WO2014185455A1 - 高強度高減衰能鋳鉄 - Google Patents

高強度高減衰能鋳鉄 Download PDF

Info

Publication number
WO2014185455A1
WO2014185455A1 PCT/JP2014/062856 JP2014062856W WO2014185455A1 WO 2014185455 A1 WO2014185455 A1 WO 2014185455A1 JP 2014062856 W JP2014062856 W JP 2014062856W WO 2014185455 A1 WO2014185455 A1 WO 2014185455A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
graphite
strength
damping
addition
Prior art date
Application number
PCT/JP2014/062856
Other languages
English (en)
French (fr)
Inventor
藤本 亮輔
巧 晴山
Original Assignee
東芝機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝機械株式会社 filed Critical 東芝機械株式会社
Priority to KR1020157035022A priority Critical patent/KR101727426B1/ko
Priority to DE112014002442.2T priority patent/DE112014002442B4/de
Priority to JP2015517111A priority patent/JP6131322B2/ja
Publication of WO2014185455A1 publication Critical patent/WO2014185455A1/ja
Priority to US14/929,078 priority patent/US10077488B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to a high strength and high damping cast iron excellent in strength and vibration damping.
  • noise is at the top of the number of complaints of air pollution, water pollution, soil pollution, vibration, noise, land subsidence, and offensive odor, which are typically 7 pollution.
  • Construction work noise accounts for a large percentage of noise complaints. Such complaints are concentrated in urban areas, and noise reduction of urban construction machines is urgently needed.
  • EU noise regulations accompanied by sales regulations are becoming increasingly strict, and with the extension of technology so far, noise reduction can not catch up with the strengthening of noise regulations. ing.
  • low noise vehicles as global standard vehicles in order to respond to the trend of emphasizing environmental response on a global scale.
  • the construction equipment is already required to reduce noise as much as automobiles, and steady reduction of noise from engines, fans, mufflers, etc. has been achieved. From now on, it is necessary to work on noise reduction of the whole hydraulic system.
  • the noise derived from the heavy equipment hydraulic parts is generated in the control valve, the cover of the motor, etc., and becomes relatively remarkable as the heavy engine noise decreases.
  • All parts are made of spheroidal graphite cast iron or CV (Compacted Vermicular) graphite cast iron, and their strength is 400 to 500 MPa. On the other hand, it is difficult to obtain strength of 350 MPa or more in flake graphite cast iron.
  • Patent Documents 1 and 2 describe high rigidity and high damping cast irons that exhibit high vibration damping capacity. However, since these are flake graphite cast irons, their strength is insufficient.
  • Patent Document 3 describes a cast iron having finely divided graphite obtained by adding a rare earth-Si-iron alloy.
  • the cast iron of patent document 3 is equivalent to the cast iron of FC200 class which improved vibration damping capacity, without reducing strength. However, the strength of this cast iron is only comparable to that of FC200.
  • Patent Document 4 describes a cast iron material which exhibits excellent vibration damping ability by having fine pores in addition to flake graphite.
  • the vibration damping capacity can be improved by increasing the porosity in the base structure.
  • the strength decreases with the increase in porosity.
  • Patent document 5 aims at obtaining a cast iron material excellent in both vibration damping capacity and strength. In this document, it is described to disperse steadite with flake graphite to enhance the vibration damping ability.
  • Patent Documents 1 to 5 do not have the strength of 400 MPa or more required for heavy equipment hydraulic parts of construction machines.
  • Patent document 1 JP 2008-223135
  • Patent document 1 JP 2009-287103
  • Patent document 1 JP-A-2002-146468 Japanese Patent Application Publication No. 2001-200330 Japanese Patent Laid-Open No. 2000-104138
  • An object of the present invention is to provide a high strength, high damping cast iron which has both high strength and high vibration damping ability.
  • the high strength and high damping cast iron according to one aspect of the present invention has C: 2 to 4%, Si: 1 to 5%, Mn: 0.2 to 0.9%, P: not more than 0.1%, S: 0.1% or less, Al: 3 to 10%, Sb: 0 to 1%, Sn: 0 to 0.5%, Mg: 0.02 to 0.10%, RE: 0 to 0.5%, the balance It is characterized in that it consists of Fe and unavoidable impurities. Here,% shows weight% (or mass%). Moreover, RE is a rare earth and consists of Ce (selenium) and / or La (lanthanum).
  • spheroidized graphite can be spheroidized to obtain spheroidal graphite cast iron and CV graphite cast iron.
  • all well-known spheroidizing treatment methods such as a pouring treatment (sandwich method), a tundish method, a wire treatment method and the like can be used.
  • the graphite spheroidizing treatment is performed as follows. First, the reaction grooves (pockets) at the bottom of the ladle are filled with a spheroidizing agent and completely covered with a covering agent (iron scrap, Fe-Si, etc.).
  • the molten metal at 1400 to 1500 ° C. is poured into this ladle and spheroidized.
  • a general spheroidizing agent containing Mg and RE (Ce, La) can be used.
  • the strength can be improved by adding an inoculant containing Ca: 0 to 0.01% and / or Ba 0 to 0.01% to the molten metal.
  • the base tissue may be modified and homogenized by heat treatment (quenching, normalizing, annealing) at 900 ° C. or higher.
  • heat treatment quenching, normalizing, annealing
  • the vibration damping performance of the spheroidal graphite cast iron can be further improved.
  • tissue diagram photograph of Al addition spheroid graphite cast iron which concerns on embodiment of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The structure
  • high strength and high vibration damping ability can be compatible even in as-cast condition. Further heat treatment can stabilize the effect of improving the vibration damping capacity. Specifically, high strength and high damping cast iron having high strength and at the same time vibration damping ability comparable to that of conventional flake graphite cast iron excellent in vibration damping ability can be obtained.
  • This embodiment provides an Al-doped spheroidal graphite cast iron having high strength and high damping ability, which is obtained by casting cast iron having the above-mentioned composition using a method including spheroidizing treatment of graphite.
  • This Al-added spheroidal graphite cast iron has, for example, a structure as shown in the structure diagram of FIG.
  • Control of the shape of graphite is essential for high strength. It is necessary to suppress the formation of flaky graphite which causes a decrease in strength, and convert the graphite in the cast iron into spherical graphite or spherical graphite + CV graphite.
  • the black round portion is spherical graphite and the black small block is CV graphite.
  • Fe—Al carbide is formed in the matrix structure.
  • the Fe-Al carbide improves the vibration damping capacity of cast iron.
  • the gray part is Fe—Al carbide, which is more contained than the ferrite base structure (white part).
