JP6414491B2 - 変換装置 - Google Patents

変換装置 Download PDF

Info

Publication number
JP6414491B2
JP6414491B2 JP2015044658A JP2015044658A JP6414491B2 JP 6414491 B2 JP6414491 B2 JP 6414491B2 JP 2015044658 A JP2015044658 A JP 2015044658A JP 2015044658 A JP2015044658 A JP 2015044658A JP 6414491 B2 JP6414491 B2 JP 6414491B2
Authority
JP
Japan
Prior art keywords
voltage
value
waveform
target value
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044658A
Other languages
English (en)
Other versions
JP2016165184A (ja
Inventor
綾井 直樹
直樹 綾井
貴司 文野
貴司 文野
由晴 中島
由晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015044658A priority Critical patent/JP6414491B2/ja
Priority to EP16154808.6A priority patent/EP3065285B1/en
Priority to US15/047,232 priority patent/US9800177B2/en
Priority to CN201610123729.7A priority patent/CN105939128B/zh
Priority to KR1020160026151A priority patent/KR102441722B1/ko
Publication of JP2016165184A publication Critical patent/JP2016165184A/ja
Application granted granted Critical
Publication of JP6414491B2 publication Critical patent/JP6414491B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Amplifiers (AREA)
  • Gyroscopes (AREA)

