WO2014199796A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2014199796A1
WO2014199796A1 PCT/JP2014/063610 JP2014063610W WO2014199796A1 WO 2014199796 A1 WO2014199796 A1 WO 2014199796A1 JP 2014063610 W JP2014063610 W JP 2014063610W WO 2014199796 A1 WO2014199796 A1 WO 2014199796A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage
current
inverter
target value
Prior art date
Application number
PCT/JP2014/063610
Other languages
English (en)
French (fr)
Inventor
綾井 直樹
健志 阿比留
俊明 奥村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to AU2014279387A priority Critical patent/AU2014279387B2/en
Priority to EP14811444.0A priority patent/EP3010136B1/en
Priority to US14/890,882 priority patent/US9627995B2/en
Priority to JP2015522691A priority patent/JP6187587B2/ja
Priority to CN201480032893.6A priority patent/CN105324927B/zh
Publication of WO2014199796A1 publication Critical patent/WO2014199796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an inverter device for converting DC power from a DC power source such as solar power generation into AC power.
  • an inverter device having a system interconnection function for converting input power from a DC power source such as a solar battery or a storage battery into AC power and superimposing the converted AC power on an AC system such as commercial power It is used.
  • Such an inverter device includes a booster circuit for boosting the voltage of input power and an inverter circuit for converting the output of the booster circuit into AC power.
  • the switching operation of the booster circuit is stopped only during the period when the voltage of the input power supply is lower than the absolute value of the AC system voltage among the AC power to be output, and the switching operation of the booster circuit is stopped during the other periods.
  • an inverter device that can reduce loss due to switching of the inverter circuit and the booster circuit and can output power with higher efficiency (see, for example, Patent Document 1).
  • the absolute value of the AC system voltage and the input voltage are compared with each other, and at the moment of coincidence, the high-frequency switching period is switched between the booster circuit and the inverter circuit.
  • the input voltage of the inverter circuit may be insufficient and the output current may be distorted. is there.
  • the inverter circuit can be switched even if the high-frequency switching period of the booster circuit and the inverter circuit is switched at the moment when the absolute value of the AC system voltage and the input voltage coincide with each other. Since there is no period during which the input voltage to the output is insufficient, there is no distortion in the output current. However, at this time, the voltage at both ends of the AC reactor is in phase with the AC voltage, and the phase of the current flowing through the AC reactor is 90 ° behind the voltage phase of the AC system. Therefore, the current phase of the AC power output through the AC reactor and superimposed on the AC system is delayed by 90 degrees with respect to the AC system voltage. As a result, there is a risk that it may not be possible to output electric power that conforms to the grid connection regulations.
  • the boost reference wave for shaping the output current of the booster circuit or the current of the DC reactor into a predetermined waveform and magnitude is a ratio of the absolute value of the system voltage and the input voltage to the inverter reference wave.
  • the boost reference wave which is a sine square wave whose magnitude is controlled by the monitoring result of the boost current or the DC reactor current, is directly compared with the triangular wave to control the on-time of the boost switching element.
  • the gate signal is used, this method cannot obtain an output current having a desired waveform and magnitude.
  • the output current of the booster circuit is greatly changed within a half period of the system power, even if the capacity of the smoothing capacitor connected to the input side is considerably increased, the input current is completely DC current. Inevitably, a pulsating flow in which fluctuation components are superimposed is unavoidable. Therefore, when a power source having an optimum operating point at which the output power is maximum at a specific current value is connected like a solar cell, it is difficult to control the solar cell to the optimum operating point.
  • the present invention has been made in view of such circumstances, and provides a period during which the high-frequency switching operation of the booster circuit and the inverter circuit is partially stopped, and also in the period during which high-frequency switching is performed, AC power with high power factor synchronized with the system voltage with little distortion regardless of output while reducing switching loss of power semiconductor elements and iron loss of reactors to achieve high conversion efficiency.
  • An object of the present invention is to provide an inverter device that can output current.
  • the present invention is an inverter device connected to an AC system via a reactor, which converts DC power output from a power source into AC power, and outputs the converted AC power to the AC system via the reactor.
  • a conversion unit and a control unit that controls the conversion unit are provided. Further, the conversion unit includes a booster circuit that boosts a DC input voltage value of the DC power, and an inverter circuit that converts power supplied from the booster circuit into AC power.
  • control unit obtains an output current target value based on the input power value of the DC power and the voltage value of the AC system, and based on the output current target value, the current target value and voltage target value of the inverter circuit And controlling the inverter circuit, and determining the current target value of the booster circuit based on the current target value and voltage target value common to the inverter circuit and the DC input voltage value. By controlling, the output of the AC power is controlled.
  • the inverter device of the present invention it is possible to output an alternating current with little distortion and synchronized with an alternating current system with high conversion efficiency.
  • FIG. 5 is a graph showing an example of a result obtained by simulation of a booster circuit voltage target value obtained by the control processing unit in feedback control and a booster circuit voltage detection value when controlled according to this (the vertical axis of voltage is [V].
  • the vertical axis of current is [A].)
  • (A) is a graph comparing a booster circuit carrier wave and a booster circuit reference wave
  • (b) is a drive waveform for driving the switching element Qb generated by the booster circuit control unit.
  • (A) is a graph comparing the inverter circuit carrier and the inverter circuit reference wave
  • (b) is a drive waveform for driving the switching element Q1 generated by the inverter circuit controller
  • (c) is It is a drive waveform for driving the switching element Q3 which the inverter circuit control part produced
  • the gist of the embodiment of the present invention includes at least the following.
  • This is an inverter device connected to an AC system via a reactor, which converts DC power output from a power source into AC power, and converts the converted AC power to the AC system via the reactor.
  • a conversion unit for outputting and a control unit for controlling the conversion unit are provided.
  • the conversion unit includes a booster circuit that boosts the DC input voltage value of the DC power, and an inverter circuit that converts power supplied from the booster circuit into AC power.
  • the control unit obtains an output current target value (Ia *) based on the input power value of the DC power and the voltage value of the AC system, and the current target value of the inverter circuit based on the output current target value.
  • (Iinv *) and a voltage target value (Vinv *) are obtained to control the inverter circuit, a current target value (Iinv *) and a voltage target value (Vinv *) common to the inverter circuit, and the DC input Based on the voltage value (Vg), a current target value (Iin *) of the booster circuit is obtained and the booster circuit is controlled to control the output of the AC power.
  • the conversion unit controlled by the control unit of the inverter device having the above configuration can always provide an output based on the current target value and the voltage target value of the inverter circuit to the reactor.
  • the control unit does not depend directly on the voltage value of the AC system, but determines the target value on the inverter device side, and based on this, the booster circuit and the inverter circuit can perform desired operations. Therefore, the control unit can control the conversion unit to output AC power having a voltage phase advanced by several degrees from the voltage phase of the AC system. In other words, the voltage phase of the AC power output from the converter is advanced by several degrees from the voltage phase of the AC system, so that the phase of the voltage across the reactor is 90 degrees ahead of the voltage phase of the AC system. be able to.
  • the current phase of the reactor is delayed by 90 degrees with respect to the voltage phase, the current phase of the AC power output through the reactor is synchronized with the current phase of the AC system. As a result, AC power having the same phase as that of the current phase can be output to the AC system, so that the power factor of the AC power can be prevented from decreasing.
  • the inverter device (1) may have specific modes listed in the following (2) to (9), for example.
  • a smoothing capacitor is provided between the booster circuit and the inverter circuit, and a power target value based on a current target value and a voltage target value of the inverter circuit,
  • the target current value of the booster circuit may be obtained based on a value including reactive power passing through the smoothing capacitor and the DC input voltage value.
  • the current target value of the booster circuit can be determined more accurately in consideration of the reactive power in addition to the power target value of the inverter circuit.
  • a smoothing capacitor is provided between the booster circuit and the inverter circuit, and a power target value based on a current target value and a voltage target value of the inverter circuit is obtained.
  • the current target value of the booster circuit may be obtained based on a value taking into account reactive power passing through the smoothing capacitor and power loss in the inverter circuit, and the DC input voltage value.
  • the current target value of the booster circuit can be determined more strictly in consideration of reactive power and power loss.
  • an output smoothing capacitor is provided after the reactor,
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the capacitance of the output smoothing capacitor is Ca
  • the voltage value of the AC system is Va
  • Iin * (Iinv * ⁇ Vinv *) / Vg
  • Iinv * Ia * + Ca ⁇ (d Va / dt) It is.
  • the current target value of the inverter circuit and the current target value of the booster circuit can be determined in consideration of the current flowing through the output smoothing capacitor.
  • an output smoothing capacitor is provided after the reactor,
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the voltage value of the AC system is Va
  • the DC input voltage value is Vg
  • Iin * (Iinv * ⁇ Vinv *) / Vg
  • Iinv * Ia * + Ica It is.
  • the current target value of the inverter circuit and the current target value of the booster circuit can be determined in consideration of the current flowing through the output smoothing capacitor.
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the capacitance of the smoothing capacitor is C
  • the voltage target value of the booster circuit is Vo *
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + C ⁇ (d Vo * / dt) ⁇ Vo * ⁇ / Vg It is.
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the voltage target value of the booster circuit is Vo *
  • the DC input voltage value is Vg
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + Ic ⁇ Vo * ⁇ / Vg It is.
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the capacitance of the smoothing capacitor is C
  • the voltage target value of the booster circuit is Vo *
  • the DC input voltage value is Vg
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + C ⁇ (d Vo * / dt) ⁇ Vo * + P LOSS ⁇ / Vg It is.
  • the current target value of the booster circuit is Iin *
  • the current target value and voltage target value of the inverter circuit are respectively set to Iinv * and Vinv *
  • the voltage target value of the booster circuit is Vo *
  • the DC input voltage value is Vg
  • the current flowing through the smoothing capacitor is Ic
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + Ic ⁇ Vo * + P LOSS ⁇ / Vg It is.
  • the control unit operates the booster circuit when outputting the voltage of the portion where the absolute value of the voltage target value of the inverter circuit is higher than the DC input voltage value, and the voltage of the inverter circuit Since the inverter circuit is controlled to operate when outputting a voltage whose absolute value of the target value is lower than the DC input voltage value, the potential difference of the power stepped down by the inverter circuit can be kept low. The loss due to switching of the booster circuit can be reduced, and AC power can be output with higher efficiency.
  • both the booster circuit and the inverter circuit operate based on the voltage target value set by the control unit, even if the operation is performed so that the high-frequency switching periods of both circuits are alternately switched, the alternating current output from the inverter device It is possible to suppress the occurrence of phase shift and distortion in the current.
  • the control unit measures each of the DC input voltage value and a DC input current value of DC power supplied from the power supply a plurality of times. It is preferable to perform maximum power point tracking control for the power supply based on the average values of the DC input voltage value and the DC input current value obtained from the results. In this case, even when the DC power from the power source fluctuates and is unstable, the control unit can accurately obtain the DC input voltage value and the DC input current value as average values. As a result, the power source can be suitably controlled, and the reduction in efficiency as the inverter device can be effectively suppressed.
  • the average values of the DC input voltage value and the DC input current value are the values of the DC input voltage value and the DC current during an integral multiple of a half cycle of the AC system.
  • Each of the input current values is preferably a value obtained from a result obtained by measuring a plurality of times at a time interval shorter than a half cycle of the AC system. In this case, the DC input voltage value and the DC input current value are the cycles. Even if it fluctuates, the DC input voltage value and the DC input current value can be obtained with high accuracy.
  • FIG. 1 is a block diagram illustrating an example of a system including the inverter device according to the first embodiment.
  • a photovoltaic power generation panel 2 as a DC power source is connected to the input terminal of the inverter device 1, and an AC commercial power system 3 is connected to the output terminal.
  • This system converts the direct current power generated by the solar power generation panel 2 into alternating current power, and performs an interconnection operation for output to the commercial power system 3.
  • the inverter device 1 includes a booster circuit 10 to which DC power output from the photovoltaic power generation panel 2 is applied, an inverter circuit 11 that converts the power supplied from the booster circuit 10 to AC power, and outputs the AC power to the commercial power system 3, and these And a control unit 12 for controlling the operation of both the circuits 10 and 11.
  • FIG. 2 is an example of a circuit diagram of the inverter device 1.
  • the booster circuit 10 includes a DC reactor 15, a diode 16, and a switching element Qb made of an IGBT (Insulated Gate Bipolar Transistor) or the like, and constitutes a boost chopper circuit.
  • a first voltage sensor 17, a first current sensor 18, and a capacitor 26 for smoothing are provided on the input side of the booster circuit 10.
  • the first voltage sensor 17 detects the DC input voltage detection value Vg (DC input voltage value) of the DC power output from the photovoltaic power generation panel 2 and input to the booster circuit 10, and outputs it to the control unit 12.
  • Vg DC input voltage value
  • the first current sensor 18 detects a booster circuit current detection value Iin (DC input current value) that is a current flowing through the DC reactor 15 and outputs it to the control unit 12. Note that a current sensor may be further provided in front of the capacitor 26 in order to detect the DC input current detection value Ig.
  • the control unit 12 has a function of calculating the input power Pin from the DC input voltage detection value Vg and the booster circuit current detection value Iin and performing MPPT (Maximum Power Point Tracking) control on the photovoltaic power generation panel 2. is doing.
  • the switching element Qb of the booster circuit 10 is controlled so that the period for performing the switching operation with the inverter circuit 11 is alternately switched as will be described later. Therefore, the booster circuit 10 outputs the boosted power to the inverter circuit 11 during the period during which the switching operation is performed, and the photovoltaic power generation panel 2 outputs the booster circuit 10 during the period during which the switching operation is stopped.
  • the DC input voltage value of the DC power input to is output to the inverter circuit 11 without being boosted.
  • a smoothing capacitor 19 is connected between the booster circuit 10 and the inverter circuit 11.
  • the inverter circuit 11 includes switching elements Q1 to Q4 made of FET (Field Effect Transistor). These switching elements Q1 to Q4 constitute a full bridge circuit. Each of the switching elements Q1 to Q4 is connected to the control unit 12, and can be controlled by the control unit 12. The control unit 12 performs PWM control of the operations of the switching elements Q1 to Q4. Thereby, the inverter circuit 11 converts the power given from the booster circuit 10 into AC power.
  • the inverter device 1 includes a filter circuit 21 between the inverter circuit 11 and the commercial power system 3.
  • the filter circuit 21 includes two AC reactors 22 and a capacitor 23 (output smoothing capacitor) provided at the subsequent stage of the AC reactor 22.
  • the filter circuit 21 has a function of removing high-frequency components contained in the AC power output from the inverter circuit 11. The AC power from which the high frequency component has been removed by the filter circuit 21 is supplied to the commercial power system 3.
  • the booster circuit 10 and the inverter circuit 11 convert the DC power output from the photovoltaic power generation panel 2 into AC power, and output the converted AC power to the commercial power system 3 via the filter circuit 21. Part.
  • the filter circuit 21 is connected to a second current sensor 24 for detecting an inverter current detection value Iinv (current flowing through the AC reactor 22), which is a current value output from the inverter circuit 11. Further, a second voltage sensor 25 for detecting a voltage value on the commercial power system 3 side (system voltage detection value Va) is connected between the filter circuit 21 and the commercial power system 3.
  • the second current sensor 24 and the second voltage sensor 25 output the detected system voltage detection value Va (AC system voltage value) and the inverter current detection value Iinv to the control unit 12.
  • the second current sensor 24 may be provided before the capacitor 23 as shown in the figure, but may be provided after the capacitor 23.
  • the control unit 12 controls the booster circuit 10 and the inverter circuit 11 based on the system voltage detection value Va and the inverter current detection value Iinv and the above-described DC input voltage detection value Vg and the booster circuit current detection value Iin.
  • FIG. 3 is a block diagram of the control unit 12.
  • the control unit 12 functionally includes a control processing unit 30, a booster circuit control unit 32, an inverter circuit control unit 33, and an averaging processing unit 34.
  • a part or all of the functions of the control unit 12 may be configured by a hardware circuit, or part or all of the functions may be realized by causing a computer (computer program) to be executed by a computer.
  • Software (computer program) for realizing the function of the control unit 12 is stored in a storage device (not shown) of the computer.
  • the booster circuit control unit 32 controls the switching element Qb of the booster circuit 10 based on the command value and the detection value given from the control processing unit 30, and causes the booster circuit 10 to output the electric power of the current corresponding to the command value.
  • the inverter circuit control unit 33 controls the switching elements Q1 to Q4 of the inverter circuit 11 based on the command value and the detection value given from the control processing unit 30, and the power of the current corresponding to the command value is converted to the inverter circuit. 11 to output.
  • the control processing unit 30 is provided with a DC input voltage detection value Vg, a booster circuit current detection value Iin, a system voltage detection value Va, and an inverter current detection value Iinv.
