WO2014196323A1 - ウエハキャリアおよびこれを用いたエピタキシャル成長装置 - Google Patents

ウエハキャリアおよびこれを用いたエピタキシャル成長装置 Download PDF

Info

Publication number
WO2014196323A1
WO2014196323A1 PCT/JP2014/062800 JP2014062800W WO2014196323A1 WO 2014196323 A1 WO2014196323 A1 WO 2014196323A1 JP 2014062800 W JP2014062800 W JP 2014062800W WO 2014196323 A1 WO2014196323 A1 WO 2014196323A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer carrier
wafer
ceramic coating
particles
wall surface
Prior art date
Application number
PCT/JP2014/062800
Other languages
English (en)
French (fr)
Inventor
敏樹 伊藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2015521360A priority Critical patent/JP6293135B2/ja
Priority to KR1020157034603A priority patent/KR101823217B1/ko
Priority to CN201480032124.6A priority patent/CN105264653B/zh
Priority to US14/895,850 priority patent/US20160115623A1/en
Publication of WO2014196323A1 publication Critical patent/WO2014196323A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate

Definitions

  • the present invention relates to a wafer carrier for growing an epitaxial film on a substrate such as a wafer and an epitaxial growth apparatus using the same.
  • an epitaxial growth method is known as a method for obtaining a high-quality single crystal wafer.
  • vapor phase epitaxial growth used in the semiconductor industry, a single crystal wafer is placed on a wafer carrier in a CVD apparatus and a source gas is supplied to deposit components in the vapor phase on the surface of the single crystal wafer.
  • Patent Document 1 describes an epitaxial growth apparatus (reactor) for depositing an epitaxial layer on a wafer capable of reducing a reactor cycle, low cost and long life of components, and highly accurate temperature control. Yes.
  • the wafer carrier moves between the mounting position L and the vapor deposition position D. In the deposition position, the wafer carrier is removably attached to the upper end of the rotating spindle without the need for an intermediate susceptor.
  • the reactor of Patent Document 1 can process a single wafer or a plurality of wafers simultaneously. Specifically, the following is described.
  • the spindle and the wafer carrier are coupled by friction bonding. For this reason, the joining between the spindle and the wafer carrier is not reliable, and slipping occurs between the spindle and the wafer carrier particularly at the start and stop of rotation, which causes generation of particles due to wear.
  • the wafer carrier of the above-described epitaxial growth apparatus is made of graphite (graphite) or molybdenum.
  • graphite has a crystal structure in which a hexagonal network surface of carbon atoms is formed by a covalent bond in the a-axis direction and laminated by van der Waals force in the c-axis direction.
  • graphite is a material that is easily peeled off in the c-axis direction and easily worn.
  • the worn graphite becomes particles and tends to remain in the depression (bonding hole).
  • the generated graphite particles fall and easily contaminate the inside of the apparatus.
  • Molybdenum is a metal having a density of 10.28 g / cm 3 and a melting point of 2896K. Since it has a density of 5 times or more than the density of graphite, the burden on the spindle is large and the rotational moment is large, so that particles due to friction tend to be generated.
  • particles from a coupling hole that is a coupling portion with a spindle are less likely to be generated, and even if particles are generated, a wafer carrier that can be easily removed without being easily diffused.
  • An object is to provide an epitaxial growth apparatus used.
  • the wafer carrier of the present invention for solving the above problems is (1) An upper surface having one or more cavities for holding a wafer, a lower surface having a coupling hole for removably inserting an upper end of a rotary spindle, and an outer peripheral portion connecting the upper surface and the lower surface.
  • a wafer carrier comprising a base material made of graphite, and a ceramic coating covering at least the upper surface, the lower surface and the outer peripheral portion,
  • the coupling hole is a through-hole configured by a tapered wall surface that expands from the upper surface side toward the lower surface side.
  • the coupling hole is configured by a tapered wall surface that expands from the upper surface side toward the lower surface side, it is difficult to form a corner where particles easily adhere to the inside of the coupling hole. Even if particles are generated inside, they can be easily removed.
  • the wafer carrier of the present invention for solving the above problems is (2) An upper surface having one or more cavities for holding the wafer, a lower surface having a coupling hole for removably inserting the upper end of the rotary spindle, and an outer peripheral portion connecting the upper surface and the lower surface.
  • a wafer carrier comprising a base material made of graphite, and a ceramic coating covering at least the upper surface, the lower surface and the outer peripheral portion,
  • the coupling hole includes a tapered wall surface that expands from the upper surface side toward the lower surface side, and a bottom surface that is deeper in the center than the boundary with the wall surface.
  • the coupling hole includes a tapered wall surface that expands from the upper surface side toward the lower surface side, and a bottom surface that is deeper in the center than the boundary with the wall surface. It is difficult to form a corner where particles are likely to adhere, and even if particles are generated inside the coupling hole, they can be easily removed.
  • the wafer carrier of the present invention preferably has the following mode.
  • the bottom surface has a tapered surface extending from a boundary with the wall surface. If the bottom surface has a tapered surface extending from the boundary with the wall surface, the corner formed by the wall surface and the bottom surface can be made more gradual. For this reason, it is possible to make it difficult for particles to adhere to the corner portion.
  • the bottom surface is a dome-shaped surface extending from a boundary with the wall surface. If the bottom surface is a dome-shaped surface extending from the boundary with the wall surface, the corner formed by the wall surface and the bottom surface can be made more gradual. For this reason, it is possible to make it difficult for particles to adhere to the corner portion.
  • the ceramic coating is silicon carbide.
  • the ceramic coating is silicon carbide
  • silicon carbide since it is a hard ceramic coating, wear due to friction can be reduced and the amount of particles generated can be reduced. Further, since silicon carbide has electrical conductivity, it is difficult to be charged, and particles generated by friction can be made difficult to adhere and can be easily removed.
  • the base material made of graphite is integrally formed.
  • the base material made of graphite has the same low resistivity as that of metal, so it is integrated so that the charge transfer is promoted and the charge is released to the outside. Can be made easier. Further, when the ceramic coating covering the surface of the wafer carrier is conductive silicon carbide or the like, the effect is further exhibited.
  • a flange having a holding surface facing downward is formed on the outer peripheral portion,
  • the ceramic coating is formed so that the thickness on the holding surface is thinner than the thickness on the upper surface.
  • the holding surface is not a region to which the raw material gas is supplied, so the necessity is small. For this reason, when a ceramic film having a higher specific resistance than the graphite base material is formed thinly on the holding surface of the flange, electric charges can be released through the transport jig when transported using the transport jig. For this reason, the antistatic effect can be exhibited by forming the ceramic coating formed on the holding surface thinner than the ceramic coating on the upper surface.
  • An epitaxial growth apparatus of the present invention for solving the above-mentioned problems is (9)
  • the wafer carrier described above a rotating spindle having an opening at an upper end, a heating means for heating the wafer carrier, and a source gas supply means arranged on the wafer carrier, The opening is connected to a suction mechanism that sucks gas.
  • the opening of the rotary spindle is connected to the suction mechanism, so that particles accumulated in the space formed by the rotary spindle and the wafer carrier can be removed before diffusing into the epitaxial growth apparatus. it can.
  • the coupling hole is configured by a tapered wall surface that expands from the upper surface side toward the lower surface side, it is difficult to form a corner where particles easily adhere to the inside of the coupling hole. Even if particles are generated inside, they can be easily removed.
  • the coupling hole includes a tapered wall surface that expands from the upper surface side toward the lower surface side, and a bottom surface that is deeper in the center than the boundary with the wall surface. It is difficult to form a corner where particles easily adhere to the inside, and even if particles are generated inside the coupling hole, they can be easily removed.
  • the wafer carrier of the present invention is an apparatus in which particles accumulated in the space formed by the rotary spindle and the wafer carrier are diffused into the epitaxial growth apparatus by connecting the opening of the rotary spindle to the suction mechanism. It can be removed from within.
  • FIG. 3 is a plan view showing a cavity on an upper surface of the wafer carrier of FIG.
  • FIG. 3 is a cross-sectional view of the outer periphery of the wafer carrier, where (a) is the wafer carrier of the first embodiment, and (b) to (d) are modifications thereof.
  • FIG. 3 is a cross-sectional view of a bonding hole of a wafer carrier, (a) is a wafer carrier according to Embodiment 1 of the present invention, and (b) to (c) are modified examples thereof. Sectional drawing which inserted the pin in the coupling hole of the modification of the wafer carrier of Embodiment 1.
  • FIG. 6 is a cross-sectional view of a bonding hole of a wafer carrier, where (a) is a wafer carrier of Embodiment 2, and (b) to (c) are modified examples thereof.
  • 3 is a cross-sectional view of the ceramic coating of the wafer carrier of Embodiment 2, wherein (a) is a wafer carrier having a ceramic coating on the upper surface, the lower surface and the outer peripheral portion, and (b) is a ceramic coating on the tapered wall surface of the bonding hole.
  • FIG. 5A is a modified example of the wafer carrier according to the second embodiment, in which FIG. 5A shows a wafer carrier in which the opening of the bonding hole protrudes and is below the lower surface of the wafer carrier, and FIG. A wafer carrier above the lower surface of the wafer carrier. Sectional drawing of the epitaxial growth apparatus of this invention.
  • FIG. 1 shows an example of an epitaxial growth apparatus.
  • the epitaxial growth apparatus 100 includes a wafer carrier 10 on which a wafer is placed, and a heating unit 40 below the wafer carrier 10.
  • the wafer carrier 10 is provided at the upper end of the rotary spindle 20. By introducing the source gas into the epitaxial growth apparatus, a film is formed on the wafer.
  • FIG. 2 is a perspective view of a wafer carrier used in the epitaxial growth apparatus of FIG.
  • Embodiment 1 a wafer carrier in which the coupling hole 5 is a through hole will be described, and in Embodiment 2, a wafer carrier in which the coupling hole 5 is a bottomed hole will be described.
  • the present invention can be applied to both the first and second embodiments.
  • the first embodiment is a wafer carrier according to claim 1
  • the second embodiment is a wafer carrier according to claim 2.
  • the first embodiment and the second embodiment have modifications, respectively, and will be described as appropriate.
  • the vertical direction of the wafer carrier coincides with the vertical direction when attached to the epitaxial growth apparatus. That is, the side on which the cavity for mounting the wafer is formed is the upward direction, and the side on which the coupling hole for attaching the rotating spindle is formed is the downward direction.
  • the wafer carrier according to the first embodiment of the present invention has an upper surface 6 having one or more cavities 6a for holding the wafer and a lower surface having a coupling hole 5 for removably inserting the upper end of the rotary spindle 20 at the center.