Description

本発明は、直流を交流に変換するか又は交流を直流に変換する変換装置に関する。
一般に、直流電源に基づいて交流電力を出力する変換装置は、直流電源の電圧を、必要とする交流波高値以上の一定レベルまで昇圧してDCバスに出力する昇圧回路と、DCバスの一定電圧に基づいて、これを、スイッチングにより交流波形に変調して出力するインバータとを備えている。昇圧回路及びインバータは、常時、高周波スイッチングを行っている。高周波スイッチングにより、相応のスイッチング損失が生じ、これが、変換効率を悪くする原因となる。このようなスイッチング損失を低減して変換効率を高めるため、本発明者らは、高周波スイッチング回数を最小にする変換装置を提案した(特許文献1参照。)。
かかる変換装置の基本となる動作は、必要な交流波形と直流電源の電圧とを比較して、昇圧が必要なときは昇圧回路で交流波形を作るべく昇圧動作させ、昇圧しなくてもよいときは昇圧動作を停止させてインバータが高周波スイッチングを行う、というものである。これにより、全体として高周波スイッチング回数を低減することができる。
特許第5618022号公報
しかしながら、上記のように高周波スイッチング回数を低減する動作を行うと、結果的に、1サイクルの交流波形を2つの回路(昇圧回路及びインバータ)で交互に生成することになる。そのため、DCバス上では、交流波形の絶対値から直流波形に変化する点で波形としての連続性が損なわれ、不連続点ができる。
一般にはこの不連続点が最終的な出力電流の歪み率に与える影響は、僅かであり、実用上の問題は無い。しかし、複数の昇圧回路がDCバスに接続されたときなど、直流リアクトルのインダクタンスとDCバスの静電容量で決まる回路の特性周波数が高くなり、フィードバック制御の周波数に近づく場合がある。その場合には、この不連続点を起点として発生する電流振動を抑制することができず、出力電流の歪みを増大させることがある。
かかる課題に鑑み、本発明は、1サイクルの交流波形を2つの回路で交互に生成する変換装置において、DCバスでの電圧の不連続点を修正し、連続性を実現することにより高品質な電力を出力することを目的とする。
本開示は、以下の発明を含む。但し、本発明は、特許請求の範囲によって定められるものである。
一表現としての本開示は、直流電源と交流電源との間に介在する変換装置であって、前記直流電源と前記交流電源との間に設けられるDCバスと、前記直流電源と前記DCバスとの間に設けられ、DC/DC変換を行う第1変換器と、前記DCバスと前記交流電源との間に設けられ、DC/AC又はAC/DCの変換を行う第2変換器と、前記第1変換器及び前記第2変換器を前記交流電源の1サイクル内で選択的に動作させることにより、前記DCバスの電圧として、交流波形の絶対値の一部と直流波形とを交互に出現させる制御部と、を備え、前記制御部は、前記交流波形と前記直流波形とが相互に繋がり不連続点となるはずのタイミングで、前記DCバスの電圧目標値に、正方向への補償値を付加する、変換装置である。
本発明によれば、1サイクルの交流波形を2つの回路で交互に生成する変換装置において、DCバスでの電圧の不連続点を修正し、連続性を実現することができる。これにより、高品質な電力を出力することができる。
本発明の一実施形態に係るインバータ装置を備えたシステムの一例を示すブロック図である。 インバータ装置の回路図の一例である。 制御部のブロック図である。 直流入力電圧検出値、及び昇圧回路電流検出値の経時変化をシミュレーションにより求めた結果の一例を示すグラフである。 平均化処理部が行う、直流入力電圧検出値を平均化する際の態様を示す図である。 制御処理部による制御処理を説明するための制御ブロック図である。 昇圧回路及びインバータ回路の制御処理を示すフローチャートである。 (a)は、制御処理部がフィードバック制御において求めた昇圧回路電流目標値、及びこれに従って制御した場合の昇圧回路電流検出値をシミュレーションにより求めた結果の一例を示すグラフであり、(b)は、制御処理部がフィードバック制御において求めた昇圧回路電圧目標値、及びこれに従って制御した場合の昇圧回路電圧検出値をシミュレーションにより求めた結果の一例を示すグラフである。 インバータ出力電圧目標値の一例を示す図である。 (a)は、昇圧回路用搬送波と、昇圧回路用参照波とを比較したグラフであり、(b)は、昇圧回路制御部が生成した、スイッチング素子を駆動するための駆動波形である。 (a)は、インバータ回路用搬送波と、インバータ回路用参照波とを比較したグラフ、(b)は、インバータ回路制御部が生成した、スイッチング素子を駆動するための駆動波形、(c)は、インバータ回路制御部が生成した、スイッチング素子を駆動するための駆動波形である。 参照波、及び各スイッチング素子の駆動波形の一例とともに、インバータ装置が出力する交流電力の電流波形の一例を示した図である。 (a)は、インバータ回路から出力された交流電圧、商用電力系統、及び交流リアクトルの両端電圧、それぞれの電圧波形を示したグラフであり、(b)は、交流リアクトルに流れる電流波形を示したグラフである。 実施形態及び比較例の、交流出力波形の一例である。 交流から直流への変換装置を備えた蓄電システムの一例を示すブロック図である。 変換装置の回路図の一例である。 変換装置の動作を概念的に示した電圧波形の図である。 DCバス電圧の一例として電圧目標値を示す図である。 上段は、連続性補償前のDCバス電圧の波形の一例であり、下段は、一例としての補償項による波形である。 DCバス電圧に補償項を付加した場合の、連続性補償後のDCバス電圧の波形である。 波長の短い方が、直流リアクトルに流れる電流すなわち、昇圧回路電流検出値の波形図であり、また、波長の長い方は、出力電流の波形図である。 昇圧回路の電圧目標値の波形図である。 昇圧回路電圧検出値の波形図である。 波長の短い方が、直流リアクトルに流れる電流すなわち、昇圧回路電流検出値の波形図であり、また、波長の長い方は、出力電流の波形図である。 昇圧回路の電圧目標値の波形図である。 昇圧回路電圧検出値の波形図である。 補償項無しの波形図の実験例である。 補償項有りの波形図の実験例である。
[実施形態の要旨]
本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
(1)これは、直流電源と交流電源との間に介在する変換装置であって、前記直流電源と前記交流電源との間に設けられるDCバスと、前記直流電源と前記DCバスとの間に設けられ、DC/DC変換を行う第1変換器と、前記DCバスと前記交流電源との間に設けられ、DC/AC又はAC/DCの変換を行う第2変換器と、前記第1変換器及び前記第2変換器を前記交流電源の1サイクル内で選択的に動作させることにより、前記DCバスの電圧として、交流波形の絶対値の一部と直流波形とを交互に出現させる制御部と、を備え、前記制御部は、前記交流波形と前記直流波形とが相互に繋がり不連続点となるはずのタイミングで、前記DCバスの電圧目標値に、正方向への補償値を付加する、変換装置である。
上記(1)の変換装置では、交流波形と直流波形とが相互に繋がる点が本来は、滑らかさを欠く不連続点となるところであるが、制御部が、不連続点となるはずのタイミングで正方向への補償値を付加して出力することにより、不連続点を連続点に変えることができる。
こうして、1サイクルの交流波形を2つの回路で交互に生成する変換装置において、DCバスでの電圧の不連続点を修正し、連続性を実現することができる。これにより、高品質な電力を出力することができる。
(2)また、(1)の変換装置において、例えば、前記補償値は尖塔波形信号の形をとるものであって、当該尖塔波形信号は、前記不連続点でピークとなり、前記不連続点から離れるに従って0に漸近する関数で表されるものである。
この場合、不連続点をピンポイントで狙って連続点に変えつつ、その近傍の波形への不要な影響を抑制することができる。
(3)また、(2)の変換装置において、例えば、前記補償値を付加する前の補償前のDCバスの電圧目標値をVox*、前記補償値を与える補償項をVcp、補償後の電圧目標値をVo*とすると、
Vo*=Vox*+Vcp
であり、ここで、補償項Vcpは、Vgfを直流電源電圧、Vinv*を交流側の電圧目標値、aはVox*に比例する値、bを定数とすると、
Vcp=a × exp{−(|Vgf−|Vinv*||)/b}
である。
このように、電圧目標値に補償項を付加するだけで、ハードウェアの追加をしなくても連続性を実現することができる。
(4)また、(1)〜(3)のいずれかの変換装置において、例えば、前記補償値は、前記第2変換器がDC/ACの変換を行う場合は前記第1変換器に対する前記DCバスの電圧目標値に含められ、前記第2変換器がAC/DCの変換を行う場合は前記第2変換器に対する前記DCバスの電圧目標値に含められる。
このようにすれば、補償値は電圧目標値に含められるので、直流から交流又はその逆のいずれにおいても、ハードウェアを追加することなく、電圧目標値を変更することにより不連続点を連続点に変えることができる。
[実施形態の詳細]
以下、本発明の実施形態について、図面を参照して詳細に説明する。
説明の順序として、まず、変換装置(直流から交流、交流から直流)としての基本的な構成及び動作説明を一通り行い、その後に、DCバス電圧の連続性に関する制御について説明する。
《系統連系機能を備えた、直流から交流への変換装置》
まず、系統連系機能を備えた、直流から交流への変換装置(以下、単にインバータ装置という。)について詳細に説明する。
〔全体構成について〕
図1は、本発明の一実施形態に係るインバータ装置を備えたシステムの一例を示すブロック図である。図中、インバータ装置1の入力端には、直流電源としての太陽光発電パネル2が接続され、出力端には、交流の商用電力系統3(交流系統)が接続されている。このシステムは、太陽光発電パネル2が発電する直流電力を交流電力に変換し、商用電力系統3に出力する連系運転を行う。
インバータ装置1は、太陽光発電パネル2が出力する直流電力が与えられる昇圧回路(DC/DCコンバータ)10と、昇圧回路10から与えられる電力を交流電力に変換して商用電力系統3に出力するインバータ回路(DC/ACインバータ)11と、これら両回路10,11の動作を制御する制御部12とを備えている。
図2は、インバータ装置1の回路図の一例である。
昇圧回路10は、直流リアクトル15と、ダイオード16と、IGBT(Insulated Gate Bipolar Transistor)等からなるスイッチング素子Qbとを備えており、昇圧チョッパ回路を構成している。
昇圧回路10の入力側には、第1電圧センサ17、第1電流センサ18、及び平滑化のためのコンデンサ26が設けられている。
第1電圧センサ17は、太陽光発電パネル2が出力し、昇圧回路10に入力される直流電力の直流入力電圧検出値Vg(直流入力電圧値)を検出し、制御部12に出力する。第1電流センサ18は、直流リアクトル15に流れる電流である昇圧回路電流検出値Iin(直流入力電流値)を検出し、制御部12に出力する。なお、直流入力電流検出値Igを検出するために、コンデンサ26の前段に、さらに電流センサを設けてもよい。
制御部12は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pinを演算し、太陽光発電パネル2に対するMPPT(Maximum Power Point Tracking:最大電力点追従)制御を行う機能を有している。
また、昇圧回路10のスイッチング素子Qbは、後述するように、インバータ回路11と合わせた合計のスイッチング動作を行う回数が最低限になるように制御され、停止期間が発生する。よって、昇圧回路10は、スイッチング動作を行っている期間は、昇圧された電力をインバータ回路11に出力し、スイッチング動作を停止している期間は、太陽光発電パネル2が出力して昇圧回路10に入力される直流電力の直流入力電圧値を昇圧することなくインバータ回路11に出力する。
昇圧回路10と、インバータ回路11との間のDCバス20には、平滑用のコンデンサ19(平滑コンデンサ)が接続されている。
インバータ回路11は、FET(Field Effect Transistor)からなるスイッチング素子Q1〜Q4を備えている。これらスイッチング素子Q1〜Q4は、フルブリッジ回路を構成している。
各スイッチング素子Q1〜Q4は、制御部12に接続されており、制御部12により制御可能とされている。制御部12は、各スイッチング素子Q1〜Q4の動作をPWM制御する。これにより、インバータ回路11は、昇圧回路10から与えられる電力を交流電力に変換する。
インバータ装置1は、インバータ回路11と、商用電力系統3との間にフィルタ回路21を備えている。
フィルタ回路21は、2つの交流リアクトル22と、交流リアクトル22の後段に設けられたコンデンサ23(出力平滑コンデンサ)とを備えて構成されている。フィルタ回路21は、インバータ回路11から出力される交流電力に含まれる高周波成分を除去する機能を有している。フィルタ回路21により高周波成分が除去された交流電力は、商用電力系統3に与えられる。
このように、昇圧回路10及びインバータ回路11は、太陽光発電パネル2が出力する直流電力を交流電力に変換し、変換した交流電力を、フィルタ回路21を介して商用電力系統3へ出力する変換部を構成している。
また、フィルタ回路21には、インバータ回路11による出力の電流値であるインバータ電流検出値Iinv(交流リアクトル22に流れる電流)を検出するための第2電流センサ24が接続されている。さらに、フィルタ回路21と、商用電力系統3との間には、商用電力系統3側の電圧値(系統電圧検出値Va)を検出するための第2電圧センサ25が接続されている。
第2電流センサ24及び第2電圧センサ25は、検出した系統電圧検出値Va(交流系統の電圧値)及びインバータ電流検出値Iinvを制御部12に出力する。なお、第2電流センサ24は、図のように、コンデンサ23の前段に設けるが、コンデンサ23の後段にインバータ装置1の出力電流を検出する第3電流センサを追加してもよい。
制御部12は、これら系統電圧検出値Va及びインバータ電流検出値Iinvと、上述の直流入力電圧検出値Vg、昇圧回路電流検出値Iinに基づいて、昇圧回路10及びインバータ回路11を制御する。
〔制御部について〕
図3は、制御部12のブロック図である。制御部12は、図3に示すように、制御処理部30と、昇圧回路制御部32と、インバータ回路制御部33と、平均化処理部34とを機能的に有している。
制御部12の各機能は、その一部又は全部がハードウェア回路によって構成されてもよいし、その一部又は全部が、ソフトウェア(コンピュータプログラム)をコンピュータによって実行させることで実現されていてもよい。制御部12の機能を実現するソフトウェア(コンピュータプログラム)は、コンピュータの記憶装置(図示省略)に格納される。
昇圧回路制御部32は、制御処理部30から与えられる目標値及び検出値に基づいて、昇圧回路10のスイッチング素子Qbを制御し、前記目標値に応じた電流の電力を昇圧回路10に出力させる。
また、インバータ回路制御部33は、制御処理部30から与えられる目標値及び検出値に基づいて、インバータ回路11のスイッチング素子Q1〜Q4を制御し、前記目標値に応じた電流の電力をインバータ回路11に出力させる。