  • the control processing unit 30 calculates the input power Pin and its average value ⁇ Pin> from the DC input voltage detection value Vg and the booster circuit current detection value Iin.
  • the control processing unit 30 sets the DC input current command value Ig * (described later) based on the input power average value ⁇ Pin> to perform MPPT control on the photovoltaic power generation panel 2, and includes the booster circuit 10 and the inverter Each circuit 11 has a function of feedback control.
  • the DC input voltage detection value Vg and the booster circuit current detection value Iin are given to the averaging processing unit 34 and the control processing unit 30.
  • the averaging processor 34 samples the DC input voltage detection value Vg and the booster circuit current detection value Iin given from the first voltage sensor 17 and the first current sensor 18 at predetermined time intervals set in advance, respectively. And the averaged DC input voltage detection value Vg and booster circuit current detection value Iin are provided to the control processing unit 30.
  • FIG. 4 is a graph showing an example of results obtained by simulating changes with time in the DC input voltage detection value Vg and the booster circuit current detection value Iin. Further, the DC input current detection value Ig is a current value detected on the input side from the capacitor 26.
  • the DC input voltage detection value Vg, the booster circuit current detection value Iin, and the DC input current detection value Ig fluctuate in a cycle of 1 ⁇ 2 of the system voltage.
  • the reason why the DC input voltage detection value Vg and the DC input current detection value Ig fluctuate periodically is as follows. That is, the booster circuit current detection value Iin varies greatly from approximately 0 A to the peak value in a half cycle of the AC cycle according to the operations of the booster circuit 10 and the inverter circuit 11. Therefore, the fluctuation component cannot be completely removed by the capacitor 26, and the DC input current detection value Ig becomes a pulsating flow including a component that fluctuates in a half cycle of the AC cycle. On the other hand, the output voltage of the photovoltaic power generation panel changes depending on the output current. For this reason, the periodic fluctuation that occurs in the DC input voltage detection value Vg is 1 ⁇ 2 period of the AC power output from the inverter device 1.
  • the averaging processing unit 34 averages the DC input voltage detection value Vg and the booster circuit current detection value Iin in order to suppress the influence due to the above-described periodic fluctuation.
  • FIG. 5 is a diagram illustrating an aspect when the DC input voltage detection value Vg is averaged, which is performed by the averaging processing unit 34.
  • the averaging processing unit 34 samples a given DC input voltage detection value Vg a plurality of times at predetermined time intervals ⁇ t in a period L from a certain timing t1 to a timing t2 (in the drawing, Black spot timing), and an average value of the obtained DC input voltage detection values Vg is obtained.
  • the averaging processing unit 34 sets the period L to a length that is 1 ⁇ 2 of the periodic length of the commercial power system 3.
  • the averaging processing unit 34 sets the time interval ⁇ t to a period sufficiently shorter than the length of the 1 ⁇ 2 cycle of the commercial power system 3.
  • the averaging process part 34 calculates
  • the sampling time interval ⁇ t can be set to, for example, 1/100 to 1/1000 of the cycle of the commercial power system 3, 20 microseconds to 200 microseconds, or the like.
  • the averaging processing unit 34 can also store the period L in advance, or can acquire the system voltage detection value Va from the second voltage sensor 25 and set the period L based on the cycle of the commercial power system 3. You can also In addition, here, the period L is set to 1 ⁇ 2 the period length of the commercial power system 3, but if the period L is set to at least a 1 ⁇ 2 period of the commercial power system 3, the DC input The average value of the voltage detection value Vg can be obtained with high accuracy. This is because the DC input voltage detection value Vg periodically fluctuates with a length of 1 ⁇ 2 of the cycle length of the commercial power system 3 due to the operations of the booster circuit 10 and the inverter circuit 11 as described above.
  • the period L is set to an integral multiple of the 1/2 cycle of the commercial power system 3, such as 3 or 4 times the 1/2 cycle of the commercial power system 3. do it.
  • the voltage fluctuation can be grasped in units of cycles.
  • the booster circuit current detection value Iin also periodically fluctuates in a half cycle of the commercial power system 3, as with the DC input voltage detection value Vg. Therefore, the averaging processing unit 34 also obtains an average value of the booster circuit current detection value Iin by a method similar to the DC input voltage detection value Vg shown in FIG.
  • the control processing unit 30 sequentially obtains the average value of the DC input voltage detection value Vg and the average value of the booster circuit current detection value Iin for each period L.
  • the averaging processing unit 34 gives the average value of the obtained DC input voltage detection value Vg and the average value of the boost circuit current detection value Iin to the control processing unit 30.
  • the averaging processing unit 34 performs the average value of the DC input voltage detection value Vg (DC input voltage average value ⁇ Vg>) and the average value of the boost circuit current detection value Iin (boost circuit current).
  • the average value ⁇ Iin>) is obtained, and the control processing unit 30 uses these values to control the booster circuit 10 and the inverter circuit 11 while performing MPPT control on the solar power generation panel 2, and thus the solar power generation panel 2
  • the control unit 12 uses the DC input voltage average value ⁇ Vg> from which the fluctuation component due to the operation of the inverter device 1 is removed and the booster circuit. It can be accurately obtained as the current average value ⁇ Iin>.
  • MPPT control can be performed suitably and it can suppress effectively that the power generation efficiency of the photovoltaic power generation panel 2 falls.
  • the DC input voltage average value ⁇ Vg> and the booster circuit current average value ⁇ Iin> are obtained from the results. Even if the frequency fluctuates periodically, the DC input voltage average value ⁇ Vg> and the booster circuit current average value ⁇ Iin> can be obtained with high accuracy while shortening the sampling period as much as possible.
  • the control processing unit 30 sets the DC input current command value Ig * based on the above-described input power average value ⁇ Pin>, and based on the set DC input current command value Ig * and the above value, the booster circuit 10 and the command value for the inverter circuit 11 are obtained.
  • the control processing unit 30 has a function of giving the obtained command value to the booster circuit control unit 32 and the inverter circuit control unit 33 and performing feedback control of the booster circuit 10 and the inverter circuit 11 respectively.
  • FIG. 6 is a control block diagram for explaining feedback control of the booster circuit 10 and the inverter circuit 11 by the control processing unit 30.
  • the control processing unit 30 includes a first calculation unit 41, a first adder 42, a compensator 43, and a second adder 44 as functional units for controlling the inverter circuit 11.
  • the control processing unit 30 includes a second calculation unit 51, a third adder 52, a compensator 53, and a fourth adder 54 as functional units for controlling the booster circuit 10.
  • FIG. 7 is a flowchart showing control processing of the booster circuit 10 and the inverter circuit 11.
  • Each functional unit illustrated in FIG. 6 controls the booster circuit 10 and the inverter circuit 11 by executing the processing illustrated in the flowchart illustrated in FIG.
  • control processing of the booster circuit 10 and the inverter circuit 11 will be described with reference to FIG.
  • control processing unit 30 obtains the current input power average value ⁇ Pin> (step S9) and compares it with the input power average value ⁇ Pin> at the previous calculation to set the DC input current command value Ig *. (Step S1).
  • the input power average value ⁇ Pin> is obtained based on the following formula (1).
  • Input power average value ⁇ Pin> ⁇ Iin ⁇ Vg> (1)
  • Iin is a boost circuit current detection value
  • Vg is a DC input voltage detection value (DC input voltage value)
  • a DC input voltage average value that is an averaged value by the averaging processing unit 34.
  • ⁇ Vg> and the booster circuit current average value ⁇ Iin> are used.
  • instantaneous values that are not averaged are used for the booster circuit current detection value Iin and the DC input voltage detection value Vg.
  • ⁇ > Indicates an average value in parentheses. The same applies hereinafter.
  • the control processing unit 30 gives the set DC input current command value Ig * to the first calculation unit 41.
  • the first calculation unit 41 is also supplied with a DC input voltage detection value Vg and a system voltage detection value Va.
  • the first calculation unit 41 calculates an average value ⁇ Ia *> of output current command values as the inverter device 1 based on the following formula (2).
  • Average output current command value ⁇ Ia *> ⁇ Ig * ⁇ Vg> / ⁇ Va> (2)
  • the first calculation unit 41 obtains an output current command value Ia * (output current target value) based on the following equation (3) (step S2).
  • the first calculation unit 41 obtains the output current command value Ia * as a sine wave having the same phase as the system voltage detection value Va.
  • Output current command value Ia * ( ⁇ 2) ⁇ ⁇ Ia *> ⁇ sin ⁇ t (3)
  • the first calculation unit 41 obtains the output current command value Ia * based on the input power average value ⁇ Pin> (DC power input power value) and the system voltage detection value Va.
  • the first computing unit 41 computes an inverter current command value Iinv * (current target value of the inverter circuit), which is a current target value for controlling the inverter circuit 11, as shown in the following formula (4) ( Step S3).
  • Inverter current command value Iinv * Ia * + s CaVa (4)
  • Ca is the electrostatic capacitance of the capacitor
  • condenser 23 output smoothing capacitor
  • the output current command value Ia * is obtained as a sine wave having the same phase as the system voltage detection value Va, as shown in the above equation (3). That is, the control processing unit 30 controls the inverter circuit 11 so that the current Ia (output current) of the AC power output from the inverter device 1 is in phase with the system voltage (system voltage detection value Va).
  • the first calculation unit 41 When the first calculation unit 41 obtains the inverter current command value Iinv *, the first calculation unit 41 gives the inverter current command value Iinv * to the first adder 42.
  • the inverter circuit 11 is feedback controlled by this inverter current command value Iinv *.
  • the current adder current detection value Iinv is given to the first adder 42.
  • the first adder 42 calculates the difference between the inverter current command value Iinv * and the current inverter current detection value Iinv, and gives the calculation result to the compensator 43.
  • the compensator 43 converges the difference based on a proportional coefficient or the like to obtain an inverter voltage reference value Vinv # that can be used as the inverter current command value Iinv *.
  • the compensator 43 supplies the inverter voltage reference value Vinv # to the inverter circuit control unit 33, thereby causing the inverter circuit 11 to output power at the voltage Vinv according to the inverter voltage reference value Vinv #.
  • the electric power output from the inverter circuit 11 is subtracted by the system voltage detection value Va by the second adder 44, is then supplied to the AC reactor 22, and is fed back as a new inverter current detection value Iinv.
  • the difference between the inverter current command value Iinv * and the inverter current detection value Iinv is calculated again by the first adder 42, and the inverter circuit 11 is controlled based on this difference as described above.
  • the inverter circuit 11 is feedback-controlled by the inverter current command value Iinv * and the inverter current detection value Iinv (step S4).
  • the inverter current command value Iinv * calculated by the first calculation unit 41 is given to the second calculation unit 51.
  • the second calculation unit 51 calculates the inverter output voltage command value Vinv * (voltage target value of the inverter circuit) based on the following formula (5) (step S5).
  • Inverter output voltage command value Vinv * Va + s LaIinv * (5)
  • the second term on the right side is a value added in consideration of the voltage generated at both ends of the AC reactor 22.
  • the inverter current command value which is a current target value for controlling the inverter circuit 11 so that the current phase of the AC power output from the inverter circuit 11 is in phase with the system voltage detection value Va. Based on Iinv *, an inverter output voltage command value Vinv * (voltage target value) is set.
  • the second calculation unit 51 compares the DC input voltage detection value Vg with the absolute value of the inverter output voltage command value Vinv * as shown in the following formula (6). Then, the larger one is determined as the boost circuit voltage target value Vo * (step S6).
  • Boost circuit voltage target value Vo * Max (absolute value of Vg, Vinv *) (6)
  • the second calculator 51 calculates the booster circuit current command value Iin * based on the following equation (7) (step S7).
  • Boost circuit current command value Iin * ⁇ (Iinv * ⁇ Vinv *) + (s C Vo *) ⁇ Vo * ⁇ / Vg ... (7)
  • C is the electrostatic capacitance of the capacitor
  • the term added to the absolute value of the product of the inverter current command value Iinv * and the inverter output voltage command value Vinv * is the reactive power passing through the capacitor 19 Is a value that takes into account. That is, the value of Iin * can be obtained more accurately by considering reactive power in addition to the power target value of the inverter circuit 11.
  • the above equation (7a) can also be expressed as follows.
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + C ⁇ (d Vo * / dt) ⁇ Vo * + P LOSS ⁇ / Vg (7c)
  • the above formula (7b) can also be expressed as follows.
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + Ic ⁇ Vo * + P LOSS ⁇ / Vg ... (7d)
  • the value of Iin * can be determined more strictly by considering the reactive power and the power loss P LOSS .
  • the second calculation unit 51 When the second calculation unit 51 obtains the booster circuit current command value Iin *, the second calculator 51 gives the booster circuit current command value Iin * to the third adder 52.
  • the booster circuit 10 is feedback controlled by this booster circuit current command value Iin *.
  • the third adder 52 is provided with the current booster circuit current detection value Iin in addition to the booster circuit current command value Iin *.
  • the third adder 52 calculates the difference between the booster circuit current command value Iin * and the current booster circuit current detection value Iin and gives the calculation result to the compensator 53.
  • the compensator 53 converges the difference and obtains a boost circuit voltage reference value Vbc # that can be used as the boost circuit current command value Iin * based on a proportional coefficient or the like.
  • the compensator 53 supplies the booster circuit voltage reference value Vbc # to the booster circuit control unit 32, thereby causing the booster circuit 10 to output power at the voltage Vo according to the booster circuit voltage reference value Vbc #.
  • the electric power output from the booster circuit 10 is subtracted by the DC input voltage detection value Vg by the fourth adder 54 and then given to the DC reactor 15 and fed back as a new booster circuit current detection value Iin.
  • the difference between the booster circuit current command value Iin * and the booster circuit current detection value Iin is calculated again by the third adder 52, and the booster circuit 10 is controlled based on this difference as described above.
  • the booster circuit 10 is feedback controlled by the booster circuit current command value Iin * and the booster circuit current detection value Iin (step S8).
  • step S8 the control processing unit 30 obtains the current input power average value ⁇ Pin> based on the above equation (1) (step S9).
  • the control processing unit 30 compares the input power average value ⁇ Pin> at the previous calculation with the DC input current so that the input power average value ⁇ Pin> becomes the maximum value (follows the maximum power point). Set command value Ig *.
  • control processing unit 30 controls the booster circuit 10 and the inverter circuit 11 while performing MPPT control on the photovoltaic power generation panel 2.
  • FIG. 8A is a graph showing an example of a result obtained by simulation of the booster circuit current command value Iin * obtained by the control processing unit 30 in the feedback control and the booster circuit current detection value Iin when controlled according to the command.
  • (B) shows an example of a result obtained by simulation of the booster circuit voltage target value Vo * obtained by the control processing unit 30 in the feedback control and the booster circuit voltage detection value Vo when controlled according to the booster circuit voltage. It is a graph.
  • the boost circuit current detection value Iin is controlled by the control processing unit 30 along the boost circuit current command value Iin *.
  • the booster circuit voltage target value Vo * is obtained by the above equation (6), the absolute value of the inverter output voltage command value Vinv * is approximately equal to the DC input voltage detection value Vg. In the period described above, it changes so as to follow the absolute value of the inverter output voltage command value Vinv *, and to follow the DC input voltage detection value Vg in other periods. It can be seen that the booster circuit voltage detection value Vo is controlled by the control processing unit 30 along the booster circuit voltage target value Vo *.
  • FIG. 9 is a diagram illustrating an example of the inverter output voltage command value Vinv *.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the broken line shows the voltage waveform of the commercial power system 3
  • the solid line shows the waveform of the inverter output voltage command value Vinv *.
  • the inverter device 1 outputs power using the inverter output voltage command value Vinv * shown in FIG. 9 as a voltage target value by the control according to the flowchart of FIG. Therefore, the inverter apparatus 1 outputs the electric power of the voltage according to the waveform of the inverter output voltage command value Vinv * shown in FIG.
  • both waves have substantially the same voltage value and frequency, but the phase of the inverter output voltage command value Vinv * is advanced several times with respect to the voltage phase of the commercial power system 3. ing.
  • the control processing unit 30 of the present embodiment changes the phase of the inverter output voltage command value Vinv * to the voltage phase of the commercial power system 3 while executing the feedback control of the booster circuit 10 and the inverter circuit 11.
  • the phase is advanced about 3 degrees.
  • the angle by which the phase of the inverter output voltage command value Vinv * is advanced with respect to the voltage phase of the commercial power system 3 may be several degrees, and is different from the voltage waveform of the commercial power system 3 as will be described later. Is set in a range where the phase is advanced by 90 degrees with respect to the voltage waveform of the commercial power system 3. For example, it is set in a range of values larger than 0 degree and smaller than 10 degrees.
  • the phase advance angle is determined by the system voltage detection value Va, the inductance La of the AC reactor 22, and the inverter current command value Iinv * as shown in the above equation (5).
  • the system voltage detection value Va and the inductance La of the AC reactor 22 are fixed values that are not controlled, so that the phase advance angle is determined by the inverter current command value Iinv *.
  • the inverter current command value Iinv * is determined by the output current command value Ia * as shown in the above equation (4). As the output current command value Ia * increases, the advanced component in the inverter current command value Iinv * increases, and the advance angle (advance angle) of the inverter output voltage command value Vinv * increases.
  • the control processing unit 30 of the present embodiment allows the DC input current command value so that the phase of the inverter output voltage command value Vinv * is advanced by about 3 degrees with respect to the voltage phase of the commercial power system 3. Ig * is set.
  • the booster circuit control unit 32 controls the switching element Qb of the booster circuit 10.
  • the inverter circuit control unit 33 controls the switching elements Q1 to Q4 of the inverter circuit 11.
  • the booster circuit control unit 32 and the inverter circuit control unit 33 generate a booster circuit carrier wave and an inverter circuit carrier wave, respectively, and these carrier waves are booster circuit voltage reference values Vbc # that are command values given from the control processing unit 30, and Modulation is performed using the inverter voltage reference value Vinv # to generate a drive waveform for driving each switching element.