  • the cast iron according to the embodiment of the present invention when used as a cast iron component requiring high strength, such as a hydraulic component for heavy equipment or a structural material for automobiles, the damping property thereof is enhanced. It is effective for suppression. Furthermore, since this cast iron contains a large amount of Al, it is expected that the oxidation resistance at high temperatures is superior to that of ordinary cast iron.
  • FIG. 2 shows a photograph of the structure of Al-added flake graphite cast iron. Similar to the Al-added spheroidal graphite cast iron, most of the base structure of the Al-added flake graphite iron is composed of Fe—Al carbide. However, as the name suggests, in Al-added flake graphite cast iron, the graphite is flake-like. In FIG. 2, the black and elongated portions are flake-like graphite. Flaky graphite is a continuously expanded thin piece as shown in FIG. Flaky graphite has such a shape to provide a notch effect and reduce the mechanical strength of cast iron. As described above, since flaky graphite causes the strength reduction in graphite cast iron, the graphite needs to be spheroidized.
  • the formation of Fe—Al carbides by the addition of Al improves the vibration damping ability, while Al is also an element that inhibits the spheroidization of graphite.
  • the amount of Al added is 3 to 10%, preferably 3 to 7%.
  • the vibration damping ability of the base structure begins to improve when the amount of added Al reaches 3%.
  • the addition amount exceeds 7%, the vibration damping ability rather decreases.
  • the addition of Al inhibits the spheroidization of graphite and the strength decreases, so excessive addition is not preferable.
  • the present inventors have found that when a suitable amount of Si (silicon), Sb (antimony) or Sn (tin) is added to Fe-Al carbides formed in the matrix, formation of Fe-Al carbides and graphite It has been found that spheroidization is promoted together. Based on this finding, it has been found that by adding an appropriate amount of Si, Sb or Sn to Al-added graphite cast iron, it is possible to realize high strength while having vibration damping capacity. That is, when an appropriate amount of Si, Sb or Sn is added, the vibration damping capacity and strength of the Al-added graphite cast iron improve with the addition of Al even when the amount of Al addition exceeds 7%. However, if the addition amount of Al exceeds 10%, an Fe-Al intermetallic compound is formed, which may cause a disadvantage that cast iron becomes very brittle.
  • the mechanism for improving the vibration damping ability of flake graphite cast iron by the addition of Al includes a theory based on the formation of an iron alloy in which Al is solid-solved and a theory based on the formation of Fe—Al carbide. In either theory, it is speculated that the vibration damping ability is improved by the damping mechanism of the ferromagnetic type of these materials formed by Al addition.
  • the vibration damping ability of the Al-added spheroidal graphite cast iron according to the embodiment of the present invention seems to be improved by the damping mechanism of Fe—Al carbide as in the latter theory.
  • Sb or Sn As the addition amount of Sb or Sn increases, the effect gradually decreases. If Sb exceeds 1% or Sn exceeds 0.5%, the improvement effect is not obtained. In addition, when the amount of Sb or Sn added is large, defects such as shrinkage tend to occur in cast iron. In addition, even if Sb and Sn are not added, about 0.01% of each may be contained in cast iron as an unavoidable component. Therefore, when Sb and Sn are intentionally added, Sb is usually 0.01% or more, and Sn is usually 0.01% or more.
  • the reason why the cast iron having spheroidal graphite and CV graphite has superior strength as compared with conventional flake cast iron is as follows.
  • flake graphite cast iron the flake graphite in the matrix structure has a shape like a continuously expanded thin plate, and thus provides a notch effect.
  • the notch effect reduces the mechanical strength of flake graphite cast iron.
  • the continuous shape of the graphite is lost and the notch effect disappears. Therefore, in the cast iron which graphite spheroidized, mechanical strength can be secured.
  • the spheroidizing ratio of graphite is defined in JIS G 5520 (2001).
  • the high strength and high damping cast iron according to the embodiment of the present invention contains C, Si, Mn, P, S, Mg, RE (Ce, La) in addition to the above Al, Sb and Sn.
  • C affects the formation of graphite and Fe—Al carbides
  • Si affects the shape of graphite.
  • the content of C is 2 to 4% as in the case of ordinary spheroidal graphite cast iron.
  • Si can be added at 1 to 5%.
  • Al is added to graphite cast iron containing Si, spheroidization of the graphite is inhibited and chunky graphite is formed.
  • the addition amount of Si causing this chunky graphite is preferably 1 to 2%.
  • the addition amount of Si is 1.0% or less, it is not preferable because cast iron is easily drawn.
  • the content of Mn is 0.2 to 0.9% as in the case of ordinary spheroidal graphite cast iron. At a Mn content of 0.2% or more, the strength and hardness of cast iron increase. On the other hand, when the content of Mn exceeds 0.9%, coarse cementite is formed in the final solidified portion, so that the mechanical properties are deteriorated.
  • the content of P is controlled to be 0.1% or less, as in the case of ordinary spheroidal graphite cast iron.
  • the reason for this is that, when the content is more than 0.1%, P reacts with iron to form steadite, which is a hard compound, to make cast iron brittle.
  • the content of S is controlled to be 0.1% or less, as in the case of ordinary spheroidal graphite cast iron. The reason for this is that if the S content exceeds 0.1%, the graphite spheroidization is inhibited to cause a reduction in strength.
  • the addition amount of Mg is set to 0.02 to 0.10% which enables spheroidization. If it is 0.10% or more, the spheroidization of the graphite is inhibited, and the reaction at the time of casting becomes severe, which is not practical.
  • spherical graphite is formed even when RE (Ce, La) is not added, RE forms a core of graphite formation, so the addition amount is made 0.001 to 0.500%. However, if the content is less than 0.001%, the spheroidization ratio of the graphite decreases, and if the content is 0.050% or more, the formation of chunky graphite is promoted in the thick-walled cast product. Therefore, 0.001 to 0.050% is preferable.
  • Ce and La are effective as RE forming a compound serving as a core of graphite. Any of Ce and La may be used in the embodiments of the present invention. Also, Ce or La may be used alone, or Ce and La may be used in combination in any ratio. As in the case of conventional cast iron, the case of using Ce or La alone and the case of using both (in any ratio) do not affect the result of graphitic spheroidization.
  • the addition of Ca and Ba is not essential, the addition of 0.0001 to 0.01% of Ca and / or Ba further improves the strength due to the inoculation effect.