制御処理部30には、直流入力電圧検出値Vg、昇圧回路電流検出値Iin、系統電圧検出値Va及びインバータ電流検出値Iinvが与えられる。
制御処理部30は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pin及びその平均値〈Pin〉を演算する。
制御処理部30は、入力電力平均値〈Pin〉に基づいて、直流入力電流目標値Ig*(後に説明する)を設定して太陽光発電パネル2に対するMPPT制御を行うとともに、昇圧回路10及びインバータ回路11それぞれをフィードバック制御する機能を有している。
直流入力電圧検出値Vg及び昇圧回路電流検出値Iinは、平均化処理部34、及び制御処理部30に与えられる。
平均化処理部34は、第1電圧センサ17及び第1電流センサ18から与えられる直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを、予め設定された所定の時間間隔ごとにサンプリングし、それぞれの平均値を求め、平均化された直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを制御処理部30に与える機能を有している。
図4は、直流入力電圧検出値Vg、及び昇圧回路電流検出値Iinの経時変化をシミュレーションにより求めた結果の一例を示すグラフである。
また、直流入力電流検出値Igは、コンデンサ26よりも入力側で検出される電流値である。
図4に示すように、直流入力電圧検出値Vg、昇圧回路電流検出値Iin、及び直流入力電流検出値Igは、系統電圧の1/2の周期で変動していることが判る。
図4に示すように、直流入力電圧検出値Vg、及び直流入力電流検出値Igが周期的に変動する理由は、次の通りである。すなわち、昇圧回路電流検出値Iinは、昇圧回路10、及びインバータ回路11の動作に応じて、交流周期の1/2周期でほぼ0Aからピーク値まで大きく変動する。そのため、コンデンサ26で変動成分を完全に取り除くことができず、直流入力電流検出値Igは、交流周期の1/2周期で変動する成分を含む脈流となる。一方、太陽光発電パネルは出力電流によって出力電圧が変化する。
このため、直流入力電圧検出値Vgに生じる周期的な変動は、インバータ装置1が出力する交流電力の1/2周期となっている。
平均化処理部34は、上述の周期的変動による影響を抑制するために、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを平均化する。
図5は、平均化処理部34が行う、直流入力電圧検出値Vgを平均化する際の態様を示す図である。
平均化処理部34は、あるタイミングt1から、タイミングt2までの間の期間Lにおいて、予め設定された所定の時間間隔Δtごとに、与えられる直流入力電圧検出値Vgについて複数回サンプリング(図中、黒点のタイミング)を行い、得られた複数の直流入力電圧検出値Vgの平均値を求める。
ここで、平均化処理部34は、期間Lを商用電力系統3の周期長さの1/2の長さに設定する。また、平均化処理部34は、時間間隔Δtを、商用電力系統3の1/2周期の長さよりも十分短い期間に設定する。
これにより、平均化処理部34は、商用電力系統3の周期と同期して周期的に変動する、直流入力電圧検出値Vgの平均値を、できるだけサンプリングの期間を短くしつつ、精度よく求めることができる。
なお、サンプリングの時間間隔Δtは、例えば、商用電力系統3の周期の1/100〜1/1000、或いは、20マイクロ秒〜200マイクロ秒等に設定することができる。
なお、平均化処理部34は、期間Lを予め記憶しておくこともできるし、第2電圧センサ25から系統電圧検出値Vaを取得して商用電力系統3の周期に基づいて期間Lを設定することもできる。
また、ここでは、期間Lを商用電力系統3の周期長さの1/2の長さに設定したが、期間Lは、少なくとも、商用電力系統3の1/2周期に設定すれば、直流入力電圧検出値Vgの平均値を精度よく求めることができる。直流入力電圧検出値Vgは、上述のように、昇圧回路10、及びインバータ回路11の動作によって、商用電力系統3の周期長さの1/2の長さで周期的に変動するからである。
よって、期間Lをより長く設定する必要がある場合、商用電力系統3の1/2周期の3倍や4倍といったように、期間Lを商用電力系統3の1/2周期の整数倍に設定すればよい。これによって、周期単位で電圧変動を把握できる。
上述したように、昇圧回路電流検出値Iinも、直流入力電圧検出値Vgと同様、商用電力系統3の1/2周期で周期的に変動する。
よって、平均化処理部34は、図5に示した直流入力電圧検出値Vgと同様の方法によって、昇圧回路電流検出値Iinの平均値も求める。
制御処理部30は、直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値をそれぞれ、期間Lごとに逐次求める。
平均化処理部34は、求めた直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値を制御処理部30に与える。
本実施形態では、上述のように、平均化処理部34が、直流入力電圧検出値Vgの平均値(直流入力電圧平均値〈Vg〉)及び昇圧回路電流検出値Iinの平均値(昇圧回路電流平均値〈Iin〉)を求め、制御処理部30は、これら値を用いて、太陽光発電パネル2に対するMPPT制御を行いつつ、昇圧回路10及びインバータ回路11を制御するので、太陽光発電パネル2による直流電流が変動し不安定な場合にも、制御部12は、太陽光発電パネル2からの出力を、インバータ装置1の動作による変動成分を取り除いた直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉として精度よく得ることができる。この結果、MPPT制御を好適に行うことができ、太陽光発電パネル2の発電効率が低下するのを効果的に抑制することができる。
また、上述したように、インバータ装置1の動作によって、太陽光発電パネル2が出力する直流電力の電圧(直流入力電圧検出値Vg)や電流(昇圧回路電流検出値Iin)に変動が生じる場合、その変動周期は、インバータ回路11が出力する交流電力の1/2周期(商用電力系統3の1/2周期)と一致する。
この点、本実施形態では、商用電力系統3の周期長さの1/2の長さに設定された期間Lの間に、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinのそれぞれについて、交流系統の1/2周期よりも短い時間間隔Δtで複数回サンプリングし、その結果から直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を求めたので、直流電流の電圧及び電流が周期的に変動したとしても、できるだけサンプリングの期間を短くしつつ、直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を精度よく求めることができる。
制御処理部30は、上述の入力電力平均値〈Pin〉に基づいて、直流入力電流目標値Ig*を設定し、この設定した直流入力電流目標値Ig*や、上記値に基づいて、昇圧回路10及びインバータ回路11それぞれに対する目標値を求める。
制御処理部30は、求めた目標値を昇圧回路制御部32及びインバータ回路制御部33に与え、昇圧回路10及びインバータ回路11それぞれをフィードバック制御する機能を有している。
図6は、制御処理部30による昇圧回路10、及びインバータ回路11のフィードバック制御を説明するための制御ブロック図である。
制御処理部30は、インバータ回路11の制御を行うための機能部として、第1演算部41、第1加算器42、補償器43、及び第2加算器44を有している。
また、制御処理部30は、昇圧回路10の制御を行うための機能部として、第2演算部51、第3加算器52、補償器53、及び第4加算器54を有している。
図7は、昇圧回路10及びインバータ回路11の制御処理を示すフローチャートである。図6に示す各機能部は、図7に示すフローチャートに示す処理を実行することで、昇圧回路10及びインバータ回路11を制御する。
以下、図7に従って、昇圧回路10及びインバータ回路11の制御処理を説明する。
まず、制御処理部30は、現状の入力電力平均値〈Pin〉を求め(ステップS9)、前回演算時の入力電力平均値〈Pin〉と比較して、直流入力電流目標値Ig*を設定する(ステップS1)。なお、入力電力平均値〈Pin〉は、下記式(1)に基づいて求められる。
入力電力平均値〈Pin〉=〈Iin×Vg〉 ・・・(1)
なお、式(1)中、Iinは昇圧回路電流検出値、Vgは直流入力電圧検出値(直流入力電圧値)であり、平均化処理部34によって平均化された値である直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉が用いられる。
また、式(1)以外の以下に示す制御に関する各式においては、昇圧回路電流検出値Iin、及び直流入力電圧検出値Vgは、平均化されていない瞬時値が用いられる。
また、「〈 〉」は、括弧内の値の平均値を示している。以下同じである。
制御処理部30は、設定した直流入力電流目標値Ig*を、第1演算部41に与える。
第1演算部41には、直流入力電流目標値Ig*の他、直流入力電圧検出値Vg、系統電圧検出値Vaも与えられる。
第1演算部41は、下記式(2)に基づいて、インバータ装置1としての出力電流目標値の平均値〈Ia*〉を演算する。ηはインバータ装置1の変換効率を表す定数である。
出力電流目標値の平均値〈Ia*〉=η〈Ig*×Vg〉/〈Va〉 ・・・(2)
さらに、第1演算部41は、下記式(3)に基づいて、出力電流目標値Ia*を求める(ステップS2)。
ここで、第1演算部41は、出力電流目標値Ia*を系統電圧検出値Vaと同位相の正弦波として求める。
出力電流目標値Ia*=(√2)×〈Ia*〉×sinωt ・・・(3)
以上のように、第1演算部41は、入力電力平均値〈Pin〉(直流電力の入力電力値)及び系統電圧検出値Vaに基づいて出力電流目標値Ia*を求める。
次いで、第1演算部41は、下記式(4)に示すように、インバータ回路11を制御するための電流目標値であるインバータ電流目標値Iinv*(インバータ回路の電流目標値)を演算する(ステップS3)。
インバータ電流目標値Iinv*=Ia* + s CaVa ・・・(4)
ただし、式(4)中、Caは、コンデンサ23(出力平滑コンデンサ)の静電容量、sはラプラス演算子である。
上記式(4)は、時間tでの微分を用いた表現とすれば、
Iinv*=Ia* + Ca×(d Va/dt) ・・・(4a)
となる。また、コンデンサ23に流れる電流を検出してこれをIcaとすれば、
Iinv*=Ia* + Ica ・・・(4b)
となる。
式(4),(4a),(4b)中、右辺第2項は、フィルタ回路21のコンデンサ23に流れる電流を考慮して加算した値である。
なお、出力電流目標値Ia*は、上記式(3)に示すように、系統電圧検出値Vaと同位相の正弦波として求められる。つまり、制御処理部30は、インバータ装置1が出力する交流電力の電流Ia(出力電流)が系統電圧(系統電圧検出値Va)と同位相となるようにインバータ回路11を制御する。
第1演算部41は、インバータ電流目標値Iinv*を求めると、このインバータ電流目標値Iinv*を第1加算器42に与える。
インバータ回路11は、このインバータ電流目標値Iinv*によって、フィードバック制御される。
第1加算器42には、インバータ電流目標値Iinv*の他、現状のインバータ電流検出値Iinvが与えられる。
第1加算器42は、インバータ電流目標値Iinv*と、現状のインバータ電流検出値Iinvとの差分を演算し、その演算結果を補償器43に与える。
補償器43は、上記差分が与えられると、比例係数等に基づいて演算を行い、さらに第2加算器44によって系統電圧Vaと加算することにより、この差分を収束させインバータ電流検出値Iinvをインバータ電流目標値Iinv*とし得るインバータ電圧参照値Vinv#を求める。このインバータ電圧参照値Vinv#を第1演算部41から与えられるDC/DCコンバータの出力電圧目標値Vo*と比較することにより得られる制御信号をインバータ回路制御部33に与えることで、インバータ回路11に、インバータ電圧参照値Vinv#に従った電圧を出力させる。
インバータ回路11が出力した電圧は、交流リアクトル22に与えられ、新たなインバータ電流検出値Iinvとしてフィードバックされる。そして、第1加算器42によってインバータ電流目標値Iinv*とインバータ電流検出値Iinvとの間の差分が再度演算され、上記同様、この差分に基づいてインバータ回路11が制御される。
以上のようにして、インバータ回路11は、インバータ電流目標値Iinv*と、インバータ電流検出値Iinvとによって、フィードバック制御される(ステップS4)。
一方、第2演算部51には、直流入力電圧検出値Vg、系統電圧検出値Vaの他、第1演算部41が演算したインバータ電流目標値Iinv*が与えられる。
第2演算部51は、下記式(5)に基づいて、インバータ出力電圧目標値Vinv*(インバータ回路の電圧目標値)を演算する(ステップS5)。
インバータ出力電圧目標値Vinv*=Va+ZaIinv* ・・・(5)
ただし、式(5)中、Zaは、交流リアクトルのインピーダンスである。
上記式(5)は、時間tでの微分を用いた表現とすれば、
Vinv*=Va + RaIinv*+La× (d Iinv*/dt)
・・・(5a)
となる。ただし、Raは交流リアクトルの抵抗、Laは交流リアクトルのインダクタンスで、(Za=Ra+sLa)である。
式(5)の右辺第2項、(5a)の右辺第2項および第3項は、交流リアクトル22の両端に発生する電圧を考慮して加算した値である。
このように、本実施形態では、インバータ装置1が出力する交流電力の電流位相が系統電圧検出値Vaと同位相となるようにインバータ回路11を制御するための電流目標値であるインバータ電流目標値Iinv*に基づいてインバータ出力電圧目標値Vinv*を設定する。
上記のように、交流側の目標値であるインバータ回路11の出力目標値(Iinv*,Vinv*)は、インバータ回路11のブリッジ出力端すなわち、インバータ回路11とフィルタ回路21との回路接続点Pで設定される。これにより、本来の系統連系点(商用電力系統3とフィルタ回路21との回路接続点)より目標値の設定点を前に移動し、最終的に適切な系統連系に落ち着くような系統連系が行われる。
インバータ出力電圧目標値Vinv*を求めると、下記式(6)に示すように、第2演算部51は、直流電源側の電圧VDCとしての電圧Vg又は好ましくは下記の直流電圧Vgfと、インバータ出力電圧目標値Vinv*の絶対値とを比較して、大きい方を昇圧回路電圧目標値Vo*に決定する(ステップS6)。直流電圧Vgfとは、Vgに直流リアクトル15のインピーダンスZによる電圧降下を考慮した電圧であり、昇圧回路電流をIinとして、Vgf=Vg−ZIinである。従って、
Vo*=Max(Vg−ZIin,Vinv*の絶対値) ・・・(6)
とすることができる。
上記式(6)は、時間tでの微分を用いた表現とすれば、