  • the step-up circuit control unit 32 and the inverter circuit control unit 33 control each switching element based on the drive waveform, whereby an alternating current waveform approximated to the step-up circuit current command value Iin * and the inverter current command value Iinv *. Electric power is output to the booster circuit 10 and the inverter circuit 11.
  • FIG. 10A is a graph comparing the booster carrier and the waveform of the booster circuit voltage reference value Vbc #.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the wavelength of the booster carrier wave is shown longer than the actual wavelength.
  • the booster circuit carrier wave generated by the booster circuit control unit 32 is a triangular wave whose local minimum value is “0”, and the amplitude A1 is the booster circuit voltage target value Vo * given from the control processing unit 30.
  • the frequency of the booster circuit carrier wave is set by the booster circuit control unit 32 according to a control command from the control processing unit 30 so as to have a predetermined duty ratio.
  • the booster circuit voltage target value Vo * is equal to the inverter output voltage command value Vinv * during the period W1 in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg. Following the absolute value, it changes so as to follow the DC input voltage detection value Vg in the other periods. Therefore, the amplitude A1 of the booster circuit carrier also changes according to the booster circuit voltage target value Vo *.
  • the waveform of the booster circuit voltage reference value Vbc # (hereinafter also referred to as booster circuit reference wave Vbc #) is a value obtained by the control processing unit 30 based on the booster circuit current command value Iin *, and is the inverter output voltage command value Vinv.
  • the absolute value of * is a positive value in a period W1 in which the absolute value is larger than the DC input voltage detection value Vg.
  • the booster circuit reference wave Vbc # has a waveform that approximates the waveform formed by the booster circuit voltage target value Vo *, and intersects the booster carrier wave.
  • the booster circuit control unit 32 compares the booster circuit carrier wave with the booster circuit reference wave Vbc #, and the booster circuit reference wave Vbc #, which is the target value of the voltage across the DC reactor 15, becomes equal to or higher than the booster circuit carrier wave.
  • a drive waveform for driving the switching element Qb is generated so as to be turned on in the portion and turned off in the portion below the carrier wave.
  • FIG. 10B shows a drive waveform for driving the switching element Qb generated by the booster circuit control unit 32.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the horizontal axis is shown to coincide with the horizontal axis of FIG.
  • This drive waveform indicates the switching operation of the switching element Qb, and by applying it to the switching element Qb, the switching operation according to the drive waveform can be executed.
  • the drive waveform constitutes a control command that turns off the switching element when the voltage is 0 volts and turns on the switching element when the voltage is positive.
  • the booster circuit control unit 32 generates a drive waveform so that the switching operation is performed in a period W1 in which the absolute value of the inverter output voltage command value Vinv * is equal to or greater than the DC input voltage detection value Vg. Therefore, the switching element Qb is controlled so as to stop the switching operation within the range of the DC input voltage detection value Vg or less.
  • Each pulse width is determined by the intercept of the carrier wave for the booster circuit which is a triangular wave. Therefore, the pulse width increases as the voltage increases.
  • the booster circuit control unit 32 modulates the booster circuit carrier wave with the booster circuit reference wave Vbc #, and generates a drive waveform representing the pulse width for switching.
  • the booster circuit control unit 32 performs PWM control of the switching element Qb of the booster circuit 10 based on the generated drive waveform.
  • the switching element Qbu When the switching element Qbu that conducts in the forward direction of the diode is installed in parallel with the diode 16, the switching element Qbu uses a driving waveform that is inverted from the driving waveform of the switching element Qb. However, in order to prevent the switching element Qb and the switching element Qbu from conducting simultaneously, a dead time of about 1 microsecond is provided when the drive pulse of the switching element Qbu shifts from OFF to ON.
  • FIG. 11A is a graph comparing the inverter circuit carrier with the waveform of the inverter voltage reference value Vinv #.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the wavelength of the carrier wave for the inverter circuit is shown longer than the actual wavelength for easy understanding.
  • the inverter circuit carrier generated by the inverter circuit control unit 33 is a triangular wave having an amplitude center of 0 volts, and its one-side amplitude is set to the boost circuit voltage target value Vo * (the voltage target value of the capacitor 23). Therefore, the amplitude A2 of the carrier wave for the inverter circuit has a period that is twice (500 volts) the detected DC input voltage value Vg and a period that is twice the voltage of the commercial power system 3 (maximum 576 volts). . Further, the frequency is set by the inverter circuit control unit 33 so as to have a predetermined duty ratio by a control command or the like by the control processing unit 30.
  • the booster circuit voltage target value Vo * is equal to the inverter output voltage command value Vinv * during the period W1 in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg.
  • the amplitude A2 of the inverter circuit carrier also changes in accordance with the boost circuit voltage target value Vo *.
  • the waveform of the inverter voltage reference value Vinv # (hereinafter also referred to as inverter circuit reference wave Vinv #) is a value obtained by the control processing unit 30 based on the inverter current command value Iinv *, and is generally a voltage amplitude of the commercial power system 3. It is set to be the same as (288 volts). Therefore, the inverter circuit reference wave Vinv # intersects the booster circuit carrier in a portion where the voltage value is in the range of ⁇ Vg to + Vg.
  • the inverter circuit control unit 33 compares the inverter circuit carrier wave with the inverter circuit reference wave Vinv #, and is turned on when the inverter circuit reference wave Vinv #, which is the voltage target value, is greater than or equal to the inverter circuit carrier wave.
  • a drive waveform for driving the switching elements Q1 to Q4 is generated so as to be turned off at a portion where
  • FIG. 11B shows a drive waveform for driving the switching element Q ⁇ b> 1 generated by the inverter circuit control unit 33.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the horizontal axis is shown so as to coincide with the horizontal axis of FIG.
  • the inverter circuit control unit 33 generates a drive waveform so that the switching operation is performed in the range W2 where the voltage of the inverter circuit reference wave Vinv # is in the range of ⁇ Vg to + Vg. Therefore, in the other range, the switching element Q1 is controlled so as to stop the switching operation.
  • FIG. 11C shows a drive waveform for driving the switching element Q3 generated by the inverter circuit control unit 33.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the inverter circuit control unit 33 compares the inverted wave of the inverter circuit reference wave Vinv # indicated by the broken line in the drawing with a carrier wave to generate a drive waveform. Also in this case, the inverter circuit control unit 33 generates the drive waveform so that the switching operation is performed in the range W2 where the voltage of the inverter circuit reference wave Vinv # (inverted wave thereof) is ⁇ Vg to + Vg. Therefore, in the other range, the switching element Q3 is controlled so as to stop the switching operation.
  • the inverter circuit control unit 33 generates the inverted driving waveform of the switching element Q1 for the driving waveform of the switching element Q2, and inverts the driving waveform of the switching element Q3 for the driving waveform of the switching element Q4.
  • the inverter circuit control unit 33 modulates the inverter circuit carrier wave with the inverter circuit reference wave Vinv #, and generates a drive waveform representing a pulse width for switching.
  • the inverter circuit control unit 33 performs PWM control on the switching elements Q1 to Q4 of the inverter circuit 11 based on the generated drive waveform.
  • the booster circuit control unit 32 of the present embodiment outputs power so that the current flowing through the DC reactor 15 matches the booster circuit current command value Iin *.
  • the booster circuit 10 is caused to perform a switching operation in a period W1 (FIG. 10) in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg.
  • the booster circuit 10 outputs power so that a voltage equal to or higher than the DC input voltage detection value Vg is approximated to the absolute value of the inverter output voltage command value Vinv * in the period W1.
  • the booster circuit control unit 32 stops the switching operation of the booster circuit 10. Therefore, during the period equal to or less than the DC input voltage detection value Vg, the booster circuit 10 outputs the DC input voltage value of the DC power output from the photovoltaic power generation panel 2 to the inverter circuit 11 without boosting.
  • the inverter circuit control part 33 of this embodiment outputs electric power so that the electric current which flows into the AC reactor 22 may correspond to inverter electric current command value Iinv *.
  • the inverter circuit 11 is caused to perform a switching operation in a period W2 (FIG. 11) in which the inverter output voltage command value Vinv * is approximately ⁇ Vg to + Vg. That is, the inverter circuit 11 is caused to perform a switching operation in a period in which the absolute value of the inverter output voltage command value Vinv * is equal to or less than the DC input voltage detection value Vg.
  • the inverter circuit 11 performs a switching operation while the booster circuit 10 stops the switching operation, and outputs AC power approximate to the inverter output voltage command value Vinv *.
  • the inverter circuit reference wave Vinv # and the inverter output voltage command value Vinv * are approximate, they overlap in FIG.
  • the inverter circuit control unit 33 stops the switching operation of the inverter circuit 11 in a period other than the period W2 in which the voltage of the inverter output voltage command value Vinv * is approximately ⁇ Vg to + Vg. During this time, the inverter circuit 11 is supplied with the electric power boosted by the booster circuit 10. Therefore, the inverter circuit 11 that has stopped the switching operation outputs the power supplied from the booster circuit 10 without stepping down.
  • the inverter device 1 approximates the inverter output voltage command value Vinv * by switching the booster circuit 10 and the inverter circuit 11 so as to be switched alternately and superimposing the electric power output from each of them. Output AC power with voltage waveform.
  • the booster circuit 10 when the voltage of the portion where the absolute value of the inverter output voltage command value Vinv * is higher than the DC input voltage detection value Vg is output, the booster circuit 10 is operated, and the inverter output voltage command Control is performed so that the inverter circuit 11 is operated when the voltage of the portion where the absolute value of the value Vinv * is lower than the DC input voltage detection value Vg is output. Therefore, since the inverter circuit 11 does not step down the power boosted by the booster circuit 10, the potential difference when the voltage is stepped down can be kept low, so that the loss due to switching of the booster circuit can be reduced and higher. AC power can be output with high efficiency.
  • both the booster circuit 10 and the inverter circuit 11 operate based on the inverter output voltage command value Vinv * (voltage target value) set by the control unit 12, the booster circuit power output so as to be switched alternately.
  • Vinv * voltage target value
  • FIG. 12 is a diagram illustrating an example of a current waveform of AC power output from the inverter device 1 together with an example of a reference wave and a driving waveform of a switching element.
  • the reference wave Vinv # and carrier wave of the inverter circuit, the driving waveform of the switching element Q1, the reference wave Vbc # and carrier wave of the booster circuit, the driving waveform of the switching element Qb, and the inverter device 1 are output in order from the top.
  • the graph which shows the command value and measured value of the current waveform of alternating current power is represented.
  • the horizontal axis of each graph indicates time and is shown to coincide with each other.
  • the actual measured value Ia of the output current is controlled to coincide with the command value Ia *. It can also be seen that the period of switching operation of the switching element Qb of the booster circuit 10 and the period of switching operation of the switching elements Q1 to Q4 of the inverter circuit 11 are controlled to be switched alternately.
  • the booster circuit obtained based on the above equation (7) is controlled so that the current flowing through the DC reactor 15 matches the current command value Iin *. .
  • the voltages of the booster circuit and the inverter circuit have the waveforms shown in FIG. 8B, and the high-frequency switching operations of the booster circuit 10 and the inverter circuit 11 have a stop period, respectively. It becomes possible.
  • the booster circuit 10 and the inverter circuit 11 output AC power having a voltage waveform approximate to the inverter output voltage command value Vinv * to the filter circuit 21 connected to the subsequent stage under the control of the control unit 12.
  • the inverter device 1 outputs AC power to the commercial power system 3 via the filter circuit 21.
  • the inverter output voltage command value Vinv * is generated as a voltage phase advanced by the control processor 30 several times with respect to the voltage phase of the commercial power system 3 as described above. Therefore, the AC voltage output from the booster circuit 10 and the inverter circuit 11 is also a voltage phase advanced by several degrees with respect to the voltage phase of the commercial power system 3.
  • the AC reactor 22 (FIG. 2) of the filter circuit 21 is applied to both ends of the AC voltage of the booster circuit 10 and the inverter circuit 11 on one side and the commercial power system 3 on the other side. It will be different.
  • FIG. 13A is a graph showing the voltage waveforms of the AC voltage output from the inverter circuit 11, the commercial power system 3, and the voltage across the AC reactor 22, respectively.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the voltage of both ends of the AC reactor 22 is a voltage applied to both ends of the AC reactor 22. Difference.
  • the phase of the voltage across the AC reactor 22 is advanced by 90 degrees with respect to the voltage phase of the commercial power system 3.
  • FIG. 13B is a graph showing a waveform of a current flowing through the AC reactor 22.
  • the vertical axis represents current and the horizontal axis represents time.
  • the horizontal axis is shown so as to coincide with the horizontal axis in FIG.
  • the current phase of AC reactor 22 is delayed by 90 degrees with respect to the voltage phase. Therefore, as shown in the figure, the current phase of the AC power output through the AC reactor 22 is synchronized with the current phase of the commercial power system 3.
  • the voltage phase output from the inverter circuit 11 is advanced several times with respect to the commercial power system 3, but the current phase matches the current phase of the commercial power system 3. Therefore, the current waveform output from the inverter device 1 coincides with the voltage phase of the commercial power system 3 as shown in the graph shown at the bottom of FIG.
  • FIG. 14 is an example of a circuit diagram of the inverter device 1 according to the second embodiment.
  • the difference between the present embodiment and the first embodiment is that an IGBT is used as the switching elements Q1 to Q4 of the inverter circuit 11.
  • Other configurations are the same as those of the first embodiment.
  • the inverter circuit control unit 33 uses a carrier wave different from the inverter circuit carrier wave used in the first embodiment.
  • FIG. 15 is a graph comparing the inverter circuit carrier and the reference wave in the second embodiment. In the figure, the vertical axis represents voltage and the horizontal axis represents time. The reference wave and the booster carrier are the same as in the first embodiment.
  • the inverter circuit carrier of the present embodiment is a triangular wave having a lower limit set to 0 volts and an upper limit set to the boost circuit voltage target value Vo *.
  • the inverter circuit control unit 33 generates the drive waveform of the switching element Q1 by comparing the inverter circuit reference wave Vinv # with the inverter circuit carrier wave, and the drive waveform of the switching element Q3 is the inverter circuit. It is generated by comparing the inverted wave of the reference wave Vinv # for use with the carrier wave for the inverter circuit.
  • the inverter circuit control unit 33 compares the inverter circuit carrier (booster circuit carrier) with the inverter circuit reference wave Vinv #, and the inverter that is the voltage target value.
  • FIG. 16 is a diagram illustrating an example of a current waveform of AC power output from the inverter device 1 along with an example of a drive waveform of each switching element Qb, Q1 to Q4 in the second embodiment.
  • the driving waveform of the switching element Q1, the driving waveform of the switching element Q4, the driving waveform of the switching element Q3, the driving waveform of the switching element Q2, the driving waveform of the switching element Qb, and the inverter device 1 are output in order from the top.
  • the graph which shows the electric current waveform of AC electric power to perform is shown.
  • the horizontal axis of each graph indicates time and is shown to coincide with each other.
  • the switching element Q1 and the switching element Q3 are controlled to perform switching when the voltage of the inverter circuit reference wave Vinv # is in the range of ⁇ Vg to + Vg. Also in the present embodiment, as shown in the figure, the period of switching operation of the switching element Qb of the booster circuit 10 and the period of switching operation of the switching elements Q1 to Q4 of the inverter circuit 11 are controlled so as to be alternately switched. It can be seen that
  • the current waveform of the AC power output from the inverter device 1 of the present embodiment is the same as the voltage phase of the commercial power system 3 as shown in FIG. Therefore, similarly to the first embodiment, AC power having the same phase as the current phase can be output to the commercial power system 3, and the power factor of the AC power can be prevented from being lowered.
  • FIG. 17 is an example of a circuit diagram of the inverter device 1 according to the third embodiment.
  • the difference between the present embodiment and the first embodiment is that a third voltage sensor 27 that detects an intermediate voltage between the booster circuit 10 and the inverter circuit 11 is provided.
  • Other configurations are the same as those of the first embodiment.
  • the booster circuit voltage target value Vo * (target value of the intermediate voltage) is used as the amplitude of the carrier wave.
  • the voltage detection value Vo detected by the third voltage sensor 27 is used as the carrier wave amplitude. Used for.
  • FIG. 18 is a diagram illustrating an example of a current waveform of AC power output from the inverter device 1 together with an example of a reference wave and a driving waveform of a switching element in the third embodiment.
  • the reference wave Vinv # and carrier wave of the inverter circuit, the drive waveform of the switching element Q1, the reference wave Vbc # and carrier wave of the booster circuit, the drive waveform of the switching element Qb, and the inverter device 1 are output in order from the top.
  • the graph which shows the command value Ia * of the current waveform of alternating current power and the measured value Ia is represented.
  • the horizontal axis of each graph indicates time and is shown to coincide with each other.
  • the measured value Ia of the output current is also controlled to coincide with the command value Ia * in this embodiment.
  • the switching operation period of the switching element Qb of the booster circuit 10 and the switching operation period of the switching element Q1 of the inverter circuit 11 are controlled to be switched alternately.
  • the voltage detection value Vo for the amplitude of the carrier wave as in the present embodiment, the response when the voltage of the photovoltaic power generation panel 2 or the commercial power system 3 fluctuates becomes faster, and the inverter device 1 The output current can be stabilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 直流電源が出力する直流電力の直流入力電圧値を昇圧する昇圧回路と、この昇圧回路から与えられる電力を交流電力に変換するインバータ回路と、昇圧回路及びインバータ回路を制御する制御部と、変換した交流電力を交流系統へ出力する電路に設けられたリアクトルとを含むインバータ装置において、直流電力の入力電力値及び交流系統の電圧値に基づいて出力電流目標値を求め、当該出力電流目標値に基づいてインバータ回路の電流目標値及び電圧目標値を求めてインバータ回路を制御するとともに、インバータ回路と共通の電流目標値及び電圧目標値、並びに、直流入力電圧値に基づいて、昇圧回路の電流目標値を求めて昇圧回路を制御することにより、交流電力の出力を制御する。