  • a wafer carrier having an outer peripheral portion 4 that connects the upper surface 6 and the lower surface 7, and comprising a base material 1 made of graphite and a ceramic coating 2 covering at least the upper surface, the lower surface, and the outer peripheral portion.
  • the said coupling hole 5 is a through-hole comprised by the taper-shaped wall surface 5a expanded toward the lower surface side from an upper surface side.
  • the wafer carrier 10 of this embodiment is directly attached to the rotary spindle 20.
  • the wafer carrier of this embodiment has a coupling hole 5 with a rotary spindle 20 at the center of the lower surface of the wafer carrier 10 so that it can be easily attached and detached from the outside of the epitaxial growth apparatus 100 by an autoloader or the like.
  • the wafer carrier of this embodiment has a cavity 6 a for placing a wafer on the upper surface 6.
  • the shape and number of cavities are not particularly limited.
  • the shape of the cavity corresponds to, for example, the shape of the wafer.
  • a large circle and a small square are combined to facilitate insertion of a spatula from the side when removing the wafer.
  • Cavity see FIG. 3B
  • a cavity in which a large circle and one small circle are combined see FIG. 3C
  • a cavity in which a large circle and two small circles are combined are not particularly limited.
  • the wafer carrier of this embodiment is constituted by an upper surface 6, a lower surface 7, and an outer peripheral portion 4 that connects the upper surface and the lower surface.
  • the portion excluding the cavity for mounting the wafer is preferably a rotationally symmetric disk around a central axis perpendicular to the upper surface and the lower surface.
  • the wafer carrier of this embodiment has a shape in which a cavity for placing a wafer is formed on the upper surface side of a disk that is rotationally symmetrical around a central axis perpendicular to the upper surface and the lower surface.
  • the shape of the outer peripheral part 4 of the wafer carrier 10 of this embodiment is not specifically limited.
  • the shape of the outer peripheral part is a side surface of a cylinder that vertically connects the upper surface and the lower surface (see FIG. 4A), and a curved surface in which the sectional view including the central axis is an arc that smoothly connects the upper surface and the lower surface (FIG. 4).
  • D a shape in which a flange having a holding surface facing downward is formed (see FIG. 4B), a shape having a flange (see FIG. 4C), and the like.
  • a shape in which a flange having a holding surface facing downward is formed is preferable.
  • a transfer jig in which the distance between the holders used for transfer is larger than the diameter of the lower surface and smaller than the diameter of the flange.
  • the wafer carrier can be easily carried in and out of the epitaxial growth apparatus using the autoloader provided at the tip.
  • the wafer carrier 10 of the present embodiment has a coupling hole 5 for removably inserting the upper end of the rotary spindle 20 at the center of the lower surface.
  • the coupling hole 5 is formed in the central axis portion of the disk constituting the wafer carrier.
  • the bonding hole 5 of the wafer carrier of this embodiment has a tapered wall surface 5a that expands from the upper surface side toward the lower surface side. Since the coupling hole 5 of the wafer carrier of the present embodiment is a hole having a tapered wall surface, an appropriate frictional bond can be formed by coupling with the rotary spindle 20 having a corresponding tapered projection. . Therefore, the rotational force can be transmitted from the rotary spindle 20 to the wafer carrier 10 without requiring a separate holding means, and attachment / detachment can be easily performed.
  • the wafer carrier 10 of this embodiment has a base material 1 made of graphite and a ceramic coating 2 that covers the upper surface, the lower surface, and the outer periphery.
  • the base material 1 is made of graphite, it is lighter and has a smaller rotational moment than a heat-resistant metal such as molybdenum. For this reason, the load and torque concerning the coupling hole 5 can be made small. Thereby, the frictional force applied to the wall surface 5a of the coupling hole 5 can be reduced, and the amount of generated particles can be reduced.
  • the wafer carrier 10 of the present embodiment has the ceramic coating 2 that covers the upper surface, the lower surface, and the outer peripheral portion, even when ammonia, hydrogen, organic metal, or the like used for epitaxial growth is used, the corrosion of graphite by the source gas Can be suppressed.
  • the bonding hole 5 of the wafer carrier 10 of the first embodiment is a through hole. Particles generated by wear can be easily removed by, for example, air blowing from above so as to pass through the through hole. Further, the particle removal method is not limited to air blow, and since it is a through hole, it can be easily removed by wiping with a brush, cloth or the like.
  • the bonding hole of the wafer carrier of Embodiment 1 is a single tapered surface so as not to form a corner where particles are likely to accumulate. (Refer to FIG. 5 (a))
  • Other modifications include, for example, a curved surface whose inclination changes continuously (see FIG. 5 (b)), a tapered surface with a gentle inclination angle (see FIG.
  • the coupling hole is a through hole.
  • the bonding hole of the wafer carrier of the present invention is a through hole, the upper surface side is opened. You may insert and use the pin 8 so that source gas may not penetrate
  • the material of the pins 8 is not particularly limited, but is preferably the same material as the wafer carrier 10. If the material is the same as that of the wafer carrier 10, the thermal expansion behavior is the same, so that it is difficult to come out after use, or a gap is formed during use, which is unlikely to cause vibration.
  • the pin 8 can be cleaned and reused after each use. Moreover, you may replace
  • FIG. 8A shows a wafer carrier in which the tapered wall surface of the bonding hole is not covered with the ceramic coating and the graphite is exposed.
  • FIG. 8B shows a wafer carrier in which the tapered wall surface of the coupling hole is covered with a ceramic coating.
  • FIG. 8 does not have a through hole, it can be similarly applied to the present embodiment having a through hole.
  • the graphite used for the base material of the wafer carrier 10 of the present embodiment has a crystal structure in which a hexagonal network surface of carbon atoms is formed by a covalent bond in the a-axis direction and laminated by van der Waals force in the c-axis direction. For this reason, graphite is a soft material that is easily peeled off in the c-axis direction. In the wafer carrier 10 of this embodiment, since the tapered wall surface 5a is covered with the ceramic coating 2, the ceramic coating makes it difficult to wear the graphite.
  • the wafer carrier 10 of the present embodiment uses lightweight graphite as a base material, and the tapered wall surface 5a is further covered with the ceramic coating 2, so that wear due to frictional force generated between the rotating spindle and the wafer carrier is reduced. In addition, the generation of particles due to wear can be reduced.
  • the ceramic coating 2 on the wafer carrier of this embodiment include a pyrolytic carbon coating and a silicon carbide coating. Although the formation method of these ceramic coatings is not specifically limited, For example, it can form by CVD method.
  • the silicon carbide film is hard and conductive, and therefore has the following characteristics when used as a ceramic film covering a tapered wall surface. Since it is a hard coating, it is not easily worn by frictional force with the rotating spindle. Further, since the conductive silicon carbide film covers the surface of graphite having a low specific resistance, it is difficult to be charged, and particles generated by friction can be made difficult to adhere and can be easily removed.
  • the silicon carbide film which covers the taper-shaped wall surface of the wafer carrier of this embodiment is a ⁇ type.
  • the ⁇ -type silicon carbide film can be obtained, for example, by a CVD method at 1100 to 1400 ° C. Since ⁇ -type silicon carbide has a hardness of 3000 to 4000 Hv, it can be suitably used.
  • a desirable surface roughness (Ra) of the silicon carbide film covering the tapered wall surface of the wafer carrier is 0.1 to 5 ⁇ m. When the surface roughness (Ra) is 0.1 ⁇ m or more, a sufficient frictional force can be obtained, so that the rotational force from the rotary spindle can be efficiently transmitted to the wafer carrier.
  • Silicon carbide obtained by the CVD method has a high purity because it does not use a sintering aid, as compared with silicon carbide obtained by a general sintering method. Since the ⁇ -type silicon carbide film obtained by the CVD method has conductivity, it prevents the wafer carrier from being charged, prevents the particles from adhering, and can easily remove the particles once adhered. . Further, most of the particles generated by friction while the rotating spindle is inserted into the wafer carrier and rotating are accumulated in the space formed by the rotating spindle and the wafer carrier.
  • Desirable specific resistance of the silicon carbide film is 0.01 to 1 ⁇ cm. If it is 1 ⁇ cm or less, the charge on the surface of the charged wafer carrier can be easily released, and the generated particles can be made difficult to adhere.
  • the specific resistance of silicon carbide can be easily adjusted by doping impurities.
  • the wafer carrier 10 of this embodiment since the tapered wall surface of the coupling hole has conductivity, the charge is released through the rotary spindle 20 and the generated particles can easily fall. In the case where the rotary spindle 20 is a conductor such as metal, it is more effective that the electric charge easily escapes.
  • the graphite base material is monolithic.
  • Graphite base material has the same low resistivity as metal, so it can be integrated to facilitate charge transfer and easily release the charge to the outside, prevent the adhesion of particles, and easily remove the once adhered particles Can be. Further, when the ceramic coating 2 covering the surface of the wafer carrier 10 is made of conductive silicon carbide or the like, the effect can be further maintained.
  • a flange having a holding surface facing downward is formed on the outer peripheral portion 4, and the ceramic coating is formed so that the thickness on the holding surface is thinner than the thickness on the upper surface. It is preferable. It is important to thicken the ceramic coating 2 on the upper surface of the wafer carrier 10 in order to prevent corrosion of the graphite base material by the source gas. However, the holding surface 4b facing downward is difficult for the source gas to circulate. There is little need to protect the substrate. For this reason, even if it is a ceramic coating with a higher specific resistance than the graphite base material, by covering the holding surface of the flange thinly, charges can be released through the transport jig when transported using a conductive transport jig. it can. For this reason, such an effect can be exhibited by forming the ceramic coating formed on the holding surface thinner than the ceramic coating on the upper surface.
  • the epitaxial growth apparatus 100 of the present embodiment can collect particles generated by friction between the wafer carrier 10 and the rotary spindle 20 by using the rotary spindle 20 having an opening at the upper end.
  • the rotary spindle 20 having an opening at the upper end is not particularly limited.
  • the rotary spindle may be a rod-shaped rotary spindle having a shallow opening and an opening formed only at the upper end, or may be a pipe-shaped rotary spindle having a deep opening.
  • the rotary spindle 20 of the epitaxial growth apparatus of the present invention further includes a suction mechanism 30 for sucking gas from the opening at the upper end.
  • a suction mechanism 30 for sucking gas from the opening at the upper end.
  • the wafer carrier according to the second embodiment of the present invention has an upper surface 6 having one or more cavities 6a for holding the wafer and a lower surface 7 having a coupling hole 5 for removably inserting the upper end of the rotary spindle.
  • a wafer carrier comprising a base material made of graphite, and a ceramic coating covering at least the upper surface, the lower surface, and the outer peripheral portion, the outer peripheral portion 4 connecting the upper surface and the lower surface
