CN107699787B - 一种耐低温高韧性的球墨铸铁及其制备方法 - Google Patents

一种耐低温高韧性的球墨铸铁及其制备方法 Download PDF

Info

Publication number
CN107699787B
CN107699787B CN201711052442.0A CN201711052442A CN107699787B CN 107699787 B CN107699787 B CN 107699787B CN 201711052442 A CN201711052442 A CN 201711052442A CN 107699787 B CN107699787 B CN 107699787B
Authority
CN
China
Prior art keywords
iron
molten iron
casting
apperance
running channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711052442.0A
Other languages
English (en)
Other versions
CN107699787A (zh
Inventor
刘明亮
刘宪民
刘庆坤
周长猛
巩传海
郭云彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jinhui Foundry Machinery Co., Ltd.
Original Assignee
Shandong Jinhui Foundry Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jinhui Foundry Machinery Co Ltd filed Critical Shandong Jinhui Foundry Machinery Co Ltd
Priority to CN201711052442.0A priority Critical patent/CN107699787B/zh
Publication of CN107699787A publication Critical patent/CN107699787A/zh
Application granted granted Critical
Publication of CN107699787B publication Critical patent/CN107699787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本发明提供了一种耐低温高韧性的球墨铸铁,对球墨铸铁材料进行了成分强化,本发明还提供了一种耐低温高韧性的球墨铸铁的制备方法,对球墨铸铁材料进行了工艺强化,成分强化结合工艺强化实现强强联合,使得该球墨铸铁材料的抗拉强度≥450MPa,屈服强度≥290MPa,延伸率δ≥24%,‑40℃冲击功Akv≥15J,从而使得该球墨铸铁材料可以在‑60℃至‑40℃低温条件下正常使用,对高寒地区的工程建设与经济发展具有重要的现实意义和应用价值。