Description

インバータ装置
 本発明は、太陽光発電等の直流電源からの直流電力を交流電力に変換するためのインバータ装置に関するものである。
 従来から、太陽電池や、蓄電池等の直流電源からの入力電力を交流電力に変換するとともに、変換した交流電力を商用電力等の交流系統に重畳するための系統連系機能を備えたインバータ装置が用いられている。
 このようなインバータ装置は、入力電力の電圧を昇圧するための昇圧回路と、昇圧回路の出力を交流電力に変換するインバータ回路と、を備えている。
 上記インバータ装置においては、出力すべき交流電力の内、入力電源の電圧が交流系統電圧の絶対値より低い期間のみ昇圧回路にスイッチング動作させ、その他の期間では、昇圧回路のスイッチング動作を停止させることで、インバータ回路および昇圧回路のスイッチングによる損失を低減し、より高い効率で電力を出力することができるインバータ装置が提案されている(例えば、特許文献1参照)。
特開2000-152651号公報
 上記のようなインバータ装置では、交流系統電圧の絶対値と入力電圧とを互いに比較して、一致する瞬間に、昇圧回路とインバータ回路とで互いに高周波スイッチングの期間を切り替える。しかし、このように交流系統電圧の絶対値が入力電圧と一致する瞬間に、高周波スイッチング動作に関して昇圧回路からインバータ回路に切り替わると、インバータ回路の入力電圧が不足し、出力電流に歪みが生ずる場合がある。
 インバータ回路の出力電圧が系統電圧と同期するように制御すれば、交流系統電圧の絶対値と入力電圧とが互いに一致する瞬間に昇圧回路とインバータ回路の高周波スイッチングの期間を切り替えても、インバータ回路への入力電圧が不足する期間が生じないため出力電流に歪みは生じない。しかし、このとき交流リアクトルの両端電圧は、交流電圧と同相となり、交流リアクトルに流れる電流位相は、交流系統の電圧位相に対して90度遅れた位相となる。よって、交流リアクトルを介して出力され交流系統に重畳される交流電力の電流位相が、交流系統電圧に対して90度遅れることとなる。その結果として系統連系の規定に準拠した電力を出力できなくなるおそれがあった。
 また、上記インバータ装置では、昇圧回路の出力電流あるいは直流リアクトルの電流を所定の波形と大きさに波形整形するための昇圧参照波が、インバータ参照波に系統電圧の絶対値と入力電圧との比率を乗算して求めた正弦2乗波とされている。すなわち、交流リアクトルによる交流電圧の位相ずれと、中間コンデンサ(昇圧回路とインバータ回路との間に配置されたコンデンサ)を流れる電流成分が考慮されていない。このため、系統電圧に対して同期した歪みの少ない電流を出力するには昇圧参照波である正弦2乗波を、インバータ参照波である正弦波よりも位相を進めて前出しし、その前出し量を出力電流の大きさにより変化させるという複雑な制御を組み合わせる必要があった。
 さらに、上記インバータ装置では、昇圧電流あるいは直流リアクトル電流の監視結果によって大きさが制御された正弦2乗波である昇圧参照波を、直接三角波と比較して昇圧用スイッチング素子のオン時間を制御するゲート信号としているが、この方法では目的の波形と大きさの出力電流を得ることはできない。
 また、上記インバータ装置では、昇圧回路の出力電流を系統電力の半分の周期内で大きく変化させるため、入力側に接続された平滑コンデンサの容量をかなり大きくしても入力電流は完全な直流電流とはならず、変動成分が重畳した脈流となることが避けられない。よって、太陽電池のように特定の電流値において出力電力が最大となる最適動作点をとる電源を接続すると、太陽電池の最適動作点に制御することが困難だった。
 本発明はこのような事情に鑑みてなされたものであり、昇圧回路とインバータ回路の高周波スイッチング動作をそれぞれ部分的に停止する期間を設け、さらに高周波スイッチングを行う期間においても、昇圧比、降圧比を必要最低限に抑制することによってパワー半導体素子のスイッチング損失とリアクトルの鉄損を低減して高い変換効率を実現しながら、出力によらず、歪みが少なく系統電圧に同期した高い力率の交流電流を出力することができるインバータ装置を提供することを目的とする。
 本発明は、リアクトルを介して交流系統に接続されるインバータ装置であって、電源が出力する直流電力を交流電力に変換し、変換した交流電力を、前記リアクトルを介して前記交流系統へ出力する変換部と、前記変換部の制御を行う制御部とを備える。さらに前記変換部は、前記直流電力の直流入力電圧値を昇圧する昇圧回路と、前記昇圧回路から与えられる電力を交流電力に変換するインバータ回路とを備える。また、前記制御部は、前記直流電力の入力電力値及び前記交流系統の電圧値に基づいて出力電流目標値を求め、当該出力電流目標値に基づいて前記インバータ回路の電流目標値及び電圧目標値を求めて前記インバータ回路を制御するとともに、前記インバータ回路と共通の電流目標値及び電圧目標値、並びに、前記直流入力電圧値に基づいて、前記昇圧回路の電流目標値を求めて前記昇圧回路を制御することにより、前記交流電力の出力を制御する。
 本発明のインバータ装置によれば、高い変換効率で、交流系統に同期した歪みの少ない交流電流を出力することができる。
第1実施形態に係るインバータ装置を備えたシステムの一例を示すブロック図である。 インバータ装置の回路図の一例である。 制御部のブロック図である。 直流入力電圧検出値(縦軸は[V])、及び昇圧回路電流検出値(縦軸は[A])の経時変化をシミュレーションにより求めた結果の一例を示すグラフである。 平均化処理部が行う、直流入力電圧検出値Vgを平均化する際の態様を示す図である。 制御処理部による制御処理を説明するための制御ブロック図である。 昇圧回路及びインバータ回路の制御処理を示すフローチャートである。 (a)は、制御処理部がフィードバック制御において求めた昇圧回路電流指令値、及びこれに従って制御した場合の昇圧回路電流検出値をシミュレーションにより求めた結果の一例を示すグラフであり、(b)は、制御処理部がフィードバック制御において求めた昇圧回路電圧目標値、及びこれに従って制御した場合の昇圧回路電圧検出値をシミュレーションにより求めた結果の一例を示すグラフである(電圧の縦軸は[V]、電流の縦軸は[A]である。)。 インバータ出力電圧指令値(縦軸は[V])の一例を示す図である。 (a)は、昇圧回路用搬送波と、昇圧回路用参照波とを比較したグラフであり、(b)は、昇圧回路制御部が生成したスイッチング素子Qbを駆動するための駆動波形である。 (a)は、インバータ回路用搬送波と、インバータ回路用参照波とを比較したグラフ、(b)は、インバータ回路制御部が生成したスイッチング素子Q1を駆動するための駆動波形、(c)は、インバータ回路制御部が生成したスイッチング素子Q3を駆動するための駆動波形である。 参照波、及び各スイッチング素子の駆動波形の一例とともに、インバータ装置が出力する交流電力の電流波形の一例を示した図である(電圧の縦軸は[V]、電流の縦軸は[A]である。)。 (a)は、インバータ回路から出力された交流電圧、商用電力系統、及び交流リアクトルの両端電圧、それぞれの電圧波形を示したグラフであり、(b)は、交流リアクトルに流れる電流波形を示したグラフである。 第2実施形態に係るインバータ装置の回路図の一例である。 第2実施形態におけるインバータ回路用搬送波と、参照波とを比較したグラフである。 第2実施形態における、参照波、及び各スイッチング素子Qb、Q1~Q4の駆動波形の一例とともに、インバータ装置が出力する交流電力の電流波形(縦軸は[A])の一例を示した図である。 第3実施形態に係るインバータ装置1の回路図の一例である。 第3実施形態における、参照波、及びスイッチング素子の駆動波形の一例とともに、インバータ装置が出力する交流電力の電流波形の一例を示した図である(電圧の縦軸は[V]、電流の縦軸は[A]である。)。
 《実施形態の要旨》
 本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
 (1)これは、リアクトルを介して交流系統に接続されるインバータ装置であって、電源が出力する直流電力を交流電力に変換し、変換した交流電力を、前記リアクトルを介して前記交流系統へ出力する変換部と、前記変換部の制御を行う制御部とを備えている。そして前記変換部は、前記直流電力の直流入力電圧値を昇圧する昇圧回路と、前記昇圧回路から与えられる電力を交流電力に変換するインバータ回路とを備えている。また、前記制御部は、前記直流電力の入力電力値及び前記交流系統の電圧値に基づいて出力電流目標値(Ia*)を求め、当該出力電流目標値に基づいて前記インバータ回路の電流目標値(Iinv*)及び電圧目標値(Vinv*)を求めて前記インバータ回路を制御するとともに、前記インバータ回路と共通の電流目標値(Iinv*)及び電圧目標値(Vinv*)、並びに、前記直流入力電圧値(Vg)に基づいて、前記昇圧回路の電流目標値(Iin*)を求めて前記昇圧回路を制御することにより、前記交流電力の出力を制御する。
 上記構成のインバータ装置の制御部によって制御される変換部は、常に、インバータ回路の電流目標値及び電圧目標値に基づいた出力をリアクトルに対して提供することができる。制御部は、交流系統の電圧値に直接依存するのではなくインバータ装置側で目標値を定め、これに基づいて昇圧回路及びインバータ回路に所望の動作をさせることができる。従って、制御部は、前記交流系統の電圧位相よりも数度進相した電圧位相とされた交流電力を前記変換部に出力させるように制御することができる。
 つまり、変換部が出力する交流電力の電圧位相を交流系統の電圧位相よりも数度進相させるので、リアクトルの両端電圧の位相を、交流系統の電圧位相に対して90度進んだ位相とすることができる。リアクトルの電流位相は、その電圧位相に対して90度遅延するので、リアクトルを通して出力される交流電力の電流位相は、交流系統の電流位相に対して同期することとなる。
 この結果、交流系統に対して電流位相が同位相の交流電力を出力することができるので、当該交流電力の力率が低下するのを抑制することができる。
 なお、前記(1)のインバータ装置は、例えば、以下の(2)~(9)に列記する具体的な態様を有し得る。
 (2)例えば前記(1)のインバータ装置において、前記昇圧回路と前記インバータ回路との間に平滑コンデンサが設けられており、前記インバータ回路の電流目標値及び電圧目標値に基づく電力目標値に、前記平滑コンデンサを通過する無効電力を加味した値と、前記直流入力電圧値とに基づいて、前記昇圧回路の電流目標値を求めるようにしてもよい。
 この場合、インバータ回路の電力目標値のほか、無効電力を考慮して、より正確に昇圧回路の電流目標値を定めることができる。
 (3)また、前記(1)のインバータ装置において、前記昇圧回路と前記インバータ回路との間に平滑コンデンサが設けられており、前記インバータ回路の電流目標値及び電圧目標値に基づく電力目標値に、前記平滑コンデンサを通過する無効電力及び前記インバータ回路における電力損失を加味した値と、前記直流入力電圧値とに基づいて、前記昇圧回路の電流目標値を求めるようにしてもよい。
 この場合、インバータ回路の電力目標値のほか、無効電力を考慮及び電力損失を考慮して、より厳密に昇圧回路の電流目標値を定めることができる。
 (4)また、前記(1)のインバータ装置において例えば、前記リアクトルの後段に出力平滑コンデンサが設けられており、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記出力平滑コンデンサの静電容量をCa、
 前記交流系統の電圧値をVa、
 前記直流入力電圧値をVg、とするとき、
 Iin*=(Iinv* × Vinv*) / Vg
であり、
 Iinv*=Ia* + Ca×(d Va/dt)
である。
 この場合、出力平滑コンデンサに流れる電流を考慮してインバータ回路の電流目標値及び昇圧回路の電流目標値を定めることができる。
 (5)また、前記(1)のインバータ装置において例えば、前記リアクトルの後段に出力平滑コンデンサが設けられており、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記交流系統の電圧値をVa、
 前記直流入力電圧値をVg、
 前記出力平滑コンデンサに流れる電流をIca、とするとき、
 Iin*=(Iinv* × Vinv*) / Vg
であり、
 Iinv*=Ia* + Ica
である。
 この場合、出力平滑コンデンサに流れる電流を考慮してインバータ回路の電流目標値及び昇圧回路の電流目標値を定めることができる。
 (6)また、前記(2)のインバータ装置において例えば、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記平滑コンデンサの静電容量をC、
 前記昇圧回路の電圧目標値をVo*、
 前記直流入力電圧値をVg、とするとき、
 Iin*=
 {(Iinv* × Vinv*) + C×(d Vo*/dt)×Vo*} / Vg
である。
 (7)また、前記(2)のインバータ装置において例えば、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記昇圧回路の電圧目標値をVo*、
 前記直流入力電圧値をVg、
 前記平滑コンデンサに流れる電流をIc、とするとき、
 Iin*=
 {(Iinv* × Vinv*) + Ic×Vo*} / Vg
である。
 (8)また、前記(3)のインバータ装置において例えば、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記平滑コンデンサの静電容量をC、
 前記昇圧回路の電圧目標値をVo*、
 前記直流入力電圧値をVg、
 当該インバータ装置の電力損失をPLOSS、とするとき、
 Iin*=
 {(Iinv* × Vinv*) + C×(d Vo*/dt)×Vo* + PLOSS} / Vg
である。
 (9)また、前記(3)のインバータ装置において例えば、
 前記昇圧回路の電流目標値をIin*、
 前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
 前記昇圧回路の電圧目標値をVo*、
 前記直流入力電圧値をVg、
 前記平滑コンデンサに流れる電流をIc、
 当該インバータ装置の電力損失をPLOSS、とするとき、
 Iin*=
{(Iinv* × Vinv*) + Ic×Vo* + PLOSS} / Vg
である。
 (10)また、前記(4)~(9)のいずれかのインバータ装置において、前記制御部は、前記昇圧回路の電圧目標値として、前記直流入力電圧値、及び、前記インバータ回路の電圧目標値の絶対値のいずれか大きい方を選択するとともに、
 前記リアクトルのインダクタンスをLaとするとき、前記インバータ回路の電圧目標値Vinv*を、
 Vinv*=Va + La(d Iinv*/dt)
として求めてもよい。
 前記(10)の場合、制御部は、前記インバータ回路の電圧目標値の絶対値が、直流入力電圧値よりも高い部分の電圧を出力する際には昇圧回路を動作させ、前記インバータ回路の電圧目標値の絶対値が、直流入力電圧値よりも低い部分の電圧を出力する際にはインバータ回路を動作させるように制御されるので、インバータ回路によって降圧する電力の電位差を低く抑えることができるとともに、昇圧回路のスイッチングによる損失を低減し、より高効率で交流電力を出力することができる。さらに、昇圧回路及びインバータ回路は、共に制御部が設定した電圧目標値に基づいて動作するため、両回路の高周波スイッチング期間が交互に切り替わるように動作を行っても、インバータ装置から出力される交流電流に位相ずれや歪が生じるのを抑制することができる。
 (11)また、前記(1)~(10)のいずれかのインバータ装置において、前記制御部は、前記直流入力電圧値及び前記電源から与えられる直流電力の直流入力電流値のそれぞれを複数回測定した結果から求められた、前記直流入力電圧値及び前記直流入力電流値それぞれの平均値に基づいて、前記電源について最大電力点追従制御を行うことが好ましい。
 この場合、電源による直流電力が変動し不安定な場合にも、制御部は、直流入力電圧値及び直流入力電流値を平均値として精度よく得ることができる。この結果、電源を好適に制御することができ、インバータ装置としての効率が低下するのを効果的に抑制することができる。
 (12)また、変換部等のインピーダンスの変動によって、電源が変換部に出力する直流電力の電圧や電流に変動が生じる場合、その変動周期は、交流系統の1/2周期と一致する。