  • the addition of 0.01% or more is not preferable because it promotes the generation of dross during casting and the crystallization of chunky graphite in thick-walled cast products.
  • either Ca or Ba may be used alone or in any ratio.
  • the inoculation effect is the highest immediately after inoculation, for example, it is more effective in late inoculation where an inoculant is added to the latter half of the pouring by the in-template inoculation method such as the water stream inoculation method such as the stream method or in mold method. It is.
  • Cast iron having the above chemical composition has both high strength and high damping ability even in as-cast state, but the vibration damping performance is further improved by subjecting this cast iron to heat treatment such as annealing at 900 ° C. or higher.
  • the vibration damping ability of cast iron is improved by high temperature heat treatment because the base structure is reformed and homogenized. Normal cast iron controls the structure by heat treatment at around 800 ° C.
  • a heat treatment temperature of 900 ° C. or more is required.
  • the Fe—Al carbide is homogenized and refined, and the vibration damping property of cast iron is further improved. Therefore, the vibration damping performance can be further improved by heat treatment at 950 ° C. or 1000 ° C. or higher.
  • FIG. 3 shows a photograph of the base structure of Al-doped spheroidal graphite cast iron which has not been annealed.
  • FIG. 4 shows a photograph of the base structure of Al-added spheroidal graphite cast iron annealed at 1000 ° C. Comparing the base structure of FIG. 3 with the base structure of FIG. 4, it can be confirmed that the annealing refines the Fe—Al carbide and distributes more uniformly over the entire area of the base structure.
  • a component such as a construction machine, including one or more high strength, high damping cast irons.
  • the parts including cast iron according to the embodiment of the present invention are, for example, heavy equipment hydraulic parts.
  • FIG. 5 is a schematic perspective view of a piston pump 1 provided with a casing 11, a shaft 12 and a cylinder block 13.
  • the casing 11 can be made of one or more high strength, high damping cast irons according to an embodiment of the present invention. Since such a casing 11 has high damping property, the noise of the piston pump 1 is effectively suppressed.
  • a molten metal was prepared using a high frequency melting furnace.
  • pig iron, recarburised material and ferromanganese were put into a graphite crucible and dissolved.
  • the amount of carbon and silicon were adjusted with ferrosilicon and a carburizing material to make the amount of dissolution about 5 kg.
  • the amount of Al of the cast product obtained was adjusted by adding an aluminum ingot.
  • the amounts of Sb and Sn were adjusted by adding pure antimony and pure tin.
  • RE was added, a commercially available misch metal (alloy product of Ce: La in a weight ratio of 2: 1) was used as the RE source.
  • the melting temperature was about 1450 ° C.
  • the cast product obtained was processed to 4 ⁇ 20 ⁇ 200 mm to evaluate strength and vibration damping ability. Tensile strength was determined as an evaluation value of strength.
  • the tension test processed the cast into a 4th test piece (JIS Z 2201), and evaluated it with a universal tester. In addition, the logarithmic damping rate was determined as an evaluation value of the vibration damping capacity.
  • the vibration test method conformed to JIS G0602. That is, the test piece was suspended at two points and a strain amplitude of 1 ⁇ 10 -4 ⁇ was given by an electromagnetic vibrator, and then the excitation was stopped and free damping was performed to obtain a logarithmic damping factor.
  • Table 1 shows the characteristics and compositions of the examples of the present invention
  • Table 2 shows the characteristics and compositions of the conventional materials and comparative examples.
  • high strength cast iron refers to one having about 1.5 to 2.5 times the relative evaluation with FC 300 (tensile strength: 300 MPa). In the embodiment of the present invention, a tensile strength of 400 MPa or more is made high.
  • high damping cast iron refers to one that is approximately 2 to 4 times in relative evaluation with FCD 450 (logarithmic damping rate 20 to 30 Np ⁇ 10 ⁇ 4 ). In the embodiment of the present invention, the logarithmic attenuation factor of 40 Np ⁇ 10 ⁇ 4 is high attenuation.
  • high-strength, high-damping cast iron is one that has both a tensile strength of 400 MPa or more and a logarithmic attenuation factor of 40 Np ⁇ 10 -4 or more.
  • Examples 1 and 2 are samples in which Sn and Sb were not added (the respective addition amount is 0.00%) and heat treatment was not performed. These samples meet the high strength and high attenuation performance defined above.
  • Example 3 an appropriate amount of Sn was added, and in Example 9, an appropriate amount of Sb was added. These samples satisfy the level as high strength and high damping cast iron similarly to Examples 1 and 2.
  • Examples 4 and 5 use cast products of the same composition as Example 3 to study the effect of annealing. Similarly, in Examples 7 and 8, the same cast product as in Example 6 is annealed. In Example 10, the same cast product as in Example 9 is annealed. Annealing at 900 ° C. or higher slightly reduces the tensile strength but improves the logarithmic damping rate. In Example 4, the heat treatment temperature was 900 ° C., and in Example 5, the heat treatment temperature was 1000 ° C. As the comparison between Example 4 and Example 5 shows, using a higher heat treatment temperature further improves the improvement effect of the logarithmic attenuation factor. Comparison of Examples 7 and 8 also shows similar results.
  • Example 11 has relatively low vibration damping capacity.
  • the molten metal of the same composition as Example 11 was subjected to late inoculation using Ca + Ba as an inoculating agent.
  • the amount of inoculum was increased to perform late inoculation.
  • vibration damping rate was improved by performing late inoculation.
  • the results of Examples 11 to 13 show that late inoculation can reduce the variation in performance.
  • Comparative Example Comparative Examples 1 and 2 are samples in which Al is added but the graphite is not spheroidized. That is, Comparative Examples 1 and 2 are Al-added flake graphite cast iron. Those samples in which the graphite is flake-like show high vibration damping performance but low tensile strength.
  • Comparative Example 3 the amount of Sb added exceeds 1%, and in Comparative Example 4, the amount of Sn added exceeds 0.5%. In Comparative Examples 3 and 4, shrinkage occurred and a defective cast iron was obtained.
  • Comparative Example 5 is an example in which the addition amount of Al is less than 3%. As shown in Table 2, neither the tensile strength nor the logarithmic decrement of Comparative Example 5 has reached the level of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 強度と振動減衰能を両立させた高強度高減衰能鋳鉄を提供する。 高強度高減衰能鋳鉄は、溶湯に黒鉛球状化処理を行うことを含む方法によって得られ、C:2~4%、Si:1~5%、Mn:0.2~0.9%、P:0.1%以下、S:0.1%以下、Al:3~10%、Sb:0~1%、Sn:0~0.5%、Mg:0.02~0.10%、RE:0~0.5%(Ce、La)、残部Fe及び不可避的不純物からなる。

