WO2014185301A1 - 搭載装置、その製造方法、その製造方法に用いるスパッタリングターゲット - Google Patents

搭載装置、その製造方法、その製造方法に用いるスパッタリングターゲット Download PDF

Info

Publication number
WO2014185301A1
WO2014185301A1 PCT/JP2014/062186 JP2014062186W WO2014185301A1 WO 2014185301 A1 WO2014185301 A1 WO 2014185301A1 JP 2014062186 W JP2014062186 W JP 2014062186W WO 2014185301 A1 WO2014185301 A1 WO 2014185301A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
alloy thin
substrate
film
atomic percent
Prior art date
Application number
PCT/JP2014/062186
Other languages
English (en)
French (fr)
Inventor
悟 高澤
周平 市川
杉浦 功
石橋 暁
純一 新田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2015517036A priority Critical patent/JP5830631B2/ja
Priority to EP14797742.5A priority patent/EP2941105B1/en
Priority to KR1020157008047A priority patent/KR101582176B1/ko
Priority to CN201480002581.0A priority patent/CN104685977B/zh
Publication of WO2014185301A1 publication Critical patent/WO2014185301A1/ja
Priority to US14/693,159 priority patent/US9363900B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/16Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0317Thin film conductor layer; Thin film passive component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor

Definitions

  • the present invention relates to a mounting apparatus having a patterned wiring film, a manufacturing method for manufacturing the mounting apparatus, and a sputtering target used in the manufacturing method.
  • semiconductor elements such as LSIs are mounted on a mounting substrate in which a single-layer substrate having a wiring film formed on a resin substrate is laminated, and therefore a metal film having high adhesion is formed on the surface of the resin.
  • the copper thin film has an advantage of low resistance, but since the adhesiveness with the resin is low, an adhesive layer made of another metal is formed between the resin and the copper thin film.
  • Reference numeral 100 in FIG. 7 is such a conventional mounting apparatus, and a plurality of single-layer substrates 111 1 and 111 2 are laminated.
  • Each single-layer substrate 111 1 , 111 2 of the mounting apparatus 100 has a base 103 made of resin, and a wiring film 110 is provided on the surface of the base 103.
  • the base body 103 is provided with a connection hole 102, and a metal plug 119 for connecting the wiring films 110 of the laminated single-layer substrates 111 1 and 111 2 is provided inside the connection hole 102. .
  • FIG. 5A shows a state in which the base 103 of the uppermost single-layer substrate 111 2 is stuck on the single-layer substrate 111 1 .
  • the base 103 is provided with a connection hole 102, and the surface of the wiring film 110 of the lower single-layer substrate 111 1 is exposed at the bottom of the connection hole 102.
  • a sputtering target containing an adhesion metal such as Ti is sputtered, and the wiring film 110 exposed on the surface of the substrate 103, the inner peripheral side surface of the connection hole 102, and the bottom surface is exposed. Then, an adhesion layer 118 such as a Ti thin film in contact with is formed, and then a copper sputtering target is sputtered to form a seed layer 115 made of a copper thin film on the surface of the adhesion layer 118.
  • the patterned resist film is disposed on the surface of the seed layer 115 to expose the seed layer 115 inside the connection hole 102 and the seed layer 115 at a predetermined position on the surface of the base 103, and is immersed in a plating solution. Then, the exposed seed layer 115 is brought into contact with the plating solution, and a voltage at which the seed layer 115 has a negative potential with respect to the plating solution is applied between the seed layer 115 and the plating solution to be exposed by an electrolytic plating method. Copper is deposited on the surface of the seed layer 115, and copper thin films 106 and 107 are formed inside the connection hole 102 and on the surface of the substrate 103, as shown in FIG.
  • connection hole 102 the copper thin films 106 and 107 are in contact with each other, and the inside of the connection hole 102 is filled with the copper thin film 106 made of copper, and the copper thin films 106 and 107 are formed thicker than the seed layer 115.
  • Reference numeral 128 in FIG. 4C denotes a resist film.
  • the adhesion layer 118 and the seed layer 115 have a portion located below the copper thin film 106 and a portion located below the resist film 128, and the resist film 128 is peeled off and below the resist film 128.
  • the seed layer 115 located in the first step first, the seed layer 115 is immersed in an etching solution of copper, and as shown in FIG. The exposed seed layer 115 is removed by etching while leaving an adhesive layer, and the adhesion layer 118 is exposed in the removed portion.
  • the exposed adhesion layer 118 is left while leaving the adhesion layers 108 positioned below the copper thin films 106 and 107 and the seed layer 105. Etching is removed to expose the substrate 103 in the removed portion.
  • the adhesion layer 108, the seed layer 105, and the copper thin film 106 in the connection hole 102 constitute a metal plug 119 that fills the connection hole 102, and the adhesion layer 108, the seed layer 105 on the surface of the base 103, A wiring film 110 is constituted by the copper thin film 107.
  • the adhesion between the copper thin films 106 and 107 and the resin exposed on the surface of the base 103 is low, and the copper thin films 106 and 107 are easily peeled off from the resin, but the adhesion layer 108 that is a Ti thin film is adhesive with the resin.
  • the adhesion between the seed layer 105 and the copper thin film is high, the seed layer 105 and the copper thin films 106 and 107 are not peeled off from the substrate 103.
  • the wiring film 110 has a three-layer structure.
  • the manufacturing process increases.
  • the adhesion layer 108 contains a large amount of elements such as Ti other than copper, the adhesion layer 118 and the seed layer 115 that is a copper thin film cannot be etched with the same etching solution, and the etching process is performed. It is complicated.
  • the present invention was created to solve the disadvantages of the prior art described above, and an object of the present invention is to provide a technique capable of easily forming a conductive film that does not peel on a substrate from which a resin is exposed.
  • the present invention has a base and a wiring film formed in a predetermined pattern in contact with at least the resin exposed on the surface of the base, and electrically connects an electronic component to the wiring film.
  • the wiring film is mounted on the substrate, wherein the wiring film contains more than 50 atomic% of Cu, contains 5 atomic% or more and 30 atomic% or less of Ni, and contains 3 atomic% or more and 10 of Al.
  • a mounting apparatus comprising: an alloy thin film that is contained in atomic percent or less and is in contact with the surface of the substrate; and a conductive conductive film that is in contact with the surface of the alloy thin film and contains more Cu than the alloy thin film. .
  • the present invention is the mounting apparatus in which the substrate contains glass fiber, and the resin and the glass fiber are exposed on the surface of the substrate. Further, in the present invention, a connection hole penetrating between the front surface and the back surface is formed in the base body, and the resin and the glass fiber are exposed on an inner peripheral surface of the connection hole.
  • the present invention is a method of manufacturing a mounting apparatus, which includes a base and a wiring film formed in a predetermined pattern, and manufactures a mounting apparatus that electrically connects an electronic component to the wiring film and mounts the electronic component on the base.
  • the wiring film has at least an alloy thin film in contact with the resin exposed on the surface of the substrate, and a conductive thin film disposed in contact with the alloy thin film, and the wiring film is in a vacuum atmosphere.
  • a substrate is disposed, a sputtering gas is introduced into the vacuum atmosphere, the substrate is disposed in the vacuum atmosphere, Cu is contained in an amount of more than 50 atomic%, Ni is contained in an amount of 5 atomic% to 30 atomic%, and Al is contained.
  • a conductive film forming step of forming the conductive film larger than the alloy thin film includes immersing the base on which the alloy thin film is formed in a plating solution, applying a negative voltage to the plating solution to the alloy thin film, 5.
  • the method of manufacturing a mounting device further comprising a growth step of growing the conductive film by attaching positive ions of a metal contained and containing copper to the surface of the alloy thin film.
  • the present invention is to contact the alloy thin film formed in the alloy thin film forming step with one kind of etching solution, dissolve and remove the portion of the alloy thin film in contact with the etching solution, and remove the alloy thin film.
  • the method for manufacturing a mounting apparatus further comprising an etching step of patterning the substrate.
  • the present invention also includes an alloy composition containing more than 50 atomic percent of Cu, containing 5 atomic percent to 30 atomic percent of Ni, and containing 3 atomic percent to 10 atomic percent of Al, and is sputtered.
  • the sputtering target forms an alloy thin film having the above alloy composition on the surface of the substrate where the resin is exposed.