 従って、前記(11)のインバータ装置において、前記直流入力電圧値及び直流入力電流値それぞれの平均値は、前記交流系統の1/2周期の整数倍期間の間に、前記直流入力電圧値及び直流入力電流値のそれぞれを前記交流系統の1/2周期よりも短い時間間隔で複数回測定した結果から得られた値であることが好ましく、この場合、直流入力電圧値及び直流入力電流値が周期的に変動したとしても、直流入力電圧値及び直流入力電流値を精度よく求めることができる。
 (13)また、(1)~(12)のインバータ装置において、前記交流系統から直流電力を前記電源に出力することもできる。すなわち、インバータ回路の電流目標値(Iinv*)と電圧目標値(Vinv*)との間で互いに位相を180度ずらすと、同じ電流目標値(Iin*)の制御で交流系統から電源への逆方向の出力も可能である。
 《実施形態の詳細》
 以下、本発明の実施形態について図面を参照しながら説明する。
〔1. 第1実施形態〕
〔1.1 全体構成について〕
 図1は、第1実施形態に係るインバータ装置を備えたシステムの一例を示すブロック図である。図中、インバータ装置1の入力端には、直流電源としての太陽光発電パネル2が接続され、出力端には、交流の商用電力系統3が接続されている。このシステムは、太陽光発電パネル2が発電する直流電力を交流電力に変換し、商用電力系統3に出力する連系運転を行う。
 インバータ装置1は、太陽光発電パネル2が出力する直流電力が与えられる昇圧回路10と、昇圧回路10から与えられる電力を交流電力に変換して商用電力系統3に出力するインバータ回路11と、これら両回路10,11の動作を制御する制御部12とを備えている。
 図2は、インバータ装置1の回路図の一例である。
 昇圧回路10は、直流リアクトル15と、ダイオード16と、IGBT(Insulated Gate Bipolar Transistor)等からなるスイッチング素子Qbとを備えており、昇圧チョッパ回路を構成している。
 昇圧回路10の入力側には、第1電圧センサ17、第1電流センサ18、及び平滑化のためのコンデンサ26が設けられている。
 第1電圧センサ17は、太陽光発電パネル2が出力し、昇圧回路10に入力される直流電力の直流入力電圧検出値Vg(直流入力電圧値)を検出し、制御部12に出力する。第1電流センサ18は、直流リアクトル15に流れる電流である昇圧回路電流検出値Iin(直流入力電流値)を検出し、制御部12に出力する。なお、直流入力電流検出値Igを検出するために、コンデンサ26の前段に、さらに電流センサを設けてもよい。
 制御部12は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pinを演算し、太陽光発電パネル2に対するMPPT(Maximum Power Point Tracking:最大電力点追従)制御を行う機能を有している。
 また、昇圧回路10のスイッチング素子Qbは、後述するように、インバータ回路11との間でスイッチング動作を行う期間が交互に切り替わるように制御される。よって、昇圧回路10は、スイッチング動作を行っている期間は、昇圧された電力をインバータ回路11に出力し、スイッチング動作を停止している期間は、太陽光発電パネル2が出力して昇圧回路10に入力される直流電力の直流入力電圧値を昇圧することなくインバータ回路11に出力する。
 昇圧回路10と、インバータ回路11との間には、平滑用のコンデンサ19(平滑コンデンサ)が接続されている。
 インバータ回路11は、FET(Field Effect Transistor)からなるスイッチング素子Q1~Q4を備えている。これらスイッチング素子Q1~Q4は、フルブリッジ回路を構成している。
 各スイッチング素子Q1~Q4は、制御部12に接続されており、制御部12により制御可能とされている。制御部12は、各スイッチング素子Q1~Q4の動作をPWM制御する。これにより、インバータ回路11は、昇圧回路10から与えられる電力を交流電力に変換する。
 インバータ装置1は、インバータ回路11と、商用電力系統3との間にフィルタ回路21を備えている。
 フィルタ回路21は、2つの交流リアクトル22と、交流リアクトル22の後段に設けられたコンデンサ23(出力平滑コンデンサ)とを備えて構成されている。フィルタ回路21は、インバータ回路11から出力される交流電力に含まれる高周波成分を除去する機能を有している。フィルタ回路21により高周波成分が除去された交流電力は、商用電力系統3に与えられる。
 このように、昇圧回路10及びインバータ回路11は、太陽光発電パネル2が出力する直流電力を交流電力に変換し、変換した交流電力を、フィルタ回路21を介して商用電力系統3へ出力する変換部を構成している。
 また、フィルタ回路21には、インバータ回路11による出力の電流値であるインバータ電流検出値Iinv(交流リアクトル22に流れる電流)を検出するための第2電流センサ24が接続されている。さらに、フィルタ回路21と、商用電力系統3との間には、商用電力系統3側の電圧値(系統電圧検出値Va)を検出するための第2電圧センサ25が接続されている。
 第2電流センサ24及び第2電圧センサ25は、検出した系統電圧検出値Va(交流系統の電圧値)及びインバータ電流検出値Iinvを制御部12に出力する。なお、第2電流センサ24は、図のように、コンデンサ23の前段でもよいが、コンデンサ23の後段に設けてもよい。
 制御部12は、これら系統電圧検出値Va及びインバータ電流検出値Iinvと、上述の直流入力電圧検出値Vg、昇圧回路電流検出値Iinに基づいて、昇圧回路10及びインバータ回路11を制御する。
〔1.2 制御部について〕
 図3は、制御部12のブロック図である。制御部12は、図3に示すように、制御処理部30と、昇圧回路制御部32と、インバータ回路制御部33と、平均化処理部34とを機能的に有している。
 制御部12の各機能は、その一部又は全部がハードウェア回路によって構成されてもよいし、その一部又は全部が、ソフトウェア(コンピュータプログラム)をコンピュータによって実行させることで実現されていてもよい。制御部12の機能を実現するソフトウェア(コンピュータプログラム)は、コンピュータの記憶装置(図示省略)に格納される。
 昇圧回路制御部32は、制御処理部30から与えられる指令値及び検出値に基づいて、昇圧回路10のスイッチング素子Qbを制御し、前記指令値に応じた電流の電力を昇圧回路10に出力させる。
 また、インバータ回路制御部33は、制御処理部30から与えられる指令値及び検出値に基づいて、インバータ回路11のスイッチング素子Q1~Q4を制御し、前記指令値に応じた電流の電力をインバータ回路11に出力させる。
 制御処理部30には、直流入力電圧検出値Vg、昇圧回路電流検出値Iin、系統電圧検出値Va及びインバータ電流検出値Iinvが与えられる。
 制御処理部30は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pin及びその平均値〈Pin〉を演算する。
 制御処理部30は、入力電力平均値〈Pin〉に基づいて、直流入力電流指令値Ig*(後に説明する)を設定して太陽光発電パネル2に対するMPPT制御を行うとともに、昇圧回路10及びインバータ回路11それぞれをフィードバック制御する機能を有している。
 直流入力電圧検出値Vg及び昇圧回路電流検出値Iinは、平均化処理部34、及び制御処理部30に与えられる。
 平均化処理部34は、第1電圧センサ17及び第1電流センサ18から与えられる直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを、予め設定された所定の時間間隔ごとにサンプリングし、それぞれの平均値を求め、平均化された直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを制御処理部30に与える機能を有している。
 図4は、直流入力電圧検出値Vg、及び昇圧回路電流検出値Iinの経時変化をシミュレーションにより求めた結果の一例を示すグラフである。
 また、直流入力電流検出値Igは、コンデンサ26よりも入力側で検出される電流値である。
 図4に示すように、直流入力電圧検出値Vg、昇圧回路電流検出値Iin、及び直流入力電流検出値Igは、系統電圧の1/2の周期で変動していることが判る。
 図4に示すように、直流入力電圧検出値Vg、及び直流入力電流検出値Igが周期的に変動する理由は、次の通りである。すなわち、昇圧回路電流検出値Iinは、昇圧回路10、及びインバータ回路11の動作に応じて、交流周期の1/2周期でほぼ0Aからピーク値まで大きく変動する。そのため、コンデンサ26で変動成分を完全に取り除くことができず、直流入力電流検出値Igは、交流周期の1/2周期で変動する成分を含む脈流となる。一方、太陽光発電パネルは出力電流によって出力電圧が変化する。
 このため、直流入力電圧検出値Vgに生じる周期的な変動は、インバータ装置1が出力する交流電力の1/2周期となっている。
 平均化処理部34は、上述の周期的変動による影響を抑制するために、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを平均化する。
 図5は、平均化処理部34が行う、直流入力電圧検出値Vgを平均化する際の態様を示す図である。
 平均化処理部34は、あるタイミングt1から、タイミングt2までの間の期間Lにおいて、予め設定された所定の時間間隔Δtごとに、与えられる直流入力電圧検出値Vgについて複数回サンプリング(図中、黒点のタイミング)を行い、得られた複数の直流入力電圧検出値Vgの平均値を求める。
 ここで、平均化処理部34は、期間Lを商用電力系統3の周期長さの1/2の長さに設定する。また、平均化処理部34は、時間間隔Δtを、商用電力系統3の1/2周期の長さよりも十分短い期間に設定する。
 これにより、平均化処理部34は、商用電力系統3の周期と同期して周期的に変動する、直流入力電圧検出値Vgの平均値を、できるだけサンプリングの期間を短くしつつ、精度よく求めることができる。
 なお、サンプリングの時間間隔Δtは、例えば、商用電力系統3の周期の1/100~1/1000、或いは、20マイクロ秒~200マイクロ秒等に設定することができる。
 なお、平均化処理部34は、期間Lを予め記憶しておくこともできるし、第2電圧センサ25から系統電圧検出値Vaを取得して商用電力系統3の周期に基づいて期間Lを設定することもできる。
 また、ここでは、期間Lを商用電力系統3の周期長さの1/2の長さに設定したが、期間Lは、少なくとも、商用電力系統3の1/2周期に設定すれば、直流入力電圧検出値Vgの平均値を精度よく求めることができる。直流入力電圧検出値Vgは、上述のように、昇圧回路10、およびインバータ回路11の動作によって、商用電力系統3の周期長さの1/2の長さで周期的に変動するからである。
 よって、期間Lをより長く設定する必要がある場合、商用電力系統3の1/2周期の3倍や4倍といったように、期間Lを商用電力系統3の1/2周期の整数倍に設定すればよい。これによって、周期単位で電圧変動を把握できる。
 上述したように、昇圧回路電流検出値Iinも、直流入力電圧検出値Vgと同様、商用電力系統3の1/2周期で周期的に変動する。
 よって、平均化処理部34は、図5に示した直流入力電圧検出値Vgと同様の方法によって、昇圧回路電流検出値Iinの平均値も求める。
 制御処理部30は、直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値をそれぞれ、期間Lごとに逐次求める。
 平均化処理部34は、求めた直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値を制御処理部30に与える。
 本実施形態では、上述のように、平均化処理部34が、直流入力電圧検出値Vgの平均値(直流入力電圧平均値〈Vg〉)及び昇圧回路電流検出値Iinの平均値(昇圧回路電流平均値〈Iin〉)を求め、制御処理部30は、これら値を用いて、太陽光発電パネル2に対するMPPT制御を行いつつ、昇圧回路10及びインバータ回路11を制御するので、太陽光発電パネル2による直流電流が変動し不安定な場合にも、制御部12は、太陽光発電パネル2からの出力を、インバータ装置1の動作による変動成分を取り除いた直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉として精度よく得ることができる。この結果、MPPT制御を好適に行うことができ、太陽光発電パネル2の発電効率が低下するのを効果的に抑制することができる。
 また、上述したように、インバータ装置1の動作によって、太陽光発電パネル2が出力する直流電力の電圧(直流入力電圧検出値Vg)や電流(昇圧回路電流検出値Iin)に変動が生じる場合、その変動周期は、インバータ回路11が出力する交流電力の1/2周期(商用電力系統3の1/2周期)と一致する。
 この点、本実施形態では、商用電力系統3の周期長さの1/2の長さに設定された期間Lの間に、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinのそれぞれについて、交流系統の1/2周期よりも短い時間間隔Δtで複数回サンプリングし、その結果から直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を求めたので、直流電流の電圧及び電流が周期的に変動したとしても、できるだけサンプリングの期間を短くしつつ、直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を精度よく求めることができる。
 制御処理部30は、上述の入力電力平均値〈Pin〉に基づいて、直流入力電流指令値Ig*を設定し、この設定した直流入力電流指令値Ig*や、上記値に基づいて、昇圧回路10及びインバータ回路11それぞれに対する指令値を求める。
 制御処理部30は、求めた指令値を昇圧回路制御部32及びインバータ回路制御部33に与え、昇圧回路10及びインバータ回路11それぞれをフィードバック制御する機能を有している。
 図6は、制御処理部30による昇圧回路10、及びインバータ回路11のフィードバック制御を説明するための制御ブロック図である。
 制御処理部30は、インバータ回路11の制御を行うための機能部として、第1演算部41、第1加算器42、補償器43、及び第2加算器44を有している。
 また、制御処理部30は、昇圧回路10の制御を行うための機能部として、第2演算部51、第3加算器52、補償器53、及び第4加算器54を有している。
 図7は、昇圧回路10及びインバータ回路11の制御処理を示すフローチャートである。図6に示す各機能部は、図7に示すフローチャートに示す処理を実行することで、昇圧回路10及びインバータ回路11を制御する。
 以下、図7に従って、昇圧回路10及びインバータ回路11の制御処理を説明する。
 まず、制御処理部30は、現状の入力電力平均値〈Pin〉を求め(ステップS9)、前回演算時の入力電力平均値〈Pin〉と比較して、直流入力電流指令値Ig*を設定する(ステップS1)。なお、入力電力平均値〈Pin〉は、下記式(1)に基づいて求められる。
  入力電力平均値〈Pin〉=〈Iin×Vg〉 ・・・(1)
 なお、式(1)中、Iinは昇圧回路電流検出値、Vgは直流入力電圧検出値(直流入力電圧値)であり、平均化処理部34によって平均化された値である直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉が用いられる。
 また、式(1)以外の以下に示す制御に関する各式においては、昇圧回路電流検出値Iin、及び直流入力電圧検出値Vgは、平均化されていない瞬時値が用いられる。
 また、「〈 〉」は、括弧内の値の平均値を示している。以下同じである。
 制御処理部30は、設定した直流入力電流指令値Ig*を、第1演算部41に与える。
 第1演算部41には、直流入力電流指令値Ig*の他、直流入力電圧検出値Vg、系統電圧検出値Vaも与えられる。
 第1演算部41は、下記式(2)に基づいて、インバータ装置1としての出力電流指令値の平均値〈Ia*〉を演算する。
  出力電流指令値の平均値〈Ia*〉=
            〈Ig*×Vg〉/〈Va〉  ・・・(2)
 さらに、第1演算部41は、下記式(3)に基づいて、出力電流指令値Ia*(出力電流目標値)を求める(ステップS2)。
 ここで、第1演算部41は、出力電流指令値Ia*を系統電圧検出値Vaと同位相の正弦波として求める。
 出力電流指令値Ia*=
       (√2)×〈Ia*〉×sinωt    ・・・(3)
 以上のように、第1演算部41は、入力電力平均値〈Pin〉(直流電力の入力電力値)及び系統電圧検出値Vaに基づいて出力電流指令値Ia*を求める。
 次いで、第1演算部41は、下記式(4)に示すように、インバータ回路11を制御するための電流目標値であるインバータ電流指令値Iinv*(インバータ回路の電流目標値)を演算する(ステップS3)。