Description

一种耐低温高韧性的球墨铸铁及其制备方法
技术领域
本发明涉及球墨铸铁材料技术领域,尤其是涉及一种耐低温高韧性的球墨铸铁及其制备方法。
背景技术
球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。所谓“以铁代钢”,主要指球墨铸铁。
球墨铸铁是通过球化处理和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。
铸铁是含碳量大于2.11%的铁碳合金,由工业生铁、废钢等钢铁及其合金材料经过高温熔融和铸造成型而得到,铸铁中的碳以石墨形态析出,若析出的石墨呈条片状时的铸铁叫灰口铸铁或灰铸铁、呈蠕虫状时的铸铁叫蠕墨铸铁、呈团絮状时的铸铁叫白口铸铁或码铁、而呈球状时的铸铁就叫球墨铸铁。
目前,现有球墨铸铁的综合力学性能不太理想,尤其是低温冲击韧性较低,在低温条件下易于发生脆性断裂,无法满足低温环境的技术性能要求,且球墨铸铁的铸造成型工艺也影响了球墨铸铁铸件的力学性能。目前在低温环境下工作的大型设备迫切需要使用耐低温高韧性球墨铸铁材质的零部件,以此保证其运行可靠和使用安全。
因此,如何提供一种可以在-60℃至-40℃低温条件下正常使用的球墨铸铁材料,利于高寒地区的工程建设与经济发展是目前本领域技术人员亟需解决的技术问题。
发明内容
本发明的目的是提供一种耐低温高韧性的球墨铸铁,该球墨铸铁材料可以在-60℃至-40℃低温条件下正常使用,对高寒地区的工程建设与经济发展具有重要的现实意义和应用价值。本发明的另一目是提供一种耐低温高韧性的球墨铸铁的制备方法。
为解决上述的技术问题,本发明提供的技术方案为:
一种耐低温高韧性的球墨铸铁,包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,0.03%~0.05%的Mg,0.02%~0.03%的Re,0.0015%~0.0100%的Ca,0.0015%~0.0100%的Ba,0.0008%~0.0020%的Bi,0.0025%~0.0045%的Zr,余量为Fe以及不可避免的杂质。
一种上述的耐低温高韧性的球墨铸铁的制备方法,包括以下步骤:
1)按照消失模铸造方法利用泡沫塑料制取目标铸件的铸件模样:在制取铸件模样的过程中掺入粉末状的二次孕育剂使得发泡成型后得到的固态的泡沫塑料材质的铸件模样中含有均匀分布的二次孕育剂粉末;
利用泡沫塑料制取浇道的浇道模样;
然后将所述浇道模样粘结在所述铸件模样的底面上,且控制所述浇道模样与所述铸件模样的轴向方向相互平行,得到包括所述铸件模样以及浇道模样的模样一体件;
然后采用浸涂方式在模样一体件的外表面涂覆耐火涂料,然后烘干;
取上敞口箱,将模样一体件以立式方式放置于所述上敞口箱内;
然后设置上升液管,所述上升液管穿过且固定在所述上敞口箱的下箱底上,所述浇道模样的下端与所述上升液管的上端开口对接接触,且所述浇道模样的下端面完全遮盖所述上升液管的上端开口,密封所述上升液管与所述上敞口箱下箱底的连接处;
然后设置真空抽吸管,所述真空抽吸管穿过且固定在所述上敞口箱的侧箱壁上,所述真空抽吸管的内端与所述模样一体件间隔一定距离,所述真空抽吸管的外端露在所述上敞口箱的外面且与真空泵连通,密封所述真空抽吸管与所述上敞口箱侧箱壁的连接处;
然后按照消失模铸造方法向所述上敞口箱内填干石英砂,然后振动造型;
然后按照消失模铸造方法在上敞口箱内的铸型的上表面上密封覆盖塑料薄膜;
2)冶炼:冶炼铁水,当铁水温度达到1490℃~1530℃时,炉前调整铁水成分使得铁水包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,余量为Fe以及不可避免的杂质;
当铁水成分合格后,扒渣;
然后,保温3min~5min,然后准备铁水出炉;
然后进行球化处理:将轻稀土镁合金球化剂置于浇包底部,其上覆盖长效硅钡钙孕育剂,采用盖包堤坝式铁水冲入法球化工艺对铁水进行球化处理;
然后进行一次孕育处理:向球化处理后的铁水中加入长效硅钡钙锆合金孕育剂,进行一次孕育处理;
然后将一次孕育处理后得到的铁水用敞口容器盛装;
3)将步骤2)中的敞口容器放置在一个密闭的第二箱子内,且使得所述上升液管的下端穿过所述第二箱子的顶箱盖浸入所述敞口容器中的铁水中,密封所述上升液管与所述第二箱子的连接处;