Description

高強度高減衰能鋳鉄
 この発明は、強度及び振動減衰性に優れた高強度高減衰能鋳鉄に関する。
 現状では、騒音は、典型7公害である大気汚染、水質汚濁、土壌汚染、振動、騒音、地盤沈下、悪臭の苦情件数の上位にある。騒音に関する苦情件数の内、建設作業騒音は大きな割合を占めている。そのような苦情は都市部に集中しており、都市型建機の騒音低減が急務になっている。また、世界的な対環境性重視指向の中で、販売規制を伴うEUの騒音規制もますます厳しくなってきており、今までの技術の延長では、騒音低減が騒音規制の強化に追いつかなくなってきている。今後、地球規模での環境対応重視のトレンドに対応していくべく、低騒音車を世界基準車としていくという流れがある。すでに建設機械には自動車並の低騒音化が求められており、エンジン、ファン、マフラ等の着実な低騒音化が図られている。今後は、油圧システム全体の低騒音化に取組まなければならない。
 油圧システムの低騒音化を達成するために、重機油圧部品の素材に振動減衰性能を持たせることが考えられる。しかし、振動減衰性能(低騒音効果)を有する片状黒鉛鋳鉄は、鋳鉄製重機油圧部品に応用するには強度が小さい。そのため、従来用いられている球状黒鉛鋳鉄に相当する強度を有する材料が必要である。
 重機油圧部品に由来する騒音は、具体的には、コントロールバルブ、モーターのカバー等において発生し、重機のエンジン音の低下に伴い相対的に顕著になる。いずれの部品も球状黒鉛鋳鉄またはCV(Compacted Vermicular)黒鉛鋳鉄で出来ており、それらの強度は400~500MPaである。これに対し、片状黒鉛鋳鉄では350MPa以上の強度を出すことは難しい。
 特許文献1および2には、高い振動減衰能を示す高剛性高減衰能鋳鉄が記載されている。しかし、これらは片状黒鉛鋳鉄であるため強度が不足している。
 特許文献3には、希土類-Si-鉄合金を添加することにより得られる、微細化した黒鉛を有する鋳鉄が記載されている。特許文献3の鋳鉄は、強度を低下させずに振動減衰能を向上させた、FC200クラスの鋳鉄に相当する。しかし、この鋳鉄の強度はFC200と同程度のものでしかない。
 特許文献4には、片状黒鉛に加え微細気孔を有することにより、優れた振動減衰能を示す鋳鉄材料が記載されている。この鋳鉄材料では、基地組織における気孔率を増加させることにより、振動減衰能を向上させることができる。その反面、気孔率の増加とともに強度が減少する。
 特許文献5は、振動減衰能と強度との両方に優れた鋳鉄材料を得ることを目的としている。この文献には、片状黒鉛とともにステダイトを分散させて振動減衰能を高めることが記載されている。
 しかし、特許文献1乃至5に記載されている高減衰能鋳鉄は、建設機械の重機油圧部品に求められる400MPa以上の強度を有していない。
特開2008-223135 特開2009-287103 特開2002-146468 特開2001-200330 特開2000-104138
 この発明は、高い強度と高い振動減衰能とを両立させた高強度高減衰能鋳鉄を提供することを目的とする。
 本発明の一側面に係る高強度高減衰能鋳鉄は、C:2~4%、Si:1~5%、Mn:0.2~0.9%、P:0.1%以下、S:0.1%以下、Al:3~10%、Sb:0~1%、Sn:0~0.5%、Mg:0.02~0.10%、RE:0~0.5%、残部Fe及び不可避的不純物からなることを特徴とする。ここで%は重量%(又は質量%)を示す。また、REとはレアアースのことであり、Ce(セレニウム)および/またはLa(ランタン)からなる。
 この球状黒鉛鋳鉄の製造において、球状化処理により黒鉛を球状化することによって、球状黒鉛鋳鉄およびCV黒鉛鋳鉄が得られる。黒鉛の球状化処理には、置き注ぎ処理(サンドイッチ法)、タンディッシュ法、ワイヤ処理法等公知の全ての球状化処理法を用いることができる。例えば、一般的に多く使用されている置き注ぎ法では、次のように黒鉛球状化処理を行う。先ず、取鍋底部の反応溝(ポケット)に球状化剤を充填し、カバー剤(鉄屑、Fe-Si等)で完全に覆う。その後、1400~1500℃の溶湯をこの取鍋に注湯して球状化処理する。この球状化処理には、MgとRE(Ce、La)を含有した一般的な球状化剤を用いることができる。
 また、この溶湯にCa:0~0.01%および/またはBa0~0.01%を含む接種剤を添加することで強度の向上が見込まれる。
 さらに、900℃以上の熱処理(焼き入れ、焼きならし、焼きなまし)により、基地組織を改質および均一化してもよい。この熱処理の結果、球状黒鉛鋳鉄の振動減衰性能をさらに向上させることができる。
本発明の実施形態に係るAl添加球状黒鉛鋳鉄の組織図写真。 従来型のAl添加片状黒鉛鋳鉄の組織図写真。 焼きなましを行っていない、本発明の実施形態に係るAl添加球状黒鉛鋳鉄の組織図写真。 1000℃で焼きなましを行った、本発明の実施形態に係るAl添加球状黒鉛鋳鉄の組織図写真。 ピストンポンプの概略的斜視図。
 本発明の実施形態によれば、鋳放しでも高い強度と高い振動減衰能を両立できる。さらに熱処理を行うことにより、振動減衰能の改善効果を安定化させることができる。具体的には、振動減衰能に優れた従来の片状黒鉛鋳鉄と同程度の振動減衰能を有すると同時に、高い強度を示す高強度高減衰能鋳鉄が得られる。この実施形態は、黒鉛の球状化処理を含む方法を用いて、上述した組成の鋳鉄を鋳造することによって得られる、高い強度および高減衰能を有するAl添加球状黒鉛鋳鉄を提供する。このAl添加球状黒鉛鋳鉄は、例えば、図1の組織図写真に示すような組織構造を有する。
 高強度化には黒鉛形状の制御が不可欠である。強度低下の原因となる片状黒鉛の形成を抑制し、鋳鉄内の黒鉛を球状黒鉛または球状黒鉛+CV黒鉛にする必要がある。図1では、黒く丸い部分が球状黒鉛であり、黒く小さい塊がCV黒鉛である。
 また、黒鉛鋳鉄へのAl(アルミニウム)の添加に伴って、基地組織内でFe-Al炭化物が形成される。このFe-Al炭化物により、鋳鉄の振動減衰能が改善される。図1では、灰色の部分がFe-Al炭化物であり、これがフェライト基地組織(白い部分)に比べてより多く含まれていることが確認できる。
 即ち、本発明の実施形態に係る鋳鉄は、強度の要求される鋳鉄製部品、例えば重機用油圧部品あるいは自動車用構造材料等として使用した場合に、それらの制振性を高め、それゆえ、騒音抑制に有効である。さらに、この鋳鉄はAlを多量に含んでいるため、高温における耐酸化性が通常の鋳鉄より優れていることが予想される。
 図2は、Al添加片状黒鉛鋳鉄の組織図写真を示している。Al添加片状黒鉛鋳鉄は、Al添加球状黒鉛鋳鉄と同様に、基地組織の大部分がFe-Al炭化物からなる。しかし、その名前が示すとおり、Al添加片状黒鉛鋳鉄では、黒鉛が片状のものである。図2において、黒く細長い部分が片状の黒鉛である。片状黒鉛は、図2のように、連続的に広がった薄片である。片状黒鉛はこのような形状を有しているため切欠き効果をもたらし、鋳鉄の機械的強度を低減させる。このように、黒鉛鋳鉄において片状黒鉛が強度低下の原因となるため、黒鉛は球状化する必要がある。