Vo*=Max(Vg−(RIin+L(d Iin/dt),Vinv*の絶対値)
・・・(6a)
である。ただし、Rは直流リアクトルの抵抗、Lは直流リアクトルのインダクタンスで、(Z=R+sL)である。
さらに、第2演算部51は、下記式(7)に基づいて、昇圧回路電流目標値Iin*を演算する(ステップS7)。
昇圧回路電流目標値Iin*=
{(Iinv*×Vinv*) +(s C Vo*)×Vo*} / (Vg−ZIin)
・・・(7)
ただし、式(7)中、Cは、コンデンサ19(平滑コンデンサ)の静電容量、sはラプラス演算子である。
上記式(7)は、時間tでの微分を用いた表現とすれば、
Iin*=
{(Iinv*×Vinv*) +C×(d Vo*/dt)×Vo*} /
{Vg−(R+sL)Iin} ・・・(7a)
となる。また、コンデンサ19に流れる電流を検出してこれをIcとすれば、
Iin*=
{(Iinv*×Vinv*) +Ic×Vo*} / {Vg−ZIin}
・・・(7b)
となる。
式(7),(7a),(7b)中、インバータ電流目標値Iinv*と、インバータ出力電圧目標値Vinv*との積に加算されている項は、コンデンサ19を通過する無効電力を考慮した値である。すなわち、インバータ回路11の電力目標値に加えて、無効電力を考慮することにより、より正確にIin*の値を求めることができる。
さらに、予めインバータ装置1の電力損失PLOSSを測定しておけば、上記式(7a)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) + C×(d Vo*/dt)×Vo* + PLOSS}/{Vg−ZIin} ・・・(7c)
同様に、上記式(7b)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) +Ic×Vo* + PLOSS} / {Vg−ZIin}
・・・(7d)
この場合、インバータ回路11の電力目標値に加えて、無効電力及び電力損失PLOSSを考慮することにより、より厳密にIin*の値を求めることができる。
なお、コンデンサ19の静電容量C及び電力損失PLOSSが、(Iinv*×Vinv*)に比べて十分小さい場合、下記式(8)が成立する。この式(8)によって求まるIin*を式(6)、(6a)、(7)、(7a)、(7b)、(7c)および(7d)の右辺に含まれるIinとして用いることができる。
昇圧回路電流目標値Iin*=(Iinv*×Vinv*)/Vg・・・(8)
第2演算部51は、昇圧回路電流目標値Iin*を求めると、この昇圧回路電流目標値Iin*を第3加算器52に与える。
昇圧回路10は、この昇圧回路電流目標値Iin*によって、フィードバック制御される。
第3加算器52には、昇圧回路電流目標値Iin*の他、現状の昇圧回路電流検出値Iinが与えられる。
第3加算器52は、昇圧回路電流目標値Iin*と、現状の昇圧回路電流検出値Iinとの差分を演算し、その演算結果を補償器53に与える。
補償器53は、上記差分が与えられると、比例係数等に基づいて演算を行い、さらに第4加算器54によって直流入力電圧検出値Vgからこれを減算することにより、この差分を収束させ昇圧回路電流検出値Iinを昇圧回路電流目標値Iin*とし得る昇圧回路電圧参照値Vbc#を求める。この昇圧回路電圧参照値Vbc#を第1演算部41から与えられるDC/DCコンバータの出力電圧目標値Vo*と比較することにより得られる制御信号を昇圧回路制御部32に与えることで、昇圧回路10に、昇圧回路電圧参照値Vbc#に従った電圧を出力させる。
昇圧回路10が出力した電力は、直流リアクトル15に与えられ、新たな昇圧回路電流検出値Iinとしてフィードバックされる。そして、第3加算器52によって昇圧回路電流目標値Iin*と昇圧回路電流検出値Iinとの間の差分が再度演算され、上記同様、この差分に基づいて昇圧回路10が制御される。
以上のようにして、昇圧回路10は、昇圧回路電流目標値Iin*と、昇圧回路電流検出値Iinとによって、フィードバック制御される(ステップS8)。
上記ステップS8の後、制御処理部30は、上記式(1)に基づいて、現状の入力電力平均値〈Pin〉を求める(ステップS9)。
制御処理部30は、前回演算時の入力電力平均値〈Pin〉と比較して、入力電力平均値〈Pin〉が最大値となるように(最大電力点に追従するように)、直流入力電流目標値Ig*を設定する。
以上によって、制御処理部30は、太陽光発電パネル2に対するMPPT制御を行いつつ、昇圧回路10及びインバータ回路11を制御する。
制御処理部30は、上述したように、インバータ回路11及び昇圧回路10を電流目標値によってフィードバック制御する。
図8の(a)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電流目標値Iin*、及びこれに従って制御した場合の昇圧回路電流検出値Iinをシミュレーションにより求めた結果の一例を示すグラフであり、(b)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電圧目標値Vo*、及びこれに従って制御した場合の昇圧回路電圧検出値Voをシミュレーションにより求めた結果の一例を示すグラフである。
図8の(a)に示すように、昇圧回路電流検出値Iinは、制御処理部30によって、昇圧回路電流目標値Iin*に沿って制御されていることが判る。
また、図8の(b)に示すように、昇圧回路電圧目標値Vo*は、上記式(6)によって求められるため、インバータ出力電圧目標値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間では、インバータ出力電圧目標値Vinv*の絶対値に倣い、それ以外の期間では直流入力電圧検出値Vgに倣うように変化している。
昇圧回路電圧検出値Voは、制御処理部30によって、昇圧回路電圧目標値Vo*に沿って制御されていることが判る。
図9は、インバータ出力電圧目標値Vinv*の一例を示す図である。図中、縦軸は電圧、横軸は時間を示している。破線は、商用電力系統3の電圧波形を示しており、実線は、インバータ出力電圧目標値Vinv*の波形を示している。
インバータ回路11は、図7のフローチャートに従った制御によって、図9に示すインバータ出力電圧目標値Vinv*を電圧目標値として電力を出力する。
よって、インバータ回路11は、図9に示すインバータ出力電圧目標値Vinv*の波形に従った電圧の電力を出力する。
図に示すように、両波は、電圧値及び周波数は互いにほぼ同じであるが、インバータ出力電圧目標値Vinv*の位相の方が、商用電力系統3の電圧位相に対して数度進相している。
本実施形態の制御処理部30は、上述のように、昇圧回路10及びインバータ回路11のフィードバック制御を実行する中で、インバータ出力電圧目標値Vinv*の位相を、商用電力系統3の電圧位相に対して約3度進相させている。
インバータ出力電圧目標値Vinv*の位相を商用電力系統3の電圧位相に対して進相させる角度は、数度であればよく、後述するように、商用電力系統3の電圧波形との間で差分を求めたときに得られる電圧波形が、商用電力系統3の電圧波形に対して90度進んだ位相となる範囲で設定される。例えば、0度より大きくかつ10度より小さい値の範囲で設定される。
上記進相させる角度は、上記式(5)に示すように、系統電圧検出値Va、交流リアクトル22のインダクタンスLa、及びインバータ電流目標値Iinv*によって定まる。この内、系統電圧検出値Va、交流リアクトル22のインダクタンスLaは、制御対象外の固定値なので、進相させる角度は、インバータ電流目標値Iinv*によって定まる。
インバータ電流目標値Iinv*は、上記式(4)に示すように、出力電流目標値Ia*によって定まる。この出力電流目標値Ia*が大きくなるほど、インバータ電流目標値Iinv*における進相した成分が増加し、インバータ出力電圧目標値Vinv*の進み角(進相させる角度)が大きくなる。
出力電流目標値Ia*は、上記式(2)から求められるため、上記進相させる角度は、直流入力電流目標値Ig*によって調整される。
〔昇圧回路及びインバータ回路の制御について〕
昇圧回路制御部32は、昇圧回路10のスイッチング素子Qbを制御する。また、インバータ回路制御部33は、インバータ回路11のスイッチング素子Q1〜Q4を制御する。
昇圧回路制御部32及びインバータ回路制御部33は、それぞれ昇圧回路用搬送波及びインバータ回路用搬送波を生成し、これら搬送波を制御処理部30から与えられる目標値である昇圧回路電圧参照値Vbc#、及びインバータ電圧参照値Vinv#で変調し、各スイッチング素子を駆動するための駆動波形を生成する。
昇圧回路制御部32及びインバータ回路制御部33は、上記駆動波形に基づいて各スイッチング素子を制御することで、昇圧回路電流目標値Iin*、及びインバータ電流目標値Iinv*に近似した電流波形の交流電力を昇圧回路10及びインバータ回路11に出力させる。
図10の(a)は、昇圧回路用搬送波と、昇圧回路電圧参照値Vbc#の波形とを比較したグラフである。図中、縦軸は電圧、横軸は時間を示している。なお、図10の(a)では、理解容易とするために、昇圧回路用搬送波の波長を実際よりも長くして示している。
昇圧回路制御部32が生成する昇圧回路用搬送波は、極小値が「0」である三角波であり、振幅A1が制御処理部30から与えられる昇圧回路電圧目標値Vo*とされている。
また、昇圧回路用搬送波の周波数は、制御処理部30による制御命令によって、所定のディーティ比となるように、昇圧回路制御部32によって設定される。
なお、昇圧回路電圧目標値Vo*は、上述したように、インバータ出力電圧目標値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1では、インバータ出力電圧目標値Vinv*の絶対値に倣い、それ以外の期間では直流入力電圧検出値Vgに倣うように変化している。よって、昇圧回路用搬送波の振幅A1も昇圧回路電圧目標値Vo*に応じて変化している。
なお、本実施形態では、直流入力電圧検出値Vgが、250ボルトであり、商用電力系統3の電圧振幅が288ボルトであるとする。
昇圧回路電圧参照値Vbc#の波形(以下、昇圧回路用参照波Vbc#ともいう)は、制御処理部30が昇圧回路電流目標値Iin*に基づいて求める値であり、インバータ出力電圧目標値Vinv*の絶対値が直流入力電圧検出値Vgよりも大きな期間W1において、正の値となっている。昇圧回路用参照波Vbc#は、期間W1では、昇圧回路電圧目標値Vo*が成す波形状と近似するような波形となっており、昇圧回路用搬送波に対して交差している。
昇圧回路制御部32は、昇圧回路用搬送波と昇圧回路用参照波Vbc#とを比較し、直流リアクトル15の両端電圧の目標値である昇圧回路用参照波Vbc#が昇圧回路用搬送波以上となる部分でオン、搬送波以下となる部分でオフとなるように、スイッチング素子Qbを駆動するための駆動波形を生成する。
図10の(b)は、昇圧回路制御部32が生成したスイッチング素子Qbを駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。横軸は、図10の(a)の横軸と一致するように示している。
この駆動波形は、スイッチング素子Qbのスイッチング動作を示しており、スイッチング素子Qbに与えることで、当該駆動波形に従ったスイッチング動作を実行させることができる。駆動波形は、電圧が0ボルトでスイッチング素子のスイッチをオフ、電圧がプラス電圧でスイッチング素子のスイッチをオンとする制御命令を構成している。
昇圧回路制御部32は、インバータ出力電圧目標値Vinv*の絶対値が直流入力電圧検出値Vg以上となる期間W1でスイッチング動作が行われるように駆動波形を生成する。よって、直流入力電圧検出値Vg以下の範囲では、スイッチング動作を停止させるようにスイッチング素子Qbを制御する。
また、各パルス幅は、三角波である昇圧回路用搬送波の切片によって定まる。よって、電圧が高い部分ほどパルス幅が大きくなっている。
以上のように、昇圧回路制御部32は、昇圧回路用搬送波を昇圧回路用参照波Vbc#で変調し、スイッチングのためのパルス幅を表した駆動波形を生成する。昇圧回路制御部32は、生成した駆動波形に基づいて昇圧回路10のスイッチング素子QbをPWM制御する。
ダイオード16に並列にダイオードの順方向に導通するスイッチング素子Qbuを設置する場合、スイッチング素子Qbuは、スイッチング素子Qbの駆動波形と反転した駆動波形を用いる。ただし、スイッチング素子Qbとスイッチング素子Qbuが同時に導通することを防ぐため、スイッチング素子Qbuの駆動パルスがオフからオンに移行するときに1マイクロ秒程度のデッドタイムを設ける。
図11の(a)は、インバータ回路用搬送波と、インバータ電圧参照値Vinv#の波形とを比較したグラフである。図中、縦軸は電圧、横軸は時間を示している。なお、図11の(a)においても、理解容易とするために、インバータ回路用搬送波の波長を実際よりも長くして示している。
インバータ回路制御部33が生成するインバータ回路用搬送波は、振幅中央が0ボルトの三角波であり、その片側振幅が、昇圧回路電圧目標値Vo*(コンデンサ23の電圧目標値)に設定されている。よって、インバータ回路用搬送波の振幅A2は、直流入力電圧検出値Vgの2倍(500ボルト)の期間と、商用電力系統3の電圧の2倍(最大576ボルト)の期間とを有している。
また、周波数は、制御処理部30による制御命令等によって、所定のデューティ比となるように、インバータ回路制御部33によって設定される。
なお、昇圧回路電圧目標値Vo*は、上述したように、インバータ出力電圧目標値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1では、インバータ出力電圧目標値Vinv*の絶対値に倣い、それ以外の期間である期間W2では直流入力電圧検出値Vgに倣うように変化している。よって、インバータ回路用搬送波の振幅A2も昇圧回路電圧目標値Vo*に応じて変化している。
インバータ電圧参照値Vinv#の波形(以下、インバータ回路用参照波Vinv#ともいう)は、制御処理部30がインバータ電流目標値Iinv*に基づいて求める値であり、概ね商用電力系統3の電圧振幅(288ボルト)と同じに設定されている。よって、インバータ回路用参照波Vinv#は、電圧値が−Vg〜+Vgの範囲の部分で、インバータ回路用搬送波に対して交差している。
インバータ回路制御部33は、インバータ回路用搬送波とインバータ回路用参照波Vinv#とを比較し、電圧目標値であるインバータ回路用参照波Vinv#がインバータ回路用搬送波以上となる部分でオン、搬送波以下となる部分でオフとなるように、スイッチング素子Q1〜4を駆動するための駆動波形を生成する。
図11の(b)は、インバータ回路制御部33が生成したスイッチング素子Q1を駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。横軸は、図11の(a)の横軸と一致するように示している。
インバータ回路制御部33は、インバータ回路用参照波Vinv#の電圧が−Vg〜+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q1を制御する。