4)通过进气管向所述第二箱子内吹送带压气体,同时开启真空泵抽取真空,敞口容器内的铁水在带压气体的压力以及真空的抽吸力的作用下沿上升液管上行,铁水先后把浇道模样与铸件模样气化,浇道模样与铸件模样气化后的气体通过真空抽吸管被真空泵抽走,铁水从下往上充型,直至敞口容器内的液面不再下降表明铁水注满整个铸型型腔,然后保持吹送气体与抽真空一定时间;
5)当达到设计时间后,停止吹送带压气体以及抽真空;
当达到开箱时间后将所述上升液管从所述第二箱子中抽出,然后拆开所述上敞口箱,然后破除铸型,得到球墨铸铁铸件。
优选的,步骤2)中,所述轻稀土镁合金球化剂包括以下重量百分数的组分:Mg:3%~4%,Re:2%~2.5%,Si:25%~35%,余量为铁以及不可避免的杂质;轻稀土镁合金球化剂的加入量为铁水总质量的1.0%~1.2%,球化处理温度为1490℃~1520℃;
且步骤2)中,长效硅钡钙孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,其余为铁以及不可避免的杂质;长效硅钡钙孕育剂的加入量为铁水总质量的0.3%~0.4%。
优选的,步骤2)中,所述长效硅钡钙锆合金孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Zr:0.5%~0.8%,其余为铁以及不可避免的杂质;长效硅钡钙锆合金孕育剂的加入量为铁水总质量的0.5%~0.6%。
优选的,步骤1)中,二次孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Bi:0.8%~1.0%,Re:0.1%~0.3%,其余为铁以及不可避免的杂质;二次孕育剂的加入量为铁水总质量的0.1%~0.15%。
本发明提供了一种耐低温高韧性的球墨铸铁,对球墨铸铁材料进行了成分强化,本发明还提供了一种耐低温高韧性的球墨铸铁的制备方法,对球墨铸铁材料进行了工艺强化,成分强化结合工艺强化实现强强联合,使得该球墨铸铁材料的抗拉强度≥450MPa,屈服强度≥290MPa,延伸率δ≥24%,-40℃冲击功Akv≥15J,从而使得该球墨铸铁材料可以在-60℃至-40℃低温条件下正常使用,对高寒地区的工程建设与经济发展具有重要的现实意义和应用价值。
附图说明
图1为本发明的实施例提供的一种耐低温高韧性的球墨铸铁的铸造系统的结构示意图;
图2为图1中的卷筒模样的结构示意图。
图中:1铸件模样,2浇道模样,3干石英砂,4上敞口箱,5塑料薄膜,6上升液管,7真空抽吸管,8第二箱子,9敞口容器,10进气管。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“轴向”、“径向”、“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
参照图1,图1为本发明的实施例提供的一种耐低温高韧性的球墨铸铁的铸造系统的结构示意图;图2为图1中的卷筒模样的结构示意图。
本申请提供了一种耐低温高韧性的球墨铸铁,包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,0.03%~0.05%的Mg,0.02%~0.03%的Re,0.0015%~0.0100%的Ca,0.0015%~0.0100%的Ba,0.0008%~0.0020%的Bi,0.0025%~0.0045%的Zr,余量为Fe以及不可避免的杂质。
本申请还提供了一种上述的耐低温高韧性的球墨铸铁的制备方法,包括以下步骤:
1)按照消失模铸造方法利用泡沫塑料制取目标铸件的铸件模样1:在制取铸件模样1的过程中掺入粉末状的二次孕育剂使得发泡成型后得到的固态的泡沫塑料材质的铸件模样1中含有均匀分布的二次孕育剂粉末;
例如:将球墨铸铁卷筒作为目标铸件,图1中铸件模样1为球墨铸铁卷筒的泡沫塑料材质的卷筒模样;
利用泡沫塑料制取浇道的浇道模样2;
然后将所述浇道模样2粘结在所述铸件模样1的底面上,且控制所述浇道模样2与所述铸件模样1的轴向方向相互平行,得到包括所述铸件模样1以及浇道模样2的模样一体件;
然后采用浸涂方式在模样一体件的外表面涂覆耐火涂料,然后烘干;
取上敞口箱4,将模样一体件以立式方式放置于所述上敞口箱4内;
然后设置上升液管6,所述上升液管6穿过且固定在所述上敞口箱4的下箱底上,所述浇道模样2的下端与所述上升液管6的上端开口对接接触,且所述浇道模样2的下端面完全遮盖所述上升液管6的上端开口,密封所述上升液管6与所述上敞口箱4下箱底的连接处;
然后设置真空抽吸管7,所述真空抽吸管7穿过且固定在所述上敞口箱4的侧箱壁上,所述真空抽吸管7的内端与所述模样一体件间隔一定距离,所述真空抽吸管7的外端露在所述上敞口箱4的外面且与真空泵连通,密封所述真空抽吸管7与所述上敞口箱4侧箱壁的连接处;
然后按照消失模铸造方法向所述上敞口箱4内填干石英砂3,然后振动造型;
然后按照消失模铸造方法在上敞口箱4内的铸型的上表面上密封覆盖塑料薄膜5;
2)冶炼:冶炼铁水,当铁水温度达到1490℃~1530℃时,炉前调整铁水成分使得铁水包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,余量为Fe以及不可避免的杂质;
当铁水成分合格后,扒渣;
然后,保温3min~5min,然后准备铁水出炉;
然后进行球化处理:将轻稀土镁合金球化剂置于浇包底部,其上覆盖长效硅钡钙孕育剂,采用盖包堤坝式铁水冲入法球化工艺对铁水进行球化处理;
然后进行一次孕育处理:向球化处理后的铁水中加入长效硅钡钙锆合金孕育剂,进行一次孕育处理,以消除反球化元素所造成的白口倾向,细化石墨球,延缓球化衰退;
然后将一次孕育处理后得到的铁水用敞口容器9盛装;
3)将步骤2)中的敞口容器9放置在一个密闭的第二箱子8内,且使得所述上升液管6的下端穿过所述第二箱子8的顶箱盖浸入所述敞口容器9中的铁水中,密封所述上升液管6与所述第二箱子8的连接处;
4)通过进气管10向所述第二箱子8内吹送带压气体,同时开启真空泵抽取真空,敞口容器9内的铁水在带压气体的压力以及真空的抽吸力的作用下沿上升液管6上行,铁水先后把浇道模样2与铸件模样1气化,浇道模样2与铸件模样1气化后的气体通过真空抽吸管7被真空泵抽走,铁水从下往上充型,直至敞口容器9内的液面不再下降表明铁水注满整个铸型型腔,然后保持吹送气体与抽真空一定时间;
5)当达到设计时间后,停止吹送带压气体以及抽真空;
当达到开箱时间后将所述上升液管6从所述第二箱子8中抽出,然后拆开所述上敞口箱4,然后破除铸型,得到球墨铸铁铸件。
在本申请的一个实施例中,步骤2)中,所述轻稀土镁合金球化剂包括以下重量百分数的组分:Mg:3%~4%,Re:2%~2.5%,Si:25%~35%,余量为铁以及不可避免的杂质;轻稀土镁合金球化剂的加入量为铁水总质量的1.0%~1.2%,球化处理温度为1490℃~1520℃;
且步骤2)中,长效硅钡钙孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,其余为铁以及不可避免的杂质;长效硅钡钙孕育剂的加入量为铁水总质量的0.3%~0.4%。
在本申请的一个实施例中,步骤2)中,所述长效硅钡钙锆合金孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Zr:0.5%~0.8%,其余为铁以及不可避免的杂质;长效硅钡钙锆合金孕育剂的加入量为铁水总质量的0.5%~0.6%。
在本申请的一个实施例中,步骤1)中,二次孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Bi:0.8%~1.0%,Re:0.1%~0.3%,其余为铁以及不可避免的杂质;二次孕育剂的加入量为铁水总质量的0.1%~0.15%。
本发明提供了一种耐低温高韧性的球墨铸铁,对球墨铸铁材料进行了成分强化,本发明还提供了一种耐低温高韧性的球墨铸铁的制备方法,对球墨铸铁材料进行了工艺强化,成分强化结合工艺强化实现强强联合,使得该球墨铸铁材料的抗拉强度≥450MPa,屈服强度≥290MPa,延伸率δ≥24%,-40℃冲击功Akv≥15J,从而使得该球墨铸铁材料可以在-60℃至-40℃低温条件下正常使用,对高寒地区的工程建设与经济发展具有重要的现实意义和应用价值。
在本申请提供的一种耐低温高韧性的球墨铸铁的制备方法中,本申请将冶炼球墨铸铁所需的二次孕育剂粉末预混在目标铸件的泡沫塑料材质的铸件模样1中,即将二次孕育剂粉末预混在泡沫塑料中,泡沫塑料的固化成型温度不高,一般在200℃以下,该温度不会对掺入其中的二次孕育剂中的各元素造成高温烧损以及高温氧化,且将泡沫塑料材质的铸件模样1预埋在消失模铸造方法中的干石英砂3中以及抽真空浇铸,如此,使得在整个浇铸过程中,二次孕育剂中各元素都不会与外界空气接触,不会被高温氧化损失,不会产出氧化渣,从而提高了二次孕育剂的利用率,提高了二次孕育效果,提高了球墨铸铁的综合性能。
为了进一步理解本发明,下面结合实施例对本发明提供的一种耐低温高韧性的球墨铸铁及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
一种耐低温高韧性的球墨铸铁的制备方法,包括以下步骤:
1)按照消失模铸造方法利用泡沫塑料制取目标铸件的铸件模样1:在制取铸件模样1的过程中掺入粉末状的二次孕育剂使得发泡成型后得到的固态的泡沫塑料材质的铸件模样1中含有均匀分布的二次孕育剂粉末;
步骤1)中,所述二次孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.7%,Ca:0.6%,Bi:1.0%,Re:0.1%,其余为铁以及不可避免的杂质;二次孕育剂的加入量为铁水总质量的0.15%;
利用泡沫塑料制取浇道的浇道模样2;
然后将所述浇道模样2粘结在所述铸件模样1的底面上,且控制所述浇道模样2与所述铸件模样1的轴向方向相互平行,得到包括所述铸件模样1以及浇道模样2的模样一体件;
然后采用浸涂方式在模样一体件的外表面涂覆耐火涂料,然后烘干;
取上敞口箱4,将模样一体件以立式方式放置于所述上敞口箱4内;
然后设置上升液管6,所述上升液管6穿过且固定在所述上敞口箱4的下箱底上,所述浇道模样2的下端与所述上升液管6的上端开口对接接触,且所述浇道模样2的下端面完全遮盖所述上升液管6的上端开口,密封所述上升液管6与所述上敞口箱4下箱底的连接处;
然后设置真空抽吸管7,所述真空抽吸管7穿过且固定在所述上敞口箱4的侧箱壁上,所述真空抽吸管7的内端与所述模样一体件间隔一定距离,所述真空抽吸管7的外端露在所述上敞口箱4的外面且与真空泵连通,密封所述真空抽吸管7与所述上敞口箱4侧箱壁的连接处;
然后按照消失模铸造方法向所述上敞口箱4内填干石英砂3,然后振动造型;
然后在上敞口箱4内的铸型的上表面上覆盖塑料薄膜5;
2)冶炼:冶炼铁水,当铁水温度达到1490℃时,炉前调整铁水成分使得铁水包括以下重量百分数的组分:3.8%的C,1.5%的Si,0.025%的Ti,0.004%的Mo,0.002%的V,S<0.015%,P<0.03%,余量为Fe以及不可避免的杂质;
当铁水成分合格后,扒渣;
然后,保温5min,然后准备铁水出炉;
然后进行球化处理:将轻稀土镁合金球化剂置于浇包底部,其上覆盖长效硅钡钙孕育剂,采用盖包堤坝式铁水冲入法球化工艺对铁水进行球化处理;
步骤2)中,所述轻稀土镁合金球化剂包括以下重量百分数的组分:Mg:3%,Re:2.5%,Si:25%,余量为铁以及不可避免的杂质;轻稀土镁合金球化剂的加入量为铁水总质量的1.2%,球化处理温度为1490℃;
且步骤2)中,长效硅钡钙孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.7%,Ca:0.6%,其余为铁以及不可避免的杂质;长效硅钡钙孕育剂的加入量为铁水总质量的0.4%;
然后进行一次孕育处理:向球化处理后的铁水中加入长效硅钡钙锆合金孕育剂,进行一次孕育处理,以消除反球化元素所造成的白口倾向,细化石墨球,延缓球化衰退;
步骤2)中,所述长效硅钡钙锆合金孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.7%,Ca:0.6%,Zr:0.8%,其余为铁以及不可避免的杂质;长效硅钡钙锆合金孕育剂的加入量为铁水总质量的0.5%;
然后将一次孕育处理后得到的铁水用敞口容器9盛装;
3)将步骤2)中的敞口容器9放置在一个密闭的第二箱子8内,且使得所述上升液管6的下端穿过所述第二箱子8的顶箱盖浸入所述敞口容器9中的铁水中,密封所述上升液管6与所述第二箱子8的连接处;
4)向所述第二箱子8内吹送带压气体,同时开启真空泵抽取真空,敞口容器9内的铁水在带压气体的压力以及真空的抽吸力的作用下沿上升液管6上行,铁水先后把浇道模样2与铸件模样1气化,浇道模样2与铸件模样1气化后的气体通过真空抽吸管7被真空泵抽走,铁水从下往上充型,直至敞口容器9内的液面不再下降表明铁水注满整个铸型型腔,然后保持吹送气体与抽真空一定时间;
5)当达到设计时间后,停止吹送带压气体以及抽真空;
当达到开箱时间后将所述上升液管6从所述第二箱子8中抽出,然后拆开所述上敞口箱4,然后破除铸型,得到球墨铸铁铸件。
对球墨铸铁铸件进行取样化验,结果见表1;
按上述方法制备该球墨铸铁材料的检测用标准样,检测该球墨铸铁材料的力学性能,结果见表2。
实施例2
一种耐低温高韧性的球墨铸铁的制备方法,包括以下步骤:
1)按照消失模铸造方法利用泡沫塑料制取目标铸件的铸件模样1:在制取铸件模样1的过程中掺入粉末状的二次孕育剂使得发泡成型后得到的固态的泡沫塑料材质的铸件模样1中含有均匀分布的二次孕育剂粉末;
步骤1)中,所述二次孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.5%,Ca:1.0%,Bi:0.8%,Re:0.3%,其余为铁以及不可避免的杂质;二次孕育剂的加入量为铁水总质量的0.1%;
利用泡沫塑料制取浇道的浇道模样2;
然后将所述浇道模样2粘结在所述铸件模样1的底面上,且控制所述浇道模样2与所述铸件模样1的轴向方向相互平行,得到包括所述铸件模样1以及浇道模样2的模样一体件;
然后采用浸涂方式在模样一体件的外表面涂覆耐火涂料,然后烘干;
取上敞口箱4,将模样一体件以立式方式放置于所述上敞口箱4内;
然后设置上升液管6,所述上升液管6穿过且固定在所述上敞口箱4的下箱底上,所述浇道模样2的下端与所述上升液管6的上端开口对接接触,且所述浇道模样2的下端面完全遮盖所述上升液管6的上端开口,密封所述上升液管6与所述上敞口箱4下箱底的连接处;
然后设置真空抽吸管7,所述真空抽吸管7穿过且固定在所述上敞口箱4的侧箱壁上,所述真空抽吸管7的内端与所述模样一体件间隔一定距离,所述真空抽吸管7的外端露在所述上敞口箱4的外面且与真空泵连通,密封所述真空抽吸管7与所述上敞口箱4侧箱壁的连接处;
然后按照消失模铸造方法向所述上敞口箱4内填干石英砂3,然后振动造型;
然后在上敞口箱4内的铸型的上表面上覆盖塑料薄膜5;
2)冶炼:冶炼铁水,当铁水温度达到1530℃时,炉前调整铁水成分使得铁水包括以下重量百分数的组分:4.0%的C,1.5%的Si,0.015%的Ti,0.002%的Mo,0.004%的V,S<0.015%,P<0.03%,余量为Fe以及不可避免的杂质;
当铁水成分合格后,扒渣;
然后,保温5min,然后准备铁水出炉;
然后进行球化处理:将轻稀土镁合金球化剂置于浇包底部,其上覆盖长效硅钡钙孕育剂,采用盖包堤坝式铁水冲入法球化工艺对铁水进行球化处理;
步骤2)中,所述轻稀土镁合金球化剂包括以下重量百分数的组分:Mg:4%,Re:2%,Si:25%,余量为铁以及不可避免的杂质;轻稀土镁合金球化剂的加入量为铁水总质量的1.0%,球化处理温度为1520℃;
且步骤2)中,长效硅钡钙孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.5%,Ca:1.0%,其余为铁以及不可避免的杂质;长效硅钡钙孕育剂的加入量为铁水总质量的0.3%;
然后进行一次孕育处理:向球化处理后的铁水中加入长效硅钡钙锆合金孕育剂,进行一次孕育处理,以消除反球化元素所造成的白口倾向,细化石墨球,延缓球化衰退;
步骤2)中,所述长效硅钡钙锆合金孕育剂包括以下重量百分数的组分:Si:40%,Ba:0.5%,Ca:1.0%,Zr:0.5%,其余为铁以及不可避免的杂质;长效硅钡钙锆合金孕育剂的加入量为铁水总质量的0.6%;
然后将一次孕育处理后得到的铁水用敞口容器9盛装;
3)将步骤2)中的敞口容器9放置在一个密闭的第二箱子8内,且使得所述上升液管6的下端穿过所述第二箱子8的顶箱盖浸入所述敞口容器9中的铁水中,密封所述上升液管6与所述第二箱子8的连接处;
4)向所述第二箱子8内吹送带压气体,同时开启真空泵抽取真空,敞口容器9内的铁水在带压气体的压力以及真空的抽吸力的作用下沿上升液管6上行,铁水先后把浇道模样2与铸件模样1气化,浇道模样2与铸件模样1气化后的气体通过真空抽吸管7被真空泵抽走,铁水从下往上充型,直至敞口容器9内的液面不再下降表明铁水注满整个铸型型腔,然后保持吹送气体与抽真空一定时间;
5)当达到设计时间后,停止吹送带压气体以及抽真空;
当达到开箱时间后将所述上升液管6从所述第二箱子8中抽出,然后拆开所述上敞口箱4,然后破除铸型,得到球墨铸铁铸件。
对球墨铸铁铸件进行取样化验,结果见表1;
按上述方法制备该球墨铸铁材料的检测用标准样,检测该球墨铸铁材料的力学性能,结果见表2。
表1耐低温高韧性球墨铸铁铸件的化学成分/wt%
表1耐低温高韧性球墨铸铁铸件的化学成分(续表)/wt%
元素 Ba Bi Zr Fe
实施例1 0.00735 0.0015 0.004 余量
实施例2 0.0050 0.0008 0.003 余量
表2实施例制备的球墨铸铁的性能检测数据表(单铸试样)
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对于这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽范围。

Claims (1)

1.一种耐低温高韧性的球墨铸铁的制备方法,其特征在于,包括以下步骤:
1)按照消失模铸造方法利用泡沫塑料制取目标铸件的铸件模样:在制取铸件模样的过程中掺入粉末状的二次孕育剂使得发泡成型后得到的固态的泡沫塑料材质的铸件模样中含有均匀分布的二次孕育剂粉末;
利用泡沫塑料制取浇道的浇道模样;
然后将所述浇道模样粘结在所述铸件模样的底面上,且控制所述浇道模样与所述铸件模样的轴向方向相互平行,得到包括所述铸件模样以及浇道模样的模样一体件;
然后采用浸涂方式在模样一体件的外表面涂覆耐火涂料,然后烘干;
取上敞口箱,将模样一体件以立式方式放置于所述上敞口箱内;
然后设置上升液管,所述上升液管穿过且固定在所述上敞口箱的下箱底上,所述浇道模样的下端与所述上升液管的上端开口对接接触,且所述浇道模样的下端面完全遮盖所述上升液管的上端开口,密封所述上升液管与所述上敞口箱下箱底的连接处;
然后设置真空抽吸管,所述真空抽吸管穿过且固定在所述上敞口箱的侧箱壁上,所述真空抽吸管的内端与所述模样一体件间隔一定距离,所述真空抽吸管的外端露在所述上敞口箱的外面且与真空泵连通,密封所述真空抽吸管与所述上敞口箱侧箱壁的连接处;
然后按照消失模铸造方法向所述上敞口箱内填干石英砂,然后振动造型;
然后按照消失模铸造方法在上敞口箱内的铸型的上表面上密封覆盖塑料薄膜;
2)冶炼:冶炼铁水,当铁水温度达到1490℃~1530℃时,炉前调整铁水成分使得铁水包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,余量为Fe以及不可避免的杂质;
当铁水成分合格后,扒渣;
然后,保温3min~5min,然后准备铁水出炉;
然后进行球化处理:将轻稀土镁合金球化剂置于浇包底部,其上覆盖长效硅钡钙孕育剂,采用盖包堤坝式铁水冲入法球化工艺对铁水进行球化处理;
然后进行一次孕育处理:向球化处理后的铁水中加入长效硅钡钙锆合金孕育剂,进行一次孕育处理;
然后将一次孕育处理后得到的铁水用敞口容器盛装;
3)将步骤2)中的敞口容器放置在一个密闭的第二箱子内,且使得所述上升液管的下端穿过所述第二箱子的顶箱盖浸入所述敞口容器中的铁水中,密封所述上升液管与所述第二箱子的连接处;
4)通过进气管向所述第二箱子内吹送带压气体,同时开启真空泵抽取真空,敞口容器内的铁水在带压气体的压力以及真空的抽吸力的作用下沿上升液管上行,铁水先后把浇道模样与铸件模样气化,浇道模样与铸件模样气化后的气体通过真空抽吸管被真空泵抽走,铁水从下往上充型,直至敞口容器内的液面不再下降表明铁水注满整个铸型型腔,然后保持吹送气体与抽真空一定时间;
5)当达到设计时间后,停止吹送带压气体以及抽真空;
当达到开箱时间后将所述上升液管从所述第二箱子中抽出,然后拆开所述上敞口箱,然后破除铸型,得到球墨铸铁铸件;
耐低温高韧性的球墨铸铁包括以下重量百分数的组分:3.8%~4.0%的C,1.5%~2.5%的Si,0.015%~0.025%的Ti,0.002%~0.004%的Mo,0.002%~0.004%的V,S<0.015%,P<0.03%,0.03%~0.05%的Mg,0.02%~0.03%的Re,0.0015%~0.0100%的Ca,0.0015%~0.0100%的Ba,0.0008%~0.0020%的Bi,0.0025%~0.0045%的Zr,余量为Fe以及不可避免的杂质;
步骤2)中,所述轻稀土镁合金球化剂包括以下重量百分数的组分:Mg:3%~4%,Re:2%~2.5%,Si:25%~35%,余量为铁以及不可避免的杂质;轻稀土镁合金球化剂的加入量为铁水总质量的1.0%~1.2%,球化处理温度为1490℃~1520℃;
且步骤2)中,长效硅钡钙孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,其余为铁以及不可避免的杂质;长效硅钡钙孕育剂的加入量为铁水总质量的0.3%~0.4%;
步骤2)中,所述长效硅钡钙锆合金孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Zr:0.5%~0.8%,其余为铁以及不可避免的杂质;长效硅钡钙锆合金孕育剂的加入量为铁水总质量的0.5%~0.6%;
步骤1)中,二次孕育剂包括以下重量百分数的组分:Si:40%~50%,Ba:0.5%~0.7%,Ca:0.6%~1.0%,Bi:0.8%~1.0%,Re:0.1%~0.3%,其余为铁以及不可避免的杂质;二次孕育剂的加入量为铁水总质量的0.1%~0.15%。
CN201711052442.0A 2017-10-30 2017-10-30 一种耐低温高韧性的球墨铸铁及其制备方法 Active CN107699787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711052442.0A CN107699787B (zh) 2017-10-30 2017-10-30 一种耐低温高韧性的球墨铸铁及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711052442.0A CN107699787B (zh) 2017-10-30 2017-10-30 一种耐低温高韧性的球墨铸铁及其制备方法