  • the alloy thin film is formed on the surface of the substrate and the conductive film having a high copper content is formed on the surface of the alloy thin film, the conductive film does not contact the resin, and the adhesion between the alloy thin film is high.
  • the conductive film does not peel from the substrate. Since the alloy thin film can be etched by one kind of etching solution, a wiring film patterned by using one kind of etching solution can be formed by a single etching process on the separated copper film.
  • the figure for demonstrating the mounting apparatus of this invention The figure for demonstrating the sputtering apparatus for forming a mounting apparatus (a) to (d): A diagram (1) for explaining the manufacturing process of the mounting apparatus of the present invention. (e) to (g): A diagram (2) for explaining the manufacturing process of the mounting apparatus of the present invention. (a)-(d): The figure for demonstrating the manufacturing process of the mounting apparatus of a prior art Diagram for explaining the substrate Figure showing a mounting device of the prior art Graph of measured values of adhesion
  • Reference numeral 10 in FIG. 1 indicates a mounting apparatus of the present invention
  • reference numeral 20 indicates a mother board to which the mounting apparatus 10 is electrically connected.
  • the mounting apparatus 10 includes a support substrate 14 and first and second multilayer substrates 11 and 12 disposed on both surfaces of the support substrate 14, respectively. Each have a plurality of single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 .
  • the one closer to the support substrate 14 is referred to as the lower layer, and the farther one is referred to as the upper layer, and each single-layer substrate 11 1 to 11 3 , 12 1 to the 12 3 one lower position, the other single-layer substrate 11 1, 11 2, 12 1, 12 2 or the supporting substrate 14 is positioned, in FIG. 4 (g), the first The uppermost single-layer substrate 11 3 of the multilayer substrate 11 and a part of the single-layer substrate 11 2 that is one layer below the single-layer substrate 11 3 are shown.
  • the single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 have the same configuration, and the single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 are formed on the plate-like substrate 3 and the substrate 3.
  • the connection hole 2 is a through hole formed in the base 3 and penetrating between the front surface and the back surface of the substrate 3.
  • the support substrate 14 includes a resin substrate 14a made of resin, a plurality of support substrate through holes 14b formed in the resin substrate 14a, a connection body 14c filling the inside of each support substrate through hole 14b, and both surfaces of the resin substrate 14a. And a plurality of wiring films 14d.
  • the connection body 14c has conductivity and is electrically connected to at least one wiring film 14d.
  • the metal plugs 8 of the single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 are formed on the surface where the wiring film 9 is provided on the wiring film 9 of the base 3 having the connection hole 2 where the metal plug 8 is located. Electrically connected.
  • the connection holes 2 of the single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 are connected to the wiring film 9 of the lower-layer single-layer substrates 11 1 , 11 2 , 12 1 , and 12 2 or the wiring of the support substrate 14.
  • the metal plugs 8 of the single-layer substrates 11 1 to 11 3 and 12 1 to 12 3 are located on the film 14d, and the wiring films 9 of the lower-layer single-layer substrates 11 1 , 11 2 , 12 1 , and 12 2 are provided. Alternatively, it is electrically connected to the wiring film 14 d of the support substrate 14.
  • the wiring films 9 of the uppermost single-layer substrates 11 3 and 12 3 of the first and second multilayer substrates 11 and 12 are the wiring film 14d on one side of the support substrate 14 and the wiring film 14d on the other side. And the wiring films 14d on both sides of the support substrate 14 are connected via the connecting body 14c, so that the uppermost single-layer substrates 11 3 , 12 are connected to each other. during the third wiring layer 9 and the wiring film 9 also by the connecting member 14c to the metal plugs 8 are electrically connected to each other.
  • the motherboard 20 has a motherboard body 20a and a wiring film 20b disposed on the motherboard body 20a.
  • a terminal 13 b of the semiconductor device 13 is fixed to the wiring film 9 of the uppermost single-layer substrate 11 3 of the first multilayer substrate 11, and the uppermost single-layer substrate 12 3 of the second multilayer substrate 12 is fixed.
  • the wiring film 9 is electrically connected to the wiring film 20 b of the mother board 20 through the metal body 24.
  • the terminal 13b of the semiconductor device 13 is electrically connected to an integrated circuit of a semiconductor element disposed inside the semiconductor device main body 13a. Therefore, the integrated circuit is connected via the mounting device 10 and the metal body 24.
  • the wiring film 20b of the mother board 20 is electrically connected.
  • each monolayer substrate 11 1 to 11 3, 12 1 to 12 3 of the base body 3 is comprised with the board
  • the substrate 3 in FIG. 6 includes a glass fiber 26 in the resin 25, and the surface of the substrate 3 and the inner peripheral surface of the connection hole 2 are constituted by the surface of the resin 25 and the surface of the glass fiber 26. The resin 25 and the glass fiber 26 are exposed.
  • the metal plug 8 has an alloy thin film 4 disposed in contact with the inner peripheral surface of the connection hole 2 and a conductive film 6 disposed in contact with the surface of the alloy thin film 4. Further, the wiring film 9 includes an alloy thin film 5 disposed in contact with the surface of the base 3 and a conductive film 7 disposed in contact with the surface of the alloy thin film 5.
  • the alloy thin films 4 and 5 are in contact with at least the resin constituting the substrate 3 on the surface of the substrate 3 or the inner peripheral surface of the connection hole 2, and constitute the substrate 3 when the substrate 3 contains glass fibers. Contact resin and glass fiber.
  • the second multilayer substrate 12 has already been formed on one side of the support substrate 14, and the single-layer substrates 11 1 and 11 2 other than the single-layer substrate 11 3 that is the uppermost layer are formed on the opposite side. Assume that they are formed and arranged.
  • FIGS. 3 (a) shows the widget substrate 31 in this state, the surface single layer substrate 11 2 of the top layer is exposed in this widget substrate 31.
  • the single-layer substrate 11 2 on the surface as shown in FIG. (B), attaching a substrate 3.
  • the substrate 3 to be bonded may have the connection hole 2 formed before the substrate is bonded, or the connection hole 2 may be formed after the substrate 3 is bonded.
  • connection hole 2 of the base 3 is exposed wiring film 9 of one underlying monolayer substrate 11 2, then the surface of the substrate 3 Alloy thin films 4 and 5 are formed on the inner peripheral side surface and the bottom surface of the connection hole 2.
  • FIG. 2 shows a sputtering apparatus 50 for forming the alloy thin films 4 and 5.
  • the sputtering apparatus 50 includes a carry-in / out chamber 51a, a pretreatment chamber 51b, and a film formation chamber 51c.
  • the chambers 51a to 51c are connected to evacuation devices 58a to 58c, respectively.
  • the gate valves 59a and 59b between the chambers 51a to 51c are closed, and the evacuation devices 58b and 58c are operated to perform preprocessing.
  • the inside of the chamber 51b and the inside of the film forming chamber 51c are evacuated, and a vacuum atmosphere is formed in each of the inside of the pretreatment chamber 51b and the inside of the film forming chamber 51c.
  • a transfer device 54 is arranged inside the carry-in / out chamber 51 a, and the work-in-process substrate 32 from which the base 3 is exposed is carried into the carry-in / out chamber 51 a and attached to the transfer device 54.
  • the door of the carry-in / out chamber 51a is closed, the internal atmosphere is shut off from the atmosphere, the vacuum exhaust device 58a is operated, and the inside of the carry-in / out chamber 51a is evacuated.
  • a heating device 56 is disposed inside the carry-in / out chamber 51a, and the in-process substrate 32 disposed in the transport device 54 is heated by the heating device 56 while being evacuated. After the in-process substrate 32 is heated to a predetermined temperature, the gate valve 59a is opened, and the in-process substrate 32 is moved together with the transfer device 54 from the inside of the loading / unloading chamber 51a to the inside of the pretreatment chamber 51b.
  • An ion gun 57 is arranged inside the pretreatment chamber 51b. After the gate valve 59a between the carry-in / out chamber 51a and the pretreatment chamber 51b is closed, a rare gas (in this case) is supplied from the gas introduction system to the ion gun 57. When Ar) is supplied, rare gas ions are generated inside the ion gun 57. The generated rare gas ions are released into the pretreatment chamber 51b.
  • a rare gas in this case
  • the substrate 3 of the work-in-process substrate 32 is exposed in the vacuum atmosphere of the pretreatment chamber 51b.
  • the substrate 3 is directed to the ion gun 57 and releases rare gas ions.
  • Rare gas ions are irradiated to the surface of the base body 3, and the inner peripheral surface of the connection hole 2, on the surface of the underlying single-layer substrate 11 second conductive film 7 exposed on the bottom of the connection hole 2, the irradiated portion Is cleaned and becomes active.