 インバータ電流指令値Iinv*=
              Ia* + s CaVa  ・・・(4)
 ただし、式(4)中、Caは、コンデンサ23(出力平滑コンデンサ)の静電容量、sはラプラス演算子である。
 上記式(4)は、時間tでの微分を用いた表現とすれば、
 Iinv*=Ia* + Ca×(d Va/dt)  ・・・(4a)
となる。また、コンデンサ23に流れる電流を検出してこれをIcaとすれば、
 Iinv*=Ia* + Ica  ・・・(4b)
となる。
 式(4),(4a),(4b)中、右辺第2項は、フィルタ回路21のコンデンサ23に流れる電流を考慮して加算した値である。
 なお、出力電流指令値Ia*は、上記式(3)に示すように、系統電圧検出値Vaと同位相の正弦波として求められる。つまり、制御処理部30は、インバータ装置1が出力する交流電力の電流Ia(出力電流)が系統電圧(系統電圧検出値Va)と同位相となるようにインバータ回路11を制御する。
 第1演算部41は、インバータ電流指令値Iinv*を求めると、このインバータ電流指令値Iinv*を第1加算器42に与える。
 インバータ回路11は、このインバータ電流指令値Iinv*によって、フィードバック制御される。
 第1加算器42には、インバータ電流指令値Iinv*の他、現状のインバータ電流検出値Iinvが与えられる。
 第1加算器42は、インバータ電流指令値Iinv*と、現状のインバータ電流検出値Iinvとの差分を演算し、その演算結果を補償器43に与える。
 補償器43は、上記差分が与えられると、比例係数等に基づいて、この差分を収束させインバータ電流検出値Iinvをインバータ電流指令値Iinv*とし得るインバータ電圧参照値Vinv#を求める。補償器43は、このインバータ電圧参照値Vinv#をインバータ回路制御部33に与えることで、インバータ回路11に、インバータ電圧参照値Vinv#に従った電圧Vinvで電力を出力させる。
 インバータ回路11が出力した電力は、第2加算器44によって系統電圧検出値Vaで減算された上で交流リアクトル22に与えられ、新たなインバータ電流検出値Iinvとしてフィードバックされる。そして、第1加算器42によってインバータ電流指令値Iinv*とインバータ電流検出値Iinvとの間の差分が再度演算され、上記同様、この差分に基づいてインバータ回路11が制御される。
 以上のようにして、インバータ回路11は、インバータ電流指令値Iinv*と、インバータ電流検出値Iinvとによって、フィードバック制御される(ステップS4)。
 一方、第2演算部51には、直流入力電圧検出値Vg、系統電圧検出値Vaの他、第1演算部41が演算したインバータ電流指令値Iinv*が与えられる。
 第2演算部51は、下記式(5)に基づいて、インバータ出力電圧指令値Vinv*(インバータ回路の電圧目標値)を演算する(ステップS5)。
 インバータ出力電圧指令値Vinv*=
              Va+s LaIinv* ・・・(5)
 ただし、式(5)中、Laは、交流リアクトルのインダクタンス、sはラプラス演算子である。
 上記式(5)は、時間tでの微分を用いた表現とすれば、
 Vinv*=Va + La× (d Iinv*/dt)・・・(5a)
となる。
 式(5),(5a)中、右辺第2項は、交流リアクトル22の両端に発生する電圧を考慮して加算した値である。
 このように、本実施形態では、インバータ回路11が出力する交流電力の電流位相が系統電圧検出値Vaと同位相となるようにインバータ回路11を制御するための電流目標値であるインバータ電流指令値Iinv*に基づいてインバータ出力電圧指令値Vinv*(電圧目標値)を設定する。
 インバータ出力電圧指令値Vinv*を求めると、下記式(6)に示すように、第2演算部51は、直流入力電圧検出値Vgと、インバータ出力電圧指令値Vinv*の絶対値とを比較して、大きい方を昇圧回路電圧目標値Vo*に決定する(ステップS6)。
 昇圧回路電圧目標値Vo*=
          Max(Vg,Vinv*の絶対値)・・・(6)
 さらに、第2演算部51は、下記式(7)に基づいて、昇圧回路電流指令値Iin*を演算する(ステップS7)。
昇圧回路電流指令値Iin*=
{(Iinv*×Vinv*) +(s C Vo*)×Vo*} / Vg
                           ・・・(7)
 ただし、式(7)中、Cは、コンデンサ19(平滑コンデンサ)の静電容量、sはラプラス演算子である。
 上記式(7)は、時間tでの微分を用いた表現とすれば、
 Iin*=
 {(Iinv*×Vinv*) +C×(d Vo*/dt)×Vo*} / Vg                      ・・・(7a)
となる。また、コンデンサ19に流れる電流を検出してこれをIcとすれば、
 Iin*=
 {(Iinv*×Vinv*) +Ic×Vo*} / Vg
                         ・・・(7b)
となる。
 式(7),(7a),(7b)中、インバータ電流指令値Iinv*と、インバータ出力電圧指令値Vinv*との積の絶対値に加算されている項は、コンデンサ19を通過する無効電力を考慮した値である。すなわち、インバータ回路11の電力目標値に加えて、無効電力を考慮することにより、より正確にIin*の値を求めることができる。
 さらに、予めインバータ装置1の電力損失PLOSSを測定しておけば、上記式(7a)は、以下のようにも表すことができる。
 Iin*=
 {(Iinv*×Vinv*) + C×(d Vo*/dt)×Vo* + PLOSS}/Vg                  ・・・(7c)
同様に、上記式(7b)は、以下のようにも表すことができる。
 Iin*=
 {(Iinv*×Vinv*) +Ic×Vo* + PLOSS} / Vg
                          ・・・(7d)
 この場合、インバータ回路11の電力目標値に加えて、無効電力及び電力損失PLOSSを考慮することにより、より厳密にIin*の値を求めることができる。
 なお、コンデンサ19の静電容量C及び電力損失PLOSSが、(Iinv*×Vinv*)に比べて十分小さい場合、下記式(8)が成立する。この式(8)によれば、演算処理を簡素化でき、演算時間を短縮できる。
 昇圧回路電流指令値Iin*=
           (Iinv*×Vinv*)/Vg・・・(8)
 第2演算部51は、昇圧回路電流指令値Iin*を求めると、この昇圧回路電流指令値Iin*を第3加算器52に与える。
 昇圧回路10は、この昇圧回路電流指令値Iin*によって、フィードバック制御される。
 第3加算器52には、昇圧回路電流指令値Iin*の他、現状の昇圧回路電流検出値Iinが与えられる。
 第3加算器52は、昇圧回路電流指令値Iin*と、現状の昇圧回路電流検出値Iinとの差分を演算し、その演算結果を補償器53に与える。
 補償器53は、上記差分が与えられると、比例係数等に基づいて、この差分を収束させ昇圧回路電流検出値Iinを昇圧回路電流指令値Iin*とし得る昇圧回路電圧参照値Vbc#を求める。補償器53は、この昇圧回路電圧参照値Vbc#を昇圧回路制御部32に与えることで、昇圧回路10に、昇圧回路電圧参照値Vbc#に従った電圧Voで電力を出力させる。
 昇圧回路10が出力した電力は、第4加算器54によって直流入力電圧検出値Vgで減算された上で直流リアクトル15に与えられ、新たな昇圧回路電流検出値Iinとしてフィードバックされる。そして、第3加算器52によって昇圧回路電流指令値Iin*と昇圧回路電流検出値Iinとの間の差分が再度演算され、上記同様、この差分に基づいて昇圧回路10が制御される。
 以上のようにして、昇圧回路10は、昇圧回路電流指令値Iin*と、昇圧回路電流検出値Iinとによって、フィードバック制御される(ステップS8)。
 上記ステップS8の後、制御処理部30は、上記式(1)に基づいて、現状の入力電力平均値〈Pin〉を求める(ステップS9)。
 制御処理部30は、前回演算時の入力電力平均値〈Pin〉と比較して、入力電力平均値〈Pin〉が最大値となるように(最大電力点に追従するように)、直流入力電流指令値Ig*を設定する。
 以上によって、制御処理部30は、太陽光発電パネル2に対するMPPT制御を行いつつ、昇圧回路10及びインバータ回路11を制御する。
 制御処理部30は、上述したように、インバータ回路11及び昇圧回路10を電流指令値によってフィードバック制御する。
 図8(a)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電流指令値Iin*、及びこれに従って制御した場合の昇圧回路電流検出値Iinをシミュレーションにより求めた結果の一例を示すグラフであり、(b)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電圧目標値Vo*、及びこれに従って制御した場合の昇圧回路電圧検出値Voをシミュレーションにより求めた結果の一例を示すグラフである。
 図8(a)に示すように、昇圧回路電流検出値Iinは、制御処理部30によって、昇圧回路電流指令値Iin*に沿って制御されていることが判る。
 また、図8(b)に示すように、昇圧回路電圧目標値Vo*は、上記式(6)によって求められるため、インバータ出力電圧指令値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間では、インバータ出力電圧指令値Vinv*の絶対値に倣い、それ以外の期間では直流入力電圧検出値Vgに倣うように変化している。
 昇圧回路電圧検出値Voは、制御処理部30によって、昇圧回路電圧目標値Vo*に沿って制御されていることが判る。
 図9は、インバータ出力電圧指令値Vinv*の一例を示す図である。図中、縦軸は電圧、横軸は時間を示している。破線は、商用電力系統3の電圧波形を示しており、実線は、インバータ出力電圧指令値Vinv*の波形を示している。
 インバータ装置1は、図7のフローチャートに従った制御によって、図9に示すインバータ出力電圧指令値Vinv*を電圧目標値として電力を出力する。
 よって、インバータ装置1は、図9に示すインバータ出力電圧指令値Vinv*の波形に従った電圧の電力を出力する。
 図に示すように、両波は、電圧値及び周波数は互いにほぼ同じであるが、インバータ出力電圧指令値Vinv*の位相の方が、商用電力系統3の電圧位相に対して数度進相している。
 本実施形態の制御処理部30は、上述のように、昇圧回路10及びインバータ回路11のフィードバック制御を実行する中で、インバータ出力電圧指令値Vinv*の位相を、商用電力系統3の電圧位相に対して約3度進相させている。
 インバータ出力電圧指令値Vinv*の位相を商用電力系統3の電圧位相に対して進相させる角度は、数度であればよく、後述するように、商用電力系統3の電圧波形との間で差分を求めたときに得られる電圧波形が、商用電力系統3の電圧波形に対して90度進んだ位相となる範囲で設定される。例えば、0度より大きくかつ10度より小さい値の範囲で設定される。
 上記進相させる角度は、上記式(5)に示すように、系統電圧検出値Va、交流リアクトル22のインダクタンスLa、及びインバータ電流指令値Iinv*によって定まる。この内、系統電圧検出値Va、交流リアクトル22のインダクタンスLaは、制御対象外の固定値なので、進相させる角度は、インバータ電流指令値Iinv*によって定まる。
 インバータ電流指令値Iinv*は、上記式(4)に示すように、出力電流指令値Ia*によって定まる。この出力電流指令値Ia*が大きくなるほど、インバータ電流指令値Iinv*における進相した成分が増加し、インバータ出力電圧指令値Vinv*の進み角(進相させる角度)が大きくなる。
 出力電流指令値Ia*は、上記式(2)から求められるため、上記進相させる角度は、直流入力電流指令値Ig*によって調整される。
 本実施形態の制御処理部30は、上述のように、インバータ出力電圧指令値Vinv*の位相が、商用電力系統3の電圧位相に対して約3度進相するように、直流入力電流指令値Ig*を設定している。
 〔1.3 昇圧回路及びインバータ回路の制御について〕
 昇圧回路制御部32は、昇圧回路10のスイッチング素子Qbを制御する。また、インバータ回路制御部33は、インバータ回路11のスイッチング素子Q1~Q4を制御する。
 昇圧回路制御部32及びインバータ回路制御部33は、それぞれ昇圧回路用搬送波及びインバータ回路用搬送波を生成し、これら搬送波を制御処理部30から与えられる指令値である昇圧回路電圧参照値Vbc#、及びインバータ電圧参照値Vinv#で変調し、各スイッチング素子を駆動するための駆動波形を生成する。
 昇圧回路制御部32及びインバータ回路制御部33は、上記駆動波形に基づいて各スイッチング素子を制御することで、昇圧回路電流指令値Iin*、及びインバータ電流指令値Iinv*に近似した電流波形の交流電力を昇圧回路10及びインバータ回路11に出力させる。
 図10(a)は、昇圧回路用搬送波と、昇圧回路電圧参照値Vbc#の波形とを比較したグラフである。図中、縦軸は電圧、横軸は時間を示している。なお、図10(a)では、理解容易とするために、昇圧回路用搬送波の波長を実際よりも長くして示している。
 昇圧回路制御部32が生成する昇圧回路用搬送波は、極小値が「0」である三角波であり、振幅A1が制御処理部30から与えられる昇圧回路電圧目標値Vo*とされている。
 また、昇圧回路用搬送波の周波数は、制御処理部30による制御命令によって、所定のディーティ比となるように、昇圧回路制御部32によって設定される。
 なお、昇圧回路電圧目標値Vo*は、上述したように、インバータ出力電圧指令値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1では、インバータ出力電圧指令値Vinv*の絶対値に倣い、それ以外の期間では直流入力電圧検出値Vgに倣うように変化している。よって、昇圧回路用搬送波の振幅A1も昇圧回路電圧目標値Vo*に応じて変化している。
 なお、本実施形態では、直流入力電圧検出値Vgが、250ボルトであり、商用電力系統3の電圧振幅が288ボルトであるとする。
 昇圧回路電圧参照値Vbc#の波形(以下、昇圧回路用参照波Vbc#ともいう)は、制御処理部30が昇圧回路電流指令値Iin*に基づいて求める値であり、インバータ出力電圧指令値Vinv*の絶対値が直流入力電圧検出値Vgよりも大きな期間W1において、正の値となっている。昇圧回路用参照波Vbc#は、期間Wでは、昇圧回路電圧目標値Vo*が成す波形状と近似するような波形となっており、昇圧回路用搬送波に対して交差している。
 昇圧回路制御部32は、昇圧回路用搬送波と昇圧回路用参照波Vbc#とを比較し、直流リアクトル15の両端電圧の目標値である昇圧回路用参照波Vbc#が昇圧回路用搬送波以上となる部分でオン、搬送波以下となる部分でオフとなるように、スイッチング素子Qbを駆動するための駆動波形を生成する。
 図10(b)は、昇圧回路制御部32が生成したスイッチング素子Qbを駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。横軸は、図10(a)の横軸と一致するように示している。
 この駆動波形は、スイッチング素子Qbのスイッチング動作を示しており、スイッチング素子Qbに与えることで、当該駆動波形に従ったスイッチング動作を実行させることができる。駆動波形は、電圧が0ボルトでスイッチング素子のスイッチをオフ、電圧がプラス電圧でスイッチング素子のスイッチをオンとする制御命令を構成している。
 昇圧回路制御部32は、インバータ出力電圧指令値Vinv*の絶対値が直流入力電圧検出値Vg以上となる期間W1でスイッチング動作が行われるように駆動波形を生成する。よって、直流入力電圧検出値Vg以下の範囲では、スイッチング動作を停止させるようにスイッチング素子Qbを制御する。
 また、各パルス幅は、三角波である昇圧回路用搬送波の切片によって定まる。よって、電圧が高い部分ほどパルス幅が大きくなっている。
 以上のように、昇圧回路制御部32は、昇圧回路用搬送波を昇圧回路用参照波Vbc#で変調し、スイッチングのためのパルス幅を表した駆動波形を生成する。昇圧回路制御部32は、生成した駆動波形に基づいて昇圧回路10のスイッチング素子QbをPWM制御する。
 ダイオード16に並列にダイオードの順方向に導通するスイッチング素子Qbuを設置する場合、スイッチング素子Qbuは、スイッチング素子Qbの駆動波形と反転した駆動波形を用いる。ただし、スイッチング素子Qbとスイッチング素子Qbuが同時に導通することを防ぐため、スイッチング素子Qbuの駆動パルスがオフからオンに移行するときに1マイクロ秒程度のデッドタイムを設ける。