  • the coupling hole 5 includes a tapered wall surface that expands from the upper surface side toward the lower surface side, and a bottom surface that is deeper in the center than the boundary with the wall surface.
  • the wafer carrier 10 of this embodiment is directly attached to the rotary spindle 20.
  • the wafer carrier 10 of this embodiment has a coupling hole 5 with a rotating spindle 20 at the center of the lower surface of the wafer carrier 10 so that it can be easily attached and detached from the outside of the epitaxial growth apparatus 100 by an autoloader or the like. .
  • the wafer carrier 10 of this embodiment has a cavity 6a for placing a wafer on the upper surface.
  • the shape and number of cavities are not particularly limited.
  • the shape of the cavity corresponds to, for example, the shape of the wafer.
  • a large circle and a small square are combined to facilitate insertion of a spatula from the side when removing the wafer.
  • Cavity see FIG. 3B
  • a cavity in which a large circle and one small circle are combined see FIG. 3C
  • a cavity in which a large circle and two small circles are combined are not particularly limited.
  • the wafer carrier 10 includes an upper surface 6, a lower surface 7, and an outer peripheral portion 4 that connects the upper surface and the lower surface.
  • the portion excluding the cavity for placing the wafer is a rotationally symmetric disk around a central axis perpendicular to the upper surface and the lower surface.
  • the wafer carrier of this embodiment has a shape in which a cavity for placing a wafer is formed on the upper surface side of a disk that is rotationally symmetrical around a central axis perpendicular to the upper surface and the lower surface.
  • the shape of the outer peripheral part 4 of the wafer carrier 10 of this embodiment is not specifically limited.
  • the shape of the outer peripheral portion 4 is a cylindrical side surface (see FIG. 4A) that connects the upper surface and the lower surface vertically, and a curved surface (see FIG. 4A) in which the cross-sectional view including the central axis smoothly connects the upper surface and the lower surface. 4 (d)), a shape in which a flange having a holding surface facing downward (see FIG. 4 (b)), a shape having a flange (see FIG. 4 (c)), and the like are included.
  • a flange having a holding surface facing downward is preferably formed.
  • a through hole as a coupling hole, but can be similarly applied to the second embodiment of the non-through hole.
  • a transfer jig having a distance between the holders of the transfer device larger than the diameter of the lower surface and smaller than the diameter of the flange is arranged at the tip.
  • the wafer carrier can be easily loaded into and unloaded from the epitaxial growth apparatus using the autoloader included in FIG.
  • the wafer carrier 10 of the present embodiment has a coupling hole 5 for removably inserting the upper end of the rotary spindle 20 at the center of the lower surface.
  • a coupling hole is formed in the central axis portion of the disk constituting the wafer carrier.
  • the bonding hole of the wafer carrier according to the present embodiment includes a tapered wall surface that expands from the upper surface side toward the lower surface side, and a bottom surface that is deeper in the center than the boundary between the wall surfaces. Since the coupling hole 5 of the wafer carrier 10 of the present embodiment is a hole having a tapered wall surface 5a, an appropriate frictional bond can be formed by coupling with the rotary spindle 20 having a tapered projection. .
  • the wafer carrier 10 of the present embodiment has a base material 1 made of graphite and a ceramic coating 2 that covers the upper surface 6, the lower surface 7 and the outer peripheral portion 4.
  • the base material is made of graphite, it is lighter and has a smaller rotational moment than a heat-resistant metal such as molybdenum. For this reason, the load and torque concerning a joint hole can be made small. Thereby, the frictional force applied to the wall surface of the coupling hole can be reduced, and the amount of generated particles can be reduced.
  • the wafer carrier 10 of the present embodiment has the ceramic coating 2 that covers the upper surface 6, the lower surface 7, and the outer peripheral portion 4, even when ammonia, hydrogen, an organic metal, or the like used for epitaxial growth is used, it depends on the source gas. Corrosion of graphite can be suppressed.
  • the bottom surface 5b of the bonding hole 5 of the wafer carrier of this embodiment is deeper in the center than the boundary with the wall surface. That the center part is deeper than the boundary with the wall surface 5a indicates that the intersection with the central axis is deeper than the part where the shape of the coupling hole is connected to the tapered wall surface.
  • the depth of the coupling hole 5 is preferably gradually increased from the tapered wall surface 5a toward the intersection with the central axis.
  • the bottom surface has a tapered surface extending from the boundary with the wall surface (see FIGS. 7B and 7C)
  • the bottom surface has a dome shape extending from the boundary with the wall surface. In the case of a surface (see FIG. 7A), and the like.
  • the wafer carrier 10 of the present embodiment is not limited to such a shape.
  • the center of the upper surface of the wafer carrier is raised, and the bottom surface of the bonding hole is above the surface on which the wafer is placed on the upper surface of the wafer carrier.
  • a wafer carrier (see FIG. 9), a wafer carrier in which the opening of the coupling hole protrudes and is below the lower surface of the wafer carrier (see FIG. 10 (a)), and an opening of the coupling hole is depressed and the lower surface of the wafer carrier
  • the upper wafer carrier (see FIG. 10A) or the like can be used as a modification.
  • the bottom surface of the bonding hole 5 of the wafer carrier 10 of the present embodiment has a tapered surface extending from the boundary with the wall surface 5a or a dome-shaped surface extending from the boundary with the wall surface, particles generated by wear adhere. Easy corners can be eliminated.
  • the adhered particles can be easily removed by, for example, air blowing. Further, the particle removal method is not limited to air blow, and can be easily removed by wiping with a brush, cloth or the like.
  • FIG. 8A shows a wafer carrier in which the tapered wall surface of the bonding hole is not covered with the ceramic coating and the graphite is exposed.
  • FIG. 8B shows a wafer carrier in which the tapered wall surface of the coupling hole is covered with a ceramic coating.
  • the graphite used for the base material of the wafer carrier 10 of the present embodiment has a crystal structure in which a hexagonal network surface of carbon atoms is formed by a covalent bond in the a-axis direction and laminated by van der Waals force in the c-axis direction.
  • graphite is a soft material that is easily peeled off in the c-axis direction.
  • the tapered wall surface is covered with the ceramic coating, so that the graphite can be hardly worn by the ceramic coating.
  • the wafer carrier 10 of the present embodiment uses lightweight graphite as a base material, and the tapered wall surface 5a is further covered with the ceramic coating 2, so that wear due to frictional force generated between the rotating spindle 20 and the wafer carrier 10 is caused. And the generation of particles due to wear can be reduced.
  • the ceramic coating 2 of the wafer carrier 10 of the present embodiment include a pyrolytic carbon coating and a silicon carbide coating. Although the formation method of these ceramic coatings is not specifically limited, For example, it can form by CVD method.
  • the silicon carbide film is hard and conductive, and therefore has the following characteristics when used as a ceramic film covering a tapered wall surface. Since it is a hard coating, it is not easily worn by frictional force with the rotating spindle. Further, since the conductive silicon carbide film covers the surface of graphite having a low specific resistance, it is difficult to be charged, and particles generated by friction can be made difficult to adhere and can be easily removed.
  • the silicon carbide film covering the tapered wall surface 5a of the wafer carrier 10 of the present embodiment is preferably ⁇ -type.
  • the ⁇ -type silicon carbide film can be obtained, for example, by a CVD method at 1100 to 1400 ° C. Since ⁇ -type silicon carbide has a hardness of 3000 to 4000 Hv, it can be suitably used.
  • a desirable surface roughness (Ra) of the silicon carbide film covering the tapered wall surface of the wafer carrier is 0.1 to 5 ⁇ m. When the surface roughness (Ra) is 0.1 ⁇ m or more, a sufficient frictional force can be obtained, so that the rotational force from the rotary spindle can be efficiently transmitted to the wafer carrier.
  • Silicon carbide obtained by the CVD method has a high purity because it does not use a sintering aid, as compared with silicon carbide obtained by a general sintering method. Since the ⁇ -type silicon carbide film obtained by the CVD method has conductivity, it prevents the wafer carrier from being charged, prevents the particles from adhering, and can easily remove the particles once adhered. . Further, most of the particles generated by friction while the rotating spindle is inserted into the wafer carrier and rotating are accumulated in the space formed by the rotating spindle and the wafer carrier.
  • Desirable specific resistance of the silicon carbide film is 0.01 to 1 ⁇ cm. If it is 1 ⁇ cm or less, the charge on the surface of the charged wafer carrier can be easily released, and the generated particles can be made difficult to adhere. Note that the resistivity of silicon carbide can be easily adjusted by doping impurities.
  • the tapered wall surface 5a of the coupling hole 5 has conductivity, so that charges are released through the rotary spindle 20 and the generated particles can easily fall. In the case where the rotary spindle 20 is a conductor such as metal, it is more effective that the electric charge easily escapes.
  • the graphite base material is monolithic.
  • Graphite base material has the same low resistivity as metal, so it can be integrated to facilitate charge transfer and easily release the charge to the outside, prevent the adhesion of particles, and easily remove the once adhered particles Can be. Further, when the ceramic coating covering the wafer carrier surface is conductive silicon carbide or the like, the effect can be further maintained.
  • a flange 4a having a holding surface 4b facing downward is formed on the outer peripheral portion 4, and the thickness of the ceramic coating is thinner on the holding surface than on the upper surface. Preferably it is formed. It is important to thicken the ceramic coating 2 on the upper surface of the wafer carrier 10 in order to prevent corrosion of the graphite base material by the source gas. However, since the source gas hardly flows around the holding surface facing downward, the base of the graphite The need to protect the material is small.
  • FIG. 11 is a cross-sectional view of the epitaxial growth apparatus of this embodiment.
  • the epitaxial growth apparatus 100 of the present embodiment can collect particles generated by friction between the wafer carrier 10 and the rotary spindle 20 by using the rotary spindle 20 having an opening at the upper end. When the rotary spindle 20 having an opening at the upper end is used, particles generated by cleaning the inside of the opening can be easily removed.
  • the wafer carrier 10 used in the epitaxial growth apparatus of the present embodiment is generated by wear because the bottom surface of the bonding hole has a tapered surface extending from the boundary with the wall surface or a dome-shaped surface extending from the boundary with the wall surface.
  • the rotary spindle 20 having an opening at the upper end is not particularly limited.
  • the rotary spindle may be a rod-shaped rotary spindle having a shallow opening and an opening formed only at the upper end, or may be a pipe-shaped rotary spindle having a deep opening.
  • the rotary spindle 20 of the epitaxial growth apparatus 100 of the present invention further includes a suction mechanism 30 for sucking gas from the opening at the upper end.
  • a suction mechanism 30 for sucking gas from the opening at the upper end.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 スピンドルとの結合部である結合孔からパーティクルが発生しにくく、また,パーティクルが発生しても拡散しにくく容易に除去することができるウエハキャリア及びこれを用いたエピタキシャル成長装置を提供する。 ウエハを保持するための一以上のキャビティを有する上面と、回転スピンドルの上端を取り外し可能に挿入するための結合孔を中心に有する下面と、該上面と該下面をつなぐ外周部を有するウエハキャリアであって、 前記結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面により構成され貫通孔を有するウエハキャリア。