図11(c)は、インバータ回路制御部33が生成したスイッチング素子Q3を駆動するための駆動波形である。図中、縦軸は電圧、横軸は時間である。
インバータ回路制御部33は、スイッチング素子Q3については、図中破線で示しているインバータ回路用参照波Vinv#の反転波と、搬送波とを比較して駆動波形を生成する。
この場合も、インバータ回路制御部33は、インバータ回路用参照波Vinv#(の反転波)の電圧が、−Vg〜+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q3を制御する。
なお、インバータ回路制御部33は、スイッチング素子Q2の駆動波形については、スイッチング素子Q1の駆動波形を反転させたものを生成し、スイッチング素子Q4の駆動波形については、スイッチング素子Q3の駆動波形を反転させたものを生成する。
以上のように、インバータ回路制御部33は、インバータ回路用搬送波をインバータ回路用参照波Vinv#で変調し、スイッチングのためのパルス幅を表した駆動波形を生成する。インバータ回路制御部33は、生成した駆動波形に基づいてインバータ回路11のスイッチング素子Q1〜Q4をPWM制御する。
本実施形態の昇圧回路制御部32は、直流リアクトル15に流れる電流が昇圧回路電流目標値Iin*に一致するように電力を出力させる。この結果、インバータ出力電圧目標値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間W1(図10)で昇圧回路10にスイッチング動作を行わせる。昇圧回路10は、期間W1で直流入力電圧検出値Vg以上の電圧をインバータ出力電圧目標値Vinv*の絶対値に近似するように電力を出力する。一方、インバータ出力電圧目標値Vinv*の絶対値が概ね直流入力電圧検出値Vg以下の期間では、昇圧回路制御部32は、昇圧回路10のスイッチング動作を停止させる。よって、直流入力電圧検出値Vg以下の期間では、昇圧回路10は、太陽光発電パネル2が出力する直流電力の直流入力電圧値を昇圧することなくインバータ回路11に出力する。
また、本実施形態のインバータ回路制御部33は、交流リアクトル22に流れる電流が、インバータ電流目標値Iinv*に一致するように電力を出力させる。この結果、インバータ出力電圧目標値Vinv*が概ね−Vg〜+Vgの期間W2(図11)でインバータ回路11にスイッチング動作を行わせる。つまり、インバータ出力電圧目標値Vinv*の絶対値が直流入力電圧検出値Vg以下の期間でインバータ回路11にスイッチング動作を行わせる。
よって、インバータ回路11は、昇圧回路10がスイッチング動作を停止している間、スイッチング動作を行い、インバータ出力電圧目標値Vinv*に近似する交流電力を出力する。
なお、インバータ回路用参照波Vinv#と、インバータ出力電圧目標値Vinv*とは近似するので、図11の(a)においては重複している。
一方、インバータ出力電圧目標値Vinv*の電圧が概ね−Vg〜+Vgの期間W2以外の期間では、インバータ回路制御部33は、インバータ回路11のスイッチング動作を停止させる。この間、インバータ回路11には、昇圧回路10により昇圧された電力が与えられる。よって、スイッチング動作を停止しているインバータ回路11は、昇圧回路10から与えられる電力を降圧することなく出力する。
つまり、本実施形態のインバータ装置1は、昇圧回路10とインバータ回路11とを交互に切り替わるようにスイッチング動作させ、それぞれが出力する電力を重ね合わせることで、インバータ出力電圧目標値Vinv*に近似した電圧波形の交流電力を出力する。
このように、本実施形態では、インバータ出力電圧目標値Vinv*の絶対値が、直流入力電圧検出値Vgよりも高い部分の電圧を出力する際には昇圧回路10を動作させ、インバータ出力電圧目標値Vinv*の絶対値が、直流入力電圧検出値Vgよりも低い部分の電圧を出力する際にはインバータ回路11を動作させるように制御される。よって、インバータ回路11が、昇圧回路10によって昇圧された電力を降圧することがないので、電圧を降圧する際の電位差を低く抑えることができるため、昇圧回路のスイッチングによる損失を低減し、より高効率で交流電力を出力することができる。
さらに、昇圧回路10及びインバータ回路11は、共に制御部12が設定したインバータ出力電圧目標値Vinv*に基づいて動作するため、交互に切り替わるように出力される昇圧回路の電力と、インバータ回路の電力との間で、ずれや歪が生じるのを抑制することができる。
図12は、参照波、及びスイッチング素子の駆動波形の一例とともに、インバータ装置1が出力する交流電力の電流波形の一例を示した図である。
図12において、最上段から順に、インバータ回路の参照波Vinv#及び搬送波、スイッチング素子Q1の駆動波形、昇圧回路の参照波Vbc#及び搬送波、スイッチング素子Qbの駆動波形、及びインバータ装置1が出力する交流電力の電流波形の目標値及び実測値を示すグラフを表している。これら各グラフの横軸は、時間を示しており、互いに一致するように示している。
図に示すように、出力電流の実測値Iaは目標値Ia*と一致するように制御されていることが判る。
また、昇圧回路10のスイッチング素子Qbのスイッチング動作の期間と、インバータ回路11のスイッチング素子Q1〜Q4のスイッチング動作の期間とは、概ね互いに交互に切り替わるように制御されていることが判る。
また、本実施形態では、図8の(a)に示すように、上記式(7)に基づいて求められる昇圧回路は直流リアクトル15を流れる電流が電流目標値Iin*に一致するように制御される。この結果、昇圧回路とインバータ回路の電圧が、図8の(b)に示す波形となり、昇圧回路10、及びインバータ回路11の高周波スイッチング動作にそれぞれ停止期間があり、概ね交互にスイッチング動作を行う運転が可能になる。
なお、理想的には昇圧回路10とインバータ回路11とで「交互に」高周波スイッチングを行い、高周波スイッチングの時期が重ならないことが好ましいが、実際には若干の重なりが生じても、それぞれの停止期間があれば、損失は低減され、高効率化に寄与する。
〔出力される交流電力の電流位相について〕
本実施形態の昇圧回路10及びインバータ回路11は、制御部12による制御によって、インバータ出力電圧目標値Vinv*に近似した電圧波形の交流電力を、その後段に接続されたフィルタ回路21に出力する。インバータ装置1は、フィルタ回路21を介して商用電力系統3に交流電力を出力する。
ここで、インバータ出力電圧目標値Vinv*は、上述したように、制御処理部30によって商用電力系統3の電圧位相に対して数度進相した電圧位相として生成される。
従って、昇圧回路10及びインバータ回路11が出力する交流電圧も、商用電力系統3の電圧位相に対して数度進相した電圧位相とされる。
すると、フィルタ回路21の交流リアクトル22(図2)の両端には、一方が昇圧回路10及びインバータ回路11の交流電圧、他方が商用電力系統3と、互いに数度電圧位相がずれた電圧がかかることなる。
図13の(a)は、インバータ回路11から出力された交流電圧、商用電力系統3、及び交流リアクトル22の両端電圧、それぞれの電圧波形を示したグラフである。図中、縦軸は電圧、横軸は時間を示している。
図に示すように、交流リアクトル22の両端が互いに数度電圧位相がずれた電圧がかかると、交流リアクトル22の両端電圧は、交流リアクトル22の両端にかかる互いに数度電圧位相がずれた電圧同士の差分となる。
よって、図に示すように、交流リアクトル22の両端電圧の位相は、商用電力系統3の電圧位相に対して90度進んだ位相となる。
図13の(b)は、交流リアクトル22に流れる電流波形を示したグラフである。図中、縦軸は電流、横軸は時間を示している。横軸は、図13の(a)の横軸と一致するように示している。
交流リアクトル22の電流位相は、その電圧位相に対して90度遅延する。よって、図に示すように、交流リアクトル22を通して出力される交流電力の電流位相は、商用電力系統3の電流位相に対して同期することとなる。
従って、インバータ回路11が出力する電圧位相は、商用電力系統3に対して数度進相しているが、電流位相は、商用電力系統3の電流位相に対して一致する。
よって、図12の最下段に示すグラフのように、インバータ装置1が出力する電流波形は、商用電力系統3の電圧位相と一致したものとなる。
この結果、商用電力系統3の電圧と同位相の交流電流を出力することができるので、当該交流電力の力率が低下するのを抑制することができる。
図14の(a)は上記実施形態に係るインバータ装置1の交流出力波形の一例である。この場合の昇圧回路電流目標値Iin*は、例えば式(7)により与えられる。
このように、系統電圧に同期した正弦波状の交流出力電流が得られている。このときの力率は0.997、総合電流歪率は4.6%であり、それぞれ一般に0.95以上、5%以下とされる系統連系の基準値に適合している。なお、その他、2次歪率は2.6%(3%以下に適合)、3次歪率は2.9%(3%以下に適合)、5次歪率は0.3%(3%以下に適合)となっている。
一方、図14の(b)は、以下の式(9)で規定される昇圧回路電流目標値に従ってインバータ装置1を制御したときに得られる交流出力波形の一例である。
Iin*=Ia*×Va/Vg ・・・(9)
このとき交流出力電流はピークが明らかに歪んだ波形となっており、力率は0.947(0.95以上に不適合)、総合電流歪率は8.3%(5%以下に不適合)であり、いずれも上記の系統連系の基準値に適合しない。また、その他、2次歪率は3.5%(3%以下に不適合)、3次歪率は4.3%(3%以下に不適合)、5次歪率は4.6%(3%以下に不適合)となっている。
《交流から直流への変換装置》
〔全体構成について〕
次に、交流から直流への電力変換を行う変換装置1Rの一実施形態について説明する。
図15は、このような変換装置1Rを備えた蓄電システムの一例を示すブロック図である。図中、変換装置1Rの出力端には、蓄電池2が接続され、入力端には商用電力系統3(交流系統)が接続されている。この蓄電システムは、商用電力系統3から提供される電力を、交流から直流に変換して、蓄電池2に蓄えることができる。
変換装置1Rは、商用電力系統3から受電した交流を直流に変換するAC/DCコンバータ11uと、AC/DCコンバータ11uの出力電圧を降圧する降圧回路(DC/DCコンバータ)10dと、これら両回路10,11の動作を制御する制御部12とを備えている。図1との比較により明らかなように、エネルギーの流れが逆方向になっている。
図16は、変換装置1Rの回路図の一例である。図2との違いは、まず、図2における太陽光発電パネル2が蓄電池2Bに置き換わっている点である。また、変換装置1Rとしては、図2の昇圧回路10が降圧回路10dに置き換わり、図2ではインバータ回路11であった回路が、構成要素は同じであるが、交流リアクトル22と協働して昇圧も可能なAC/DCコンバータ11uになる。
降圧回路10dは、図2と同様のダイオード16と並列に、スイッチング素子Qb2を用いている。スイッチング素子Qb2としては、例えば、図示のIGBT又は、FETを用いることができる。
変換装置1Rのその他の構成は、図2のインバータ装置1と基本的に同様である。従って、この変換装置1Rは双方向性があり、太陽光発電パネルを接続すれば図2のインバータ装置1と同じ動作を行うことができる。また、蓄電池2Bの直流電力を交流電力に変換して自立運転を行うこともできる。
なお、変換装置1Rがインバータ装置として動作する場合は、スイッチング素子Qb2は、常時オフの状態となるか(IGBTの場合)又は、スイッチング素子Qbと交互にオン動作するように(FETの場合)、制御部12により制御される。また、降圧回路10dは昇圧回路になり、AC/DCコンバータ11uはインバータ回路となる。
商用交流系統3の交流電力に基づいて蓄電池2Bを充電する場合、制御部12は、各スイッチング素子Q1〜Q4の動作を制御し、同期整流をすることができる。また、交流リアクトル22が存在する下でPWM制御を行うことにより、昇圧しつつ整流を行うことができる。こうして、AC/DCコンバータ11uは、商用交流系統3から与えられる交流電力を直流電力に変換する。
降圧回路10dは、降圧チョッパ回路を構成している。スイッチング素子Qb,Qb2は、制御部12によって制御される。
また、降圧回路10dのスイッチング動作は、AC/DCコンバータ11uとの間でスイッチング動作を行う期間が交互に切り替わるように制御される。よって、降圧回路10dは、スイッチング動作を行っている期間には、降圧した電圧を蓄電池2Bに出力し、スイッチング動作を停止(スイッチング素子Qbがオフ、Qb2がオン)している期間は、AC/DCコンバータ11uが出力して降圧回路10dに入力した直流電圧を、直流リアクトル15を介して蓄電池2に与える。
〔電圧波形の概要〕
図17は、変換装置1Rの動作を概念的に示した電圧波形の図である。
(a)は、AC/DCコンバータ11uへの交流入力電圧目標値Vinv*の絶対値の一例を示す。これは、概ね、商用交流の全波整流波形である。二点鎖線は、充電のための直流電圧Vgを示す。(b)に示すように、直流電圧Vgの方が交流入力電圧目標値Vinv*の絶対値より高い区間(t0〜t1,t2〜t3,t4〜)では、AC/DCコンバータ11uがスイッチング動作し、交流リアクトル22との協働により昇圧動作する。
一方、これらの区間(t0〜t1,t2〜t3,t4〜)において降圧回路10dはスイッチング素子Qbがオフ、Qb2がオンの状態となり、降圧動作は停止している。なお、(b)に示す細いストライプは、実際にはPWMパルス列であり、交流入力電圧目標値Vinv*の絶対値に応じてデューティが異なる。従って、仮に、この状態の電圧がDC/DCコンバータに印加されたとすると、DC/DCコンバータの入力電圧、すなわちDCバス20の電圧及びコンデンサ19の電圧は(c)に示すような波形となる。
一方、直流電圧Vgの方が交流入力電圧目標値Vinv*の絶対値より低い区間(t1〜t2,t3〜t4)では、AC/DCコンバータ11uはスイッチングを停止し、代わりに、降圧回路10が動作する。なお、ここで言うスイッチングとは、例えば20kHz程度の高周波スイッチングを意味し、同期整流を行う程度(商用周波数の2倍)の低周波なスイッチングのことではない。なお、AC/DCコンバータ11uのスイッチング停止によりスイッチング素子Q1〜Q4が全てオフであるとしても、各スイッチング素子Q1〜Q4の内蔵ダイオードを通して整流された電圧が降圧回路10dに入力される。但し、導通損失を低減するためには、同期整流を行うことが好ましい。
同期整流を行う場合のAC/DCコンバータ11uは、制御部12の制御により、AC/DCコンバータ11uの電流の符号が正の期間では、スイッチング素子Q1,Q4をオン、スイッチング素子Q2,Q3をオフとし、また、AC/DCコンバータ11uの電流の符号が負の期間では、これらのオン/オフを反転する。この反転の周波数は、商用周波数の2倍であるため、高周波スイッチングに比べると、周波数が非常に小さい。従って、オン/オフによる損失も極めて少ない。