 図11(a)は、インバータ回路用搬送波と、インバータ電圧参照値Vinv#の波形とを比較したグラフである。図中、縦軸は電圧、横軸は時間を示している。なお、図11(a)においても、理解容易とするために、インバータ回路用搬送波の波長を実際よりも長くして示している。
 インバータ回路制御部33が生成するインバータ回路用搬送波は、振幅中央が0ボルトの三角波であり、その片側振幅が、昇圧回路電圧目標値Vo*(コンデンサ23の電圧目標値)に設定されている。よって、インバータ回路用搬送波の振幅A2は、直流入力電圧検出値Vgの2倍(500ボルト)の期間と、商用電力系統3の電圧の2倍(最大576ボルト)の期間とを有している。
 また、周波数は、制御処理部30による制御命令等によって、所定のデューティ比となるように、インバータ回路制御部33によって設定される。
 なお、昇圧回路電圧目標値Vo*は、上述したように、インバータ出力電圧指令値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1では、インバータ出力電圧指令値Vinv*の絶対値に倣い、それ以外の期間である期間W2では直流入力電圧検出値Vgに倣うように変化している。よって、インバータ回路用搬送波の振幅A2も昇圧回路電圧目標値Vo*に応じて変化している。
 インバータ電圧参照値Vinv#の波形(以下、インバータ回路用参照波Vinv#ともいう)は、制御処理部30がインバータ電流指令値Iinv*に基づいて求める値であり、概ね商用電力系統3の電圧振幅(288ボルト)と同じに設定されている。よって、インバータ回路用参照波Vinv#は、電圧値が-Vg~+Vgの範囲の部分で、昇圧回路用搬送波に対して交差している。
 インバータ回路制御部33は、インバータ回路用搬送波とインバータ回路用参照波Vinv#とを比較し、電圧目標値であるインバータ回路用参照波Vinv#がインバータ回路用搬送波以上となる部分でオン、搬送波以下となる部分でオフとなるように、スイッチング素子Q1~4を駆動するための駆動波形を生成する。
 図11(b)は、インバータ回路制御部33が生成したスイッチング素子Q1を駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。横軸は、図11(a)の横軸と一致するように示している。
 インバータ回路制御部33は、インバータ回路用参照波Vinv#の電圧が-Vg~+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q1を制御する。
 図11(c)は、インバータ回路制御部33が生成したスイッチング素子Q3を駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。
 インバータ回路制御部33は、スイッチング素子Q3については、図中破線で示しているインバータ回路用参照波Vinv#の反転波と、搬送波とを比較して駆動波形を生成する。
 この場合も、インバータ回路制御部33は、インバータ回路用参照波Vinv#(の反転波)の電圧が、-Vg~+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q3を制御する。
 なお、インバータ回路制御部33は、スイッチング素子Q2の駆動波形については、スイッチング素子Q1の駆動波形を反転させたものを生成し、スイッチング素子Q4の駆動波形については、スイッチング素子Q3の駆動波形を反転させたものを生成する。
 以上のように、インバータ回路制御部33は、インバータ回路用搬送波をインバータ回路用参照波Vinv#で変調し、スイッチングのためのパルス幅を表した駆動波形を生成する。インバータ回路制御部33は、生成した駆動波形に基づいてインバータ回路11のスイッチング素子Q1~Q4をPWM制御する。
 本実施形態の昇圧回路制御部32は、直流リアクトル15に流れる電流が昇圧回路電流指令値Iin*に一致するように電力を出力させる。この結果、インバータ出力電圧指令値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1(図10)で昇圧回路10にスイッチング動作を行わせる。昇圧回路10は、期間W1で直流入力電圧検出値Vg以上の電圧をインバータ出力電圧指令値Vinv*の絶対値に近似するように電力を出力する。一方、インバータ出力電圧指令値Vinv*の絶対値が概ね直流入力電圧検出値Vg以下の期間では、昇圧回路制御部32は、昇圧回路10のスイッチング動作を停止させる。よって、直流入力電圧検出値Vg以下の期間では、昇圧回路10は、太陽光発電パネル2が出力する直流電力の直流入力電圧値を昇圧することなくインバータ回路11に出力する。
 また、本実施形態のインバータ回路制御部33は、交流リアクトル22に流れる電流が、インバータ電流指令値Iinv*に一致するように電力を出力させる。この結果、インバータ出力電圧指令値Vinv*が概ね-Vg~+Vgの期間W2(図11)でインバータ回路11にスイッチング動作を行わせる。つまり、インバータ出力電圧指令値Vinv*の絶対値が直流入力電圧検出値Vg以下の期間でインバータ回路11にスイッチング動作を行わせる。
 よって、インバータ回路11は、昇圧回路10がスイッチング動作を停止している間、スイッチング動作を行い、インバータ出力電圧指令値Vinv*に近似する交流電力を出力する。
 なお、インバータ回路用参照波Vinv#と、インバータ出力電圧指令値Vinv*とは近似するので、図11(a)においては重複している。
 一方、インバータ出力電圧指令値Vinv*の電圧が概ね-Vg~+Vgの期間W2以外の期間では、インバータ回路制御部33は、インバータ回路11のスイッチング動作を停止させる。この間、インバータ回路11には、昇圧回路10により昇圧された電力が与えられる。よって、スイッチング動作を停止しているインバータ回路11は、昇圧回路10から与えられる電力を降圧することなく出力する。
 つまり、本実施形態のインバータ装置1は、昇圧回路10とインバータ回路11とを交互に切り替わるようにスイッチング動作させ、それぞれが出力する電力を重ね合わせることで、インバータ出力電圧指令値Vinv*に近似した電圧波形の交流電力を出力する。
 このように、本実施形態では、インバータ出力電圧指令値Vinv*の絶対値が、直流入力電圧検出値Vgよりも高い部分の電圧を出力する際には昇圧回路10を動作させ、インバータ出力電圧指令値Vinv*の絶対値が、直流入力電圧検出値Vgよりも低い部分の電圧を出力する際にはインバータ回路11を動作させるように制御される。よって、インバータ回路11が、昇圧回路10によって昇圧された電力を降圧することがないので、電圧を降圧する際の電位差を低く抑えることができるため、昇圧回路のスイッチングによる損失を低減し、より高効率で交流電力を出力することができる。
 さらに、昇圧回路10及びインバータ回路11は、共に制御部12が設定したインバータ出力電圧指令値Vinv*(電圧目標値)に基づいて動作するため、交互に切り替わるように出力される昇圧回路の電力と、インバータ回路の電力との間で、ずれや歪が生じるのを抑制することができる。
 図12は、参照波、及びスイッチング素子の駆動波形の一例とともに、インバータ装置1が出力する交流電力の電流波形の一例を示した図である。
 図12において、最上段から順に、インバータ回路の参照波Vinv#及び搬送波、スイッチング素子Q1の駆動波形、昇圧回路の参照波Vbc#及び搬送波、スイッチング素子Qbの駆動波形、及びインバータ装置1が出力する交流電力の電流波形の指令値及び実測値を示すグラフを表している。これら各グラフの横軸は、時間を示しており、互いに一致するように示している。
 図に示すように、出力電流の実測値Iaは指令値Ia*と一致するように制御されていることが判る。
 また、昇圧回路10のスイッチング素子Qbのスイッチング動作の期間と、インバータ回路11のスイッチング素子Q1~Q4のスイッチング動作の期間とは、概ね互いに交互に切り替わるように制御されていることが判る。
 また、本実施形態では、図8(a)に示すように、上記式(7)に基づいて求められる昇圧回路は直流リアクトル15を流れる電流が電流指令値Iin*に一致するように制御される。この結果、昇圧回路とインバータ回路の電圧が、図8(b)に示す波形となり、昇圧回路10、およびインバータ回路11の高周波スイッチング動作にそれぞれ停止期間があり、概ね交互にスイッチング動作を行う運転が可能になる。
 〔1.4 出力される交流電力の電流位相について〕
 本実施形態の昇圧回路10及びインバータ回路11は、制御部12による制御によって、インバータ出力電圧指令値Vinv*に近似した電圧波形の交流電力を、その後段に接続されたフィルタ回路21に出力する。インバータ装置1は、フィルタ回路21を介して商用電力系統3に交流電力を出力する。
 ここで、インバータ出力電圧指令値Vinv*は、上述したように、制御処理部30によって商用電力系統3の電圧位相に対して数度進相した電圧位相として生成される。
 従って、昇圧回路10及びインバータ回路11が出力する交流電圧も、商用電力系統3の電圧位相に対して数度進相した電圧位相とされる。
 すると、フィルタ回路21の交流リアクトル22(図2)の両端には、一方が昇圧回路10及びインバータ回路11の交流電圧、他方が商用電力系統3と、互いに数度電圧位相がずれた電圧がかかることなる。
 図13(a)は、インバータ回路11から出力された交流電圧、商用電力系統3、及び交流リアクトル22の両端電圧、それぞれの電圧波形を示したグラフである。図中、縦軸は電圧、横軸は時間を示している。
 図に示すように、交流リアクトル22の両端が互いに数度電圧位相がずれた電圧がかかると、交流リアクトル22の両端電圧は、交流リアクトル22の両端にかかる互いに数度電圧位相がずれた電圧同士の差分となる。
 よって、図に示すように、交流リアクトル22の両端電圧の位相は、商用電力系統3の電圧位相に対して90度進んだ位相となる。
 図13(b)は、交流リアクトル22に流れる電流波形を示したグラフである。図中、縦軸は電流、横軸は時間を示している。横軸は、図13(a)の横軸と一致するように示している。
 交流リアクトル22の電流位相は、その電圧位相に対して90度遅延する。よって、図に示すように、交流リアクトル22を通して出力される交流電力の電流位相は、商用電力系統3の電流位相に対して同期することとなる。
 従って、インバータ回路11が出力する電圧位相は、商用電力系統3に対して数度進相しているが、電流位相は、商用電力系統3の電流位相に対して一致する。
 よって、図12の最下段に示すグラフのように、インバータ装置1が出力する電流波形は、商用電力系統3の電圧位相と一致したものとなる。
 この結果、商用電力系統3の電圧と同位相の交流電流を出力することができるので、当該交流電力の力率が低下するのを抑制することができる。
〔2. 第2実施形態〕
 図14は、第2実施形態に係るインバータ装置1の回路図の一例である。
 本実施形態と第1実施形態との相違点は、インバータ回路11のスイッチング素子Q1~Q4としてIGBTを用いている点である。その他の構成は、第1実施形態と同一である。
 本実施形態では、インバータ回路制御部33が上記第1実施形態で用いたインバータ回路用搬送波と異なる搬送波を用いる。
 図15は、第2実施形態におけるインバータ回路用搬送波と、参照波とを比較したグラフである。図中、縦軸は電圧、横軸は時間を示している。
 参照波、及び昇圧回路用搬送波は、第1実施形態と同様である。
 一方、本実施形態のインバータ回路用搬送波は、下限値が0ボルト、上限値が昇圧回路電圧目標値Vo*に設定された三角波である。
 またこの場合、インバータ回路制御部33は、スイッチング素子Q1の駆動波形については、インバータ回路用参照波Vinv#とインバータ回路用搬送波との比較によって生成し、スイッチング素子Q3の駆動波形については、インバータ回路用参照波Vinv#の反転波とインバータ回路用搬送波との比較によって生成する。
 本実施形態の場合も、インバータ回路制御部33(昇圧回路制御部32)は、インバータ回路用搬送波(昇圧回路用搬送波)とインバータ回路用参照波Vinv#とを比較し、電圧目標値であるインバータ回路用参照波Vinv#(又は反転波)がインバータ回路用搬送波(昇圧回路用搬送波)以上となる部分でオン、搬送波以下となる部分でオフとなるように、スイッチング素子を駆動するための駆動波形を生成する。
 図16は、第2実施形態における、各スイッチング素子Qb、Q1~Q4の駆動波形の一例とともに、インバータ装置1が出力する交流電力の電流波形の一例を示した図である。
 図16において、最上段から順に、スイッチング素子Q1の駆動波形、スイッチング素子Q4の駆動波形、スイッチング素子Q3の駆動波形、スイッチング素子Q2の駆動波形、スイッチング素子Qbの駆動波形、及びインバータ装置1が出力する交流電力の電流波形を示すグラフを表している。これら各グラフの横軸は、時間を示しており、互いに一致するように示している。
 本実施形態では、インバータ回路用参照波Vinv#の電圧が-Vg~+Vgの範囲において、スイッチング素子Q1とスイッチング素子Q3とがスイッチングを行うように制御される。
 本実施形態においても、図に示すように、昇圧回路10のスイッチング素子Qbのスイッチング動作の期間と、インバータ回路11のスイッチング素子Q1~Q4のスイッチング動作の期間とは、互いに交互に切り替わるように制御されていることが判る。
 また、本実施形態のインバータ装置1が出力する交流電力の電流波形は、図16に示すように、商用電力系統3の電圧位相と一致したものとなっている。よって、上記第1実施形態と同様に、商用電力系統3に対して電流位相が同位相の交流電力を出力することができ、当該交流電力の力率が低下するのを抑制することができる。
〔3. 第3実施形態〕
 図17は、第3実施形態に係るインバータ装置1の回路図の一例である。
 本実施形態と第1実施形態との相違点は、昇圧回路10とインバータ回路11の間の中間電圧を検出する第3電圧センサ27を備えている点である。その他の構成は、第1実施形態と同一である。
 上記第1実施形態では、昇圧回路電圧目標値Vo*(中間電圧の目標値)を搬送波の振幅としたが、本実施形態では、第3電圧センサ27で検出した電圧検出値Voを搬送波の振幅に用いる。
 図18は、第3実施形態における、参照波、及びスイッチング素子の駆動波形の一例とともに、インバータ装置1が出力する交流電力の電流波形の一例を示した図である。
 図18において、最上段から順に、インバータ回路の参照波Vinv#および搬送波、スイッチング素子Q1の駆動波形、昇圧回路の参照波Vbc#および搬送波、スイッチング素子Qbの駆動波形、及びインバータ装置1が出力する交流電力の電流波形の指令値Ia*および実測値Iaを示すグラフを表している。これら各グラフの横軸は、時間を示しており、互いに一致するように示している。
 図に示すように、本実施形態においても、出力電流の実測値Iaは指令値Ia*と一致するように制御されていることが判る。
 また、昇圧回路10のスイッチング素子Qbのスイッチング動作の期間と、インバータ回路11のスイッチング素子Q1のスイッチング動作の期間とは、概ね互いに交互に切り替わるように制御されていることが判る。
 また、本実施形態のように、搬送波の振幅に電圧検出値Voを用いることによって、太陽光発電パネル2、あるいは商用電力系統3の電圧が変動したときの応答がより速くなり、インバータ装置1の出力電流を安定化することができる。
〔4. 付記〕
 なお、上記実施形態における各シミュレーションについては、実機を用いた検証によっても同様の結果が得られることが確認されている。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 1 インバータ装置
 2 太陽光発電パネル
 3 商用電力系統
 10 昇圧回路
 11 インバータ回路
 12 制御部
 15 直流リアクトル
 16 ダイオード
 17 第1電圧センサ
 18 第1電流センサ
 19 コンデンサ(平滑コンデンサ)
 21 フィルタ回路
 22 交流リアクトル
 23 コンデンサ(出力平滑コンデンサ)
 24 第2電流センサ
 25 第2電圧センサ
 26 コンデンサ
 27 電圧センサ
 30 制御処理部
 32 昇圧回路制御部
 33 インバータ回路制御部
 34 平均化処理部
 41 第1演算部
 42 第1加算器
 43 補償器
 44 第2加算器
 51 第2演算部
 52 第3加算器
 53 補償器
 54 第4加算器
 Q1~Q4,Qb スイッチング素子