  • the gate valve 59b between the film formation chamber 51c is opened, and the in-process substrate 32 on which the pretreatment has been performed is brought together with the transfer device 54 into the pretreatment chamber. It moves from the inside of 51b to the inside of the film forming chamber 51c, and the gate valve 59b is closed.
  • a target 55 is disposed inside the film forming chamber 51c.
  • This target 55 is a target containing more than 50 atomic% of Cu, containing 5 atomic% or more and 30 atomic% or less of Ni, and containing 3 atomic% or more and 10 atomic% or less of Al.
  • a gas discharge device 53 is provided inside the film formation chamber 51c, and the inside of the film formation chamber 51c is continuously evacuated by the vacuum exhaust device 58c, while maintaining a vacuum atmosphere, from the gas supply device 52.
  • a sputtering gas (a rare gas such as argon gas) is supplied to the gas release device 53, the sputtering gas is released from the gas release device 53 into the film formation chamber 51c, a voltage is applied to the target 55, and a sputtering gas plasma is generated. Generate.
  • the surface of the pretreated substrate 3 faces the target 55, and when the target 55 is sputtered by the generated plasma, the sputtered particles adhere to the pretreated surface of the substrate 3, An alloy thin film in which the contents of Cu, Ni, and Al are the same as that of the target 55 grows.
  • Reference numeral 33 in FIG. 3C is a work-in-process substrate in which the alloy thin film 15 is formed to a predetermined thickness.
  • the alloy thin film 15 has a Cu, Ni, and Al content of more than 50 atomic%, respectively.
  • the content ratio is 5 atomic% or more and 30 atomic% or less, 3 atomic% or more and 10 atomic% or less, that is, the alloy thin film 15 is a thin film having the same composition as the target 55.
  • the alloy thin film 15 is in contact with the surface of the base 3 (excluding the inner peripheral surface of the connection hole 2), the inner peripheral surface of the connection hole 2, and the conductive film 7 on the bottom surface of the connection hole 2. in 2 of the bottom, in contact with the wiring film 9 of a single-layer substrate 11 and second one lower, it is electrically connected.
  • One underlying monolayer substrate 11 and second wiring layer 9 is composed of an alloy thin film 5 and the conductive film 7.
  • the adhesion strength is higher than that in the case where the irradiation is not performed.
  • the gate valves 59a and 59b are opened, and the work-in-process substrate 33 on which the alloy thin film 15 is formed passes through the pretreatment chamber 51b and is moved to the carry-in / out chamber 51a in which the inside is in a vacuum atmosphere.
  • the gate valves 59a and 59b are closed, gas is introduced into the loading / unloading chamber 51a, and the inside of the loading / unloading chamber 51a becomes atmospheric pressure, and then the work substrate 33 on which the alloy thin film 15 is formed is taken out from the loading / unloading chamber 51a.
  • a patterned resist film 28 is disposed on the surface of the alloy thin film 15.
  • openings 29 are formed above the connection holes 2 of the uppermost substrate 3 and above a predetermined position of the alloy thin film 15 on the surface of the substrate 3.
  • the alloy thin film 15 disposed on the bottom surface and the inner peripheral side surface of each connection hole 2 or the alloy thin film 15 located on the surface of the substrate 3 is exposed.
  • a conductive film made of a material having a Cu content (atomic%) higher than that of the alloy thin film 15 and a low resistivity is formed. 15 is formed in contact with.
  • the work substrate 33 in which the alloy thin film 15 is exposed on the bottom surface of the opening 29 of the resist film 28 and on a predetermined position on the surface of the base 3 is plated with copper ions.
  • the exposed alloy thin film 15 is immersed in the solution and brought into contact with the plating solution, the copper electrode immersed in the plating solution and the alloy thin film 15 are connected to a power source, the power source is operated, and the alloy thin film is passed through the copper electrode.
  • a voltage is applied between 15 and the plating solution to attach positive metal ions in the plating solution to the portion of the alloy thin film 15 that contacts the plating solution, and a conductive film containing more copper than the alloy thin film 15 is grown.
  • the electrolytic plating method has a higher growth rate than the sputtering method, and the films of the conductive films 6 and 7 formed by the electrolytic plating method rather than the film thickness of the alloy thin film 15 formed by the sputtering method.
  • the conductive film 6 formed on the surface of the alloy thin film 15 in the connection hole 2 fills the inside of the connection hole 2, and its upper portion is on the surface of the base 3. It is located above the surface of the alloy thin film 15.
  • the alloy thin film 15 is exposed between the portions where the conductive films 6 and 7 are exposed.
  • the conductive film 6 inside the connection hole 2 is connected to the conductive film 7 on the surface of the base 3.
  • the conductive film 7 on the surface of the base 3 has conductive films separated from each other, the resist In the state where the film 28 is peeled off, the conductive films 6 and 7 are electrically connected to each other by the alloy thin film 15.
  • connection hole 2 is between the conductive film 6 inside the connection hole 2 and the conductive film 6 and the inner peripheral surface of the connection hole 2.
  • a metal plug 8 is constituted by the alloy thin film 4 located in the region, and a wiring film 9 is constituted by the conductive film 7 and the alloy thin film 5 located under the conductive film 7 on the substrate 3. Yes.
  • the space surrounded by the alloy thin film 4 formed on the inner peripheral surface of the connection hole 2 is filled with the conductive film 64, and thus the connection hole 2 is filled with the metal plug 8.
  • the adhesion of the pure copper thin film is poor with respect to the resin exposed on the surface of the substrate 3.
  • the alloy thin films 4 and 5 in contact with the resin were measured for adhesion by containing an element other than Cu in a thin film material containing more than 50 atomic% of Cu, as shown in the following experiment.
  • the thin film material containing 5 atomic% to 30 atomic% of Ni and containing 3 atomic% to 10 atomic% of Al is more adhesive to the resin than the thin film of pure copper or copper oxide. Higher than.
  • the adhesion was not improved even if Mg was added to the copper thin film, and the adhesion was not improved even if oxygen was added to the copper thin film.
  • the film 9 has improved adhesion between the alloy thin films 4 and 5 and the resin.
  • the copper content of the alloy thin films 4 and 5 is larger than 50 atomic%, the adhesiveness with the pure copper thin film is high, the metal plug 8 and the wiring film 9 do not peel from the base 3, and the conductive film 6 and 7 have a higher copper content than the alloy thin films 4 and 5, so that the conductive films 6 and 7 do not peel from the alloy thin films 4 and 5.
  • An alloy thin film having a different composition is formed on the surface of the base 3 made of an epoxy resin containing glass fiber by sputtering, with Ni pellets and Al pellets placed on a copper target.
  • a conductive film made of pure copper was formed on the surface by electrolytic plating, and the adhesion of the wiring film composed of the alloy thin film and the conductive film was measured.
  • the composition of the alloy thin film includes impurities and copper inevitably contained in addition to Ni and Al, and the content of impurities is small. In this alloy thin film, other than Ni and Al are composed of copper. It can be said that.
  • the film thickness of the alloy thin film was 500 nm, and the film thickness of the conductive film was 30 ⁇ m.
  • the adhesion is obtained by cutting out a part of the substrate 3 on which a wiring film composed of an alloy thin film and a conductive film is formed, holding the end of the wiring film peeled off from the substrate 3 at the cut-out portion, and at a constant speed (20 mm / min). ) To measure the force when lifted upward and peeled off. Assuming that this force is the adhesion force, the following Table 1 shows the measurement results of the adhesion force of the alloy thin film having the experimental composition, and the column “Measured Value” in Table 1 shows the unit per unit width (cm) of the alloy thin film. Value.
  • the adhesion force was 800 gf / cm.
  • FIG. 8 is a graph of the measurement results in Table 1, and the composition indicated by the dots in the positions above the dotted line is included in the present invention.
  • the adhesion force of a wiring film containing 2 atomic% of Mg, 8 atomic% of Al, and the remainder including Cu was measured and found to be 320 gf / cm. From this, it can be seen that the improvement in adhesion is small in the alloy film added with Al and Mg as compared with the alloy film added with Al and Ni.
  • the substrate 3 is a hard substrate made of an epoxy resin containing glass fibers, but may be a resin other than an epoxy resin. Moreover, the base
  • the substrate 3 may be a flexible film made of a soft resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 樹脂基板上に剥落しない導電膜が形成された搭載装置を提供する。樹脂から成る基体3上にCuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有し、基体3の表面と接触された合金薄膜4、5をスパッタリング法によって形成し、合金薄膜4、5の表面に、銅から成る導電膜6、7を形成し、二層構造の配線膜9や接続孔2を充填する金属プラグ8を得る。合金薄膜4、5は樹脂との密着性が高く、配線膜9や金属プラグ8は剥離しない。