一方、上記の区間(t1〜t2,t3〜t4)において降圧回路10dは降圧動作する。(d)に示す細いストライプは、実際にはPWMパルス列であり、交流入力電圧目標値Vinv*の絶対値に応じてデューティが異なる。降圧の結果、(e)に示す所望の直流電圧Vgが得られる。
以上のように、交流電圧に基づく交流入力電圧目標値Vinv*の絶対値が直流電圧Vgより低い期間のみAC/DCコンバータ11uが動作し、その他の期間ではスイッチングを停止させることで、AC/DCコンバータ11uのスイッチング損失を低減することができる。
同様に、交流入力電圧目標値Vinv*の絶対値が直流電圧Vgより高い期間のみ降圧回路10dが動作し、その他の期間ではスイッチングを停止させることで、降圧回路10dのスイッチング損失を低減することができる。
こうして、AC/DCコンバータ11uと降圧回路10dとが、交互にスイッチング動作することになり、一方が動作するときは他方はスイッチングを停止している。すなわちAC/DCコンバータ11u及び降圧回路10dのそれぞれに、スイッチングの停止期間が生じる。また、AC/DCコンバータ11uは、交流入力電圧目標値Vinv*の絶対値のピーク及びその近傍を避けて動作することになるので、スイッチングを行う際の電圧が相対的に低くなる。このことも、スイッチング損失の低減に寄与する。こうして、変換装置1R全体としてのスイッチング損失を大幅に低減することができる。
〔制御の仕様〕
上記変換装置1Rの制御は、図2のインバータ装置1による系統連系の制御を逆方向に見た類似の制御として考えることができる。これは、インバータ装置1と同じ系統連系をさせ得る変換装置1Rを用いて、逆方向の動作においても変換装置1Rの効率を高めることに好適な制御である。
インバータ装置1における諸量とそれぞれ対応する変換装置1Rにおける諸量は、以下のようになる。
Ia*:商用電力系統3からの入力電流目標値
Iin:降圧回路電流検出値
Iin*:降圧回路電流目標値
Iinv*:AC/DCコンバータ11uへの交流入力電流目標値
Ig*:蓄電池2Bへの直流入力電流目標値
Ic:コンデンサ19に流れる電流
Ica:コンデンサ23に流れる電流
Va:系統電圧検出値
Vg:蓄電池電圧値
Vinv*:AC/DCコンバータ11uへの交流入力電圧目標値
Vo*:降圧回路10dへの入力電圧目標値
Pin:蓄電池2Bへの入力電力
LOSS:変換装置1Rの電力損失
η:変換装置1Rの電力変換効率
従って、図2のインバータ装置1における前述の式(1)〜(8)と対応した以下の関係が適用できる。
式(1)と対応する蓄電池2Bへの入力電力Pinの平均値〈Pin〉は、
〈Pin〉=〈Iin×Vg〉 ・・・(R1)
である。
式(2)に対応する商用電力系統3からの入力電流目標値の平均値〈Ia*〉は、
〈Ia*〉=〈Ig*×Vg〉/(η×〈Va〉) ・・・(R2)
である。
式(3)に対応する入力電流目標値Ia*は、
Ia*=(√2)×〈Ia*〉×sinωt ・・・(R3)
である。
式(4)に対応する交流入力電流目標値Iinv*は、
Iinv*=Ia* − s CaVa ・・・(R4)
である。
上記式(R4)は、時間tでの微分を用いた表現とすれば、
Iinv*=Ia* − Ca×(d Va/dt) ・・・(R4a)
となる。また、コンデンサ23に流れる電流を検出してこれをIcaとすれば、
Iinv*=Ia* − Ica ・・・(R4b)
となる。
また、式(5)に対応する交流入力電圧目標値Vinv*は、
Vinv*=Va−Za Iinv* ・・・(R5)
である。
上記式(R5)は、時間tでの微分を用いた表現とすれば、
Vinv*=Va − {RaIinv*+La× (d Iinv*/dt)
・・・(R5a)
となる。
上記のように、交流側の目標値であるAC/DCコンバータ11uへの入力目標値(Iinv*,Vinv*)は、AC/DCコンバータ11uとフィルタ回路21との回路接続点Pで設定される。従って、系統連系を行う場合と同様に、商用電力系統3と変換装置1Rの回路接続点より目標値の設定点を前(AC/DCコンバータ11u側)に移動していることになる。このような、いわば「逆」系統連系により、交流と直流との適切な連系が行われる。
また、式(6)に対応する降圧回路10dへの入力電圧目標値Vo*は、式(6)におけるVgfすなわち(Vg−Z Iin)が、Vgrすなわち(Vg+Z Iin)に置き換わり、
Vo*=Max(Vg+Z Iin,Vinv*の絶対値) ・・・(R6)
とすることができる。
上記式(R6)は、時間tでの微分を用いた表現とすれば、
Vo*=
Max(Vg+R Iin+L(d Iin/dt),Vinv*の絶対値)
・・・(R6a)
となる。
また、降圧回路電流目標値Iin*は、
Iin*=
{(Iinv*×Vinv*)−(s C Vo*)×Vo*} /
(Vg+ZIin) ・・(R7)
である。
上記式(R7)は、時間tでの微分を用いた表現とすれば、
Iin*=
{(Iinv*×Vinv*) − C×(d Vo*/dt)×Vo*} /
{Vg+RIin+L(dIin/dt)) ・・・(R7a)
となる。また、コンデンサ19に流れる電流を検出してこれをIcとすれば、
Iin*=
{(Iinv*×Vinv*) −Ic×Vo*} / (Vg+ZIin)
・・・(R7b)
となる。
式(R7),(R7a),(R7b)中、交流入力電流目標値Iinv*と、交流入力電圧目標値Vinv*との積に加算されている項は、コンデンサ19を通過する無効電力を考慮した値である。すなわち、AC/DCコンバータ11uの電力目標値に加えて、無効電力を考慮することにより、より正確にIin*の値を求めることができる。
さらに、予め変換装置1Rの電力損失PLOSSを測定しておけば、上記式(R7a)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) − C×(d Vo*/dt)×Vo* − PLOSS}/(Vg+ZIin) ・・・(R7c)
同様に、上記式(R7b)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) −Ic×Vo* − PLOSS} / (Vg+ZIin)
・・・(R7d)
この場合、AC/DCコンバータ11uの電力目標値に加えて、無効電力及び電力損失PLOSSを考慮することにより、より厳密にIin*の値を求めることができる。
なお、コンデンサ19の静電容量C及び電力損失PLOSSが、(Iinv*×Vinv*)に比べて十分小さい場合、下記式(R8)が成立する。この式(R8)によって求まるIin*を式(R6)、(R6a)、(R7)、(R7a)、(R7b)、(R7c)および(R7d)の右辺に含まれるIinとして用いることができる。
Iin*=(Iinv*×Vinv*)/Vg・・・(R8)
以上のようにして、制御部12は、AC/DCコンバータ11uへの交流入力電圧目標値Vinv*の絶対値が、直流電圧(Vg+Z Iin)よりも高い部分の電圧を出力する際には、降圧回路10dを動作させ、AC/DCコンバータ11uのへ交流入力電圧目標値Vinv*の絶対値が、直流電圧(Vg+Z Iin)よりも低い部分の電圧を出力する際にはAC/DCコンバータ11uを動作させるように制御される。そのため、AC/DCコンバータ11uによって昇圧する際の電位差を低く抑えることができるとともに、AC/DCコンバータ11u及び降圧回路10dのスイッチング損失を低減し、より高効率で直流電力を出力することができる。
さらに、降圧回路10d及びAC/DCコンバータ11uは、ともに制御部12が設定した目標値に基づいて動作するため、両回路の高周波スイッチング期間が交互に切り替わるように動作を行っても、AC/DCコンバータ11uに入力される交流電流に位相ずれや歪みが生じるのを抑制することができる。
また、前述のように、変換装置Rは、図2のインバータ装置1と同様の系統連系の動作を行わせることができる。従って、系統連系を行う直流/交流の変換、及び、交流/直流の変換の双方向に使用可能で効率の良い変換装置を実現することができる。
〔その他〕
なお、図16では、AC/DCコンバータ11uを構成するスイッチング素子としてFETを用いた例を示したが、図14のようにFETに代えてIGBTを用いることもできる。但し、IGBTでは同期整流ができない。従って、AC/DCコンバータ11uの高周波スイッチング停止状態では、素子内蔵のダイオードによって、フルブリッジ整流回路として動作することになる。
《DCバス電圧の連続性》
次に、DCバス電圧の連続性を担保するための制御について説明する。
図18は、DCバス電圧(図2,図16のDCバス20の電圧)の一例として電圧目標値Vo*を示す図である。横軸は時間を、縦軸は電圧を、それぞれ表している。
前述の式(6)によれば、
Vo*=Max(Vg−ZIin,Vinv*の絶対値)
である。従って、Vo*の波形は、交流波形の波高値前後の一部(Vinv*の絶対値)と、直流波形(Vg−ZIin)との合成波形となる。交流波形と直流波形とが相互に繋がる点(図中の点線の丸印)は、滑らかさを欠く不連続点となる。このような不連続点を起点として電流・電圧の微振動が発生すると、制御部12におけるフィードバック系に干渉することによって、少し大きめの振動を引き起こし、これが、出力電流の僅かな歪みに繋がる場合がある。
そこで、上記式で求めたVo*をVox*として、補償項Vcpを用いて、補償後の電圧目標値Vo*を、
Vo*=Vox*+Vcp ・・・(10)
とする。
Vcpは例えば以下のような関数で与えることができる。
Vcp=a × exp{−(|Vgf−|Vinv*||)/b} ・・・(11)
ここで、
Vox*:DCバスの電圧目標値(補償前の値)
Vo*:DCバスの電圧目標値(補償後の値)
Vcp:DCバスの電圧についての連続性の補償項
Vgf:直流電源電圧(Vgから直流リアクトル15による電圧降下を引いた電圧)
Vinv*:インバータ出力電圧目標値
であり、a,bに関しては、aはVox*に比例する値、bは定数であり、例えば、
a=(Vox*/20)
b=20
である。このように、電圧目標値Vo*に補償項Vcpを付加するだけで、ハードウェアの追加をしなくても連続性を実現することができる。
次に、以下の条件で式(10)(11)の効果を検証する。
直流リアクトル15のインダクタンス:500μH
コンデンサ19のキャパシタンス:22μF
交流リアクトル22のインダクタンス:1mH
コンデンサ23のキャパシタンス:22μF
電圧Vg:200V
電圧Va:286V
スイッチング周波数:15kHz
なお、Vcpは、Vox*の1/20とした。
図19の上段は、連続性補償前のDCバス電圧の波形の一例である。この図は、図18よりも電圧の変化を拡大表示している。図19の下段は、一例としての補償項による波形である。図20は、図19のDCバス電圧(上段)に補償項(下段)を付加した場合の、連続性補償後のDCバス電圧の波形である。
図19に示すように、補償項は、交流波形と直流波形とが相互に繋がり不連続点となるはずのタイミングで、正方向への補償値を付加するように作用する。
図19のDCバス電圧における交流波形と直流波形とが相互に繋がる点では、本来は、不連続点となるところであるが、制御部12が、不連続点となるはずのタイミングで正方向への補償値を付加して出力することにより、図20に示すように、不連続点を連続点に変えることができる。
こうして、1サイクルの交流波形を2つの回路で交互に生成する変換装置において、DCバスでの電圧の不連続点を修正し、連続性を実現することができる。
また、補償値は例えば図19のような尖塔波形信号の形をとるものであって、当該尖塔波形信号は、不連続点でピークとなり、不連続点から離れるに従って0に漸近する式(11)の関数で表される。
この場合、不連続点をピンポイントで狙って連続点に変えつつ、その近傍の波形への不要な影響を抑制することができる。但し、式(11)の関数は一例であり、これに限定される訳ではない。
制御部12における補償値は、インバータ回路11(第2変換器)がDC/ACの変換を行う場合は昇圧回路10(第1変換器)に対するDCバスの電圧目標値に含められる。
また、逆に、交流から直流への変換装置(図16)においては、AC/DCコンバータ11u(第2変換器)がAC/DCの変換を行うので、制御部12からAC/DCコンバータ11uに対するDCバスの電圧目標値に補償値が含められることになる。このようにすれば、補償値は電圧目標値に含められるので、直流から交流又はその逆のいずれにおいても、ハードウェアを追加することなく、電圧目標値を変更することにより不連続点を連続点に変えることができる。
図21,図22,図23は、直流から交流への変換装置において、参考として、連続性補償無しの場合の、各検出値の一例を示す波形図である。
図21は、波長の短い方が、直流リアクトル15に流れる電流すなわち、昇圧回路電流検出値Iinの波形図である。また、波長の長い方は、出力電流Iaの波形図である。
図22は、昇圧回路10の電圧目標値Vo*の波形図である。
図23は、昇圧回路電圧検出値Voの波形図である。各図の丸印の部分を見ると、図22の不連続点を起点とする振動がIin(図21)及びVo(図23)に発生していることがわかる。
一方、図24,図25,図26は、直流から交流への変換装置において、連続性補償有りの場合の、各検出値の一例を示す波形図である。
図24は、波長の短い方が、直流リアクトル15に流れる電流すなわち、昇圧回路電流検出値Iinの波形図である。また、波長の長い方は、出力電流Iaの波形図である。
図25は、昇圧回路10の電圧目標値Vo*の波形図である。
図26は、昇圧回路電圧検出値Voの波形図である。各図の丸印の部分を見ると、図23の不連続点を起点とする振動がIin(図24)及びVo(図26)に、ごく僅かに発生しているものの、図21及び図23と比較すれば明らかに低減されていることがわかる。
図27及び図28はそれぞれ、補償項無しの波形図及び補償項有りの波形図の実験例である。一番上の波形がDCバスの波形である。各図におけるDCバスの波形を比較すると、図27では不連続点を起点とする振動が発生しているものの、図28では明らかに低減されている。
《付記》
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 インバータ装置
1R 変換装置
2 太陽光発電パネル
2B 蓄電池
3 商用電力系統
10 昇圧回路(DC/DCコンバータ)
10d 降圧回路(DC/DCコンバータ)
11 インバータ回路(DC/ACインバータ)
11u AC/DCコンバータ
12 制御部
15 直流リアクトル
16 ダイオード
17 第1電圧センサ
18 第1電流センサ
19 コンデンサ(平滑コンデンサ(第2のコンデンサ))
21 フィルタ回路
22 交流リアクトル
23 コンデンサ(出力平滑コンデンサ(第1のコンデンサ))
24 第2電流センサ
25 第2電圧センサ
26 コンデン
0 制御処理部
32 昇圧回路制御部
33 インバータ回路制御部
34 平均化処理部
41 第1演算部
42 第1加算器
43 補償器
44 第2加算器
51 第2演算部
52 第3加算器
53 補償器
54 第4加算器
P 回路接続点
Q1〜Q4,Qb スイッチング素子