Description

ウエハキャリアおよびこれを用いたエピタキシャル成長装置
 本発明は、ウエハなどの基板上にエピタキシャル膜を成長させるためのウエハキャリア及びこれを用いたエピタキシャル成長装置に関する。 
 半導体産業では、良質な単結晶ウエハを得る方法としてエピタキシャル成長法が知られている。半導体産業で用いられる気相エピタキシャル成長は、CVD装置内のウエハキャリアに単結晶ウエハを載置するとともに原料ガスを供給し、単結晶ウエハの表面に、気相中の成分を堆積させる。
 特許文献1には、リアクタ・サイクルの低減と、構成部品の低コストおよび長寿命と、高精度の温度制御とが可能な、ウエハ上にエピタキシャル層を蒸着させるエピタキシャル成長装置(リアクタ)が記載されている。特許文献1のエピタキシャル成長装置では、ウエハキャリアは、装着位置Lと蒸着位置Dの間を移動する。蒸着位置では、ウエハキャリアは、中間サセプタを必要とせずに、回転式スピンドルの上端に取り外し可能に取り付けられる。特許文献1のリアクタは、単一ウエハまたは同時に複数のウエハを処理できる。
 具体的には、以下のことが記載されている。
 スピンドルの上端をウエハキャリアのくぼみへと挿入することにより、スピンドル壁とくぼみ壁との間に摩擦接合を形成し、別個の保持手段を必要とせずにスピンドルによるウエハキャリアの回転を可能にする。その結果、蒸着の間、スピンドルは回転し、ウエハキャリアとキャビティに置かれたウエハとを回転させる。スピンドルの上のウエハキャリアを摩擦だけで保持することにより、ウエハキャリア-スピンドルのアセンブリの機械的慣性が最少になり、その結果としてスピンドルのひずみが減少する。スピンドルが突然停止し、ウエハキャリアに作用する慣性力がスピンドルの上端間の摩擦力を超える場合には、ウエハキャリアは、スピンドルから独立して回転し、スピンドルのひずみを減少させる。
特表2004-525056号公報
 しかしながら、前記記載のエピタキシャル成長装置ではスピンドルとウエハキャリアが摩擦接合によって結合されている。このため、スピンドルとウエハキャリアとの間の接合は確実なものでなく、特に回転開始時、停止時にスピンドルとウエハキャリアとの間に滑りが生じ、摩耗によってパーティクル発生の原因となる。
 また、前記記載のエピタキシャル成長装置のウエハキャリアは、グラファイト(黒鉛)またはモリブデンで製作することが例示されている。しかしながらこれら素材には以下の問題がある。グラファイトは、a軸方向には共有結合によって炭素原子の六角網面を形成し、c軸方向にはファンデルワールス力によって積層した結晶構造をしている。このため、グラファイトはc軸方向に剥離しやすく、摩耗しやすい素材である。摩耗した黒鉛は、パーティクルとなってくぼみ(結合孔)に残留しやすくなる。また、発生した黒鉛のパーティクルは落下し、装置内を汚染しやすくなる。モリブデンは、密度が10.28g/cm 融点が2896Kの金属である。黒鉛の密度に対し、5倍以上の密度を有しているので、スピンドルにかかる負担が大きいこと、回転モーメントが大きいことより、摩擦によるパーティクルが発生しやすくなる。
 前述した課題を鑑み、本発明では、スピンドルとの結合部である結合孔からのパーティクルが発生しにくく、また,パーティクルが発生しても拡散しにくく容易に除去することができるウエハキャリア及びこれを用いたエピタキシャル成長装置を提供することを目的とする。
 前記課題を解決するための本発明のウエハキャリアは、
(1)ウエハを保持するための一以上のキャビティを有する上面と、回転スピンドルの上端を取り外し可能に挿入するための結合孔を中心に有する下面と、前記上面と前記下面とをつなぐ外周部を有し、黒鉛からなる基材と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜と、からなるウエハキャリアであって、
 前記結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面により構成される貫通孔である。
 本発明のウエハキャリアによれば、結合孔が、上面側から下面側に向かって拡大するテーパ状の壁面により構成されているので、結合孔内部にパーティクルが付着しやすいコーナーができにくく、結合孔内部にパーティクルが発生しても、容易に除去することができる。
 前記課題を解決するための本発明のウエハキャリアは、
(2)ウエハを保持するための一以上のキャビティを有する上面と、回転スピンドルの上端を取り外し可能に挿入するための結合孔を中心に有する下面と、前記上面と前記下面とをつなぐ外周部を有し、黒鉛からなる基材と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜と、からなるウエハキャリアであって、
 前記結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなる。
 本発明のウエハキャリアによれば、結合孔が、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなるので、結合孔内部にパーティクルが付着しやすいコーナーができにくく、結合孔内部にパーティクルが発生しても容易に除去することができる。
 さらに本発明のウエハキャリアは、次の態様が望ましい。
(3)前記底面は、前記壁面との境界から延びるテーパ面を有する。
 底面に壁面との境界から延びるテーパ面を有していると、壁面と底面とが形成するコーナーを、より緩やかにすることなできる。このため、コーナー部分にパーティクルが付着しにくくすることができる。
(4)前記底面は、前記壁面との境界から延びるドーム状の面である。
 底面は、壁面との境界から延びるドーム状の面であると、壁面と底面とが形成するコーナーを、より緩やかにすることができる。このため、コーナー部分にパーティクルが付着しにくくすることができる。
(5)前記壁面は、前記セラミック被膜で覆われている。
 前記壁面が前記セラミック被膜で覆われていると、回転スピンドルとの摩擦でカーボンのパーティクルを発生しにくくすることができる。
(6)前記セラミック被膜は、炭化珪素である。
 前記セラミック被膜が炭化珪素であると、硬いセラミック被膜であるので摩擦による摩耗を少なくすることができ、パーティクルの発生量をより少なくすることができる。また、炭化珪素は導電性を有しているので帯電しにくく、摩擦で発生したパーティクルが付着しにくくすることができ、容易に除去することができる。
(7)前記黒鉛からなる基材は、一体的に構成されている。
 黒鉛からなる基材は、金属並みに固有抵抗が低いので、一体的に構成されていることにより電荷移動を促進し電荷を外部に逃がすことによって、パーティクルの付着を防止し、一旦付着したパーティクル除去を容易にすることができる。また、ウエハキャリアの表面を覆うセラミック被膜が導電性を有する炭化珪素などである場合、さらにその効果が発揮される。
(8)前記外周部には、下側を向いた保持面を有するフランジが形成され、
 前記セラミック被膜は、前記上面における厚さより、前記保持面における厚さが薄く形成されている。
 ウエハキャリアの上面は、原料ガスによる黒鉛の基材の腐食を防止するためセラミック被膜を厚くすることが重要であるが、保持面は原料ガスが供給される領域ではないのでその必要性は小さい。このため、黒鉛の基材より固有抵抗の高いセラミック被膜をフランジの保持面に薄く形成することにより、搬送治具を用いて搬送する際に搬送治具を通して電荷を逃がすことができる。このため、保持面に形成されたセラミック被膜は前記上面のセラミック被膜より薄く形成することにより帯電防止効果を発揮することができる。
 前記課題を解決するための本発明のエピタキシャル成長装置は、
(9)前記記載のウエハキャリアと、上端に開口部を有する回転スピンドルと、前記ウエハキャリアを加熱する加熱手段と、前記ウエハキャリアの上に配置された原料ガスの供給手段と、を有し、前記開口部は、気体を吸引する吸引機構に接続されている。
 本発明のエピタキシャル成長装置は、回転スピンドルの開口部が吸引機構に接続されることにより、回転スピンドルとウエハキャリアとが形成する空間に蓄積されたパーティクルを、エピタキシャル成長装置内部に拡散する前に取り除くことができる。
 本発明のウエハキャリアによれば、結合孔が、上面側から下面側に向かって拡大するテーパ状の壁面により構成されているので、結合孔内部にパーティクルが付着しやすいコーナーができにくく、結合孔内部にパーティクルが発生しても、容易に除去することができる。
 また、本発明のウエハキャリアによれば、結合孔が、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなるので、結合孔内部にパーティクルが付着しやすいコーナーができにくく、結合孔内部にパーティクルが発生しても容易に除去することができる。
 また、本発明のウエハキャリアは、回転スピンドルの開口部が吸引機構に接続されることにより、回転スピンドルとウエハキャリアとが形成する空間に蓄積されたパーティクルを、エピタキシャル成長装置内部に拡散する前に装置内から取り除くことができる。
エピタキシャル成長装置の一例の断面図 ウエハキャリアの一例の斜視図。 図2のウエハキャリアの上面のキャビティを示す平面図であり、(a)は、実施形態1および実施形態2のキャビティ、(b)~(d)はその変形例。 ウエハキャリアの外周部の断面図であり、(a)は、実施形態1のウエハキャリア、(b)~(d)はその変形例。 ウエハキャリアの結合孔に関する断面図であり、(a)は、本発明の実施形態1のウエハキャリア、(b)~(c)はその変形例。 実施形態1のウエハキャリアの変形例の結合孔にピンを挿入した断面図。 ウエハキャリアの結合孔に関する断面図であり、(a)は、実施形態2のウエハキャリア、(b)~(c)はその変形例。 実施形態2のウエハキャリアのセラミック被覆に関する断面図であり、(a)は、上面、下面及び外周部にセラミック被膜を有するウエハキャリア、(b)はさらに結合孔のテーパ状の壁面にセラミック被膜を有するウエハキャリア 実施形態2のウエハキャリアの変形例であり、ウエハキャリアの上面の中央が盛り上がり、ウエハキャリアの上面のウエハを載置する面よりも結合孔の底面が上にあるウエハキャリアである。 実施形態2のウエハキャリアの変形例であり、(a)は、結合孔の開口部が、突出しウエハキャリアの下面より下にあるウエハキャリア、(b)は、結合孔の開口部が、陥没しウエハキャリアの下面より上にあるウエハキャリアである。 本発明のエピタキシャル成長装置の断面図。
 以下本発明の実施形態について説明する。
 ウエハキャリアは、エピタキシャル成長装置内で用いられる。図1は、エピタキシャル成長装置の一例を示す。エピタキシャル成長装置100は、内部にウエハの載置されるウエハキャリア10を備え、ウエハキャリア10の下には、加熱手段40を備えている。ウエハキャリア10は、回転スピンドル20の上端に備えられている。原料ガスをエピタキシャル成長装置内に導入することにより、ウエハに被膜を形成する。図2は図1のエピタキシャル成長装置に用いられるウエハキャリアの斜視図である。
 実施形態1では、結合孔5が貫通孔であるウエハキャリア、実施形態2では、結合孔5が有底孔であるウエハキャリアを説明する。特に限定しない場合には、実施形態1及び実施形態2の両方に適用可能である。
 実施形態1は、請求項1に係るウエハキャリアであり、実施形態2は、請求項2に係るウエハキャリアである。また、実施形態1及び実施形態2にはそれぞれ変形例があり、適宜説明する。
 本明細書において、ウエハキャリアの上下方向は、エピタキシャル成長装置に取り付けられたときの上下方向と一致する。即ち、ウエハを載置するためのキャビティが形成された側が上方向であり、反対に回転スピンドルを取り付けるための結合孔が形成されている側が下方向である。
 本発明に係る実施形態1のウエハキャリアは、ウエハを保持するための一以上のキャビティ6aを有する上面6と、回転スピンドル20の上端を取り外し可能に挿入するための結合孔5を中心に有する下面7と、前記上面6と前記下面7とをつなぐ外周部4を有し、黒鉛からなる基材1と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜2と、からなるウエハキャリアであって、前記結合孔5は、上面側から下面側に向かって拡大するテーパ状の壁面5aにより構成される貫通孔である。
 本実施形態のウエハキャリア10は、回転スピンドル20に直接取り付けられる。
 本実施形態のウエハキャリアは、エピタキシャル成長装置100の外部からオートローダーなどで搬送され容易に取り付け取り外しができるようにウエハキャリア10の下面の中心に回転スピンドル20との結合孔5を有している。
 本実施形態のウエハキャリアは、上面6にウエハを載置するためのキャビティ6aを有している。キャビティの形状、数は特に限定されない。キャビティの形状は、例えば、ウエハの形状に対応し、円形のキャビティ(図3(a)参照)のほか、ウエハを取り出す際、へら(spatula)を側面から差し込みやすいよう大円と小さな方形が組み合わされたキャビティ(図3(b)参照)、大円と1つの小円が組み合わされたキャビティ(図3(c)参照)、大円と2つの小円が組み合わされたキャビティ(図3(d)参照)などが変形例として挙げられ特に限定されない。
 本実施形態のウエハキャリアは、上面6と、下面7と、上面と下面とをつなぐ外周部4と、によって構成される。本発明のウエハキャリア10は、ウエハを載置するためのキャビティを除く部分が、上面及び下面に垂直な中心軸周りに回転対称の円盤であることが好ましい。言い換えると本実施形態のウエハキャリアは、上面及び下面に垂直な中心軸周りに回転対称に構成された円盤の上面側にウエハを載置するためのキャビティが形成された形状である。
 本実施形態のウエハキャリア10の外周部4の形状は特に限定されない。例えば、外周部の形状は、上面及び下面を垂直に接続する円筒の側面(図4(a)参照)、中心軸を含む断面視が上面及び下面を滑らかに接続する円弧となる曲面(図4(d)参照)、下側を向いた保持面を有するフランジが形成された形状(図4(b)参照)、鍔を有する形状(図4(c)参照)などが挙げられる。中でも下側を向いた保持面を有するフランジが形成された形状が好ましい。
 本実施形態のウエハキャリアに下側を向いた保持面を有するフランジが形成されていると、搬送に使用する保持具の間隔が下面の直径よりも大きく、フランジの直径よりも小さい搬送治具を先端に有するオートローダーを用いて容易にエピタキシャル成長装置にウエハキャリアを搬入及び搬出することができる。
 本実施形態のウエハキャリア10は、回転スピンドル20の上端を取り外し可能に挿入するための結合孔5を下面の中心に有している。言い換えるとウエハキャリアを構成する円盤の中心軸部分に結合孔5が形成されている。
 本実施形態のウエハキャリアの結合孔5は、上面側から下面側に向かって拡大するテーパ状の壁面5aを有している。本実施形態のウエハキャリアの結合孔5は、テーパ状の壁面を有する孔であるので、対応するテーパ状の突起を有する回転スピンドル20と結合することによって、適度な摩擦接合を形成することができる。このため、別個の保持手段を必要とせずに、回転スピンドル20からウエハキャリア10に回転力が伝達することができ、容易に取り付け取り外しをすることができる。
 本実施形態のウエハキャリア10は、黒鉛からなる基材1と、上面、下面及び外周部とを覆うセラミック被膜2を有している。本実施形態のウエハキャリア10は、基材1が黒鉛からなるので、モリブデンなどの耐熱性の金属より、軽量かつ、回転モーメントを小さくすることができる。このため、結合孔5にかかる荷重及びトルクを小さくすることができる。これによって、結合孔5の壁面5aにかかる摩擦力を小さくすることができ、発生するパーティクルの量を減らすことができる。
本実施形態のウエハキャリア10は、上面と下面及び外周部とを覆うセラミック被膜2を有しているので、エピタキシャル成長で使用するアンモニア、水素、有機金属などを用いた場合でも原料ガスによる黒鉛の腐食を抑えることができる。
 実施形態1のウエハキャリア10の結合孔5は貫通孔である。摩耗によって発生したパーティクルを、貫通孔を通過するように例えば上からエアブローすることで容易に除去することができる。また、パーティクルの除去の方法は、エアブローに限定されず、貫通孔であるのでブラシ、布などで払拭することで容易に除去することができる。また、実施形態1のウエハキャリアの結合孔はパーティクルの蓄積しやすいコーナーを形成しないよう単一のテーパ面である。(図5(a)参照)この他に変形例として例えば、連続的に傾斜の変化する曲面(図5(b)参照)、緩やかな傾斜角度のテーパ面(図5(c)参照)、などが挙げられる。いずれの場合にも、結合孔は貫通孔である。また、本発明のウエハキャリアの結合孔は貫通孔であるので、上面側が開口している。開口から原料ガスが結合孔内部に侵入しないようピン8を差し込んで使用しても良い(図6参照)。ピン8の材質は特に限定されないが、ウエハキャリア10と同一材料であることが好ましい。ウエハキャリア10と同一材料であると、熱膨張の挙動が同じであるので、使用後に抜けにくくなったり、使用中に隙間ができ、振動などの原因となりにくい。ピン8は、使用毎に洗浄して再利用することができる。また、使用毎にピン8を交換しても良い。
 本実施形態のウエハキャリア10は、テーパ状の壁面5aがセラミック被膜2で覆われていることが好ましい。図8(a)は結合孔のテーパ状の壁面がセラミック被膜で覆われておらず黒鉛が露出したウエハキャリアである。図8(b)は結合孔のテーパ状の壁面がセラミック被膜で覆われたウエハキャリアである。なお、図8は、貫通孔を有していないが、貫通孔を有している本実施形態についても同様に適用できる。
 本実施形態のウエハキャリア10の基材に用いる黒鉛は、a軸方向に共有結合によって炭素原子の六角網面を形成し、c軸方向にファンデルワールス力によって積層した結晶構造をしている。このため、黒鉛はc軸方向に剥離しやすく、軟らかい素材である。
 本実施形態のウエハキャリア10は、テーパ状の壁面5aが前記セラミック被膜2で覆われているので、セラミック被膜により黒鉛が摩耗しにくくすることができる。
 本実施形態のウエハキャリア10は、軽量な黒鉛を基材に用い、テーパ状の壁面5aが前記セラミック被膜2でさらに覆われているので回転スピンドルとウエハキャリア間に発生する摩擦力による摩耗を低減し、摩耗によるパーティクルの発生を低減することができる。
 本実施形態のウエハキャリアのセラミック被膜2としては、熱分解炭素被膜、炭化珪素被膜などが挙げられる。これらのセラミック被膜の形成方法は、特に限定されないが、例えばCVD法で形成することができる。中でも炭化珪素被膜は、硬く、導電性を有しているのでテーパ状の壁面を覆うセラミック被膜として使用すると次のような特徴がある。硬い被膜であるので回転スピンドルとの摩擦力によって摩耗しにくい。さらに固有抵抗の低い黒鉛の表面を導電性のある炭化珪素被膜が覆っているので、帯電しにくく、摩擦で発生したパーティクルが付着しにくくすることができ、容易に除去することができる。
 また本実施形態のウエハキャリアのテーパ状の壁面を覆う炭化珪素被膜は、β型であることが好ましい。β型の炭化珪素被膜は例えば1100~1400℃のCVD法で成膜すると得ることができる。β型の炭化珪素は、硬度が3000~4000Hvであるので好適に利用することができる。ウエハキャリアのテーパ状の壁面を覆う炭化珪素被膜の望ましい面粗さ(Ra)は 0.1~5μmである。面粗さ(Ra)が0.1μm以上であると、十分な摩擦力が得られるので、回転スピンドルからの回転力を効率良くウエハキャリアに伝達することができる。面粗さ(Ra)が5μm以下であると、回転スピンドルを研磨する能力が充分に無いのでパーティクルの発生を少なくすることができる。CVD法で得られた炭化珪素は一般的な焼結法の炭化珪素と比較し、焼結助剤を用いないことから高純度である。CVD法で得られたβ型の炭化珪素被膜は導電性を有しているので、ウエハキャリアの帯電を防止しパーティクルの付着を防止し、さらには一旦付着したパーティクルも容易に除去することができる。また、ウエハキャリアに回転スピンドルが挿入され、回転している間に摩擦によって発生したパーティクルは、その多くが回転スピンドルとウエハキャリアとが形成する空間に蓄積される。なお、炭化珪素被膜の望ましい固有抵抗は、0.01~1Ωcmである。1Ωcm以下であれば、帯電したウエハキャリア表面の電荷を逃がしやすくすることができ、発生したパーティクルを付着させにくくすることができる。なお、炭化硅素の固有抵抗は不純物をドープすることにより容易に調整することができる。
 本実施形態のウエハキャリア10は、結合孔のテーパ状の壁面が導電性を有しているので、回転スピンドル20を通して電荷を逃がし、発生したパーティクルが容易に落下することができる。回転スピンドル20が金属など導電体の場合には電荷が逃げやすくさらに有効である。
 本実施形態のウエハキャリア10は、黒鉛の基材が一体的(monolithic)に構成されていることが好ましい。黒鉛の基材は、金属並みに固有抵抗が低いので、一体的に構成されることにより電荷移動を促進し電荷を外部に逃がしやすくでき、パーティクルの付着を防止し、一旦付着したパーティクル除去を容易にすることができる。また、ウエハキャリア10の表面を覆うセラミック被膜2が導電性を有する炭化珪素などである場合、さらにその効果が維持できる。
 本実施形態のウエハキャリア10は、外周部4には、下側を向いた保持面を有するフランジが形成され、セラミック被膜は、上面における厚さより、保持面における厚さが薄くなるように形成されていることが好ましい。ウエハキャリア10の上面は、原料ガスによる黒鉛の基材の腐食を防止するためセラミック被膜2を厚くすることが重要であるが、下側を向いた保持面4bは原料ガスが回り込みにくいので黒鉛の基材を保護する必要性は小さい。このため、黒鉛の基材より固有抵抗の高いセラミック被膜であってもフランジの保持面に薄く覆うことにより、導電性の搬送治具を用いて搬送する際に搬送治具を通して電荷を逃がすことができる。このため、保持面に形成されたセラミック被膜は前記上面のセラミック被膜より薄く形成することによりこのような効果を発揮することができる。
 次に、本実施形態のエピタキシャル成長装置について説明する。
 本実施形態のエピタキシャル成長装置100は、ウエハキャリア10と回転スピンドル20との摩擦で生じたパーティクルを、上端に開口部を有する回転スピンドル20を用いることによって捕集することができる。上端に開口部を有する回転スピンドルを用いると、開口部の中を清掃することによって発生したパーティクルを容易に除去することができる。上端に開口部を有する回転スピンドル20とは、特に限定されない。回転スピンドルは、開口部が浅く、開口部が上端のみに形成された棒状の回転スピンドルであっても、開口部が深くパイプ状の回転スピンドルであっても良い。
 本発明のエピタキシャル成長装置の回転スピンドル20は、さらに上端の開口部から気体を吸引する吸引機構30を備えている。吸引機構を備えることにより、回転スピンドルとウエハキャリアとが形成する空間に蓄積されたパーティクルを、エピタキシャル成長装置内部に拡散する前に取り除くことができる。
 次に、実施形態2のウエハキャリアについて説明する。
 本発明に係る実施形態2のウエハキャリアは、ウエハを保持するための一以上のキャビティ6aを有する上面6と、回転スピンドルの上端を取り外し可能に挿入するための結合孔5を中心に有する下面7と、前記上面と前記下面とをつなぐ外周部4を有し、黒鉛からなる基材と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜と、からなるウエハキャリアであって、前記結合孔5は、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなる。
 本実施形態のウエハキャリア10は、回転スピンドル20に直接取り付けられる。
 本実施形態のウエハキャリア10は、エピタキシャル成長装置100の外部からオートローダーなどで搬送され容易に取り付け取り外しができるようにウエハキャリア10の下面の中心に回転スピンドル20との結合孔5を有している。