 Al添加黒鉛鋳鉄において、Al添加によるFe-Al炭化物の形成により振動減衰能が改善される一方で、Alは黒鉛の球状化を阻害する元素でもある。Al添加量は3~10%、好ましくは3~7%である。鋳鉄に添加するAlの量を徐々に増やしていくと、Al添加量が3%となった時点から基地組織の振動減衰能が改善し始める。しかし、添加量が7%を超えると振動減衰能はむしろ低下する。また、上述したように、Alの添加に伴って黒鉛の球状化が阻害され、強度が低下してしまうので、過剰な添加は好ましくない。
 しかし、本発明者らは、基地組織に形成されるFe-Al炭化物に対してSi(シリコン)、Sb(アンチモン)、またはSn(スズ)を適量添加すると、Fe-Al炭化物の形成と黒鉛の球状化が共に促進されることを見出した。この知見に基づいて、Al添加黒鉛鋳鉄にSi、Sb、またはSnを適量添加することにより、振動減衰能を有しつつ高強度化を実現できることを究明するに至った。即ち、Si、Sb、またはSnを適量添加すると、Alの添加量が7%を超えた場合でも、Al添加黒鉛鋳鉄の振動減衰能および強度がAlの添加に伴って改善する。但し、Alの添加量が10%を超えると、Fe-Al金属間化合物が形成されて、鋳鉄が非常にもろくなるという不都合を生じる可能性がある。
 なお、Al添加による片状黒鉛鋳鉄の振動減衰能の改善機構に関しては、Alを固溶した鉄合金の形成によるものとする説と、Fe-Al炭化物の形成によるものとする説がある。いずれの説においても、振動減衰能が、Al添加により形成されるこれらの物質の強磁性型の減衰機構によって改善するものと推測されている。本発明の実施形態に係るAl添加球状黒鉛鋳鉄の振動減衰能は、後者の説と同様にFe-Al炭化物の減衰機構により改善しているものと思われる。
 Sb:0~1%、Sn:0~0.5%と規定するのは次の理由による。SbまたはSnを添加しない場合でも、Fe-Al炭化物が形成するので鋳鉄は振動減衰性能を示す。しかし、上述したようにSbやSnを添加することで、黒鉛球状化作用による強度向上効果および振動減衰能の改善効果が得られ、鋳鉄の性能が改善される。Sb及びSnの添加量を増やしていくと、Sbが約0.2%、Snが約0.1%である場合に、強度、振動減衰能の改善に効果が現れ、Sbが約0.5%、Snが約0.1%である場合に最も顕著な効果が現れる。SbまたはSnの添加量が多くなると次第に効果が低減する。Sbが1%を超えるか、または、Snが0.5%を超えると、改善効果が得られない。また、SbやSnの添加量が多いと、鋳鉄に引け等の欠陥が生じやすくなる。なお、SbおよびSnを添加しなくても、それぞれが不可避成分として鋳鉄に0.01%程度含まれてしまう可能性がある。そのため、SbおよびSnを意図的に添加した場合、Sbは0.01%以上であり、Snは0.01%以上であることが通常である。
 SbやSnの添加による改善効果の機構については、次のように考えられる。上述のとおり、鋳鉄にAlを添加すると、鉄とAlと炭素の反応によりFe-Al炭化物が形成される。また、Fe-Al炭化物は、強磁性体であるため、強磁性体型の振動減衰機構を発現する。本発明者らの研究によれば、Alの添加量を増やしていけば、Fe-Al炭化物が増加していく。しかし、およそ6%のAl添加量でFe-Al炭化物が増加しなくなる。厳密には、7%まではFe-Al炭化物の形成量が増加するものの、6%を超えると、6%以下までと比べて、Al添加量の増加に対してFe-Al炭化物が増加する割合が少ない。また、このAl添加量の領域では、基地組織が非常に硬くなるため好ましくない。しかし、SbまたはSnを添加すると、Al単独の添加に比較してより多くのFe-Al炭化物が形成されるようになる。このように、Fe-Al炭化物が増加するため、振動減衰能を改善する効果が現れるものと考えられる。また、Al添加によりチャンキー黒鉛が形成されるが、SbやSnを添加することによりこのチャンキー黒鉛の形成を抑制できる。しかし、SbやSnの添加量が過剰になると黒鉛の球状化が阻害される。したがって、上記範囲の添加量にて最適な基地組織、黒鉛組織が得られる。
 従来の片状鋳鉄に比べて、球状黒鉛およびCV黒鉛を有する鋳鉄が優れた強度を有する理由は以下のとおりである。片状黒鉛鋳鉄では、基地組織内の片状黒鉛が連続的に広がった薄片のような形状有しているため切欠き効果をもたらす。この切欠き効果によって片状黒鉛鋳鉄の機械的強度が低下する。黒鉛を球状化することによって、黒鉛の連続的な形状が失われ、切欠き効果がなくなる。そのため、黒鉛が球状化した鋳鉄では機械的強度を確保することができる。特に、鋳鉄に含まれる黒鉛のうち、球状化により形成された球状黒鉛およびCV黒鉛が占める数の割合、即ち球状化率、が40%以上になると、黒鉛の球状化による鋳鉄強度の改善効果が現れる。なお、ここでいう黒鉛の球状化率とは、JIS G 5520(2001)に定義されているものである。
 本発明の実施形態の高強度高減衰能鋳鉄は、上記Al、Sb、Sn以外に、C、Si、Mn、P、S、Mg、RE(Ce、La)を含んでいる。 
 Al添加黒鉛鋳鉄において、Cは黒鉛およびFe-Al炭化物の形成に影響し、Siは黒鉛形状に影響する。Cの含有量は通常の球状黒鉛鋳鉄と同様に2~4%である。Siは1~5%添加することができる。ただし、Siを含む黒鉛鋳鉄にAlが添加された場合、黒鉛の球状化が阻害されチャンキー黒鉛が形成する。このチャンキー黒鉛の原因となるSiの添加量は1~2%が好ましい。また、Siの添加量が1.0%以下の場合、鋳鉄が引け易くなるため好ましくない。
 Mnの含有量は通常の球状黒鉛鋳鉄の場合と同様に、0.2~0.9%とする。0.2%以上のMn含有量では、鋳鉄の強さおよび硬さが増す。一方、Mnの含有量が0.9%を超えると、最終凝固部に粗大なセメンタイトが形成するため、機械的性質が低下する。
 Pの含有量は、通常の球状黒鉛鋳鉄の場合と同様に、0.1%以下となるように制御する。この理由は、Pは含有量が0.1%を超えると、鉄と反応して硬い化合物であるステダイトを形成し、鋳鉄を脆くするためである。
 Sの含有量は、通常の球状黒鉛鋳鉄の場合と同様に、0.1%以下となるように制御する。この理由は、S含有量が0.1%を超えると、黒鉛球状化を阻害し、強度低下の原因となるためである。
 Mgの添加量は球状化が可能となる0.02~0.10%とする。0.10%以上では黒鉛の球状化が阻害され、鋳造時の反応が激しくなるため実用的でない。
 RE(Ce、La)を添加しない場合でも球状黒鉛は形成されるが、REは黒鉛形成の核を形成するため、添加量を0.001~0.500%とする。ただし0.001%以下では黒鉛の球状化率が低下し、0.050%以上では厚肉鋳造品においてチャンキー黒鉛形成を助長する。そのため、0.001~0.050%が好ましい。黒鉛の核となる化合物を形成するREとして、CeおよびLaが有効であることが一般的に知られている。本発明の実施形態においてCeおよびLaのいずれを用いてもよい。また、CeまたはLaを単独で用いても、或いは任意の比率でCeおよびLaを併用してもよい。なお、従来の鋳鉄と同様に、CeまたはLaを単独で用いた場合と、両者を(如何なる比率を用いて)併用した場合とで、黒鉛球状化の結果に影響しない。
 CaやBaの添加は必須ではないが、0.0001~0.01%のCaおよび/またはBaを添加すると、接種効果により強度がさらに向上する。0.01%以上の添加は、鋳造時のドロスの発生や厚肉鋳造品におけるチャンキー黒鉛晶出を促進するため、好ましくない。なお、CaおよびBaはどちらか一方を単独で用いてもよく、或いは任意の比率で併用してもよい。また、一般的に接種効果は接種直後が一番高く、例えばストリューム法などの湯流れ接種法やインモールド法などの鋳型内接種法により接種剤を注湯後半に添加する後期接種がより効果的である。
 以上の化学組成を有する鋳鉄は、鋳放しでも高い強度と高減衰能を併せ持っているが、この鋳鉄に対して900℃以上の焼きなましなどの熱処理を行うことにより、振動減衰性能がさらに向上する。高温の熱処理により鋳鉄の振動減衰能が改善する理由は、基地組織が改質および均一化されるためである。通常の鋳鉄は800℃程度の熱処理で組織制御を行う。しかし、本発明においては大量のAlを添加しているため共析温度が上昇している。従って、900℃以上の熱処理温度を要する。また、熱処理温度を上昇させることによって、Fe-Al炭化物が均一化されるとともに微細化し、鋳鉄の振動減衰性がさらに向上する。よって、950℃や1000℃以上の熱処理により、振動減衰性能を一層向上させることができる。
 図3は、焼なましを行っていないAl添加球状黒鉛鋳鉄の基地組織の組織図写真を示している。図4は、1000℃で焼きなましを行ったAl添加球状黒鉛鋳鉄の基地組織の組織図写真を示している。図3の基地組織と図4の基地組織を比較すると、焼きなましによりFe-Al炭化物が微細化し、基地組織内の全域に亘ってより均一に分布していることが確認できる。
 本発明の一側面によれば、1つ以上の高強度高減衰能鋳鉄を含んだ、建設機械等の部品を提供する。本発明の実施形態に係る鋳鉄を含んだ部品は、例えば重機油圧部品である。
 図5は、ケーシング11、シャフト12、およびシリンダーブロック13を備えたピストンポンプ1の概略的斜視図である。本発明の実施形態に係る建設機械の部品の一例として、ケーシング11を、本発明の実施例に係る1つ以上の高強度高減衰能鋳鉄で構成することができる。このようなケーシング11は高い制振性を有するため、ピストンポンプ1の騒音を効果的に抑制する。
 次に、本発明の具体的な実施例について比較例とともに説明する。
 まず、高周波溶解炉を用いて溶湯を調製した。次に、黒鉛ルツボに銑鉄、加炭材、フェロマンガンを入れて溶解した。その後、フェロシリコンと加炭材で炭素量、シリコン量を調整し、溶解量を約5kgとした。但し、得られる鋳造品のAl量はアルミニウムインゴットを添加して調整した。Sb量、Sn量は純アンチモン、純スズを添加して調整した。また、REを添加する場合は、RE源として市販のミッシュメタル(Ce:Laの重量比が2:1の合金製品)を使用した。また、溶解温度は約1450℃とした。取鍋にて球状化処理および溶湯への接種剤の添加を行い、溶湯をφ30×200mmのフラン自硬性鋳型に鋳込んだ。なお、接種剤にはCa+Baを用いた。また、実施例12および13では、取鍋における溶湯への接種剤の添加に加え、Ca+Baを接種剤に用いて後期接種を行った。
 得られた鋳造品を4×20×200mmに加工して、強度および振動減衰能を評価した。強度の評価値として引張強さを求めた。引張試験は、鋳造品を4号試験片(JIS Z 2201)に加工し、万能試験機にて評価した。また、振動減衰能の評価値として対数減衰率を求めた。振動試験方法は、JISG0602に準拠した。即ち、試験片を二点吊りして電磁加振器で1×10-4εのひずみ振幅を与え、その後、加振を止めて自由減衰させて、対数減衰率を求めた。このようにして得られた鋳造品の特性を、それらの組成とともに下記表1および表2に示す。表1は、本発明の実施例の特性および組成を示しており、表2は従来材料および比較例の特性と組成を示している。
 なお、「高強度鋳鉄」とは、FC300(引張強度300MPa)との相対評価で1.5~2.5倍程度のものを示す。本発明の実施形態において、400MPa以上の引張強度を高強度とする。また、「高減衰鋳鉄」とは、FCD450(対数減衰率20~30Np×10-4)との相対評価で2~4倍程度のものを示す。本発明の実施形態において、40Np×10-4の対数減衰率を高減衰とする。即ち、本発明の一側面によれば、高強度高減衰鋳鉄とは、400MPa以上の引張強度と40Np×10-4以上の対数減衰率を併せ持っているもののことである。
Figure JPOXMLDOC01-appb-T000001
<実施例>
 実施例1および2は、SnとSbが添加されてなく(それぞれの添加量が0.00%)、熱処理が行われていない試料である。これらの試料は、上記にて定義した高強度および高減衰性能を満たしている。
 実施例3および6はSnを適量添加したもの、実施例9はSbを適量添加したものである。これらの試料は、実施例1および2と同様に、高強度高減衰鋳鉄としての水準を満たしている。
 実施例4および5は、実施例3と同じ組成の鋳造品を用いて、焼きなましの効果を検討したものである。同様に、実施例7および8は、実施例6と同じ鋳造品に焼きなましを行ったものである。実施例10は、実施例9と同じ鋳造品に焼きなましを行ったものである。900℃以上の焼きなましを行うと、引張強度が僅かに減少するものの、対数減衰率が向上する。また、実施例4では熱処理温度が900℃、実施例5では熱処理温度が1000℃だった。実施例4と実施例5との比較が示すように、より高い熱処理温度を用いることによって、対数減衰率の改善効果がさらによくなる。実施例7と8の比較も同様の結果を示している。
 実施例11は振動減衰能が比較的低い。実施例12は、実施例11と同じ組成の溶湯に、接種剤としてCa+Baを用いて後期接種を行ったものである。実施例13は、接種剤の量を増やして後期接種を行ったものである。表1に示すように、後期接種を行うことで振動減衰率が向上した。実施例11~13の結果は、後期接種によって性能のばらつきを抑えられることを示している。
Figure JPOXMLDOC01-appb-T000002
<従来例>
 表2から明らかなように、従来材料の何れにも高強度と高減衰性能を併せ持っている鋳鉄はない。
<比較例>
 比較例1および2は、Alを添加しているが、黒鉛を球状化していない試料である。即ち、比較例1および2はAl添加片状黒鉛鋳鉄である。黒鉛が片状であるこれらの試料は、高い振動減衰性能を示すものの、引張強さが低い。
 比較例3はSbの添加量が1%を超えており、比較例4はSnの添加量が0.5%を超えている。比較例3および4では引けが発生してしまい、欠陥のある鋳鉄が得られた。
 比較例5はAlの添加量が3%未満の例である。表2のとおり、比較例5の引張強度も対数減衰率のどちらも本願発明の水準に達していない。
 以上の結果が示すように、Alを多量に含有した片状黒鉛鋳鉄、すなわちAl添加片状黒鉛鋳鉄では高い強度が得られなかった。黒鉛を球状化してAl添加球状黒鉛鋳鉄を鋳造することで、高い強度を有する高強度高減衰能鋳鉄が得られた。

Claims (13)

  1. [規則91に基づく訂正 12.06.2014] 
     溶湯に黒鉛球状化処理を行うことを含む方法によって得られ、C:2~4%及びSi:1~5%、Mn:0.2~0.9%、P:0.1%以下、S:0.1%以下、Al:3~10%、Sb:0~1%、Sn:0~0.5%、Mg:0.02~0.10%、任意の比率のCeおよび/またはLaからなるRE:0.001~0.500%、残部Fe及び不可避的不純物からなる高強度高減衰能鋳鉄。
  2.  Sb:0.2~1%またはSn:0.1~0.5%である請求項1に記載の高強度高減衰能鋳鉄。
  3.  Sb:0.5~1%である請求項1に記載の高強度高減衰能鋳鉄。
  4.  Al:3~7%である請求項1に記載の高強度高減衰能鋳鉄。
  5. [規則91に基づく訂正 12.06.2014] 
     RE:0.001~0.050%である請求項1乃至5のいずれか1項に記載の高強度高減衰能鋳鉄。
  6.  前記方法は、前記鋳鉄においてCa:0.0001~0.01%またはBa:0.0001~0.01%となるように、Ca及びBaの少なくとも一方の元素を含む接種剤を前記溶湯に添加する接種処理を更に含んだ請求項1乃至5のいずれか1項に記載の高強度高減衰能鋳鉄。
  7.  前記接種処理は、後期接種を含む請求項6に記載の高強度高減衰能鋳鉄。
  8.  前記方法は、焼き入れ、焼きならし、または焼きなましを900℃以上で行うことを更に含んだ請求項1乃至7のいずれか1項に記載の高強度高減衰能鋳鉄。
  9.  前記方法は、焼き入れ、焼きならし、または焼きなましを1000℃以上で行うことを更に含んだ請求項1乃至7のいずれか1項に記載の高強度高減衰能鋳鉄。
  10.  黒鉛球状化処理による黒鉛の球状化率が40%以上である請求項1乃至9のいずれか1項に記載の高強度高減衰鋳鉄。
  11.  請求項1乃至10のいずれか1項に記載の高強度高減衰鋳鉄からなる鋳鉄製部品。
  12.  建設機械の部品である請求項11に記載の鋳鉄製部品。
  13.  油圧部品である請求項11に記載の鋳鉄製部品。
PCT/JP2014/062856 2013-05-14 2014-05-14 高強度高減衰能鋳鉄 WO2014185455A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157035022A KR101727426B1 (ko) 2013-05-14 2014-05-14 고강도 고감쇠능 주철
DE112014002442.2T DE112014002442B4 (de) 2013-05-14 2014-05-14 Gusseisen hoher Stärke und hoher Dämpfungsfähigkeit
JP2015517111A JP6131322B2 (ja) 2013-05-14 2014-05-14 高強度高減衰能鋳鉄の製造方法
US14/929,078 US10077488B2 (en) 2013-05-14 2015-10-30 High-strength, high-damping-capacity cast iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-101777 2013-05-14
JP2013101777 2013-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/929,078 Continuation US10077488B2 (en) 2013-05-14 2015-10-30 High-strength, high-damping-capacity cast iron

Publications (1)

Publication Number Publication Date
WO2014185455A1 true WO2014185455A1 (ja) 2014-11-20

Family

ID=51898431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062856 WO2014185455A1 (ja) 2013-05-14 2014-05-14 高強度高減衰能鋳鉄

Country Status (5)

Country Link
US (1) US10077488B2 (ja)
JP (1) JP6131322B2 (ja)
KR (1) KR101727426B1 (ja)
DE (1) DE112014002442B4 (ja)
WO (1) WO2014185455A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475602A (zh) * 2017-07-20 2017-12-15 马鞍山市万鑫铸造有限公司 铁素体球磨铸铁合金组合物及其低温处理工艺

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034062A1 (ja) * 2013-09-06 2015-03-12 東芝機械株式会社 球状黒鉛鋳鉄の溶湯の球状化処理方法
US10662510B2 (en) * 2016-04-29 2020-05-26 General Electric Company Ductile iron composition and process of forming a ductile iron component
CN107460397A (zh) * 2017-07-20 2017-12-12 马鞍山市万鑫铸造有限公司 基于稳态非线性耐热球磨铸铁及其加工方法
CN107653413B (zh) * 2017-09-04 2019-09-10 西安交通大学 一种球墨铸铁基复合材料及制备复合卷筒的方法
CN107974610A (zh) * 2017-10-30 2018-05-01 山东汇丰铸造科技股份有限公司 一种Al2O3颗粒增强球墨铸铁及其制备方法
CN107699787B (zh) * 2017-10-30 2019-02-01 山东金汇铸造机械有限公司 一种耐低温高韧性的球墨铸铁及其制备方法
CN107557659B (zh) * 2017-10-30 2019-02-01 山东汇丰铸造科技股份有限公司 一种耐低温高韧性的球墨铸铁卷筒及其制备方法
CN107904483A (zh) * 2017-10-30 2018-04-13 山东汇丰铸造科技股份有限公司 一种Al2O3颗粒增强球墨铸铁卷筒及其制备方法
CN107974609A (zh) * 2017-10-30 2018-05-01 山东汇丰铸造科技股份有限公司 一种原位生成颗粒增强球墨铸铁及其制备方法
CN107904484A (zh) * 2017-10-30 2018-04-13 山东汇丰铸造科技股份有限公司 一种原位生成颗粒增强球墨铸铁卷筒及其制备方法
CN108165871B (zh) * 2017-12-28 2020-01-14 鞍钢集团(鞍山)铁路运输设备制造有限公司 一种耐热冲击耐腐蚀球墨铸铁及生产工艺
US11667995B2 (en) * 2021-09-21 2023-06-06 Ford Global Technologies, Llc Cast iron alloy for automotive engine applications with superior high temperature oxidation properties
CN117604371B (zh) * 2023-12-12 2024-07-12 河北京东管业有限公司 一种球墨铸铁及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140064A (ja) * 1986-12-03 1988-06-11 Nissan Motor Co Ltd ブレ−キ材料
JP2008223135A (ja) * 2007-02-14 2008-09-25 Toshiba Mach Co Ltd 高剛性高減衰能鋳鉄
CN101851723A (zh) * 2010-04-15 2010-10-06 安徽省宁国诚信耐磨材料有限公司 一种适用于矿山的马氏体球墨铸铁特殊耐磨介质
JP2011012322A (ja) * 2009-07-03 2011-01-20 Toshiba Mach Co Ltd 高剛性高減衰能鋳鉄の機械部材及びその製造方法
CN102560228A (zh) * 2012-02-16 2012-07-11 扬州华铁铁路配件有限公司 一种adi材料车轮的生产方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190481B (de) * 1955-01-05 1965-04-08 Renault Verfahren zur Verbesserung von weiss erstarrtem schwefelreichem Gusseisen
US2885285A (en) 1957-08-22 1959-05-05 Allis Chalmers Mfg Co Alloyed nodular iron
DE2132417A1 (de) 1971-06-30 1973-01-11 Schwaebische Huettenwerke Gmbh Perlitisches gusseisen hoher zugfestigkeit und verfahren zum herstellen von gussformstuecken aus derartigem gusseisen
CH594057A5 (en) * 1974-05-06 1977-12-30 Inst Litya Akademii Nauk Uk Ss Modifying agent for cast iron and steel - is based on silicon and contains calcium, iron, a rare earth and magnesium of low concn. (SF 31.12.75)
JPS51133123A (en) 1975-05-15 1976-11-18 Nippon Gakki Seizo Kk Silent cast iron
GB1558621A (en) 1975-07-05 1980-01-09 Zaidan Hojin Denki Jiki Zairyo High dumping capacity alloy
JPS5565349A (en) 1978-11-06 1980-05-16 Hiroshi Kimura Magnetic alloy
JPS609579B2 (ja) 1979-05-16 1985-03-11 マツダ株式会社 防振片状黒鉛鋳鉄
JPS607018B2 (ja) * 1979-08-27 1985-02-21 財団法人電気磁気材料研究所 減衰能が大きなアルミニウム基吸振合金およびその製造方法
US4548643A (en) 1983-12-20 1985-10-22 Trw Inc. Corrosion resistant gray cast iron graphite flake alloys
JPS60197841A (ja) * 1984-03-19 1985-10-07 Nissan Motor Co Ltd 球状黒鉛鋳鉄
JPS6311650A (ja) * 1986-03-28 1988-01-19 Mitsubishi Metal Corp Fe基合金製高周波用磁芯材
JPH01283341A (ja) 1987-08-31 1989-11-14 Shimazu Kinzoku Seiko Kk ニッケル−銅系防振鋳鉄
JPH0978179A (ja) 1995-09-14 1997-03-25 Toshiba Corp 防振鋳鉄およびその製造方法
JP2000104138A (ja) 1998-09-29 2000-04-11 Aisin Takaoka Ltd 振動減衰能および強度が優れた鋳鉄材料
JP2001200330A (ja) 1999-11-08 2001-07-24 Aisin Takaoka Ltd 振動減衰能に優れた鋳鉄材料及びその製造方法
KR20010054925A (ko) 1999-12-08 2001-07-02 이계안 자동차용 리테이너 베어링
JP4494616B2 (ja) 2000-11-02 2010-06-30 株式会社北川鉄工所 高い振動減衰能を有する鋳鉄およびその製造方法
JP3829177B2 (ja) 2001-05-18 2006-10-04 独立行政法人物質・材料研究機構 アルミニウム含有制振鋳鉄
DE10144167C1 (de) * 2001-09-07 2003-02-20 Jul Grolman Windenergieanlage
US6973954B2 (en) 2001-12-20 2005-12-13 International Engine Intellectual Property Company, Llc Method for manufacture of gray cast iron for crankcases and cylinder heads
KR20100072376A (ko) 2002-05-08 2010-06-30 에이케이 스틸 프로퍼티즈 인코포레이티드 무방향성 전기 강판의 연속 주조방법
KR20060033020A (ko) * 2003-07-18 2006-04-18 히타치 긴조쿠 가부시키가이샤 오스테나이트계 내열 구형 흑연 주철
EP1865082A1 (de) * 2006-06-08 2007-12-12 Georg Fischer Eisenguss GmbH Gusseisenlegierung mit guter Oxydationbeständigkeit bei hoher Temperaturen
JP5618466B2 (ja) 2008-05-30 2014-11-05 東芝機械株式会社 高剛性高減衰能鋳鉄

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140064A (ja) * 1986-12-03 1988-06-11 Nissan Motor Co Ltd ブレ−キ材料
JP2008223135A (ja) * 2007-02-14 2008-09-25 Toshiba Mach Co Ltd 高剛性高減衰能鋳鉄
JP2011012322A (ja) * 2009-07-03 2011-01-20 Toshiba Mach Co Ltd 高剛性高減衰能鋳鉄の機械部材及びその製造方法
CN101851723A (zh) * 2010-04-15 2010-10-06 安徽省宁国诚信耐磨材料有限公司 一种适用于矿山的马氏体球墨铸铁特殊耐磨介质
CN102560228A (zh) * 2012-02-16 2012-07-11 扬州华铁铁路配件有限公司 一种adi材料车轮的生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475602A (zh) * 2017-07-20 2017-12-15 马鞍山市万鑫铸造有限公司 铁素体球磨铸铁合金组合物及其低温处理工艺

Also Published As

Publication number Publication date
JPWO2014185455A1 (ja) 2017-02-23
KR101727426B1 (ko) 2017-04-14
DE112014002442B4 (de) 2019-07-11
US20160053351A1 (en) 2016-02-25
DE112014002442T5 (de) 2016-02-25
KR20160006221A (ko) 2016-01-18
JP6131322B2 (ja) 2017-05-17
US10077488B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2014185455A1 (ja) 高強度高減衰能鋳鉄
JP5113104B2 (ja) 球状黒鉛鋳鉄管およびその製造方法
JP5875538B2 (ja) 鋳鉄及びブレーキ部品
CN108315633B (zh) 一种高导热高强度灰铸铁及其制备方法
JP4326959B2 (ja) ノジュラ−鋳鉄合金
JPH0582460B2 (ja)
JP2022550358A (ja) 合金構造用鋼及びその製造方法
US5858127A (en) Metal alloys and brake drums made from such alloys
JPH0121220B2 (ja)
KR102148758B1 (ko) 엔진 배기계 부품용 구상흑연 주철
JPH10237528A (ja) 球状黒鉛鋳鉄用球状化処理剤及び球状化処理方法
JP4256601B2 (ja) 高強度球状黒鉛鋳鉄
JP5367041B2 (ja) 薄肉球状黒鉛鋳鉄鋳物
JP5282546B2 (ja) 耐摩耗性に優れた高強度厚肉球状黒鉛鋳鉄品
JP3913935B2 (ja) 亜共晶球状黒鉛鋳鉄
JP2012026017A (ja) 耐摩耗性に優れた球状黒鉛鋳鉄品
JP5282547B2 (ja) 耐摩耗性に優れた高強度厚肉球状黒鉛鋳鉄品
JP2812609B2 (ja) 黒鉛鋳鋼
US3125442A (en) Buctile iron casting
JP2003247014A (ja) ディスクブレーキ用ロータの製造方法
JP2016030843A (ja) 鋳鉄及びブレーキ部品
JP2008280619A (ja) 高強度球状黒鉛鋳鉄
KR102264261B1 (ko) 유압기기용 구상흑연 주철 및 이의 제조 방법
JP2002275575A (ja) 高強度球状黒鉛鋳鉄及びその製造方法
JP3648158B2 (ja) 球状黒鉛鋳鉄

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517111

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014002442

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157035022

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14798376

Country of ref document: EP

Kind code of ref document: A1