Claims (5)

  1. 直流電源と交流電源との間に介在する変換装置であって、
    前記直流電源と前記交流電源との間に設けられるDCバスと、
    前記直流電源と前記DCバスとの間に設けられ、DC/DC変換を行う第1変換器と、
    前記DCバスと前記交流電源との間に設けられ、DC/AC又はAC/DCの変換を行う第2変換器と、
    前記第1変換器及び前記第2変換器を前記交流電源の1サイクル内で選択的に動作させることにより、前記DCバスの電圧として、交流波形の絶対値の一部と直流波形とを交互に出現させる制御部と、を備え、
    前記制御部は、前記交流波形と前記直流波形とが相互に繋がり不連続点となるはずのタイミングでピークとなる尖塔波形の正の電圧の補償値を、前記DCバスの電圧目標値に付加することにより、前記不連続点を連続点に変える、変換装置。
  2. 前記尖塔波形は、前記不連続点から離れるに従って0に漸近する関数で表される請求項1に記載の変換装置。
  3. 前記補償値を付加する前の補償前のDCバスの電圧目標値をVox*、前記補償値を与える補償項をVcp、補償後の電圧目標値をVo*とすると、
    Vo*=Vox*+Vcp
    であり、ここで、補償項Vcpは、Vgfを直流電源電圧、Vinv*を交流側の電圧目標値、aはVox*に比例する値、bは定数とすると、
    Vcp=a × exp{−(|Vgf−|Vinv*||)/b}
    である請求項2に記載の変換装置。
  4. 前記補償値は、前記第2変換器がDC/ACの変換を行う場合は前記第1変換器に対する前記DCバスの電圧目標値に含められ、前記第2変換器がAC/DCの変換を行う場合は前記第2変換器に対する前記DCバスの電圧目標値に含められる請求項1〜請求項3のいずれか1項に記載の変換装置。
  5. 直流電源と交流電源との間に介在する変換装置であって、
    前記直流電源と前記交流電源との間に設けられるDCバスと、
    前記直流電源と前記DCバスとの間に設けられ、DC/DC変換を行う第1変換器と、
    前記DCバスと前記交流電源との間に設けられ、DC/AC又はAC/DCの変換を行う第2変換器と
    前記第1変換器及び前記第2変換器を前記交流電源の1サイクル内で選択的に動作させることにより、前記DCバスの電圧として、交流波形の絶対値の一部と直流波形とを交互に出現させる制御部と、を備え、
    前記制御部は、前記交流波形と前記直流波形とが相互に繋がり不連続点となるはずのタイミングで、前記DCバスの電圧目標値に、正方向への補償値を付加し、
    前記補償値は尖塔波形信号の形をとるものであって、当該尖塔波形信号は、前記不連続点でピークとなり、前記不連続点から離れるに従って0に漸近する関数で表される、変換装置。
JP2015044658A 2015-03-06 2015-03-06 変換装置 Active JP6414491B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015044658A JP6414491B2 (ja) 2015-03-06 2015-03-06 変換装置
EP16154808.6A EP3065285B1 (en) 2015-03-06 2016-02-09 Reversible dc-ac converter
US15/047,232 US9800177B2 (en) 2015-03-06 2016-02-18 Conversion device
CN201610123729.7A CN105939128B (zh) 2015-03-06 2016-03-04 转换装置
KR1020160026151A KR102441722B1 (ko) 2015-03-06 2016-03-04 변환 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044658A JP6414491B2 (ja) 2015-03-06 2015-03-06 変換装置

Publications (2)

Publication Number Publication Date
JP2016165184A JP2016165184A (ja) 2016-09-08
JP6414491B2 true JP6414491B2 (ja) 2018-10-31

Family

ID=55359413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044658A Active JP6414491B2 (ja) 2015-03-06 2015-03-06 変換装置

Country Status (5)

Country Link
US (1) US9800177B2 (ja)
EP (1) EP3065285B1 (ja)
JP (1) JP6414491B2 (ja)
KR (1) KR102441722B1 (ja)
CN (1) CN105939128B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485251B2 (ja) * 2015-06-29 2019-03-20 住友電気工業株式会社 変換装置及びその制御方法
EP3353374A4 (en) * 2015-09-22 2019-05-22 Services Petroliers Schlumberger HOLE GENERATOR SYSTEM
WO2017221421A1 (ja) * 2016-06-24 2017-12-28 本田技研工業株式会社 電源装置、機器及び制御方法
US10483763B2 (en) * 2016-08-25 2019-11-19 Toyota Jidosha Kabushiki Kaisha Photovoltaic device and operating point control circuit device for photovoltaic cells or other power supply elements connected in series
KR102518182B1 (ko) * 2018-02-14 2023-04-07 현대자동차주식회사 친환경 차량용 컨버터 제어장치 및 방법
EP3605813A1 (de) * 2018-07-30 2020-02-05 Fronius International GmbH Wechselrichter mit zwischenkreisschutz
WO2020055511A1 (en) 2018-09-14 2020-03-19 Gopro, Inc. Electrical connectivity between detachable components
KR102200284B1 (ko) * 2018-12-07 2021-01-08 효성중공업 주식회사 전력 변환 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618022B2 (ja) 1973-06-07 1981-04-25
JPS6411019U (ja) * 1987-07-09 1989-01-20
JP4200244B2 (ja) * 1998-11-10 2008-12-24 パナソニック株式会社 系統連系インバータ装置
JP2001008467A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 系統連系インバータ
JP4925181B2 (ja) * 2006-03-09 2012-04-25 国立大学法人長岡技術科学大学 電力システム
DE102007030577A1 (de) * 2007-06-29 2009-01-02 Sma Solar Technology Ag Wechselrichter zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz
JP5267589B2 (ja) * 2011-02-03 2013-08-21 株式会社日本自動車部品総合研究所 電力変換装置
US8767421B2 (en) * 2011-06-16 2014-07-01 Solarbridge Technologies, Inc. Power converter bus control method, system, and article of manufacture
JP5788017B2 (ja) * 2011-11-07 2015-09-30 三菱電機株式会社 電力変換装置
US20130285621A1 (en) * 2012-04-27 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Power supplying apparatus and power charging apparatus
US20140169055A1 (en) * 2012-12-18 2014-06-19 Enphase Energy, Inc. Non-isolated dc/ac inverter
JP5618023B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP5618022B1 (ja) * 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP6327106B2 (ja) 2014-01-10 2018-05-23 住友電気工業株式会社 変換装置
JP6086085B2 (ja) * 2014-03-18 2017-03-01 株式会社安川電機 電力変換装置、発電システム、電力変換装置の制御装置および電力変換装置の制御方法

Also Published As

Publication number Publication date
JP2016165184A (ja) 2016-09-08
CN105939128A (zh) 2016-09-14
US20160261206A1 (en) 2016-09-08
US9800177B2 (en) 2017-10-24
CN105939128B (zh) 2020-07-03
EP3065285A1 (en) 2016-09-07
KR102441722B1 (ko) 2022-09-07
KR20160108216A (ko) 2016-09-19
EP3065285B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6327106B2 (ja) 変換装置
JP6414491B2 (ja) 変換装置
JP6187587B2 (ja) インバータ装置
JP6481621B2 (ja) 電力変換装置及び三相交流電源装置
JP6303970B2 (ja) 変換装置
JP6414546B2 (ja) インバータ装置
JP6233216B2 (ja) 電力変換装置及び三相交流電源装置
JP6601125B2 (ja) 電力変換装置及びその制御方法
JP6349974B2 (ja) 変換装置
JP6379553B2 (ja) 変換装置
WO2018185963A1 (ja) 電力変換装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R150 Certificate of patent or registration of utility model

Ref document number: 6414491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250