Publications (2)

Publication Number Publication Date
CN107699787A CN107699787A (zh) 2018-02-16
CN107699787B true CN107699787B (zh) 2019-02-01

Family

ID=61177181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711052442.0A Active CN107699787B (zh) 2017-10-30 2017-10-30 一种耐低温高韧性的球墨铸铁及其制备方法

Country Status (1)

Country Link
CN (1) CN107699787B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465642B (zh) * 2019-09-13 2020-12-18 日照市听雨轩文化传媒有限公司 一种用于汽车发动机的铸铁气缸套的铸造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185455A1 (ja) * 2013-05-14 2014-11-20 東芝機械株式会社 高強度高減衰能鋳鉄
CN103789605A (zh) * 2014-02-19 2014-05-14 恒天重工股份有限公司 风电偏航变浆器球墨铸铁铸件的制造方法
CN105256220A (zh) * 2015-09-22 2016-01-20 山东汇丰铸造科技股份有限公司 一种低温高韧性球墨铸铁卷筒及其制备方法
CN105506440B (zh) * 2015-12-15 2018-01-05 山东汇丰铸造科技股份有限公司 一种高强度高延展性球墨铸铁卷筒及其制备方法
CN105779856A (zh) * 2016-03-04 2016-07-20 沈阳工业大学 一种农用机械用球墨铸铁深松铲尖及其制造工艺

Also Published As

Publication number Publication date
CN107699787A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107904484A (zh) 一种原位生成颗粒增强球墨铸铁卷筒及其制备方法
CN100450664C (zh) 一种用碱性酚醛树脂砂生产大型超临界铸钢件的方法
CN107177711A (zh) 一种薄壁铁素体球墨铸铁件的熔炼工艺
CN107699787B (zh) 一种耐低温高韧性的球墨铸铁及其制备方法
CN103898396A (zh) 兆瓦级风电高强高韧-30℃低温球墨铸铁件的制备方法
CN105886883B (zh) 孕育剂及其制备方法和在球墨铸铁的应用
CN101805868A (zh) 薄壁球铁齿轮箱的冶炼方法
CN107974610A (zh) 一种Al2O3颗粒增强球墨铸铁及其制备方法
CN107557659B (zh) 一种耐低温高韧性的球墨铸铁卷筒及其制备方法
CN106424571B (zh) 风力发电机组的中箱体的型腔结构、利用该结构制备中箱体的方法
CN107974609A (zh) 一种原位生成颗粒增强球墨铸铁及其制备方法
CN108284202A (zh) 一种改善球墨铸铁材料组织和性能的铸造方法及由其铸造的铸件
CN109746428A (zh) 一种盖包法球化处理装置及处理方法
CN102337449A (zh) GRTCr高强韧高导热冷却壁及其生产方法
CN103184358B (zh) 一种镁铝金属间化合物的增强增韧方法
CN106048396B (zh) 一种耐低温高镍奥氏体球墨铸铁及其制备方法
CN105821287B (zh) 一种高性能的球墨铸铁及其制备方法
CN103725949A (zh) 高Ni奥氏体球铁排气管的生产方法
CN110983171A (zh) 铁型覆砂生产铸态高强度全铁素体球墨铸铁差速器壳的方法
CN107604241B (zh) 用于高速列车电机机座的-50℃的球铁铸件及其铸造方法
CN207577399U (zh) 一种耐低温高韧性的球墨铸铁卷筒的铸造系统
CN102121080A (zh) 奥氏体球墨铸铁扩散器及其生产方法
CN107904483A (zh) 一种Al2O3颗粒增强球墨铸铁卷筒及其制备方法
CN207577359U (zh) 一种原位生成颗粒增强球墨铸铁卷筒的铸造系统
CN107354274B (zh) 一种短流程等温淬火球墨铸铁深松铲尖制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181210

Address after: 250204 Xishou, Beiyuan Road, Diaoxi Village, Zhangqiu District, Jinan City, Shandong Province

Applicant after: Shandong Jinhui Foundry Machinery Co., Ltd.

Address before: 250204 No. 136 Diaozhen Central Street, Zhangqiu City, Jinan City, Shandong Province

Applicant before: Shandong Huifeng Casting Co., Ltd.

GR01 Patent grant
GR01 Patent grant