Claims (13)

  1.  リアクトルを介して交流系統に接続されるインバータ装置であって、
     電源が出力する直流電力を交流電力に変換し、変換した交流電力を、前記リアクトルを介して前記交流系統へ出力する変換部と、
     前記変換部の制御を行う制御部と、を備え、
     前記変換部は、
     前記直流電力の直流入力電圧値を昇圧する昇圧回路と、
     前記昇圧回路から与えられる電力を交流電力に変換するインバータ回路と、を備え、
     前記制御部は、
     前記直流電力の入力電力値及び前記交流系統の電圧値に基づいて出力電流目標値を求め、当該出力電流目標値に基づいて前記インバータ回路の電流目標値及び電圧目標値を求めて前記インバータ回路を制御するとともに、
     前記インバータ回路と共通の電流目標値及び電圧目標値、並びに、前記直流入力電圧値に基づいて、前記昇圧回路の電流目標値を求めて前記昇圧回路を制御することにより、前記交流電力の出力を制御するインバータ装置。
  2.  前記昇圧回路と前記インバータ回路との間に平滑コンデンサが設けられており、
     前記インバータ回路の電流目標値及び電圧目標値に基づく電力目標値に、前記平滑コンデンサを通過する無効電力を加味した値と、前記直流入力電圧値とに基づいて、前記昇圧回路の電流目標値を求める、請求項1に記載のインバータ装置。
  3.  前記昇圧回路と前記インバータ回路との間に平滑コンデンサが設けられており、
     前記インバータ回路の電流目標値及び電圧目標値に基づく電力目標値に、前記平滑コンデンサを通過する無効電力及び当該インバータ装置における電力損失を加味した値と、前記直流入力電圧値とに基づいて、前記昇圧回路の電流目標値を求める、請求項1に記載のインバータ装置。
  4.  前記リアクトルの後段に出力平滑コンデンサが設けられており、
     前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記出力平滑コンデンサの静電容量をCa、
     前記交流系統の電圧値をVa、
     前記直流入力電圧値をVg、とするとき、
     Iin*=(Iinv* × Vinv*) / Vg
    であり、
     Iinv*=Ia* + Ca×(d Va/dt)
    である、請求項1に記載のインバータ装置。
  5.  前記リアクトルの後段に出力平滑コンデンサが設けられており、
     前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記交流系統の電圧値をVa、
     前記直流入力電圧値をVg、
     前記出力平滑コンデンサに流れる電流をIca、とするとき、
     Iin*=(Iinv* × Vinv*) / Vg
    であり、
     Iinv*=Ia* + Ica
    である、請求項1に記載のインバータ装置。
  6.  前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記平滑コンデンサの静電容量をC、
     前記昇圧回路の電圧目標値をVo*、
     前記直流入力電圧値をVg、とするとき、
    Iin*=
     {(Iinv* × Vinv*) + C×(d Vo*/dt)×Vo*} / Vg
    である請求項2に記載のインバータ装置。
  7.  前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記昇圧回路の電圧目標値をVo*、
     前記直流入力電圧値をVg、
     前記平滑コンデンサに流れる電流をIc、とするとき、
     Iin*={(Iinv* × Vinv*) + Ic×Vo*} / Vg
    である請求項2に記載のインバータ装置。
  8.  前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記平滑コンデンサの静電容量をC、
     前記昇圧回路の電圧目標値をVo*、
     前記直流入力電圧値をVg、
     当該インバータ装置の電力損失をPLOSS、とするとき、
     Iin*=
     {(Iinv* × Vinv*) + C×(d Vo*/dt)×Vo* + PLOSS} / Vg
    である請求項3に記載のインバータ装置。
  9.  前記昇圧回路の電流目標値をIin*、
     前記インバータ回路の電流目標値及び電圧目標値をそれぞれ、Iinv*及びVinv*、
     前記昇圧回路の電圧目標値をVo*、
     前記直流入力電圧値をVg、
     前記平滑コンデンサに流れる電流をIc、
     当該インバータ装置の電力損失をPLOSS、とするとき、
     Iin*=
    {(Iinv* × Vinv*) + Ic×Vo* + PLOSS} / Vg
    である請求項3に記載のインバータ装置。
  10.  前記制御部は、前記昇圧回路の電圧目標値として、前記直流入力電圧値、及び、前記インバータ回路の電圧目標値の絶対値のいずれか大きい方を選択するとともに、
     前記リアクトルのインダクタンスをLaとするとき、前記インバータ回路の電圧目標値Vinv*を、
     Vinv*=Va + La(d Iinv*/dt)
    として求める請求項4~請求項9のいずれか1項に記載のインバータ装置。
  11.  前記制御部は、前記直流入力電圧値及び前記電源から与えられる直流電力の直流入力電流値のそれぞれを複数回測定した結果から求められた、前記直流入力電圧値及び前記直流入力電流値それぞれの平均値に基づいて、前記電源について最大電力点追従制御を行う請求項1~請求項10のいずれか1項に記載のインバータ装置。
  12.  前記直流入力電圧値及び直流入力電流値それぞれの平均値は、前記交流系統の1/2周期の整数倍期間の間に、前記直流入力電圧値及び直流入力電流値のそれぞれを前記交流系統の1/2周期よりも短い時間間隔で複数回測定した結果から得られた値である請求項11に記載のインバータ装置。
  13.  前記交流系統から直流電力を前記電源に出力する請求項1~請求項12のいずれか1項に記載のインバータ装置。
PCT/JP2014/063610 2013-06-11 2014-05-22 インバータ装置 WO2014199796A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014279387A AU2014279387B2 (en) 2013-06-11 2014-05-22 Inverter device
EP14811444.0A EP3010136B1 (en) 2013-06-11 2014-05-22 Inverter device
US14/890,882 US9627995B2 (en) 2013-06-11 2014-05-22 Inverter device with a control unit
JP2015522691A JP6187587B2 (ja) 2013-06-11 2014-05-22 インバータ装置
CN201480032893.6A CN105324927B (zh) 2013-06-11 2014-05-22 逆变器装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-122665 2013-06-11
JP2013122665 2013-06-11
JP2014104326A JP5618022B1 (ja) 2013-06-11 2014-05-20 インバータ装置

Publications (1)

Publication Number Publication Date
WO2014199796A1 true WO2014199796A1 (ja) 2014-12-18

Family

ID=59337369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063610 WO2014199796A1 (ja) 2013-06-11 2014-05-22 インバータ装置

Country Status (7)

Country Link
US (1) US9627995B2 (ja)
EP (1) EP3010136B1 (ja)
JP (2) JP5618022B1 (ja)
CN (1) CN105324927B (ja)
AU (1) AU2014279387B2 (ja)
TW (1) TWI631810B (ja)
WO (1) WO2014199796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002419A1 (ja) * 2015-06-29 2017-01-05 住友電気工業株式会社 変換装置及びその制御方法
WO2017061177A1 (ja) * 2015-10-07 2017-04-13 住友電気工業株式会社 電力変換装置及びその制御方法
WO2023089683A1 (ja) * 2021-11-17 2023-05-25 東芝三菱電機産業システム株式会社 モジュール型無停電電源装置および無停電電源システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618023B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP5618022B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP6327106B2 (ja) * 2014-01-10 2018-05-23 住友電気工業株式会社 変換装置
EP2928038A1 (en) * 2014-03-31 2015-10-07 ABB Technology AG Inductive power transfer system and method for operating an inductive power transfer system
JP6303970B2 (ja) 2014-10-17 2018-04-04 住友電気工業株式会社 変換装置
JP6414491B2 (ja) * 2015-03-06 2018-10-31 住友電気工業株式会社 変換装置
JP6507879B2 (ja) * 2015-06-22 2019-05-08 住友電気工業株式会社 電力変換装置及びその制御方法
JP6500738B2 (ja) * 2015-10-15 2019-04-17 住友電気工業株式会社 電力変換装置及びその制御方法
JP6536346B2 (ja) 2015-10-19 2019-07-03 住友電気工業株式会社 電力変換装置及びその制御方法
JP6524883B2 (ja) 2015-10-19 2019-06-05 住友電気工業株式会社 電力変換装置及びその制御方法
US9660515B1 (en) * 2015-12-16 2017-05-23 National Chung Shan Institute Of Science And Technology Control method and control device for reducing second-order ripple
JP6558254B2 (ja) * 2016-01-18 2019-08-14 住友電気工業株式会社 電力変換システム及びその制御方法
JP6620629B2 (ja) 2016-03-24 2019-12-18 住友電気工業株式会社 電力変換装置及びその制御方法
TWI629486B (zh) * 2016-09-14 2018-07-11 台達電子工業股份有限公司 電流偵測裝置及其操作方法
US11159097B2 (en) * 2018-11-08 2021-10-26 Redx Technology Australia Pty Ltd FWS DC-AC grid connected inverter
CN116316861B (zh) * 2023-05-23 2023-09-19 广州疆海科技有限公司 光伏储能系统的逆变器
CN117148022B (zh) * 2023-10-30 2023-12-26 深圳市三瑞电源有限公司 一种光伏储能逆变器用定时自测试系统及其测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0844446A (ja) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd 太陽電池の最大電力点追尾制御方法及び装置
JP2000152651A (ja) 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2000341862A (ja) * 1999-03-19 2000-12-08 Uinzu:Kk エネルギー変換装置
JP2003009537A (ja) * 2001-06-27 2003-01-10 Hitachi Ltd 電力変換装置
JP2003134667A (ja) * 2001-10-17 2003-05-09 Mitsubishi Heavy Ind Ltd 太陽光発電装置
JP2003289626A (ja) * 2002-03-28 2003-10-10 Sharp Corp 太陽光発電システム用パワーコンディショナ
JP2005204485A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 系統連系用インバータ装置
WO2006033142A1 (ja) * 2004-09-22 2006-03-30 Mitsubishi Denki Kabushiki Kaisha 太陽光発電システムおよびその昇圧ユニット
JP2010066919A (ja) * 2008-09-09 2010-03-25 Toshiba Carrier Corp 系統連系インバータ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200413A (ja) 1986-02-28 1987-09-04 Toshiba Corp 電力変換装置の制御装置
JP4195948B2 (ja) 1998-11-05 2008-12-17 パナソニック株式会社 系統連系インバータ
JP4200244B2 (ja) 1998-11-10 2008-12-24 パナソニック株式会社 系統連系インバータ装置
JP4284478B2 (ja) * 1998-12-28 2009-06-24 株式会社安川電機 インバータ装置
JP4379959B2 (ja) 1999-07-27 2009-12-09 パナソニック株式会社 系統連系インバータ
JP4487354B2 (ja) 1999-12-02 2010-06-23 パナソニック株式会社 系統連系インバータ
JP4622021B2 (ja) 2000-01-28 2011-02-02 パナソニック株式会社 系統連系インバータ制御装置
JP2002369544A (ja) 2001-06-13 2002-12-20 Matsushita Electric Ind Co Ltd 系統連系インバータ
JP3742316B2 (ja) 2001-06-14 2006-02-01 東芝三菱電機産業システム株式会社 電力変換装置
JP2003348768A (ja) 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd 無停電電源装置
JP2005218157A (ja) 2004-01-27 2005-08-11 Meiji Univ Dc/dcコンバータ及びdc/dcコンバータの制御方法
JP4593973B2 (ja) * 2004-05-26 2010-12-08 トヨタ自動車株式会社 モータ駆動装置
JP2011083170A (ja) 2009-10-09 2011-04-21 Sanyo Electric Co Ltd 系統連系インバータ装置及び電力制御システム
JP5579540B2 (ja) * 2010-08-31 2014-08-27 一般財団法人電力中央研究所 パワーコンディショナの瞬低回復時の運転安定化方法、これを実施するパワーコンディショナ、及びパワーコンディショナの瞬低回復時の運転安定化用プログラム
CN101950985B (zh) * 2010-11-01 2013-07-03 上海兆能电力电子技术有限公司 单相并网光伏逆变器输出谐波及直流分量的抑制方法
JP5267589B2 (ja) 2011-02-03 2013-08-21 株式会社日本自動車部品総合研究所 電力変換装置
US20140008986A1 (en) * 2011-03-30 2014-01-09 Sanyo Electric Co., Ltd. Inverter system
JP5618022B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0844446A (ja) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd 太陽電池の最大電力点追尾制御方法及び装置
JP2000152651A (ja) 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2000341862A (ja) * 1999-03-19 2000-12-08 Uinzu:Kk エネルギー変換装置
JP2003009537A (ja) * 2001-06-27 2003-01-10 Hitachi Ltd 電力変換装置
JP2003134667A (ja) * 2001-10-17 2003-05-09 Mitsubishi Heavy Ind Ltd 太陽光発電装置
JP2003289626A (ja) * 2002-03-28 2003-10-10 Sharp Corp 太陽光発電システム用パワーコンディショナ
JP2005204485A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 系統連系用インバータ装置
WO2006033142A1 (ja) * 2004-09-22 2006-03-30 Mitsubishi Denki Kabushiki Kaisha 太陽光発電システムおよびその昇圧ユニット
JP2010066919A (ja) * 2008-09-09 2010-03-25 Toshiba Carrier Corp 系統連系インバータ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710588B (zh) * 2015-06-29 2020-01-14 住友电气工业株式会社 转换设备以及对其进行控制的方法
EP3316471A4 (en) * 2015-06-29 2019-03-27 Sumitomo Electric Industries, Ltd. CONVERSION DEVICE AND ITS CONTROL METHOD
WO2017002419A1 (ja) * 2015-06-29 2017-01-05 住友電気工業株式会社 変換装置及びその制御方法
KR102441724B1 (ko) * 2015-06-29 2022-09-08 스미토모덴키고교가부시키가이샤 변환 장치 및 그 제어 방법
CN107710588A (zh) * 2015-06-29 2018-02-16 住友电气工业株式会社 转换设备以及对其进行控制的方法
KR20180020959A (ko) * 2015-06-29 2018-02-28 스미토모덴키고교가부시키가이샤 변환 장치 및 그 제어 방법
JP2017017799A (ja) * 2015-06-29 2017-01-19 住友電気工業株式会社 変換装置及びその制御方法
US10348190B2 (en) 2015-06-29 2019-07-09 Sumitomo Electric Industries, Ltd. Conversion device for converting voltage in a non-insulated manner and method for controlling the same
JP2017073896A (ja) * 2015-10-07 2017-04-13 住友電気工業株式会社 電力変換装置及びその制御方法
WO2017061177A1 (ja) * 2015-10-07 2017-04-13 住友電気工業株式会社 電力変換装置及びその制御方法
US10461625B2 (en) 2015-10-07 2019-10-29 Sumitomo Electric Industries, Ltd. Power conversion device and control method for same
WO2023089683A1 (ja) * 2021-11-17 2023-05-25 東芝三菱電機産業システム株式会社 モジュール型無停電電源装置および無停電電源システム
JPWO2023089683A1 (ja) * 2021-11-17 2023-05-25
JP7408820B2 (ja) 2021-11-17 2024-01-05 東芝三菱電機産業システム株式会社 モジュール型無停電電源装置および無停電電源システム

Also Published As

Publication number Publication date
EP3010136A4 (en) 2017-03-08
US9627995B2 (en) 2017-04-18
EP3010136A1 (en) 2016-04-20
US20160126863A1 (en) 2016-05-05
EP3010136B1 (en) 2019-09-18
CN105324927B (zh) 2018-03-09
JP2014241714A (ja) 2014-12-25
JPWO2014199796A1 (ja) 2017-02-23
TW201513552A (zh) 2015-04-01
AU2014279387B2 (en) 2016-09-15
CN105324927A (zh) 2016-02-10
TWI631810B (zh) 2018-08-01
AU2014279387A1 (en) 2015-10-22
JP5618022B1 (ja) 2014-11-05
JP6187587B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187587B2 (ja) インバータ装置
JP6414546B2 (ja) インバータ装置
JP6327106B2 (ja) 変換装置
JP6303970B2 (ja) 変換装置
JP6481621B2 (ja) 電力変換装置及び三相交流電源装置
JP6233216B2 (ja) 電力変換装置及び三相交流電源装置
JP6601125B2 (ja) 電力変換装置及びその制御方法
JP6414491B2 (ja) 変換装置
US10348190B2 (en) Conversion device for converting voltage in a non-insulated manner and method for controlling the same
JP6349974B2 (ja) 変換装置
WO2018185963A1 (ja) 電力変換装置及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032893.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522691

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014811444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014279387

Country of ref document: AU

Date of ref document: 20140522

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE