda Autoclaved Light Weight Concrete Co Ltd 油吸着材
JP2000218281A (ja) * 1999-01-29 2000-08-08 Mitsubishi Materials Corp 脱リン機能を有する下水処理水の濾過装置
JP2004050072A (ja) * 2002-07-19 2004-02-19 Bio-Genesis Technology Japan Inc オイル吸着体
JP2005281087A (ja) * 2004-03-30 2005-10-13 Clion Co Ltd 建材の製造方法
JP2010137123A (ja) * 2008-12-09 2010-06-24 Gunma Univ ミネラル成分供給剤及び該供給剤を用いた水の処理方法
JP2012240017A (ja) * 2011-05-23 2012-12-10 Nittetsu Kankyo Engineering Kk 有害物質の処理材及び有害物質の処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163938A (ja) * 2016-03-18 2017-09-21 太平洋セメント株式会社 水棲生物の養殖方法
JP2019062775A (ja) * 2017-09-29 2019-04-25 太平洋セメント株式会社 貝類成長促進材および貝類の成長の促進方法
JP7058486B2 (ja) 2017-09-29 2022-04-22 太平洋セメント株式会社 貝類成長促進材および貝類の成長の促進方法
WO2021005860A1 (ja) * 2019-07-05 2021-01-14 太平洋セメント株式会社 養殖用資材及びその製造方法
CN113993372A (zh) * 2019-07-05 2022-01-28 太平洋水泥株式会社 养殖用资材及其制造方法
JP7465268B2 (ja) 2019-07-05 2024-04-10 太平洋セメント株式会社 養殖用資材及びその製造方法

Also Published As

Publication number Publication date
JP6198827B2 (ja) 2017-09-20
JPWO2015008398A1 (ja) 2017-03-02
MY173824A (en) 2020-02-24

Similar Documents

Publication Publication Date Title
JP5599061B2 (ja) 中性固化材用の添加材、中性固化材および重金属類の溶出抑制方法
AU2013362883B2 (en) Slurry for treatment of oxyanion contamination in water
JP6345951B2 (ja) 珪藻の増殖促進用の培養液、及び珪藻の増殖促進方法
JP6198827B2 (ja) 水質浄化材の製造方法、および魚介類の養殖場の水質の浄化方法
JP6675238B2 (ja) 水棲生物養殖用資材
JP2016129512A (ja) 養殖用資材及びその製造方法
JP2006026616A (ja) 水浄化材、および水浄化材の製造方法
JP7465268B2 (ja) 養殖用資材及びその製造方法
JP2018008180A (ja) 水処理材及びその製造方法
JP6198826B2 (ja) 魚介類の養殖場の水質の浄化方法
CN107746224A (zh) 一种固体除磷基质的配置及其加工方法
JPS6342788A (ja) 魚介類生息水域用の多孔質浄化材
JP2004244227A (ja) 漆喰
JP2022152501A (ja) 誘引材含有コンクリート及びコンクリート構造体
JP7009183B2 (ja) 栄養供給用粒体
JP6086834B2 (ja) 肥料、その製造方法、および作物の栽培方法
JPH0653036B2 (ja) 成型ゼオライトを用いる養殖池の清浄化方法
JP2001162288A (ja) 脱リン材
JP7287813B2 (ja) 水質浄化材
JP6465604B2 (ja) 不溶化スラリー
JP2018166468A (ja) 水質浄化用ブロックおよびその製造方法
JP2022147291A (ja) 池の浄化方法
JP3559904B2 (ja) 環境浄化用組成物
RU2565257C1 (ru) Гранулированный почвогрунт для аквариумов
RU2472737C1 (ru) Смесь для получения искусственного песчаника

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527137

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600169

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889513

Country of ref document: EP

Kind code of ref document: A1