 本実施形態のウエハキャリア10は、上面にウエハを載置するためのキャビティ6aを有している。キャビティの形状、数は特に限定されない。キャビティの形状は、例えば、ウエハの形状に対応し、円形のキャビティ(図3(a)参照)のほか、ウエハを取り出す際、へら(spatula)を側面から差し込みやすいよう大円と小さな方形が組み合わされたキャビティ(図3(b)参照)、大円と1つの小円が組み合わされたキャビティ(図3(c)参照)、大円と2つの小円が組み合わされたキャビティ(図3(d)参照)などが変形例として挙げられ特に限定されない。
 本実施形態のウエハキャリア10は、上面6と、下面7と、上面と下面とをつなぐ外周部4と、によって構成される。本実施形態のウエハキャリア10は、ウエハを載置するためのキャビティを除く部分が、上面及び下面に垂直な中心軸周りに回転対称の円盤であることが好ましい。言い換えると本実施形態のウエハキャリアは、上面及び下面に垂直な中心軸周りに回転対称に構成された円盤の上面側にウエハを載置するためのキャビティを形成された形状である。
 本実施形態のウエハキャリア10の外周部4の形状は特に限定されない。例えば、外周部4の形状は、上面及び下面を垂直に接続する円筒の側面(図4(a)参照)、中心軸を含む断面視が上面及び下面を滑らかに接続する円弧となる曲面(図4(d)参照)、下側を向いた保持面を有するフランジが形成された形状(図4(b)参照)、鍔を有する形状(図4(c)参照)などが挙げられる。中でも下側を向いた保持面を有するフランジが形成されていることが好ましい。尚、図4のウエハキャリアは、結合孔として貫通孔があいているが、非貫通孔の実施形態2にも同様に適用できる。
 本実施形態のウエハキャリアに下側を向いた保持面を有するフランジが形成されていると、搬送装置の保持具の間隔が下面の直径よりも大きく、フランジの直径よりも小さい搬送治具を先端に有するオートローダーを用いて容易にエピタキシャル成長装置にウエハキャリアを搬入及び搬出することができる。
 本実施形態のウエハキャリア10は、回転スピンドル20の上端を取り外し可能に挿入するための結合孔5を下面の中心に有している。言い換えるとウエハキャリアを構成する円盤の中心軸部分に結合孔が形成されている。
 本実施形態のウエハキャリアの結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなる。本実施形態のウエハキャリア10の結合孔5は、テーパ状の壁面5aを有する孔であるので、テーパ状の突起を有する回転スピンドル20と結合することによって、適度な摩擦接合を形成することができる。このため、別個の保持手段を必要とせずに、回転スピンドルからウエハキャリアに回転力が伝達することができ、容易に取り付け取り外しをすることができる。
 本実施形態のウエハキャリア10は、黒鉛からなる基材1と、上面6と下面7及び外周部4とを覆うセラミック被膜2を有している。本実施形態のウエハキャリア10は、基材が黒鉛からなるので、モリブデンなどの耐熱性の金属より、軽量かつ、回転モーメントを小さくすることができる。このため、結合孔にかかる荷重及びトルクを小さくすることができる。これによって、結合孔の壁面にかかる摩擦力を小さくすることができ、発生するパーティクルの量を減らすことができる。
 本実施形態のウエハキャリア10は、上面6と下面7及び外周部4とを覆うセラミック被膜2を有しているので、エピタキシャル成長で使用するアンモニア、水素、有機金属などを用いた場合でも原料ガスによる黒鉛の腐食を抑えることができる。
 本実施形態のウエハキャリアの結合孔5の底面5bは、壁面との境界よりも中央部が深い。壁面5aとの境界よりも中心部が深いとは、結合孔の形状がテーパ状の壁面と接続する部分よりも中心軸との交点の方が深いことを示す。結合孔5の深さはテーパ状の壁面5aから中心軸との交点に向かうに従って徐々に深くなっていくことが好ましい。このような形状としては、底面が壁面との境界から延びるテーパ面を有している場合(図7(b)、図7(c))参照)、底面が壁面との境界から延びるドーム状の面である場合(図7(a)参照)などが挙げられる。
 本実施形態のウエハキャリア10は、このような形状に限定されず、例えば、ウエハキャリアの上面の中央が盛り上がり、ウエハキャリアの上面のウエハを載置する面よりも結合孔の底面が上にあるウエハキャリア(図9参照)、結合孔の開口部が、突出しウエハキャリアの下面より下にあるウエハキャリア、(図10(a)参照)、結合孔の開口部が、陥没しウエハキャリアの下面より上にあるウエハキャリア(図10(a)参照)などが変形例として利用できる。
 本実施形態のウエハキャリア10の結合孔5の底面が壁面5aとの境界から延びるテーパ面を有するあるいは、壁面との境界から延びるドーム状の面であることによって、摩耗によって発生したパーティクルが付着しやすいコーナー部分を無くすことができる。付着したパーティクルは例えばエアブローすることで容易にパーティクルを除去することができる。また、パーティクルの除去の方法は、エアブローに限定されず、ブラシ、布などで払拭することで容易に除去することができる。
 本実施形態のウエハキャリア10は、テーパ状の壁面5aがセラミック被膜2で覆われていることが好ましい。図8(a)は結合孔のテーパ状の壁面がセラミック被膜で覆われておらず黒鉛が露出したウエハキャリアである。図8(b)は結合孔のテーパ状の壁面がセラミック被膜で覆われたウエハキャリアである。
 本実施形態のウエハキャリア10の基材に用いる黒鉛は、a軸方向に共有結合によって炭素原子の六角網面を形成し、c軸方向にファンデルワールス力によって積層した結晶構造をしている。このため、黒鉛はc軸方向に剥離しやすく、軟らかい素材である。
 本実施形態のウエハキャリアは、テーパ状の壁面が前記セラミック被膜で覆われているので、セラミック被膜によって黒鉛が摩耗しにくくすることができる。
 本実施形態のウエハキャリア10は、軽量な黒鉛を基材に用い、テーパ状の壁面5aが前記セラミック被膜2でさらに覆われているので回転スピンドル20とウエハキャリア10間に発生する摩擦力による摩耗を低減し、摩耗によるパーティクルの発生を低減することができる。
 本実施形態のウエハキャリア10のセラミック被膜2としては、熱分解炭素被膜、炭化珪素被膜などが挙げられる。これらのセラミック被膜の形成方法は、特に限定されないが、例えばCVD法で形成することができる。中でも炭化珪素被膜は、硬く、導電性を有しているのでテーパ状の壁面を覆うセラミック被膜として使用すると次のような特徴がある。硬い被膜であるので回転スピンドルとの摩擦力によって摩耗しにくい。さらに固有抵抗の低い黒鉛の表面を導電性のある炭化珪素被膜が覆っているので、帯電しにくく、摩擦で発生したパーティクルが付着しにくくすることができ、容易に除去することができる。
 また本実施形態のウエハキャリア10のテーパ状の壁面5aを覆う炭化珪素被膜は、β型であることが好ましい。β型の炭化珪素被膜は例えば1100~1400℃のCVD法で成膜すると得ることができる。β型の炭化珪素は、硬度が3000~4000Hvであるので好適に利用することができる。ウエハキャリアのテーパ状の壁面を覆う炭化珪素被膜の望ましい面粗さ(Ra)は0.1~5μmである。面粗さ(Ra)が0.1μm以上であると、十分な摩擦力が得られるので、回転スピンドルからの回転力を効率良くウエハキャリアに伝達することができる。面粗さ(Ra)が5μm以下であると、回転スピンドルを研磨する能力が充分に無いのでパーティクルの発生を少なくすることができる。CVD法で得られた炭化珪素は一般的な焼結法の炭化珪素と比較し、焼結助剤を用いないことから高純度である。CVD法で得られたβ型の炭化珪素被膜は導電性を有しているので、ウエハキャリアの帯電を防止しパーティクルの付着を防止し、さらには一旦付着したパーティクルも容易に除去することができる。また、ウエハキャリアに回転スピンドルが挿入され、回転している間に摩擦によって発生したパーティクルは、その多くが回転スピンドルとウエハキャリアとが形成する空間に蓄積される。なお、炭化珪素被膜の望ましい固有抵抗は、0.01~1Ωcmである。1Ωcm以下であれば、帯電したウエハキャリア表面の電荷を逃がしやすくすることができ、発生したパーティクルを付着させにくくすることができる。なお、炭化硅素の固有抵抗は、不純物をドープすることにより容易に調整することができる。
 本実施形態のウエハキャリアは、結合孔5のテーパ状の壁面5aが導電性を有しているので、回転スピンドル20を通して電荷を逃がし、発生したパーティクルが容易に落下することができる。回転スピンドル20が金属など導電体の場合には電荷が逃げやすくさらに有効である。
 本実施形態のウエハキャリアは、黒鉛の基材が一体的(monolithic)に構成されていることが好ましい。黒鉛の基材は、金属並みに固有抵抗が低いので、一体的に構成されることにより電荷移動を促進し電荷を外部に逃がしやすくでき、パーティクルの付着を防止し、一旦付着したパーティクル除去を容易にすることができる。また、ウエハキャリア表面を覆うセラミック被膜が導電性を有する炭化珪素などである場合、さらにその効果が維持できる。
 本実施形態のウエハキャリア10は、外周部4には、下側を向いた保持面4bを有するフランジ4aが形成され、セラミック被膜は、上面における厚さより、保持面における厚さが薄くなるように形成されていることが好ましい。ウエハキャリア10の上面は、原料ガスによる黒鉛の基材の腐食を防止するためセラミック被膜2を厚くすることが重要であるが、下側を向いた保持面は原料ガスが回り込みにくいので黒鉛の基材を保護する必要性は小さい。このため、黒鉛の基材より固有抵抗の高いセラミック被膜であってもフランジの保持面4bに薄く覆うことにより、導電性の搬送治具を用いて搬送する際に搬送治具を通して電荷を逃がすことができる。このため、保持面に形成されたセラミック被膜は前記上面のセラミック被膜より薄く形成することによりこのような効果を発揮することができる。
 次に、本実施形態のエピタキシャル成長装置100について説明する。図11は、本実施形態のエピタキシャル成長装置の断面図である。
 本実施形態のエピタキシャル成長装置100は、ウエハキャリア10と回転スピンドル20との摩擦で生じたパーティクルを、上端に開口部を有する回転スピンドル20を用いることによって捕集することができる。上端に開口部を有する回転スピンドル20を用いると、開口部の中を清掃することによって発生したパーティクルを容易に除去することができる。
 本実施形態のエピタキシャル成長装置に使用するウエハキャリア10は、結合孔の底面が壁面との境界から延びるテーパ面を有するあるいは、壁面との境界から延びるドーム状の面であることによって、摩耗によって発生したパーティクルが付着しやすいコーナー部分を無くすことができる。また、ウエハキャリアは回転スピンドルによって高速回転しているので、摩耗により発生したパーティクルは遠心力により底部の周辺部(壁面との境界)に集められる。周辺部に集められたパーティクルは、結合孔5には、パーティクルが付着しやすいコーナー部分が無いため、多くが落下して回転スピンドル20の開口部に集められる。さらに固有抵抗の低い黒鉛の表面を導電性のある炭化珪素被膜が覆っていると帯電しにくくすることができる。このため、発生したパーティクルが回転スピンドル20の開口部に落下しやすくなり、エピタキシャル成長装置100内に飛散しにくくすることができる。
 上端に開口部を有する回転スピンドル20とは、特に限定されない。回転スピンドルは、開口部が浅く、開口部が上端のみに形成された棒状の回転スピンドルであっても、開口部が深くパイプ状の回転スピンドルであっても良い。
 本発明のエピタキシャル成長装置100の回転スピンドル20は、さらに上端の開口部から気体を吸引する吸引機構30を備えている。吸引機構を備えることにより、回転スピンドルとウエハキャリアとが形成する空間に蓄積されたパーティクルを、エピタキシャル成長装置内部に拡散する前に取り除くことができる。
 このように本実施形態のウエハキャリアと、エピタキシャル成長装置とを組み合わせることにより、パーティクルの発生の少ないエピタキシャル成長装置を提供することができる。
1   基材
2   セラミック被膜
4   外周部
4a  フランジ
4b  保持面
5   結合孔
5a  壁面
5b  底面
6   上面
6a  キャビティ
7   下面
8   ピン
10  ウエハキャリア
20  回転スピンドル
30  吸引機構
40  加熱手段
50  原料ガスの供給手段
100 エピタキシャル成長装置

Claims (9)

  1.  ウエハを保持するための一以上のキャビティを有する上面と、回転スピンドルの上端を取り外し可能に挿入するための結合孔を中心に有する下面と、前記上面と前記下面とをつなぐ外周部を有し、黒鉛からなる基材と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜と、からなるウエハキャリアであって、
     前記結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面により構成される貫通孔であることを特徴とするウエハキャリア。
  2.  ウエハを保持するための一以上のキャビティを有する上面と、回転スピンドルの上端を取り外し可能に挿入するための結合孔を中心に有する下面と、前記上面と前記下面とをつなぐ外周部を有し、黒鉛からなる基材と、少なくとも前記上面と前記下面及び前記外周部とを覆うセラミック被膜と、からなるウエハキャリアであって、
     前記結合孔は、上面側から下面側に向かって拡大するテーパ状の壁面と、前記壁面との境界よりも中央部が深い底面とからなることを特徴とするウエハキャリア。
  3.  前記底面は、前記壁面との境界から延びるテーパ面を有することを特徴とする請求項2に記載のウエハキャリア。
  4.  前記底面は、前記壁面との境界から延びるドーム状の面であることを特徴とする請求項2に記載のウエハキャリア。
  5.  前記壁面は、前記セラミック被膜で覆われていることを特徴とする請求項1~4のいずれか一項に記載のウエハキャリア。
  6.  前記セラミック被膜は、炭化珪素であることを特徴とする請求項1~5のいずれか一項に記載のウエハキャリア。
  7.  前記黒鉛からなる基材は、一体的に構成されていることを特徴とする請求項1~6のいずれか一項に記載のウエハキャリア。
  8.  前記外周部には、下側を向いた保持面を有するフランジが形成され、
     前記セラミック被膜は、前記上面における厚さより、前記保持面における厚さが薄く形成されていることを特徴とする請求項1~7のいずれか一項に記載のウエハキャリア。
  9.  請求項1~8のいずれか一項に記載のウエハキャリアと、
     上端に開口部を有する回転スピンドルと、
     前記ウエハキャリアを加熱する加熱手段と、
     前記ウエハキャリアの上に配置された原料ガスの供給手段と、
     を有し、
     前記開口部は、気体を吸引する吸引機構に接続されていることを特徴とするエピタキシャル成長装置。
PCT/JP2014/062800 2013-06-06 2014-05-14 ウエハキャリアおよびこれを用いたエピタキシャル成長装置 WO2014196323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015521360A JP6293135B2 (ja) 2013-06-06 2014-05-14 ウエハキャリアおよびこれを用いたエピタキシャル成長装置
KR1020157034603A KR101823217B1 (ko) 2013-06-06 2014-05-14 웨이퍼 캐리어 및 이것을 사용한 에피택셜 성장 장치
CN201480032124.6A CN105264653B (zh) 2013-06-06 2014-05-14 晶片载体和使用该晶片载体的外延生长装置
US14/895,850 US20160115623A1 (en) 2013-06-06 2014-05-14 Wafer carrier and epitaxial growth device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013120207 2013-06-06
JP2013-120207 2013-06-06

Publications (1)

Publication Number Publication Date
WO2014196323A1 true WO2014196323A1 (ja) 2014-12-11

Family

ID=52007976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062800 WO2014196323A1 (ja) 2013-06-06 2014-05-14 ウエハキャリアおよびこれを用いたエピタキシャル成長装置

Country Status (5)

Country Link
US (1) US20160115623A1 (ja)
JP (1) JP6293135B2 (ja)
KR (1) KR101823217B1 (ja)
CN (1) CN105264653B (ja)
WO (1) WO2014196323A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510088A (ja) * 2014-01-27 2017-04-06 ビーコ インストルメンツ インコーポレイテッド 化学蒸着システム用の複合半径を有する保持ポケットを有するウェハキャリア
US20180282899A1 (en) * 2017-04-03 2018-10-04 Infineon Technologies Americas Corp. Wafer Carrier and Method
JP2020502806A (ja) * 2016-12-20 2020-01-23 トーカイ カーボン コリア カンパニー.,リミテッド SiC蒸着層を含む半導体製造用部品及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109327A1 (de) * 2014-07-03 2016-01-07 Aixtron Se Beschichtetes flaches scheibenförmiges Bauteil in einem CVD-Reaktor
KR102040378B1 (ko) 2016-12-20 2019-11-05 주식회사 티씨케이 지그를 이용한 반도체 제조용 부품의 제조방법 및 제조장치
WO2018117558A1 (ko) * 2016-12-20 2018-06-28 주식회사 티씨케이 지그를 이용한 반도체 제조용 부품의 제조방법 및 제조장치
WO2018117559A1 (ko) * 2016-12-20 2018-06-28 주식회사 티씨케이 Sic 증착층을 포함하는 반도체 제조용 부품 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252931A (ja) * 1986-04-25 1987-11-04 Toshiba Corp 化合物半導体の気相成長装置
JPH03291916A (ja) * 1990-04-09 1991-12-24 Toshiba Ceramics Co Ltd サセプタ
JPH08191096A (ja) * 1995-01-09 1996-07-23 Sumitomo Metal Ind Ltd 半導体用治具
WO2001006031A1 (en) * 1999-07-14 2001-01-25 Seh America, Inc. Susceptorless semiconductor wafer support and reactor system for epitaxial layer growth
JP2004075493A (ja) * 2002-08-22 2004-03-11 Tokai Carbon Co Ltd CVD−SiC被覆黒鉛材及びその製造方法
JP2004525056A (ja) * 2001-02-07 2004-08-19 エムコア・コーポレイション 化学蒸着によりウェハ上にエピタキシャル層を成長させる装置および方法
JP2005236279A (ja) * 2004-01-30 2005-09-02 Asm America Inc 半導体ウェーハホルダ用垂直軸及び支持構造間の回転滑り防止装置及び方法
JP2007042844A (ja) * 2005-08-03 2007-02-15 Furukawa Co Ltd 気相成長装置及びサセプタ
WO2009041578A1 (ja) * 2007-09-28 2009-04-02 Bridgestone Corporation ウェハ支持治具、ウェハ支持治具の温度測定方法、及びウェハ支持治具の温度測定システム
WO2010147053A1 (ja) * 2009-06-19 2010-12-23 大陽日酸株式会社 気相成長装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444217A (en) * 1993-01-21 1995-08-22 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US6213478B1 (en) * 1999-03-11 2001-04-10 Moore Epitaxial, Inc. Holding mechanism for a susceptor in a substrate processing reactor
AU6491600A (en) * 1999-07-26 2001-02-13 Emcore Corporation Apparatus for growing epitaxial layers on wafers
US8021487B2 (en) * 2007-12-12 2011-09-20 Veeco Instruments Inc. Wafer carrier with hub
US9637822B2 (en) * 2009-10-09 2017-05-02 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
US9190310B2 (en) * 2010-04-16 2015-11-17 Lam Research Ag Grounded chuck
US9230846B2 (en) * 2010-06-07 2016-01-05 Veeco Instruments, Inc. Multi-wafer rotating disc reactor with inertial planetary drive

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252931A (ja) * 1986-04-25 1987-11-04 Toshiba Corp 化合物半導体の気相成長装置
JPH03291916A (ja) * 1990-04-09 1991-12-24 Toshiba Ceramics Co Ltd サセプタ
JPH08191096A (ja) * 1995-01-09 1996-07-23 Sumitomo Metal Ind Ltd 半導体用治具
WO2001006031A1 (en) * 1999-07-14 2001-01-25 Seh America, Inc. Susceptorless semiconductor wafer support and reactor system for epitaxial layer growth
JP2004525056A (ja) * 2001-02-07 2004-08-19 エムコア・コーポレイション 化学蒸着によりウェハ上にエピタキシャル層を成長させる装置および方法
JP2004075493A (ja) * 2002-08-22 2004-03-11 Tokai Carbon Co Ltd CVD−SiC被覆黒鉛材及びその製造方法
JP2005236279A (ja) * 2004-01-30 2005-09-02 Asm America Inc 半導体ウェーハホルダ用垂直軸及び支持構造間の回転滑り防止装置及び方法
JP2007042844A (ja) * 2005-08-03 2007-02-15 Furukawa Co Ltd 気相成長装置及びサセプタ
WO2009041578A1 (ja) * 2007-09-28 2009-04-02 Bridgestone Corporation ウェハ支持治具、ウェハ支持治具の温度測定方法、及びウェハ支持治具の温度測定システム
WO2010147053A1 (ja) * 2009-06-19 2010-12-23 大陽日酸株式会社 気相成長装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510088A (ja) * 2014-01-27 2017-04-06 ビーコ インストルメンツ インコーポレイテッド 化学蒸着システム用の複合半径を有する保持ポケットを有するウェハキャリア
US11248295B2 (en) 2014-01-27 2022-02-15 Veeco Instruments Inc. Wafer carrier having retention pockets with compound radii for chemical vapor deposition systems
JP2020502806A (ja) * 2016-12-20 2020-01-23 トーカイ カーボン コリア カンパニー.,リミテッド SiC蒸着層を含む半導体製造用部品及びその製造方法
JP6995856B2 (ja) 2016-12-20 2022-01-17 トーカイ カーボン コリア カンパニー.,リミテッド SiC蒸着層を含む半導体製造用部品及びその製造方法
US11694893B2 (en) 2016-12-20 2023-07-04 Tokai Carbon Korea Co., Ltd. Semiconductor manufacturing parts comprising SiC deposition layer, and manufacturing method therefor
US20180282899A1 (en) * 2017-04-03 2018-10-04 Infineon Technologies Americas Corp. Wafer Carrier and Method
US10829866B2 (en) * 2017-04-03 2020-11-10 Infineon Technologies Americas Corp. Wafer carrier and method
US11535952B2 (en) 2017-04-03 2022-12-27 Infineon Technologies Americas Corp. Wafer carrier and method

Also Published As

Publication number Publication date
CN105264653A (zh) 2016-01-20
US20160115623A1 (en) 2016-04-28
CN105264653B (zh) 2018-02-16
KR101823217B1 (ko) 2018-01-29
JPWO2014196323A1 (ja) 2017-02-23
JP6293135B2 (ja) 2018-03-14
KR20160007559A (ko) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6293135B2 (ja) ウエハキャリアおよびこれを用いたエピタキシャル成長装置
JP6656153B2 (ja) より小さいウエハおよびウエハ片向けのウエハキャリア
TW571382B (en) Electrostatic chuck and substrate processing apparatus
JP5063797B2 (ja) 吸着部材、吸着装置および吸着方法
CN110129768A (zh) 一种用于金属有机物化学气相沉积的承载盘
JP2009054723A (ja) 吸着部材、吸着装置および吸着方法
JP5404135B2 (ja) 支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法
JP2020132438A (ja) 炭化珪素単結晶の製造方法
TWI720323B (zh) 基板保持構件
JP4031419B2 (ja) 静電チャック及びその製造方法
JP6562546B2 (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
US11946158B2 (en) Apparatus for growing a semiconductor wafer and associated manufacturing process
KR100989752B1 (ko) 웨이퍼 이송 블레이드
JPH09237824A (ja) 物品保持装置
JP4321855B2 (ja) セラミックチャック
JP3755836B2 (ja) 縦型ボート
US20070253138A1 (en) Electrostatic chuck and manufacturing method thereof
JP2017034042A (ja) ウエハ支持装置
JP2011100844A (ja) 静電吸着機能を有する装置及びその製造方法
JP2002170871A (ja) 静電チャック
JP2002103209A (ja) ウェハ研磨装置用テーブル
JP7385459B2 (ja) 非酸化物系気相成長セラミック材料の形成用の型、非酸化物系気相成長セラミック材料、及び、非酸化物系気相成長セラミック材料の形成用の型の製造方法
JP5105909B2 (ja) 炭素複合部材
JP6478364B2 (ja) 被覆グラファイト部材及びこれと保持手段とのアセンブリ
JP2005223037A (ja) 静電チャック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032124.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895850

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157034603

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806898

Country of ref document: EP

Kind code of ref document: A1