Description

搭載装置、その製造方法、その製造方法に用いるスパッタリングターゲット
 本発明は、パターニングされた配線膜を有する搭載装置と、その搭載装置を製造する製造方法と、その製造方法で用いるスパッタリングターゲットに関する。
 現在では、LSI等の半導体素子は、樹脂の基体に配線膜が形成された単層基板が複数層積層された搭載基板に搭載されており、従って、樹脂の表面に密着性の高い金属膜を形成する技術が求められている。特に、銅薄膜は低抵抗の利点がある反面、樹脂との密着性が低いことから、樹脂と銅薄膜との間には、他の金属から成る密着層が形成されている。
 図7の符合100は、そのような、従来技術の搭載装置であり、複数の単層基板1111、1112が積層されている。
 この搭載装置100の各単層基板1111、1112は、樹脂から成る基体103を有しており、基体103の表面には配線膜110が設けられている。また、基体103には接続孔102が設けられており、接続孔102の内部には、積層された単層基板1111、1112の配線膜110同士を接続する金属プラグ119が設けられている。
 図5(a)は、単層基板1111の上に、最上層の単層基板1112の基体103が貼付された状態である。基体103には、接続孔102が設けられており、接続孔102の底面には、下層の単層基板1111の配線膜110の表面が露出されている。
 先ず、図5(b)に示すように、Ti等の密着用の金属を含有するスパッタリングターゲットをスパッタリングし、基体103の表面と、接続孔102の内周側面と、底面に露出する配線膜110とに接触したTi薄膜等の密着層118を形成し、次いで、銅のスパッタリングターゲットをスパッタリングし、密着層118の表面に、銅薄膜から成るシード層115を形成する。
 パターニングされたレジスト膜を、シード層115の表面上に配置して、接続孔102の内部のシード層115と、基体103の表面上の所定位置のシード層115とを露出させ、メッキ液に浸漬して、露出したシード層115をメッキ液に接触させ、シード層115とメッキ液との間に、メッキ液に対してシード層115が負電位になる電圧を印加し、電解メッキ法によって露出したシード層115の表面に銅を析出させ、接続孔102の内部と、基体103の表面上とに、図5(c)に示すように、銅薄膜106、107を形成する。この状態では、銅薄膜106、107は接触し、接続孔102の内部は銅から成る銅薄膜106で充填されており、銅薄膜106、107は、シード層115よりも厚く形成されている。同図(c)の符合128は、レジスト膜である。
 この状態では、密着層118とシード層115とは、銅薄膜106の下方に位置する部分と、レジスト膜128の下方に位置する部分とがあり、レジスト膜128を剥離し、レジスト膜128の下方に位置していたシード層115を露出させた後、先ず、銅のエッチング液に浸漬し、同図(d)に示すように、銅薄膜106、107の下方には、パターニングされたシード層105を残しながら露出しているシード層115をエッチング除去し、除去された部分に密着層118を露出させる。
 次に、Tiを溶解させるTiエッチング液に浸漬すると、図7に示されたように、銅薄膜106、107及びシード層105の下方に位置する密着層108を残しながら露出された密着層118をエッチング除去し、除去した部分に基体103を露出させる。
 接続孔102内の密着層108とシード層105と銅薄膜106とで、接続孔102を充填する金属プラグ119が構成されており、また、基体103の表面上の密着層108とシード層105と銅薄膜107とで、配線膜110が構成されている。
 銅薄膜106、107と基体103表面に露出する樹脂との間の密着性は低く、銅薄膜106、107は樹脂から剥離しやすいが、Ti薄膜である密着層108は樹脂との間で密着性が高く、また、銅薄膜であるシード層105との間の密着性も高いから、シード層105と銅薄膜106、107とは基体103から剥離しない。
 しかしながら、上記製造工程から分かるように、銅薄膜106、107を形成するためには密着層108とシード層105との二層を形成する必要があり、配線膜110が三層構造になって、製造工程が増加する。
 また、密着層108は、銅以外のTi等の元素を多量に含有するため、密着層118と、銅薄膜であるシード層115とは、同じエッチング液でエッチングすることができず、エッチング工程が複雑である。
特開平8-332697号公報
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、樹脂が露出する基体上に、剥離しない導電膜を簡単に形成できる技術を提供することにある。
 上記課題を解決するため本発明は、基体と、少なくとも前記基体の表面に露出した樹脂に接触し、所定パターンに形成された配線膜とを有し、電子部品を前記配線膜に電気的に接続させて前記基体上に搭載させる搭載装置であって、前記配線膜は、Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有し、前記基体の表面と接触された合金薄膜と、前記合金薄膜の表面と接触し、Cuを前記合金薄膜よりも多く含有する導電性の導電膜と、を有する搭載装置である。
 また、本発明は、前記基体はガラス繊維を含有し、前記基体の表面には、前記樹脂と前記ガラス繊維とが露出された搭載装置である。
 また、本発明は、前記基体には表面と裏面との間を貫通する接続孔が形成され、前記接続孔の内周面には、前記樹脂と前記ガラス繊維とが露出され、前記接続孔の内周面には、前記合金薄膜が接触され、前記接続孔の内周面に位置する前記合金薄膜で囲まれた部分には、前記合金薄膜と接触して前記導電膜が充填された搭載装置である。
 本発明は、基体と、所定パターンに形成された配線膜とを有し、電子部品を前記配線膜に電気的に接続させて前記基体上に搭載させる搭載装置を製造する搭載装置の製造方法であって、前記配線膜は、少なくとも前記基体の表面に露出した樹脂に接触する合金薄膜と、前記合金薄膜と接触して配置された導導電性の電薄膜とを有し、真空雰囲気中に前記基体を配置し、前記真空雰囲気中にスパッタリングガスを導入し、前記真空雰囲気中に配置され、Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有するスパッタリングターゲットをスパッタリングして、前記基体の表面に、前記ターゲットと同じ組成の前記合金薄膜を形成する合金薄膜形成工程と、前記合金薄膜の表面に、Cuの体積含有率が前記合金薄膜よりも多い前記導電膜を形成する導電膜形成工程と、を有する搭載装置の製造方法である。
 また、本発明は、前記導電膜形成工程は、前記合金薄膜が形成された前記基体をメッキ液に浸漬し、前記合金薄膜に、前記メッキ液に対して負電圧を印加し、前記メッキ液に含有され、銅を含む金属の正イオンを前記合金薄膜の表面に付着させて前記導電膜を成長させる成長工程を有する請求項4記載の搭載装置の製造方法である。
 また、本発明は、前記合金薄膜形成工程で形成された前記合金薄膜を一種類のエッチング液に接触させ、前記エッチング液に接触された部分の前記合金薄膜を溶解させて除去し、前記合金薄膜をパターニングするエッチング工程を有する請求項5記載の搭載装置の製造方法である。
 また、本発明は、Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有する合金組成を有し、スパッタリングされて、樹脂が露出する基体の表面に、前記合金組成の合金薄膜を形成するスパッタリングターゲットである。
 合金薄膜を基体の表面に形成し、合金薄膜の表面に、銅の含有量が多い導電膜を形成するので、導電膜は、樹脂と接触せず、合金薄膜との間の密着性は高いので、導電膜は基体から剥離しない。
 一種類のエッチング液によって合金薄膜をエッチングできるので、分離配置された銅膜を一回のエッチング工程により、一種類のエッチング液を用いてパターニングされた配線膜を形成することができる。
本発明の搭載装置を説明するための図 搭載装置を形成するためのスパッタリング装置を説明するための図 (a)~(d):本発明の搭載装置の製造工程を説明するための図(1) (e)~(g):本発明の搭載装置の製造工程を説明するための図(2) (a)~(d):従来技術の搭載装置の製造工程を説明するための図 基体を説明するための図 従来技術の搭載装置を示す図 密着力の測定値のグラフ
 図1の符合10は、本発明の搭載装置を示しており、符合20は、搭載装置10が電気的に接続されたマザーボードを示している。
 この搭載装置10は、支持基板14と、支持基板14の両面にそれぞれ配置された第一、第二の多層基板11、12とを有しており、第一、第二の多層基板11、12は、それぞれ複数の単層基板111~113、121~123を有している。
 各単層基板111~113、121~123のうち、支持基板14に近い方を下層と呼び、遠い方を上層と呼ぶと、各単層基板111~113、121~123の一つ下層の位置には、他の単層基板111、112、121、122か、又は支持基板14が位置しており、図4(g)には、第一の多層基板11の最上層の単層基板113と、その単層基板113の一つ下層の単層基板112の一部とが示されている。
 各単層基板111~113、121~123の構成は同じであり、それら単層基板111~113、121~123は、板状の基体3と、基体3に形成された複数の接続孔2と、基体3の片側の表面(接続孔2の内周面と底面を除く)に配置された複数の配線膜9と、各接続孔2を充填する金属プラグ8とをそれぞれ有している。接続孔2は、基体3に形成され、基板3の表面と裏面との間を貫通する貫通孔である。
 支持基板14は、樹脂から成る樹脂基板14aと、樹脂基板14aに形成された複数の支持基板貫通孔14bと、各支持基板貫通孔14bの内部を充填する接続体14cと、樹脂基板14aの両面に配置された複数の配線膜14dとを有している。接続体14cは導電性を有しており、少なくとも一本の配線膜14dと電気的に接続されている。
 各単層基板111~113、121~123の金属プラグ8は、その金属プラグ8が位置する接続孔2を有する基体3の配線膜9に、配線膜9が設けられた表面で電気的に接続されている。
 そして、各単層基板111~113、121~123の接続孔2は、下層の単層基板111、112、121、122の配線膜9又は、支持基板14の配線膜14d上に位置しており、各単層基板111~113、121~123の金属プラグ8は、下層の単層基板111、112、121、122の配線膜9又は、支持基板14の配線膜14dに電気的に接続されている。
 従って、第一、第二の多層基板11、12の最上層の単層基板113、123の配線膜9は、支持基板14の一方の面の配線膜14dと他方の面の配線膜14dとのいずれか一方にそれぞれ電気的に接続されており、支持基板14の両面の配線膜14dの間は、接続体14cを介して接続されているから、最上層の単層基板113、123の配線膜9と配線膜9の間も、金属プラグ8と接続体14cとによって、互いに電気的に接続されている。
 マザーボード20は、マザーボード本体20aと、マザーボード本体20a上に配置された配線膜20bとを有している。
 第一の多層基板11の最上層の単層基板113の配線膜9には、半導体装置13の端子13bが固定されており、第二の多層基板12の最上層の単層基板123の配線膜9は、金属体24を介して、マザーボード20の配線膜20bに電気的に接続されている。
 半導体装置13の端子13bは、半導体装置本体13aの内部に配置された半導体素子の集積回路に電気的に接続されており、従って、集積回路は、搭載装置10と金属体24とを介して、マザーボード20の配線膜20bと電気的に接続されている。
 このような各単層基板111~113、121~123の金属プラグ8と配線膜9とについて説明すると、先ず、各単層基板111~113、121~123の基体3は、樹脂から成る基板で構成されており、又は、ガラス繊維が編まれた布状基板に樹脂が含浸された複合材料によって構成されている。
 図6の基体3は、樹脂25中にガラス繊維26が含まれており、その基体3の表面と接続孔2の内周面とには、樹脂25の表面とガラス繊維26の表面とで構成されており、樹脂25とガラス繊維26とが露出されている。
 金属プラグ8は、接続孔2の内周表面に接触して配置された合金薄膜4と、その合金薄膜4の表面に接触して配置された導電膜6とを有している。また、配線膜9は、基体3の表面に接触して配置された合金薄膜5と、その合金薄膜5の表面に接触して配置された導電膜7とをそれぞれ有している。
 合金薄膜4、5は、基体3の表面又は接続孔2の内周表面で、少なくとも基体3を構成する樹脂と接触しており、基体3がガラス繊維を含有する場合は、基体3を構成する樹脂とガラス繊維とに接触する。
 上記搭載装置10の製造工程を説明する。ここでは、既に、支持基板14の片面には第二の多層基板12が形成されており、反対の面には、最上層になる単層基板113以外の単層基板111、112が形成されて配置されているものとする。
 図3(a)は、その状態の仕掛基板31を示しており、表面には、この仕掛基板31における最上層の単層基板112が露出されている。
 先ず、その単層基板112の表面上に、同図(b)に示すように、基体3を貼付する。
 貼付する基体3は、貼付する前に接続孔2が形成されていてもよいし、基体3を貼付した後、接続孔2を形成してもよい。
 この状態の仕掛基板32では、最上層となる基体3の接続孔2の底面には、一つ下層の単層基板112の配線膜9が露出されており、次に、基体3の表面と接続孔2の内周側面と底面とに、合金薄膜4、5を形成する。
 図2には、合金薄膜4、5を形成するスパッタリング装置50が示されている。
 このスパッタリング装置50は、搬出入室51aと、前処理室51bと、成膜室51cとを有している。
 各室51a~51cには、それぞれ真空排気装置58a~58cが接続されており、各室51a~51cの間のゲートバルブ59a、59bを閉じ、真空排気装置58b、58cを動作させて、前処理室51bの内部と、成膜室51cの内部とを真空排気し、前処理室51bの内部と成膜室51cの内部とに、それぞれ真空雰囲気を形成しておく。
 搬出入室51aの内部には搬送装置54が配置されており、基体3が露出する仕掛基板32を搬出入室51aの内部に搬入し、搬送装置54に取り付ける。
 搬出入室51aの扉を閉じ、内部雰囲気を大気から遮断して真空排気装置58aを動作させ、搬出入室51aの内部を真空排気する。
 搬出入室51aの内部には、加熱装置56が配置されており、真空排気しながら、加熱装置56によって搬送装置54に配置された仕掛基板32を加熱する。
 仕掛基板32が所定温度に昇温された後、ゲートバルブ59aが開けられ、仕掛基板32は、搬送装置54と一緒に搬出入室51aの内部から前処理室51bの内部に移動される。
 前処理室51bの内部には、イオンガン57が配置されており、搬出入室51aと前処理室51bとの間のゲートバルブ59aが閉じられた後、ガス導入系からイオンガン57に希ガス(ここではAr)が供給されると、イオンガン57の内部で希ガスイオンが生成される。生成された希ガスのイオンは前処理室51bの内部に放出される。
 仕掛基板32の基体3は、前処理室51bの真空雰囲気中に露出されており、前処理室51b内に搬入されると、イオンガン57に向けられ、希ガスイオンが放出される。希ガスイオンは、基体3の表面と、接続孔2の内周側面と、接続孔2の底面に露出する下層の単層基板112の導電膜7の表面とに照射され、照射された部分はクリーニングされ、活性な状態になる。
 イオンが所定時間照射されると前処理は終了し、成膜室51cとの間のゲートバルブ59bが開けられ、前処理が行われた仕掛基板32は、搬送装置54と一緒に、前処理室51bの内部から成膜室51cの内部に移動され、ゲートバルブ59bが閉じられる。
 成膜室51cの内部には、ターゲット55が配置されている。
 このターゲット55は、Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有するターゲットである。
 成膜室51cの内部には、ガス放出装置53が設けられており、成膜室51cの内部を真空排気装置58cによって継続して真空排気し、真空雰囲気を維持しながら、ガス供給装置52からガス放出装置53にスパッタリングガス(アルゴンガス等の希ガス)を供給し、ガス放出装置53から成膜室51cの内部にスパッタリングガスを放出させ、ターゲット55に電圧を印加し、スパッタリングガスのプラズマを生成する。
 前処理がされた基体3の表面はターゲット55と対面されており、生成したプラズマによってターゲット55がスパッタリングされると、スパッタリング粒子は基体3の前処理がされた表面に付着し、その表面に、CuとNiとAlとの含有率がターゲット55と同じ合金薄膜が成長する。
 図3(c)の符合33は、その合金薄膜15が所定膜厚に形成された仕掛基板であり、合金薄膜15は、CuとNiとAlとの含有率が、それぞれ50原子%よりも多い含有率、5原子%以上30原子%以下の含有率、3原子%以上10原子%以下の含有率であり、即ち、合金薄膜15は、ターゲット55と同じ組成の薄膜である。
 合金薄膜15は、基体3の表面(接続孔2の内周面は除く。)と、接続孔2の内周面と、接続孔2の底面の導電膜7とに接触しており、接続孔2の底面では、一つ下層の単層基板112の配線膜9と接触して、電気的に接続されている。一つ下層の単層基板112の配線膜9は、合金薄膜5と導電膜7とで構成されている。
 なお、最上層の合金薄膜15は、イオンガン57によってイオンが照射された表面に形成されているので、密着強度は、照射しなかった場合と比べると高くなっている。
 合金薄膜15が所定膜厚に形成された後、ターゲット55への電圧印加とスパッタリングガス導入が停止され、スパッタリングは終了する。
 次いで、ゲートバルブ59a、59bが開けられて、合金薄膜15が形成された仕掛基板33は、前処理室51bを通過して、内部が真空雰囲気にされた搬出入室51aに移動される。
 ゲートバルブ59a、59bが閉じられた後、搬出入室51aに気体が導入され、搬出入室51aの内部が大気圧になった後、合金薄膜15が形成された仕掛基板33は搬出入室51aから取り出される。
 次いで、図3(d)に示すように、合金薄膜15の表面に、パターニングされたレジスト膜28が配置される。
 このレジスト膜28には、最上層の基体3の各接続孔2の上方と、その基体3の表面上の合金薄膜15の所定位置の上方とに、開口29が形成されており、開口29の底面下には、各接続孔2の底面と内周側面に配置された合金薄膜15、又は、基体3の表面上に位置する合金薄膜15が露出されている。
 その状態の仕掛基板33の開口29底面下に露出する合金薄膜15の表面に、Cuの含有率(原子%)が合金薄膜15よりも高く、抵抗率が小さい材料から成る導電膜を、合金薄膜15と接触させて形成する。
 導電膜の具体的な形成方法については、例えば、レジスト膜28の開口29底面と、基体3の表面の所定位置上とに合金薄膜15が露出する状態の仕掛基板33を、銅イオンを含むメッキ液に浸漬し、露出した合金薄膜15をメッキ液に接触させ、メッキ液に浸漬された銅電極と、合金薄膜15とを電源に接続し、電源を動作させ、銅電極を介して、合金薄膜15とメッキ液との間に電圧を印加し、メッキ液中の正の金属イオンを合金薄膜15のメッキ液と接触する部分に付着させ、銅を合金薄膜15よりも多く含有する導電膜を成長させ、図4(e)に示すように、接続孔2上の開口29の底面下と、基体3の表面上の開口29の底面下とに、導電膜6、7が形成された仕掛基板34を作成する。
 一般に、スパッタ法よりも電解メッキ法の方が成長速度が大きくなっており、スパッタ法で形成された合金薄膜15の膜厚よりも、電解メッキ法で形成した導電膜6、7の方の膜厚が厚くされており、この仕掛基板34では、接続孔2内の合金薄膜15の表面に形成された導電膜6は、接続孔2の内部を充填し、その上部は、基体3の表面上の合金薄膜15の表面よりも上方に位置している。
 次に、図4(f)に示すように、レジスト膜28を剥離すると、導電膜6、7が露出する部分の間に、合金薄膜15が露出する。
 接続孔2の内部の導電膜6は、基体3の表面上の導電膜7に接続されているが、基体3の表面上の導電膜7には、互いに分離された導電膜があるものの、レジスト膜28を剥離した状態では、各導電膜6、7は、合金薄膜15によって、互いに電気的に接続された状態である。
 次いで、その状態の仕掛基板34を、銅をエッチングするエッチング液に浸漬すると、露出し、エッチング液に接触した部分の合金薄膜15がエッチング液に溶解してエッチング除去され、図4(g)に示すように、合金薄膜15が除去された部分には、合金薄膜15の下に位置していた基体3の表面が露出し、導電膜6、7がパターニングされた最上層の単層基板113が形成される。
 各単層基板111~113、121~123では、接続孔2の内部は、接続孔2の内部の導電膜6と、その導電膜6と接続孔2の内周面との間に位置する合金薄膜4とで、金属プラグ8が構成されており、基体3上には、導電膜7と、その導電膜7の下に位置する合金薄膜5とで配線膜9が構成されている。接続孔2の内周面に形成された合金薄膜4で囲まれた空間は、導電膜64で充填されており、従って、接続孔2は、金属プラグ8によって充填されている。
 基体3の表面に露出する樹脂に対し、純銅の薄膜の密着性は悪い。
 本願発明では、樹脂と接触する合金薄膜4、5は、Cuを50原子%よりも多く含有する薄膜材料に、下記実験に示すように、Cu以外の元素を含有させて密着力を測定したところ、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有する薄膜材料が、純銅や酸化銅の薄膜よりも、樹脂に対する密着性は、銅薄膜の密着性よりも高くなっている。
 特に、エポキシ樹脂との密着性に関し、銅薄膜にMgを含有させても密着性は向上せず、また、銅薄膜に酸素を含有させても密着性は向上しなかったが、本発明の配線膜9は、合金薄膜4、5と樹脂との間の密着性は向上している。
 また、この合金薄膜4、5の銅含有率が50原子%よりも大きいので、純銅の薄膜との密着性も高く、基体3から金属プラグ8や配線膜9が剥離せず、また、導電膜6、7が合金薄膜4、5よりも銅の含有率が高いことから、導電膜6、7も合金薄膜4、5から剥離しないようになっている。
 銅ターゲット上に、Niペレットと、Alペレットとを配置し、ガラス繊維を含有するエポキシ樹脂から成る基体3の前処理をした表面に、組成が異なる合金薄膜をスパッタ法によって形成し、合金薄膜の表面に、電解メッキ法によって純銅の導電膜を形成し、その合金薄膜と導電膜の二層から成る配線膜の、密着性を測定した。合金薄膜の組成は、NiとAl以外には、不可避的に含有する不純物と銅とが含まれており、不純物の含有量は小さいので、この合金薄膜では、NiとAl以外は銅によって構成されていると言える。合金薄膜の膜厚は500nm、導電膜の膜厚は30μmにした。
 密着性は、合金薄膜と導電膜とから成る配線膜が形成された基体3の一部を切り出し、切り出し部分で基体3から剥離した配線膜の端部を保持し、一定速度で(20mm/min)で上方に持ち上げて剥離させたときの力を測定した。この力を密着力とすると、下記表1は、実験した組成の合金薄膜の密着力の測定結果であり、表1中の「測定値」の欄は、合金薄膜の単位幅(cm)当たりの値である。
Figure JPOXMLDOC01-appb-T000001
 密着層としてTi薄膜を用い、Ti薄膜上に銅膜を形成した配線膜の場合は、密着力は800gf/cmであった。
 表1の「Peel強度」の欄は、Ti薄膜を用いた配線膜と同等以上の配線膜を良品とするために、「測定値」の欄の値が800以上の場合を使用できるものとして「○」を記入した。また、「測定値」の欄の値が450以下の場合を使用できないとして「×」を記入し、450よりも大きく800よりも小さい場合を使用するべきでないとして「△」を記入した。
 なお、添加元素の含有率が、NiとAlとがゼロ原子%の場合は純銅薄膜から成る合金薄膜の場合である(測定値は220gf/cm)。
 表1の測定結果から、剥離強度の値が800以上になるためには、Niは5原子%以上30原子%以下、Alは3原子%以上10原子%以下が必要なことが分かる。
 図8は、表1の測定結果のグラフであり、点線以上の位置にあるドットが示す組成が、本発明に含まれる。
 なお、比較対象として、Mgを2原子%含有し、Alを8原子%含有し、残りはCuから成る配線膜の密着力を測定したところ、320gf/cmであった。このことから、AlとNiを添加した合金膜と比べ、AlとMgを添加した合金膜では密着力の向上は小さいことが分かる。
 なお、上記基体3は、ガラス繊維が含有されたエポキシ樹脂から成る硬質の基板であったが、エポキシ樹脂以外の樹脂であってもよい。また、ガラス繊維を含有せず、樹脂を含有する基体も本発明の基体3に含まれる。また、基体3は、軟質樹脂から成り、柔軟性を有するフィルムであってもよい。
 2……接続孔
 3……基体
 4、5……合金薄膜
 6、7……導電膜
 8……金属プラグ
 9……配線膜
10……搭載装置
55……ターゲット

Claims (7)

  1.  基体と、
     少なくとも前記基体の表面に露出した樹脂に接触し、所定パターンに形成された配線膜とを有し、電子部品を前記配線膜に電気的に接続させて前記基体上に搭載させる搭載装置であって、
     前記配線膜は、
     Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有し、前記基体の表面と接触された合金薄膜と、
     前記合金薄膜の表面と接触し、Cuを前記合金薄膜よりも多く含有する導電性の導電膜と、
     を有する搭載装置。
  2.  前記基体はガラス繊維を含有し、
     前記基体の表面には、前記樹脂と前記ガラス繊維とが露出された請求項1記載の搭載装置。
  3.  前記基体には表面と裏面との間を貫通する接続孔が形成され、前記接続孔の内周面には、前記樹脂と前記ガラス繊維とが露出され、
     前記接続孔の内周面には、前記合金薄膜が接触され、
     前記接続孔の内周面に位置する前記合金薄膜で囲まれた部分には、前記合金薄膜と接触して前記導電膜が充填された請求項1記載の搭載装置。
  4.  基体と、
     所定パターンに形成された配線膜とを有し、電子部品を前記配線膜に電気的に接続させて前記基体上に搭載させる搭載装置を製造する搭載装置の製造方法であって、
     前記配線膜は、少なくとも前記基体の表面に露出した樹脂に接触する合金薄膜と、
     前記合金薄膜と接触して配置された導導電性の電薄膜とを有し、
     真空雰囲気中に前記基体を配置し、前記真空雰囲気中にスパッタリングガスを導入し、前記真空雰囲気中に配置され、Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有するスパッタリングターゲットをスパッタリングして、前記基体の表面に、前記ターゲットと同じ組成の前記合金薄膜を形成する合金薄膜形成工程と、
     前記合金薄膜の表面に、Cuの体積含有率が前記合金薄膜よりも多い前記導電膜を形成する導電膜形成工程と、
     を有する搭載装置の製造方法。
  5.  前記導電膜形成工程は、前記合金薄膜が形成された前記基体をメッキ液に浸漬し、前記合金薄膜に、前記メッキ液に対して負電圧を印加し、前記メッキ液に含有され、銅を含む金属の正イオンを前記合金薄膜の表面に付着させて前記導電膜を成長させる成長工程を有する請求項4記載の搭載装置の製造方法。
  6.  前記合金薄膜形成工程で形成された前記合金薄膜を一種類のエッチング液に接触させ、前記エッチング液に接触された部分の前記合金薄膜を溶解させて除去し、前記合金薄膜をパターニングするエッチング工程を有する請求項5記載の搭載装置の製造方法。
  7.  Cuを50原子%よりも多く含有し、Niを5原子%以上30原子%以下含有し、Alを3原子%以上10原子%以下含有する合金組成を有し、スパッタリングされて、樹脂が露出する基体の表面に、前記合金組成の合金薄膜を形成するスパッタリングターゲット。
PCT/JP2014/062186 2013-05-13 2014-05-02 搭載装置、その製造方法、その製造方法に用いるスパッタリングターゲット WO2014185301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015517036A JP5830631B2 (ja) 2013-05-13 2014-05-02 搭載装置およびその製造方法
EP14797742.5A EP2941105B1 (en) 2013-05-13 2014-05-02 Mounting device and method of manufacturing the same
KR1020157008047A KR101582176B1 (ko) 2013-05-13 2014-05-02 탑재 장치 및 그 제조 방법
CN201480002581.0A CN104685977B (zh) 2013-05-13 2014-05-02 装载装置及其制造方法
US14/693,159 US9363900B2 (en) 2013-05-13 2015-04-22 Mounting device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013101616 2013-05-13
JP2013-101616 2013-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/693,159 Continuation US9363900B2 (en) 2013-05-13 2015-04-22 Mounting device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014185301A1 true WO2014185301A1 (ja) 2014-11-20

Family

ID=51898280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062186 WO2014185301A1 (ja) 2013-05-13 2014-05-02 搭載装置、その製造方法、その製造方法に用いるスパッタリングターゲット

Country Status (7)

Country Link
US (1) US9363900B2 (ja)
EP (1) EP2941105B1 (ja)
JP (1) JP5830631B2 (ja)
KR (1) KR101582176B1 (ja)
CN (1) CN104685977B (ja)
TW (1) TWI528480B (ja)
WO (1) WO2014185301A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法
WO2018189965A1 (ja) * 2017-04-13 2018-10-18 株式会社アルバック 液晶表示装置、有機el表示装置、半導体素子、配線膜、配線基板、ターゲット
WO2022244095A1 (ja) * 2021-05-18 2022-11-24 キヤノンアネルバ株式会社 積層体及び積層体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137282A1 (ko) * 2015-02-26 2016-09-01 주식회사 엘지화학 전도성 구조체 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236952A (ja) * 1989-12-13 1991-10-22 Bridgestone Corp ゴムの複合化方法
JPH08332697A (ja) 1995-06-08 1996-12-17 Mitsui Toatsu Chem Inc 金属ポリマーフィルム
JP2004193546A (ja) * 2002-10-17 2004-07-08 Mitsubishi Materials Corp 半導体装置配線シード層形成用銅合金スパッタリングターゲット
WO2009131035A1 (ja) * 2008-04-25 2009-10-29 株式会社アルバック 薄膜トランジスタの製造方法、薄膜トランジスタ
JP2013133489A (ja) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu合金スパッタリングターゲット、この製造方法及び金属薄膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308107A (ja) * 1991-07-01 1993-11-19 Sumitomo Electric Ind Ltd 半導体装置及びその製作方法
JP4247863B2 (ja) * 1999-07-12 2009-04-02 ソニー株式会社 電子部品用金属材料、電子部品用配線材料、電子部品用電極材料、電子部品、電子機器、金属材料の加工方法及び電子光学部品
US6871396B2 (en) * 2000-02-09 2005-03-29 Matsushita Electric Industrial Co., Ltd. Transfer material for wiring substrate
JP3754011B2 (ja) * 2002-09-04 2006-03-08 デプト株式会社 電子部品用金属材料、電子部品、電子機器、金属材料の加工方法、電子部品の製造方法及び電子光学部品
JP4299601B2 (ja) * 2003-01-23 2009-07-22 京セラ株式会社 多層配線基板
WO2005041290A1 (ja) * 2003-10-24 2005-05-06 Nikko Materials Co., Ltd. ニッケル合金スパッタリングターゲット及びニッケル合金薄膜
JP4567091B1 (ja) * 2009-01-16 2010-10-20 株式会社神戸製鋼所 表示装置用Cu合金膜および表示装置
CN102550138B (zh) * 2009-09-28 2015-07-22 京瓷株式会社 结构体及其制造方法
JP6135275B2 (ja) * 2013-04-22 2017-05-31 三菱マテリアル株式会社 保護膜形成用スパッタリングターゲット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236952A (ja) * 1989-12-13 1991-10-22 Bridgestone Corp ゴムの複合化方法
JPH08332697A (ja) 1995-06-08 1996-12-17 Mitsui Toatsu Chem Inc 金属ポリマーフィルム
JP2004193546A (ja) * 2002-10-17 2004-07-08 Mitsubishi Materials Corp 半導体装置配線シード層形成用銅合金スパッタリングターゲット
WO2009131035A1 (ja) * 2008-04-25 2009-10-29 株式会社アルバック 薄膜トランジスタの製造方法、薄膜トランジスタ
JP2013133489A (ja) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu合金スパッタリングターゲット、この製造方法及び金属薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2941105A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法
JPWO2017051820A1 (ja) * 2015-09-25 2017-09-21 株式会社アルバック スパッタリングターゲット、ターゲット製造方法
WO2018189965A1 (ja) * 2017-04-13 2018-10-18 株式会社アルバック 液晶表示装置、有機el表示装置、半導体素子、配線膜、配線基板、ターゲット
KR20190132342A (ko) 2017-04-13 2019-11-27 가부시키가이샤 알박 액정 표시 장치, 유기 el 표시 장치, 반도체 소자, 배선막, 배선 기판, 타깃
WO2022244095A1 (ja) * 2021-05-18 2022-11-24 キヤノンアネルバ株式会社 積層体及び積層体の製造方法
JP7200436B1 (ja) * 2021-05-18 2023-01-06 キヤノンアネルバ株式会社 積層体及び積層体の製造方法

Also Published As

Publication number Publication date
EP2941105A4 (en) 2016-08-31
US20150230343A1 (en) 2015-08-13
TWI528480B (zh) 2016-04-01
EP2941105B1 (en) 2022-02-16
CN104685977A (zh) 2015-06-03
JPWO2014185301A1 (ja) 2017-02-23
CN104685977B (zh) 2016-09-28
US9363900B2 (en) 2016-06-07
KR20150042294A (ko) 2015-04-20
EP2941105A1 (en) 2015-11-04
JP5830631B2 (ja) 2015-12-09
TW201519338A (zh) 2015-05-16
KR101582176B1 (ko) 2016-01-11

Similar Documents

Publication Publication Date Title
JP5830631B2 (ja) 搭載装置およびその製造方法
JP5859155B1 (ja) 複合金属箔及びその製造方法並びにプリント配線板
WO2008044757A1 (en) Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP6601778B2 (ja) はんだ粒子
JP2013229504A (ja) 金属化樹脂フィルムおよびその製造方法
JP5142849B2 (ja) 成膜装置および成膜方法
CN109673111A (zh) 电路板的制作方法
JP2009280834A (ja) ターゲット、配線膜形成方法、薄膜トランジスタの製造方法
JP2008124450A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、薄膜トランジスタの製造方法、及び薄膜トランジスタ付パネルの製造方法
JP5346040B2 (ja) フレキシブルラミネート及び該ラミネートを用いて形成したフレキシブル電子回路基板
JP2008112989A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、及び薄膜トランジスタの製造方法
JP2012222166A (ja) 配線膜、薄膜トランジスタ、ターゲット、配線膜の形成方法
CN107924248B (zh) 导电性基板和导电性基板的制造方法
KR20070044165A (ko) Ccl 베이스 필름 및 이를 이용한 전자부품 실장용캐리어 테이프 제조 방법
JP6442603B2 (ja) スパッタリングターゲット、ターゲット製造方法
CN111132466A (zh) 一种阻止pcb表面发生金属离子迁移的方法
JP2010147145A (ja) プリント配線板とその製造方法
US20230187338A1 (en) Laminated body and laminated body manufacturing method
US20150129289A1 (en) Printed circuit board and method of manufacturing the same
TWI268128B (en) PCB ultra-thin circuit forming method
CN110392909A (zh) 液晶显示装置、有机el显示装置、半导体元件、布线膜、布线基板、靶材
WO2017022539A1 (ja) 導電性基板、導電性基板の製造方法
JPH09195057A (ja) 置換金めっき方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008047

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015517036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014797742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE