WO2014181609A1 - 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置 - Google Patents

画像表示装置用のダム材組成物、及びそれを用いた画像表示装置 Download PDF

Info

Publication number
WO2014181609A1
WO2014181609A1 PCT/JP2014/059357 JP2014059357W WO2014181609A1 WO 2014181609 A1 WO2014181609 A1 WO 2014181609A1 JP 2014059357 W JP2014059357 W JP 2014059357W WO 2014181609 A1 WO2014181609 A1 WO 2014181609A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
aliphatic unsaturated
display device
sio
group
Prior art date
Application number
PCT/JP2014/059357
Other languages
English (en)
French (fr)
Inventor
和久 小野
弘二 大皷
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to CN201480002533.1A priority Critical patent/CN104736642B/zh
Priority to EP14795317.8A priority patent/EP2860223B1/en
Priority to KR1020157014033A priority patent/KR20160004990A/ko
Priority to US14/429,138 priority patent/US9353265B2/en
Publication of WO2014181609A1 publication Critical patent/WO2014181609A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Definitions

  • the present invention relates to a dam material composition for an image display device and an image display device using the same.
  • a flat panel type image display device usually has a large number of pixels composed of a semiconductor layer, a phosphor layer, or a light emitting layer constituting an active element between a pair of light-transmitting substrates such as glass. It has a display area (image display portion) arranged in a matrix. Generally, the periphery of this display area (image display portion) and a protective portion formed of optical plastic such as glass or acrylic resin is sealed secretly with an adhesive.
  • a sealant is interposed between the protection unit and the image display unit in order to prevent a reduction in visibility (visibility) due to reflection of outdoor light or indoor lighting.
  • an ultraviolet curable silicone resin composition is used as the sealant (Patent Document 1), and the use of a thermosetting silicone resin composition has also been proposed (Patent Document 2).
  • an epoxy resin composition may be used for the sealant (Patent Document 3).
  • the above ultraviolet curable resin composition when used as an encapsulant in an image display part (for example, a liquid crystal display panel), the composition may protrude from the display part or on the back side of the display part due to its fluidity. Problems such as enveloping may occur, and in recent years when the display portion has become larger, it has become more apparent.
  • a method of preventing a protrusion or the like by forming a frame using a dam material composition in advance on the display unit or the protection unit and applying the composition therein is known. ing.
  • Patent Document 3 discloses that a dam material is obtained by adding fine silica to an epoxy resin composition as a sealant. However, Patent Document 3 does not describe the hardness and adhesiveness of the cured product of the dam material. Further, Patent Document 3 describes nothing about applying other resin-based sealants as dam materials. Although the dam material is used in the Example of patent document 2, the detail of the composition is not clear. Moreover, although it hardens
  • An object of the present invention is to provide a silicone-based dam material composition whose cured product has an appropriate hardness and adhesion to an adherend as a dam material, and an image display device using the same. More preferably, in addition to this, a clear seam is generated between the frame of the dam material and the sealant therein, and the problem that visibility as an image display device may be reduced, It is an object of the present invention to provide a dam material composition and an image display device using the dam material composition that make it difficult to distinguish a joint.
  • the present invention 1 relates to (A) a polyorganosiloxane containing a mercaptoalkyl group bonded to a silicon atom and having a viscosity of 20 to 25000 cP at 23 ° C .; (B) (B1) Formula (I): (Where R 1 is independently an aliphatic unsaturated group; R is independently a C1-C6 alkyl group or a C6-C12 aryl group, and 1-60 mol% of R is a C6-C12 aryl group, and n is a linear polyorganosiloxane containing an aliphatic unsaturated group, represented by the viscosity at 23 ° C.
  • R ' are each independently, C1 ⁇ C6 alkyl group Or a branched polyorganosiloxane having at least three R's each of which is an aliphatic unsaturated group, and a polyorgano having an aliphatic unsaturated group.
  • Siloxane Siloxane; (C) a photoinitiator; (D) a silane compound containing an aliphatic unsaturated group; and (E) fumed silica having a BET specific surface area of 180-500 m 2 / g, wherein The ratio of the number of mercaptoalkyl groups present in (A) to the total number of aliphatic unsaturated groups in (B) and (D) is 0.45 to 1.50, Dam material for an image display device in which (E) is 0.5 to 24 parts by weight with respect to 100 parts by weight of (B) and the viscosity at 23 ° C. is 20,000 to 10,000,000 cP Relates to the composition.
  • the present invention 2 is the image display device of the present invention 1, wherein the ratio of the number of mercaptoalkyl groups in (A) to the number of aliphatic unsaturated groups in (B) is 0.5 to 4.0.
  • the present invention relates to a dam material composition.
  • Invention 3 is an image according to Invention 1 or 2, wherein the ratio of the number of mercaptoalkyl groups in (A) to the number of aliphatic unsaturated groups in (D) is 1.2 to 3.5.
  • the present invention relates to a dam material composition for a display device.
  • the present invention 4 relates to the dam material composition for an image display device according to any one of the present inventions 1 to 3, wherein (E) is fumed silica having a BET specific surface area of 300 to 500 m 2 / g.
  • the present invention 5 uses the B-type rotational viscometer for the dam material composition, and the viscosity (cP) measured at 23 ° C. and 6 rpm is measured at V 6 rpm and 23 ° C. and 12 rpm .
  • the present invention 6 is the dam material composition for an image display device according to any one of the present invention 1 to 5, wherein the content of (C) is 0.05 to 50 parts by weight with respect to 100 parts by weight of (B) Related to things.
  • (D) is one or more aliphatic non-volatile compounds selected from the group consisting of 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane.
  • the present invention relates to a dam material composition for an image display device according to any one of the present inventions 1 to 6, which is a silane compound containing a saturated group.
  • the present invention 8 relates to an image display device comprising the dam material composition for an image display device according to any one of the present inventions 1 to 7 for sealing the image display portion and the protective portion.
  • the present invention is a dam material composition, and when an image display device is produced using the dam material composition, the frame formed from the dam material composition has an appropriate hardness and adhesion to an adherend. is there. More preferably, it is difficult to distinguish a seam between the frame of the dam material and the sealant therein, and an image display device having good visibility can be provided.
  • the dam material composition for the image display device of the present invention is (A) a polyorganosiloxane containing a mercaptoalkyl group bonded to a silicon atom, having a viscosity at 23 ° C. of 20 to 25000 cP; (B) (B1) Formula (I):
  • R 1 is independently an aliphatic unsaturated group; R is independently a C1-C6 alkyl group or a C6-C12 aryl group, and 1-60 mol% of R is a C6-C12 aryl group, and n is a linear polyorganosiloxane containing an aliphatic unsaturated group, represented by the viscosity at 23 ° C. of 100 to 1,000,000 cP) and optionally (B2) SiO 4/2 Units, R ′ 3 SiO 1/2 units and R ′ 2 SiO 2/2 units, and optionally further R′SiO 3/2 units wherein R ′ is independently a C1-C6 alkyl group.
  • a branched polyorganosiloxane having at least three R's each of which is an aliphatic unsaturated group, and a polyorgano having an aliphatic unsaturated group.
  • composition of the present invention comprises (A) a polyorganosiloxane containing a mercaptoalkyl group bonded to a silicon atom and having a viscosity of 20 to 25000 cP at 23 ° C.
  • the number of mercaptoalkyl groups bonded to silicon atoms in one molecule is, on average, 2 or more and 20 from the viewpoint of suppressing excessive curing shrinkage while ensuring a stable structure by a crosslinking reaction. It can be as follows. Among these, more than 2, preferably 10 or less, more preferably 3-7.
  • the alkyl portion of the mercaptoalkyl group bonded to the silicon atom can be a C1-C6 alkyl group.
  • the mercaptoalkyl group include mercaptomethyl, 2-mercaptoethyl, 3-mercaptopropyl, 4-mercaptobutyl, 6-mercaptohexyl and the like. From the viewpoint of ease of synthesis, mercaptomethyl, 3-mercaptopropyl, etc. Is preferred, and 3-mercaptopropyl is more preferred.
  • the organic group other than the mercaptoalkyl group bonded to the silicon atom can be a substituted or unsubstituted monovalent hydrocarbon group (provided not to be an aliphatic unsaturated group).
  • an alkyl group such as a C1-C6 alkyl group (eg, methyl, ethyl, propyl, etc.); a cycloalkyl group, eg, a C3-C10 cycloalkyl group (eg, cyclohexyl, etc.); an aryl group, eg, C6-C12 Aryl groups (eg, phenyl, tolyl, xylyl, etc.); aralkyl groups, eg, C7-C13 aralkyl groups (eg, 2-phenylethyl, 2-phenylpropyl, etc.); substituted hydrocarbon groups, eg, halogen-substituted hydrocarbon groups (eg, halogen-sub
  • An alkyl group is preferable from the viewpoint of easiness of synthesis, etc. Among them, methyl, ethyl and propyl are preferable, and methyl is more preferable. In order to adjust the refractive index, an aryl group can be used in combination, and among them, phenyl is preferable from the viewpoint of ease of synthesis.
  • the structure of the main chain of (A) may be linear, branched or cyclic, and is preferably branched.
  • R ′′ SiO 3/2 units, R ′′ 3 SiO 1/2 units and R ′′ 2 SiO 2/2 units, and optionally further SiO 4/2 units (where R ′′ is Each independently composed of an unsubstituted or substituted monovalent hydrocarbon group (provided not to be an aliphatic unsaturated group), 2 or more and 20 or less R ′ per molecule
  • Examples thereof include branched polyorganosiloxanes containing mercaptoalkyl groups, wherein 'is a mercaptoalkyl group.
  • Examples of the mercaptoalkyl group and the unsubstituted or substituted monovalent hydrocarbon group include the groups described above.
  • R ′′ which is a mercaptoalkyl group may be present as R ′′ of any unit, but is preferably present as R ′′ of R ′′ SiO 3/2 unit.
  • the mercaptoalkyl group and the unsubstituted or substituted monovalent hydrocarbon group the above groups can be applied. From the viewpoint of workability and crosslinking reactivity, the ratio of the number of siloxane units containing a mercaptoalkyl group to the number of siloxane units containing no mercaptoalkyl group is preferably 1:60 to 1: 5, but is not limited thereto. .
  • the viscosity at 23 ° C. is 20 to 25000 cP. From the viewpoint of workability and refractive index, for example, the viscosity can be 30 to 23000 cP. From the viewpoint of compatibility and workability, the viscosity at 23 ° C. can be, for example, 20 to 2000 cP, and more preferably 50 to 500 cP.
  • the viscosity is measured with a B-type rotational viscometer (Bismetron VDA-L) (manufactured by Shibaura System Co., Ltd.). Use values 2 to 4, and use the values measured at 30 to 60 rpm and 23 ° C. (However, if there is a separate description regarding the number of revolutions, follow it).
  • the number of mercapto groups in (A) can be measured by colorimetric titration with iodine. This is the following formula: 2RSH + I 2 ⁇ RSSR + 2HI This method utilizes the fact that the titration solution becomes slightly yellow with a small amount of excess iodine during titration.
  • (A) is preferably highly transparent.
  • As an index of transparency at 23 ° C., when (A) was filled in a container, and the transmittance in the visible light region wavelength (360 to 780 nm) was measured with a spectrophotometer for a thickness of 10 mm, It is mentioned that the transmittance is 80% or more.
  • the transmittance is preferably 90% or more from the viewpoint that the transparency of the cured product of the composition of the present invention can be stably maintained.
  • the method for preparing (A) is not particularly limited.
  • alkylchlorosilane such as silane, mercaptoalkylalkoxysilane, and a desired alkylchlorosilane, alkylalkoxysilane, or silanol-containing siloxane.
  • (A) may be used alone or in combination of two or more.
  • composition of the present invention comprises (B) (B1) formula (I):
  • R 1 is independently an aliphatic unsaturated group; R is independently a C1-C6 alkyl group or a C6-C12 aryl group, and 1-60 mol% of R is a C6-C12 aryl group, and n is a linear polyorganosiloxane containing an aliphatic unsaturated group, represented by the viscosity at 23 ° C. of 100 to 1,000,000 cP) and optionally (B2) SiO 4/2 Units, R ′ 3 SiO 1/2 units and R ′ 2 SiO 2/2 units, and optionally further R′SiO 3/2 units wherein R ′ is independently a C1-C6 alkyl group. Or a branched polyorganosiloxane having at least three R's each of which is an aliphatic unsaturated group, and a polyorgano having an aliphatic unsaturated group. Contains siloxane.
  • (B2) is an optional component and can be blended for the purpose of adjusting the hardness of the cured product.
  • (B2) is the total number of aliphatic unsaturated groups in (B). It can be used in such an amount that the ratio of the number of aliphatic unsaturated groups in (B2) is 20 to 85%.
  • the ratio of the number of aliphatic unsaturated groups in (B2) is preferably more than 50% from the viewpoint of fast curability, and can be, for example, 60 to 85%, more preferably 65 to 85%. .
  • R 1 is an aliphatic unsaturated group.
  • R 1 at both ends may be the same or different, but is preferably the same.
  • Examples of the aliphatic unsaturated group include alkenyl groups such as C2 to C6 alkenyl groups (eg, vinyl, propenyl, butenyl, hexenyl, etc.).
  • alkenyl groups such as C2 to C6 alkenyl groups (eg, vinyl, propenyl, butenyl, hexenyl, etc.).
  • An alkenyl group having an unsaturated terminal is more preferable, and a vinyl group is preferable from the viewpoint of ease of synthesis.
  • R is a C1-C6 alkyl group (for example, methyl, ethyl, propyl, etc.) or a C6-C12 aryl group (for example, phenyl, tolyl, xylyl, etc.). R may be the same or different.
  • 1 to 60 mol% of R is a C6 to C12 aryl group
  • 1 to 50 mol% of R is a C6 to C12 aryl group. It is preferably 1 to 35 mol%.
  • the C1-C6 alkyl group is preferably methyl, and the C6-C12 aryl group is preferably phenyl.
  • 1 to 60 mol% of R is preferably a phenyl group and the remainder is a methyl group, and more preferably 1 to 50 mol% of R.
  • (B1) has a viscosity at 23 ° C. of 100 to 1,000,000 cP, more preferably 1000 to 1,000,000 cP, and more preferably 3000 to 500,000 cP from the viewpoint of workability of the composition.
  • Those having a high viscosity are not preferable because an unnecessarily high value is not preferable because the remaining material remains in the form of a thread from the tip of the discharge port after application of the composition, and the member is easily soiled when the tip is moved.
  • a particularly preferred viscosity range is 15,000 to 300,000 cP.
  • the number of aliphatic unsaturated groups in (B1) can be determined from the molecular weight obtained by calculating the average structural formula by NMR, calculating the molecular weight.
  • the method for preparing (B1) is not particularly limited, and for example, polycondensation and re-equilibration of chlorosilanes necessary for a desired structure such as dimethyldichlorosilane, diphenyldichlorosilane, methylphenyldichlorosilane, dimethylvinylchlorosilane, and the like is performed. Alternatively, it can be obtained by cohydrolyzing alkoxysilanes necessary for a desired structure such as dimethyldimethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, dimethylvinylmethoxy, etc., and performing polycondensation and re-equilibration reactions.
  • 1,1,3,3,5,5,7,7-octamethylcyclotetrasiloxane, 1,1,3,3,5,5,7,7-octaphenylcyclotetrasiloxane, 1,1,3 Siloxanes necessary for a desired structure such as 3,3-tetramethyl-1,3-divinyldisiloxane are converted to alkali catalysts (alkali metal hydroxides, alkali metal silanolates, ammonium hydroxides, etc.) or acid catalysts (sulfuric acid). , Silanolate sulfate, trifluoromethanesulfonic acid) in the presence of ring-opening polymerization and re-equilibration.
  • (B1) may be used alone or in combination of two or more.
  • (B2) is SiO 4/2 unit, R ′ 3 SiO 1/2 unit and R ′ 2 SiO 2/2 unit, and optionally further R′SiO 3/2 unit (wherein R ′ is It is a branched polyorganosiloxane consisting of a C1-C6 alkyl group or an aliphatic unsaturated group and having at least 3 R's per molecule as an aliphatic unsaturated group.
  • (B2) is a branched structure having a ratio of 6 to 10 moles of SiO 4/2 units and 4 to 8 moles of R ′ 3 SiO 1/2 units to 1 mole of R ′ 2 SiO 2/2 units.
  • Polyorganosiloxane is mentioned.
  • (B2) is preferably a solid or viscous semi-solid resinous or liquid at room temperature. Examples include those having a weight average molecular weight of 1,000 to 400,000, and preferably 2,000 to 200,000. The weight average molecular weight is a value obtained by using polystyrene as a calibration curve by gel permeation chromatography (GPC).
  • Examples of the aliphatic unsaturated group relating to R ′ include the groups listed as the aliphatic unsaturated group in (B1), and specifically include alkenyl groups such as C2 to C6 alkenyl groups (eg, vinyl, propenyl, butenyl). Hexenyl, etc.). An alkenyl group having an unsaturated terminal is more preferable, and a vinyl group is preferable from the viewpoint of ease of synthesis.
  • R ′ which is an aliphatic unsaturated group may be present as R ′ of any unit, but is preferably present as R ′ of the R ′ 2 SiO unit.
  • R ′ other than the aliphatic unsaturated group is a C1-C6 alkyl group (for example, methyl, ethyl, propyl, etc.), and a methyl group is preferable in consideration of heat resistance.
  • (B2) when used, it may be used alone or in combination of two or more.
  • the composition of the present invention includes (C) a photoreaction initiator.
  • C) is a component that functions as a radical initiator or a sensitizer when photocrosslinking (A) and (B).
  • C) is an aromatic hydrocarbon, acetophenone and derivatives thereof, benzophenone and derivatives thereof, o-benzoylbenzoic acid ester, benzoin and benzoin ether and derivatives thereof, xanthone and derivatives thereof, disulfide compounds, quinones.
  • Examples include compounds, halogenated hydrocarbons and amines, and organic peroxides. From the viewpoint of compatibility with silicone and stability, a compound or an organic peroxide containing a substituted or unsubstituted benzoyl group is more preferable.
  • Examples of (C) include acetophenone, propiophenone, 2-hydroxy-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACUREC651: manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR 1173: manufactured by BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184: manufactured by BASF), 1- [4- ( 2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (IRGACUREGA2959, manufactured by BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy- 2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one (IRGACURE® 127: manufactured by BASF), 2-methyl-1- (4-methyl Thiophenyl) -2-morpholinopropan-1-one (IRGACURE 907: manufactured by
  • (C) may be used alone or in combination of two or more.
  • the composition of the present invention includes (D) a silane compound containing an aliphatic unsaturated group.
  • (D) plays the role which improves the adhesiveness and adhesiveness to the base material of hardened
  • the aliphatic unsaturated group include the groups listed as the aliphatic unsaturated group in (B1), specifically, alkenyl groups such as C2 to C6 alkenyl groups (for example, vinyl, propenyl, butenyl, hexenyl, etc.) ).
  • An alkenyl group having an unsaturated terminal is more preferable, and a vinyl group is preferable from the viewpoint of ease of synthesis.
  • Examples of (D) include 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane, preferably 3-methacryloxypropyltriethoxysilane, 3- Methacryloxypropyltrimethoxysilane.
  • (D) may be used alone or in combination of two or more.
  • the composition of the present invention contains (E) fumed silica having a BET specific surface area of 180 to 500 m 2 / g.
  • a viscosity suitable for dam formation can be obtained, and thixotropy can be imparted.
  • the composition of the present invention has a high viscosity of 20,000 cP or more, and generally there is a concern that the wettability is lowered and the adhesiveness of the cured product is poor. Nevertheless, by properly blending the component (E), the cured product of the composition of the present invention exhibits good adhesiveness, but the blend of (E) contributes to this. I understood.
  • the BET specific surface area of the fumed silica is 180 to 500 m 2 / g.
  • a material in this range it is possible to impart the necessary thixotropy to the composition in a small amount, and accordingly, a composition with higher transparency can be easily obtained.
  • From the viewpoint of transparency it is preferably 200 to 500 m 2 / g, and more preferably 300 to 500 m 2 / g.
  • the load is applied to the kneading operation and the like on the preparation method, since the appearance tends to lump of stones or the like tends to occur flame, 500 meters 2 / g or less of those Is preferred.
  • the fumed silica includes not only the surface-treated fumed silica but also the surface-treated fumed silica.
  • the surface treatment can improve compatibility and increase the thixotropy.
  • Examples of the surface treatment include treatment with chlorosilane (methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, etc.), alkoxysilane, hexamethyldisilazane, octamethylcyclotetrasiloxane, dimethylsiloxane oligomer, and the like.
  • treatment with hexamethyldisilazane is preferable from the viewpoint of transparency.
  • These surface treatment agents may be blended with kneaded silica at the time of preparation of the composition of the present invention, and kneaded to perform silica surface treatment.
  • (E) may be used alone or in combination of two or more.
  • the number of mercaptoalkyl groups bonded to the silicon atom in (A) is HS
  • the number of aliphatic unsaturated groups in (B) is ViB
  • the number of aliphatic unsaturated groups in (D) is ViD.
  • the ratio of HS to ViB + ViD (HS / (ViB + ViD)) is 0.45 to 1.50, preferably 0.50 to 1.30 from the viewpoint of imparting appropriate hardness and elasticity to the cured product. More preferably, it is 0.60 to 1.20.
  • the number of aliphatic unsaturated groups in (B) is equal to the number of aliphatic unsaturated groups ViB1 in (B1), while (B1) and When (B2) is used in combination, the number of aliphatic unsaturated groups in (B) is the number of aliphatic unsaturated groups ViB1 in (B1) and the number of aliphatic unsaturated groups in (B2) ViB2. It becomes the sum of.
  • the ratio of HS to ViB is preferably 0.5 to 3.5, 0.95 Is more preferably 3, and more preferably 1-2.
  • the ratio of HS to ViD is preferably 1.2 to 3.5 in terms of good adhesion and further improvement in suppression of temperature change of the cured product, preferably 1.5 to 3. More preferably, it is 1.8 to 2.5.
  • (C) is preferably 0.05 to 50 parts by weight with respect to (B) 100 parts by weight. More preferably, it is 0.1 to 40 parts by weight.
  • (E) can be used in an amount of 0.5 to 24 parts by weight with respect to 100 parts by weight of (B). From the viewpoint of improving adhesion to a substrate, (E) is 1 to 23 parts by weight. Part by weight, preferably 5 to 20 parts by weight.
  • the total amount of (A) to (E) is preferably 55% by weight or more, more preferably 75% by weight or more, and still more preferably 90% in the composition. % By weight or more.
  • the composition of the present invention preferably further contains (F) a silicone resin adhesion improver (however, (A), (B) and (D) are excluded).
  • the silicone resin adhesion improver refers to a silicone resin having tackiness, and is blended as necessary in order to further strengthen and stabilize the adhesive property of the ultraviolet curable silicone resin composition of the present invention. In particular, when the adherend is a polarizing plate, a high improvement effect can be expected.
  • (F) includes at least one silicone resin selected from the group consisting of MQ resin, MDQ resin, MT resin, MDT resin, MDTQ resin, DQ resin, DTQ resin and TQ resin.
  • Adhesive adhesion improver (but not containing aliphatic unsaturated group and mercapto group) is preferable, and is selected from the group consisting of MQ resin, MDQ resin, MDT resin and MDTQ resin from the viewpoint of fluidity and ease of synthesis.
  • One or more silicone resin-based adhesion improvers are more preferable, and one or more silicone resin-based adhesion improvers selected from the group consisting of MQ resins, MDQ resins, and MDT resins are more preferable, and high tackiness and structure control are easy. From the viewpoint, MQ resin is more preferable.
  • the weight average molecular weight is preferably 2,000 to 100,000, more preferably 5,000 to 80,000, and still more preferably 10,000 to 60,000.
  • the weight average molecular weight is a value obtained by using polystyrene as a calibration curve by gel permeation chromatographic analysis (GPC).
  • (F) can be used at 150 parts by weight or less with respect to 100 parts by weight of (B), and (F) is preferably 5 to 150 parts by weight from the viewpoint of improving the adhesion to the substrate. 10 to 120 parts by weight is more preferable, and 15 to 100 parts by weight is further preferable.
  • the silane coupling agent (excluding (D)
  • inorganic fillers other than fumed silica polymerization inhibitor, antioxidant, light resistance
  • Additives such as UV absorbers and light stabilizers, which are stability stabilizers, can be blended.
  • the composition of the present invention is a polyorganosiloxane containing an aliphatic unsaturated group other than (B) within a range not impairing the effects of the present invention (for example, a branched polyorganosiloxane containing an aliphatic unsaturated group). Can be included, but preferably is not included.
  • silane coupling agents include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-glycidoxypropyltrimethoxysilane.
  • trimethoxysilylpropyldiallyl isocyanurate bis (trimethoxysilylpropyl) allyl isocyanurate, tris (trimethoxysilylpropyl) isocyanurate, triethoxysilylpropyldiallyl isocyanurate, bis ( Examples include triethoxysilylpropyl) allyl isocyanurate and tris (triethoxysilylpropyl) isocyanurate.
  • polymerization inhibitor examples include hydroquinone, p-methoxyphenol, t-butylcatechol, phenothiazine and the like.
  • the antioxidant can be used to prevent oxidation of the cured product of the composition and improve weather resistance, and examples thereof include hindered amine-based and hindered phenol-based antioxidants.
  • examples of the hindered amine antioxidant include N, N ′, N ′′, N ′′ ′-tetrakis- (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis- (2,2,6 , 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine ⁇ N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [ ⁇ 6- (1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-
  • hindered phenol antioxidants include penta Erythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene-bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), N, N′-hexane-1,6-diylbis [3- ( 3,5-di-tert-butyl-4-hydroxyphenylpropioamide), 3,5-bis (1,1-dimethylethyl) -4-hydroxyC7-C9 side chain alkyl ester of benzenepropanoic acid, 2,4- Dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-
  • the light stabilizer can be used to prevent photooxidative degradation of the cured product, and examples thereof include benzotriazole-based, hindered amine-based, and benzoate-based compounds.
  • UV absorbers that are light-resistant stabilizers can be used to prevent light deterioration and improve weather resistance, for example, UV absorbers such as benzotriazole, triazine, benzophenone, and benzoate Etc.
  • Examples of the ultraviolet absorber include 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6- Di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, methyl 3- (3- (2H-benzotriazole-2) -Il) -5-tert-butyl-4-hydroxyphenyl) propionate / polyethylene glycol 300 reaction product, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4 -Benzotriazole ultraviolet absorbers such as methylphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(he Sil) oxy] -phenol and other triazine ultraviolet absorbers, benzophenone ultraviolet absorbers such as
  • Examples include, but are not limited to, benzoate ultraviolet absorbers.
  • the said ultraviolet absorber may be individual, or may use 2 or more types together.
  • a hindered amine system is preferable. Among them, it is preferable to use a tertiary amine-containing hindered amine light stabilizer for improving the storage stability of the composition.
  • Tertiary amine-containing hindered amine light stabilizers include Tinuvin 622LD, Tinuvin 144, CHIMASSORB 119FL (all manufactured by BASF); MARK LA-57, LA-62, LA-67, LA-63 (all Asahi Light stabilizers such as Sanol LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by Sankyo Co., Ltd.).
  • the composition of the present invention has a viscosity at 23 ° C. of 20,000 to 10,000,000 cP from the viewpoint of maintaining the shape after discharge in dam formation and preventing the sealant from flowing out.
  • the viscosity is a value measured at a rotational speed of 6 rpm.
  • the lower limit is preferably 23,000 cP, more preferably 25,000 cP, and from the viewpoint of dischargeability, the upper limit is preferably 3,000,000 cP, more preferably 2,000,000 cP.
  • compositions of the present invention at 23 ° C., viscosity measured at a rotation speed 6rpm the (cP) at V 6rpm, 23 ° C., viscosity measured at a rotation speed 12rpm a (cP) and V 12rpm, with V 6rpm / V 12rpm
  • the obtained thixotropy ratio is preferably 1.05 to 2.0. When the thixotropy ratio is in this range, the discharge is easy and the shape after discharge can be maintained.
  • the thixotropy ratio is more preferably 1.1 to 1.65, and still more preferably 1.1 to 1.6.
  • the composition of the present invention can be obtained by blending (A) to (E), optional component (F) and additives.
  • blend (A) mix uniformly, and in the absence of ultraviolet rays, (C) and (D) and optional polymerization inhibitor. It is preferable to mix.
  • put (A), (B), and (F) if necessary into a universal mixing stirrer, and mix uniformly at room temperature (10-30 ° C.) at low speed, and then in the absence of ultraviolet light, (C) , (D), a polymerization inhibitor, etc. are added, mixed under ice-cooling (less than 10 ° C.) at low speed, with cooling under reduced pressure, degassed, and then filtered as desired to obtain a composition. be able to.
  • the composition of the present invention can be cured by irradiation with ultraviolet rays.
  • the lamp in the wavelength range of the reactive range (C) include, for example, a high pressure mercury lamp (UV-7000), metal halide lamp (MHL-250, MHL-450, MHL-150, MHL-) manufactured by Ushio Electric Co., Ltd. 70), Korea: Metal halide lamp (JM-MTL 2KW) manufactured by JM tech, UV irradiation lamp (OSBL360) manufactured by Mitsubishi Electric Corporation, UV irradiation machine (UD-20-2) manufactured by Nippon Battery Co., Ltd.
  • Irradiation dose is preferably 100 ⁇ 10000mJ / cm 2, more preferably 300 ⁇ 5000mJ / cm 2, more preferably from 500 ⁇ 3500mJ / cm 2.
  • the cured product of the composition of the present invention has the following suitable physical properties.
  • the visible light transmittance is more preferably 96% or more, and still more preferably 98% or more. From the viewpoint of visible transmittance, it is preferable to suppress the amount of (C) used. Further, after each of the components (A) and (B) is mixed uniformly or after heat treatment at 80 to 180 ° C., the visible light transmittance after curing can be improved. Heat treatment is preferable from the viewpoint of stability over time.
  • the composition of the present invention can have a curing shrinkage rate of 1.0% or less, when applied to an image display device, distortion can be easily prevented and visibility can be ensured. Is preferable.
  • the cure shrinkage is preferably 0.5% or less, more preferably 0.3% or less, and still more preferably 0.2% or less.
  • the composition according to the present invention can have an E hardness after curing of 5 to 33, when applied to an image display device, it can easily relieve stress from the outside, and has a high temperature. It is preferable in that visibility can be ensured by preventing moisture penetration even under high humidity.
  • the E hardness is preferably 5 to 30, and more preferably 10 to 30.
  • the composition of the present invention is preferable in that the elongation after curing can be 50% or more, which is excellent in stress relaxation from the outside and can secure deformation resistance.
  • the elongation after curing is preferably 80% or more, more preferably 100% or more, and further preferably 200% or more.
  • the composition of the present invention is a dam material composition in an image display device.
  • the dam material composition is used to form a frame on the display unit or the protection unit of the image display device.
  • the sealant protrudes from the display unit or the like.
  • the composition is trimmed on a liquid crystal panel with a dispensing nozzle of a dispensing machine (for example, 23G can be selected as appropriate according to the discharge amount), and then a material as a filler is applied and bonded to the cover panel.
  • a material as a filler is applied and bonded to the cover panel.
  • the composition of this invention has favorable adhesiveness, and can be applied suitably to both a display part or a protection part.
  • composition of the present invention is suitable for manufacturing a large screen image display device having an image display panel of 5 to 100 inches, more preferably 7 to 80 inches, and further preferably 10 to 60 inches. It is suitable for manufacturing an ultra-thin image display device having a thickness of preferably 10 to 500 ⁇ m, more preferably 20 to 450 ⁇ m, and even more preferably 50 to 400 ⁇ m.
  • the composition of the present invention is preferred when the sealant interposed between the protective part and the image display part in the image display device is an ultraviolet curable resin composition, more preferably an ultraviolet curable silicone resin composition.
  • an ultraviolet curable silicone resin composition used as the sealant, the composition described in WO2012 / 086402 can be used. Specifically, (A ′) the viscosity at 23 ° C. is 20 to 25000 cP.
  • R ′′ is independently C1 to C6 alkyl group or an aliphatic unsaturated group
  • R ′′ are aliphatic unsaturated groups per molecule.
  • Polyorganosiloxane containing a saturated group (however, the amount of (B2 ′) is the ratio of the number of aliphatic unsaturated groups in (B2 ′) to the total number of aliphatic unsaturated groups in (B ′).
  • the ratio of the number of mercaptoalkyl groups present in (A ′) to the total number of aliphatic unsaturated groups in (B ′) and (D ′) is 0.5 to 1.05,
  • the ratio of the number of mercaptoalkyl groups in (A ′) to the number of aliphatic unsaturated groups in (B ′) is 0.95 to 3
  • the aliphatic unsaturated groups in (D ′) An ultraviolet curable silicone resin composition in which the ratio of the number of mercaptoalkyl groups in (A ′) to the number of is 1.5 to 3 is mentioned.
  • E hardness is an amount within 1 change.
  • composition was discharged for 10 seconds using a double threaded plastic needle (Musashi Engineering Co., Ltd .: needle length 12.7 mm, gauge: 20 G (inner diameter 0.58 mm, outer diameter 0.91 mm)). It is the weight (g).
  • Visible light transmittance The liquid material is filled in a quartz cell to a thickness of 10 mm, and the cured product is set to a thickness of 150 ⁇ m, and the spectrophotometer (CM-3500d manufactured by Minolta Co., Ltd.) is used at 23 ° C. The transmittance at a visible light wavelength (360 to 780 nm) was measured.
  • CM-3500d manufactured by Minolta Co., Ltd.
  • Curing shrinkage (%) (specific gravity after curing ⁇ specific gravity before curing) / specific gravity after curing) ⁇ 100
  • E Hardness after Curing Based on JIS K 6253 E, the energy hardness was changed by DUROMETER HARDNESS TYPE E (manufactured by ASKER), and the E hardness of the cured product at 23 ° C. was measured. E hardness after hardening is E hardness of the hardened
  • the cured product has cracks of 0.02 mm or more in one direction and / or an air layer of 0.02 mm or more in one direction, and / or damage of 0.02 mm or more in one direction in either PMMA or glass. NG if there is, -If these cracks, air layer, and damage are not recognized at all, it is OK. It was. (10-2) High-temperature and high-humidity After the cured product is left in a constant-temperature and constant-humidity layer set to a high-temperature and high-humidity condition of 85 ° C.
  • CM-3500d manufactured by Minolta Co., Ltd.
  • a yellow index which is an index of the degree of discoloration. -If the yellow index is 1.0% or more, NG, -OK when the yellow index is less than 1.0% It was.
  • Cohesive failure rate (11-1) vs. acrylic, vs. glass
  • the composition On each adherend (PMMA, glass) having a width of 25 mm, the composition has a thickness of 0.1 mm and a length of 10 mm or more.
  • a sample was prepared by coating and overlaying a tempered glass plate having a thickness of 2 mm and a width of 25 mm so that the composition had a stacking width of 10 mm, followed by curing at an ultraviolet energy dose of 3000 mJ / cm 2 .
  • samples 1 day and 3 days later were subjected to a shear adhesion test using an autograph manufactured by Shimadzu Corporation with a measurement speed of 10 mm / min to peel off the adherend and glass plate. It was.
  • Each polarizing film is applied with a width of 25 mm and a length of 60 mm or more so that the thickness of the composition is 0.1 mm, and a tempered glass plate with a thickness of 2 mm and a width of 25 mm is laminated so that the overlapping width of the composition is 10 mm.
  • it was cured at an ultraviolet energy irradiation amount of 3000 mJ / cm 2 to prepare a sample.
  • the sample was pulled at a tensile rate of 10 mm / min using an autograph manufactured by Shimadzu Corporation, and peeled 180 ° from the polarizing film and glass plate as the adherend. A peel adhesion test was conducted.
  • the filling material was prepared as follows. The contents of (a-1), (c-1), (c-2), and (d-1) are as described later.
  • (A-1) 8.5 parts by weight, vinyl-terminated polymethylphenyl siloxane (viscosity 3000 cP) 79.76 weights whose end is blocked with a dimethylvinylsiloxy group, 5% by mole of diphenylsiloxy units and the remainder is dimethylsiloxy units
  • Parts and 10 parts by weight of MQ resin were mixed uniformly, then 0.22 parts by weight of (c-1), 0.22 parts by weight of (c-2) and 1.3 parts by weight of (d-1) were added, Furthermore, it mixed until it became uniform and it was set as the filling material.
  • the viscosity of this material at 23 ° C. was 2750 cP (rotation speed: 60 rpm).
  • the MQ resin is as follows.
  • Weight average molecular weight 26200 The weight molecular weight is a value using polystyrene as a calibration curve by gel permeation chromatography (GPC).
  • (A) in an Example and a comparative example is as follows.
  • (A-1) Polymethylsiloxane containing mercaptopropyl group Average structural formula: ⁇ (CH 3 ) 3 SiO 1/2 ⁇ ⁇ HS (CH 2 ) 3 SiO 3/2 ⁇ 5 ⁇ (CH 3 ) 2 SiO 2 / 2 ⁇ 60
  • (B1) in Examples and Comparative Examples is as follows.
  • (B1-1) Vinyl-terminated polymethylphenylsiloxane vinyl-terminated polydimethyldiphenylsiloxane whose ends are blocked with dimethylvinylsiloxy groups, 5 mol% of diphenylsiloxy units, and the remainder is dimethylsiloxy units.
  • a 1 L 1,1,3,3,5,5,7,7-octamethylcyclotetrasiloxane was added to a 3 L separable flask equipped with a cooling reflux tube and a three-one motor as a stirrer.
  • Dehydration was performed by heating and stirring at / h for 3 hours, and then 0.1 g of potassium hydroxide was added and heating and stirring was performed.
  • (B2) in Examples and Comparative Examples is as follows.
  • (B2-1) has an average structural formula of ⁇ (CH 3 ) 3 —SiO 1/2 ⁇ 6 ⁇ SiO 2 ⁇ 8 ⁇ (CH 2 ⁇ CH) (CH 3 ) —SiO ⁇ M 6 D v Q 8 Resin weight average molecular weight: 22450
  • the weight molecular weight is a value using polystyrene as a calibration curve by gel permeation chromatography (GPC).
  • (E) in Examples and Comparative Examples is as follows.
  • (E-1) Hemitic silica: BET specific surface area 200 m 2 / g
  • (E-2) Silazane (hexamethyldisilazane) -treated fumed silica: BET specific surface area 200 m 2 / g
  • (E-3) Hemitic silica: BET specific surface area 350 m 2 / g
  • (E-5) Octamethylcyclotetrasiloxane-treated fumed silica: BET specific surface area 200 m 2 / g
  • Example 1 30 parts by weight (300 g) of vinyl-terminated polymethylphenylsiloxane (b1-2) and 5 parts by weight of fumed silica (50 g) were placed in a 5 L universal mixing stirrer (Dalton), room temperature (22 ° C.), using a low speed lever Mix evenly for 30 minutes under rotating conditions. After uniform mixing, 70 parts by weight (700 g) of vinyl-terminated polymethylphenylsiloxane (b1-2) and 9.5 parts by weight (95 g) of mercaptopropyl group-containing polymethylsiloxane (a-1) were added and mixed uniformly.
  • compositions of Examples and Comparative Examples were prepared with the formulations shown in Tables 1, 4 and 7, and the physical properties were evaluated. The results are shown in Tables 2 to 3, 5 to 6, and 8 to 9.
  • Example 2 to 4 and 9 to 12 as in Example 1, (b1-2) was blended in two at a weight ratio of 30:70.
  • Example 5 to 8, 13 to 15, 19 to 25, and Comparative Examples 1 and 2 as in Example 1, (b1-2) was blended in two at a weight ratio of 30:70, (B2-1) was blended at the same timing as the fumed silica.
  • Comparative Example 3 all components (b1-2), (b2-1) and (a-1) were mixed, and then other components were added.
  • a cured product having physical properties such as hardness and adhesiveness suitable for use in an image display device can be obtained, and it is difficult to determine the joint between the cured product and the sealant. Therefore, it is also preferable from the viewpoint of visibility.
  • Comparative Example 3 it can be seen that when no fumed silica having a specific BET specific surface area is blended, the adhesion and curability are poor.
  • Comparative Examples 1 and 2 even if fumed silica having a specific BET specific surface area is blended, if the blending amount exceeds the range of the present invention, the adhesiveness is inferior and the joining performance is reduced. As can be seen, it is also inferior in terms of visibility.
  • the present invention is a dam material composition, and when an image display device is produced using the dam material composition, a composition in which a frame formed from the dam material composition has appropriate hardness and adhesion to an adherend. Provided. More preferably, it is difficult to distinguish the joint between the frame of the dam material and the sealant applied therein, and an image display device having good visibility can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

 その硬化物がダム材として適切な硬度及び被着体への接着性を有することに加えて、好適には継目の判別を困難にすることを可能とする、ダム材組成物、及びそれを用いた画像表示装置を提供する。 (A)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサン;(B)(B1)式(I)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、場合により(B2)SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO単位からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサン;(C)光反応開始剤;(D)脂肪族不飽和基を含有するシラン化合物;並びに(E)BET比表面積180~500m/gの煙霧質シリカ を含み、ここで、(B)及び(D)中の脂肪族不飽和基の合計個数に対する、(A)に存在するメルカプトアルキル基の個数の比が、0.45~1.50であり、かつ(E)が、(B)100重量部に対して、0.5~24重量部であり、23℃における粘度が、20,000~10,000,000cPである画像表示装置用のダム材組成物、及びこれを画像表示部と保護部との封止に用いてなる画像表示装置。

Description

画像表示装置用のダム材組成物、及びそれを用いた画像表示装置
 本発明は、画像表示装置用のダム材組成物、及びそれを用いた画像表示装置に関する。
 近年、液晶、プラズマ、有機EL等のフラットパネル型の画像表示装置が着目されている。フラットパネル型の画像表示装置は、通常、少なくとも一方がガラス等の光透過性をもつ一対の基板の間に、アクティブ素子を構成する半導体層や蛍光体層、あるいは発光層からなる多数の画素をマトリクス状に配置した表示領域(画像表示部)を有する。一般に、この表示領域(画像表示部)と、ガラスやアクリル樹脂のような光学用プラスチックで形成される保護部との周囲は、接着剤で機密に封止されている。
 このような画像表示装置においては、屋外光や室内照明の反射等による可視性(視認性)の低下を防ぐため、保護部と画像表示部との間に、封止剤を介在させる。封止剤には、例えば、紫外線硬化型シリコーン樹脂組成物が使用され(特許文献1)、熱硬化性型シリコーン樹脂組成物を使用することも提案されている(特許文献2)。シリコーン樹脂組成物以外にも、エポキシ樹脂組成物も封止剤に使用されることがある(特許文献3)。
WO2012/086402号公報 特開平6-345970号公報 特開2002-121259号公報
 しかしながら、上記の紫外線硬化型樹脂組成物を封止剤として画像表示部(例えば、液晶表示パネル)に使用する場合、組成物が、その流動性により、表示部からはみ出たり、表示部の裏側にまわりこむといった問題が生じることがあり、表示部が大型化してきている近年においてさらに顕在化してきた。この問題を解決するために、表示部又は保護部にあらかじめ、ダム材組成物を用いて枠を形成しておき、その中に組成物を適用することで、はみ出し等を防止する方法が知られている。
 特許文献3には、封止剤としてのエポキシ樹脂組成物に微細シリカを添加してダム材とすることも開示されている。しかしながら、特許文献3には、このダム材の硬化物の硬度や接着性に関する記載はない。また、他の樹脂系の封止剤を、ダム材として応用することは、特許文献3には何も記載されていない。特許文献2の実施例ではダム材が使用されているが、その組成の詳細は明らかではない。また、加熱により硬化させてはいるが、この硬化物の硬度や接着性に関する記載はない。
 本発明は、その硬化物がダム材として適切な硬度及び被着体への接着性を有する、シリコーン系のダム材組成物、及びそれを用いた画像表示装置を提供することを課題とする。さらに好適には、これに加えて、ダム材の枠と、その中の封止剤との間に、明確な継目が生じ、画像表示装置としての視認性が低下しうるという問題を解決し、継目の判別を困難にすることを可能とする、ダム材組成物、及びそれを用いた画像表示装置を提供することを課題とする。
 本発明1は、(A)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサン;
(B)(B1)式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、
は、独立して、脂肪族不飽和基であり、
Rは、独立して、C1~C6アルキル基又はC6~C12アリール基であって、Rのうち、1~60モル%はC6~C12アリール基であり、
nは、23℃における粘度を100~1,000,000cPとする数である)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、場合により(B2)SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO単位(式中、R'は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサン;
(C)光反応開始剤;
(D)脂肪族不飽和基を含有するシラン化合物;並びに
(E)BET比表面積180~500m/gの煙霧質シリカ
を含み、ここで、
 (B)及び(D)中の脂肪族不飽和基の合計個数に対する、(A)に存在するメルカプトアルキル基の個数の比が、0.45~1.50であり、
 (E)が、(B)100重量部に対して、0.5~24重量部であり、かつ
23℃における粘度が、20,000~10,000,000cPである
画像表示装置用のダム材組成物に関する。
 本発明2は、(B)中の脂肪族不飽和基の個数に対する、(A)中のメルカプトアルキル基の個数の比が、0.5~4.0である、本発明1の画像表示装置用のダム材組成物に関する。
 本発明3は、(D)中の脂肪族不飽和基の個数に対する、(A)中のメルカプトアルキル基の個数の比が、1.2~3.5である、本発明1又は2の画像表示装置用のダム材組成物に関する。
 本発明4は、(E)が、BET比表面積300~500m/gの煙霧質シリカである、本発明1~3のいずれかの画像表示装置用のダム材組成物に関する。
 本発明5は、ダム材組成物について、B型回転粘度計を使用して、23℃で、回転数6rpmで測定した粘度(cP)をV6rpm、23℃で、回転数12rpmで測定した粘度(cP)をV12rpmとし、式:V6rpm/V12rpmにより求めたチキソトロピー比の値が、1.05~2.0である、本発明1~4のいずれかの画像表示装置用のダム材組成物に関する。
 本発明6は、(C)の含有量が、(B)100重量部に対して、0.05~50重量部である、本発明1~5のいずれかの画像表示装置用のダム材組成物に関する。
 本発明7は、(D)が、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン及びビニルトリエトキシシランからなる群より選ばれる1種以上の脂肪族不飽和基を含有するシラン化合物である、本発明1~6のいずれかの画像表示装置用のダム材組成物に関する。
 本発明8は、画像表示部と保護部との封止に、本発明1~7のいずれかの画像表示装置用のダム材組成物を用いてなる、画像表示装置に関する。
 本発明はダム材組成物であって、これを用いて画像表示装置を作製した場合に、ダム材組成物から形成された枠が適切な硬度及び被着体への接着性を有する組成物である。さらに好適には、ダム材の枠と、その中の封止剤との間の継目の判別が困難で、良好な視認性を有する画像表示装置を提供することができる。
 本発明の画像表示装置用のダム材組成物は、
(A)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサン;
(B)(B1)式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、
 Rは、独立して、脂肪族不飽和基であり、
 Rは、独立して、C1~C6アルキル基又はC6~C12アリール基であって、Rのうち、1~60モル%はC6~C12アリール基であり、
 nは、23℃における粘度を100~1,000,000cPとする数である)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、場合により(B2)SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO3/2単位(式中、R'は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサン;
(C)光反応開始剤;
(D)脂肪族不飽和基を含有するシラン化合物;並びに
(E)BET比表面積180~500m/gの煙霧質シリカ
を含む。
 本発明の組成物は、(A)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサンを含む。
 (A)において、1分子中のケイ素原子に結合するメルカプトアルキル基の個数は、架橋反応による安定した構造を確保しつつ、過度な硬化収縮を抑制する点から、平均で2個以上、20個以下とすることができる。中でも、2個超、10個以下が好ましく、より好ましくは3~7個である。
 (A)において、ケイ素原子に結合するメルカプトアルキル基のアルキル部分は、C1~C6アルキル基であることができる。メルカプトアルキル基としては、メルカプトメチル、2-メルカプトエチル、3-メルカプトプロピル、4-メルカプトブチル、6-メルカプトヘキシル等が挙げられるが、合成の容易さ等の点から、メルカプトメチル、3-メルカプトプロピルが好ましく、より好ましくは3-メルカプトプロピルである。
 (A)において、ケイ素原子に結合するメルカプトアルキル基以外の有機基は、置換又は非置換基の1価の炭化水素基(ただし、脂肪族不飽和基ではないこととする)であることができる。具体的には、アルキル基、例えばC1~C6アルキル基(例えば、メチル、エチル、プロピル等);シクロアルキル基、例えばC3~C10シクロアルキル基(例えば、シクロヘキシル等);アリール基、例えばC6~C12アリール基(例えば、フェニル、トリル、キシリル等);アラルキル基、例えばC7~C13アラルキル基(例えば、2-フェニルエチル、2-フェニルプロピル等);置換炭化水素基、例えばハロゲン置換炭化水素基(例えば、クロロメチル、クロロフェニル、3,3,3-トリフルオロプロピル等)が挙げられる。合成の容易さ等の点からアルキル基が好ましく、中でもメチル、エチル、プロピルが好ましく、より好ましくはメチルである。屈折率を調整するために、アリール基を併用することができ、中でも、合成の容易さ等の点からフェニルが好ましい。
 (A)の主鎖の構造は、直鎖状、分岐状、環状のいずれでもよく、分岐状が好ましい。例えば、R''SiO3/2単位、R''SiO1/2単位及びR''SiO2/2単位、並びに場合によってはさらにSiO4/2単位(式中、R''は、それぞれ独立して、非置換又は置換の1価の炭化水素基(ただし、脂肪族不飽和基ではないこととする)を表す)からなり、1分子当たり、2個以上、20個以下のR''がメルカプトアルキル基である、メルカプトアルキル基を含有する分岐状のポリオルガノシロキサンが挙げられる。メルカプトアルキル基及び非置換又は置換の1価の炭化水素基としては、上記の基が挙げられる。メルカプトアルキル基であるR''は、いずれの単位のR''としても存在してもよいが、好ましくはR''SiO3/2単位のR''として存在する。メルカプトアルキル基及び非置換又は置換の1価の炭化水素基としては、上記の基を適用することができる。作業性と架橋反応性の点から、メルカプトアルキル基を含有するシロキサン単位とメルカプトアルキル基を含まないシロキサン単位の個数の比が、1:60~1:5のものが好ましいが、これに限定されない。
 (A)において、23℃における粘度は、20~25000cPである。作業性及び屈折率の点から、例えば、粘度は30~23000cPとすることができる。相溶性、作業性の点から、23℃における粘度は、例えば、20~2000cPとすることができ、50~500cPがさらに好ましい。
 本明細書において、粘度は、B型回転粘度計(ビスメトロン VDA-L)(芝浦システム株式会社製)にて、ローターNo.2~4を使用し、30~60rpm、23℃で測定した値とする(ただし、回転数に関して、別途記載がある場合はそれに従うこととする)。
 (A)中のメルカプト基の個数は、ヨウ素による比色滴定により測定することができる。これは、下記式:
 2RSH + I → RSSR + 2HI
の反応を利用した方法であり、滴定中、微量の過剰ヨウ素で滴定液が微黄色になることを利用する。
 (A)は、透明性が高いものであることが好ましい。透明性の指標としては、23℃において、(A)を容器に充填して、厚さ10mmについて、分光測式計によって、可視光領域波長(360~780nm)の透過率を測定したときに、透過率80%以上であることが挙げられる。透過率は、本発明の組成物の硬化物の透明性が、安定的に保持できる点から、90%以上であることが好ましい。
 (A)の調製方法は、特に限定されず、例えば、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、メルカプトプロピルメチルジメトキシシラン、メルカプトプロピルメチルジエトキシシラン、メルカプトプロピルジメチルメトキシシラン、メルカプトプロピルジメチルエトキシシラン等のアルキルクロロシラン、メルカプトアルキルアルコキシシランと、所望のアルキルクロロシラン、アルキルアルコキシシラン、シラノール含有シロキサンとを加水分解、重縮合、再平衡化することにより製造できる。
 (A)は、単独でも、二種以上を併用してもよい。
 本発明の組成物は、(B)(B1)式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、
 Rは、独立して、脂肪族不飽和基であり、
 Rは、独立して、C1~C6アルキル基又はC6~C12アリール基であって、Rのうち、1~60モル%はC6~C12アリール基であり、
 nは、23℃における粘度を100~1,000,000cPとする数である)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、場合により(B2)SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO3/2単位(式中、R'は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサンを含有する。
 (B)において、(B2)は、任意成分であり、硬化物の硬度の調整等を目的として配合することができる。(B2)を併用することにより、特に被着体が偏光板の場合において、接着性を向上させることができ、例えば、(B2)は、(B)中の脂肪族不飽和基の全個数に占める(B2)中の脂肪族不飽和基の個数の割合が20~85%となる量で使用することができる。(B2)中の脂肪族不飽和基の個数の割合は、速硬化性の点から、50%超であることが好ましく、例えば60~85%とすることができ、65~85%がより好ましい。
 (B1)に関する式(I)において、Rは、脂肪族不飽和基である。両末端のRは同一であっても、異なっていてもよいが、好ましくは同一である。
 脂肪族不飽和基としては、アルケニル基、例えばC2~C6アルケニル基(例えば、ビニル、プロペニル、ブテニル、ヘキセニル等)が挙げられる。末端が不飽和であるアルケニル基がより好ましく、合成の容易さ等の点から、ビニル基が好ましい。
 式(I)において、Rは、C1~C6アルキル基(例えば、メチル、エチル、プロピル等)又はC6~C12アリール基(例えば、フェニル、トリル、キシリル等)である。Rは同一であっても、異なっていてもよい。
 屈折率の調整の点から、Rのうち、1~60モル%はC6~C12アリール基であり、粘性およびチキソトロピー性の点から、Rのうち、1~50モル%がC6~C12アリール基であることが好ましく、より好ましくは1~35モル%である。
 合成の容易さ等の点から、C1~C6アルキル基としては、メチルが好ましく、C6~C12アリール基としては、フェニルが好ましい。
 (B1)としては、式(I)において、Rのうち、1~60モル%はフェニル基であり、残余がメチル基であるものが好ましく、より好ましくは、Rのうち、1~50モル%がフェニル基であり、残余がメチル基であるものであり、さらに好ましくは、Rのうち、1~35モル%がフェニル基であり、残余がメチル基であるものである。
 (B1)は、組成物の作業性の観点から、23℃における粘度が100~1,000,000cPであり、1000~1,000,000cPがさらに好ましく、3000~500,000cPがさらに好ましい。高粘度のものは、組成物の塗布後、吐出口先端から残存材料が糸状に残り、先端を移動させる際に部材を汚すなどの問題を生じやすいため、不必要に高い値は好ましくない。本組成物を用いた製品の生産性に大きく影響する吐出性および吐出後の形状保持の観点から、特に好ましい粘度範囲は、15,000~300,000cPである。
 (B1)中の脂肪族不飽和基の個数は、NMRにて平均構造式を求め、分子量を計算し、得られた分子量から求めることができる。
 (B1)の調製方法は、特に限定されず、例えば、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルフェニルジクロロシラン、ジメチルビニルクロロシラン等の所望の構造に必要なクロロシラン類を重縮合、再平衡化を行うか、あるいはジメチルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン、ジメチルビニルメトキシ等の所望の構造に必要なアルコキシシラン類を共加水分解し、重縮合、再平衡化反応を行なうことにより得ることができる。また、1,1,3,3,5,5,7,7-オクタメチルシクロテトラシロキサン、1,1,3,3,5,5,7,7-オクタフェニルシクロテトラシロキサン、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン等の所望の構造に必要なシロキサン類を、アルカリ触媒(水酸化アルカリ金属塩、アルカリ金属シラノレート、水酸化アンモニウム塩等)又は酸触媒(硫酸、硫酸シラノレート、トリフルオロメタンスルホン酸)の存在下で、開環重合、再平衡化を行うことにより得ることもできる。
 (B1)は、単独でも、二種以上を併用してもよい。
 (B2)は、SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO3/2単位(式中、R'は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンである。
 (B2)としては、R'SiO2/2単位1モルに対して、SiO4/2単位を6~10モル、R'SiO1/2単位を4~8モルの比率で有する分岐状ポリオルガノシロキサンが挙げられる。(B2)は、常温で固体ないし粘稠な半固体の樹脂状又は液状のものが好ましい。例えば、重量平均分子量1,000~400,000のものが挙げられ、好ましくは、2,000~200,000のものである。重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレンを検量線とした値である。
 R’に関する脂肪族不飽和基としては、(B1)において脂肪族不飽和基として挙げられた基が挙げられ、具体的にはアルケニル基、例えばC2~C6アルケニル基(例えば、ビニル、プロペニル、ブテニル、ヘキセニル等)が挙げられる。末端が不飽和であるアルケニル基がより好ましく、合成の容易さ等の点から、ビニル基が好ましい。脂肪族不飽和基であるR'は、いずれの単位のR'としても存在してもよいが、好ましくはR'SiO単位のR'として存在する。
 脂肪族不飽和基以外のR’は、C1~C6アルキル基(例えば、メチル、エチル、プロピル等)であり、耐熱性を考慮すると、メチル基が好ましい。
 (B2)を使用する場合、単独でも、二種以上を併用してもよい。
 本発明の組成物は、(C)光反応開始剤を含む。(C)は、(A)と(B)とを光架橋させる際のラジカル開始剤として、又は増感剤として機能する成分である。(C)は、反応性の観点から、芳香族炭化水素、アセトフェノン及びその誘導体、ベンゾフェノン及びその誘導体、o-ベンゾイル安息香酸エステル、ベンゾイン及びベンゾインエーテル並びにその誘導体、キサントン及びその誘導体、ジスルフィド化合物、キノン化合物、ハロゲン化炭化水素及びアミン類、有機過酸化物が挙げられる。シリコーンとの相溶性、安定性の観点から、置換又は非置換のベンゾイル基を含有する化合物又は有機過酸化物がより好ましい。
 (C)としては、例えば、アセトフェノン、プロピオフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE 651:BASF社製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(DAROCUR 1173:BASF社製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IRGACURE 184:BASF社製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(IRGACURE 2959:BASF社製)、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(IRGACURE 127:BASF社製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IRGACURE 907:BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(IRGACURE 369:BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(IRGACURE 379:BASF社製);2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(LUCIRIN TPO:BASF社製)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IRGACURE 819:BASF社製);1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](IRGACURE OXE 01:BASF社製)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(IRGACURE OXE 02:BASF社製);オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物(IRGACURE 754:BASF社製)、フェニルグリオキシリックアシッドメチルエステル(DAROCUR MBF:BASF社製)、エチル-4-ジメチルアミノベンゾエート(DAROCUR EDB:BASF社製)、2-エチルヘキシル-4-ジメチルアミノベンゾエート(DAROCUR EHA:BASF社製)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド(CGI 403:BASF社製)、ベンゾイルペルオキシド、クメンペルオキシド等が挙げられる。
 (C)は、単独でも、二種以上を併用してもよい。
 本発明の組成物は、(D)脂肪族不飽和基を含有するシラン化合物を含む。(D)は、硬化物の基材への密着性・接着性を向上させる役割を担う。脂肪族不飽和基としては、(B1)において脂肪族不飽和基として挙げられた基が挙げられ、具体的にはアルケニル基、例えばC2~C6アルケニル基(例えば、ビニル、プロペニル、ブテニル、ヘキセニル等)が挙げられる。末端が不飽和であるアルケニル基がより好ましく、合成の容易さ等の点から、ビニル基が好ましい。
 (D)としては、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられ、好ましくは3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシランである。
 (D)は、単独でも、二種以上を併用してもよい。
 本発明の組成物は、(E)BET比表面積180~500m/gの煙霧質シリカを含有する。(E)の配合により、ダム形成に適切な粘度が得られ、かつチキソ性を付与することができる。さらに、本発明の組成物は、粘度が20,000cP以上と高く、一般に濡れ性が低下し、硬化物の接着性に劣ることが懸念される。それにも関わらず、(E)成分を適宜配合することにより、本発明の組成物の硬化物は良好な接着性を示すものであるが、これには(E)の配合が寄与していることがわかった。
 煙霧質シリカのBET比表面積は、180~500m/gである。この範囲のものを使用することにより、少量で組成物に必要なチキソ性の付与が可能であり、それに伴いより透明性の高い組成物が容易に得られる。透明性の点から、好ましくは200~500m/gであり、さらに好ましくは300~500m/gである。また、500m/gを越えるものを配合する場合には、その調製方法に混練作業等に負荷がかかり、ブツ等のだまになりやすく外観に難が生じやすいため、500m/g以下のものが好ましい。
 煙霧質シリカは、表面処理されていない煙霧質シリカのみならず、表面処理された煙霧質シリカを包含する。表面処理により、相溶性向上と高チキソ化することができる。表面処理としては、クロロシラン(メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等)、アルコキシシラン、ヘキサメチルジシラザン、オクタメチルシクロテトラシロキサン、ジメチルシロキサンオリゴマー等による処理が挙げられる。特にヘキサメチルジシラザンによる処理が、透明性の点から好ましい。これらの表面処理剤は、本発明の組成物の調製時に煙霧質シリカとともに配合し、混練することで、シリカの表面処理を行うようにしてもよい。
 (E)は、単独でも、二種以上を併用してもよい。
 (A)中のケイ素原子に結合するメルカプトアルキル基の個数をHSとし、(B)中の脂肪族不飽和基の個数をViBとし、(D)中の脂肪族不飽和基の個数をViDとしたとき、適切な硬度及び弾性を硬化物にもたせる点から、ViB+ViDに対するHSの比(HS/(ViB+ViD))は、0.45~1.50であり、好ましくは0.50~1.30であり、さらに好ましくは0.60~1.20である。(B)として、(B1)のみを使用する場合、(B)中の脂肪族不飽和基の個数は、(B1)中の脂肪族不飽和基の個数ViB1に等しく、一方、(B1)と(B2)を併用する場合は、(B)中の脂肪族不飽和基の個数は、(B1)中の脂肪族不飽和基の個数ViB1と(B2)中の脂肪族不飽和基の個数ViB2の合計となる。
 また、良好な接着性を付与し、かつ硬化物の温度変化を抑制する点から、ViBに対するHSの比(HS/ViB)は、0.5~3.5であることが好ましく、0.95~3であることがより好ましく、さらに好ましくは1~2である。
 良好な接着性、硬化物の温度変化の抑制の一層の改善の点から、ViDに対するHSの比(HS/ViD)は、1.2~3.5であることが好ましく1.5~3であることがより好ましく、さらに好ましくは1.8~2.5である。
 光反応開始作用、硬化時の耐熱性及び視認性(高透過率及び低曇り性)の点から、(C)は、(B)100重量部に対して、0.05~50重量部が好ましく、より好ましくは、0.1~40重量部である。
 (E)は、(B)100重量部に対して、0.5~24重量部で使用することができ、基材への密着性を向上させる点から、(E)は、1~23重量部が好ましく、5~20重量部がさらに好ましい。
 耐変形性と視認性の観点から、(A)~(E)の合計量は、組成物中、55重量%以上であることが好ましく、より好ましくは75重量%以上であり、さらに好ましくは90重量%以上である。
 本発明の組成物は、さらに(F)シリコーン樹脂系接着向上剤(ただし、(A)、(B)及び(D)は除くこととする)を含有することが好ましい。シリコーン樹脂系接着向上剤とは、粘着性を有するシリコーン樹脂をいい、本発明の紫外線硬化型シリコーン樹脂組成物の接着性をさらに強化し安定にするために必要に応じて配合する。特に被着体が偏光板の場合、高い改善効果が見込める。
 粘着性と経済性の観点から、(F)としては、MQ樹脂、MDQ樹脂、MT樹脂、MDT樹脂、MDTQ樹脂、DQ樹脂、DTQ樹脂及びTQ樹脂からなる群から選ばれる1種以上のシリコーン樹脂系接着向上剤(ただし、脂肪族不飽和基及びメルカプト基を含有しないこととする)が好ましく、流動性、合成の容易さからMQ樹脂、MDQ樹脂、MDT樹脂及びMDTQ樹脂からなる群から選ばれる1種以上のシリコーン樹脂系接着向上剤がより好ましくMQ樹脂、MDQ樹脂及びMDT樹脂からなる群から選ばれる1以上のシリコーン樹脂系接着向上剤がさらに好ましく、粘着性の高さと構造制御が容易な点からMQ樹脂がさらに好ましい。
 なお、MQ樹脂としては、平均構造式が、下記式
{(CHSiO1/2{SiO
(式中、m+n=1であり、m及びnは0でない数である)で表わされるシリコーン樹脂が挙げられ、MDQ樹脂としては、平均構造式が、下記式
{(CHSiO1/2{SiO{(CHSiO}
(式中、m+n+l=1であり、m、n及びlは0でない数である)で表わされるシリコーン樹脂が挙げられ、MT樹脂としては、平均構造式が、下記式
{(CHSiO1/2{(CH)SiO3/2
(式中、m+o=1であり、m及びoは0でない数である)で表わされるシリコーン樹脂が挙げられ、MDT樹脂としては、平均構造式が、下記式
{(CHSiO1/2{(CHSiO}{(CH)SiO3/2
(式中、m+l+o=1であり、m、l及びoは0でない数である)で表わされるシリコーン樹脂が挙げられ、MDTQ樹脂としては、平均構造式が、下記式
{(CHSiO1/2{SiO{(CHSiO}{(CH)SiO3/2
(式中、m+n+l+o=1であり、m、n、l及びoは0でない数である)で表わされるシリコーン樹脂が挙げられ、DQ樹脂としては、平均構造式が、下記式
{SiO{(CHSiO}
(式中、n+l=1であり、n及びlは0でない数である)で表わされるシリコーン樹脂が挙げられ、DTQ樹脂としては、平均構造式が、下記式
{SiO{(CHSiO}{(CH)SiO3/2
(式中、n+l+o=1であり、n、l及びoは0でない数である)で表わされるシリコーン樹脂が挙げられ、TQ樹脂としては、平均構造式が、下記式
{SiO{(CH)SiO3/2
(式中、n+o=1であり、m及びoは0でない数である)で表わされるシリコーン樹脂が挙げられる。
 (F)の重量平均分子量は、2,000~100,000が好ましく、より好ましくは5,000~80,000であり、さらに好ましくは10,000~60,000である。ここで、重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレンを検量線とした値とする。
 (F)は、(B)100重量部に対して、150重量部以下で使用することができ、基材への密着性を向上させる点から、(F)は、5~150重量部が好ましく、10~120重量部がより好ましく、15~100重量部がさらに好ましい。
 本発明の組成物には、本発明の効果を損なわない範囲で、シランカップリング剤(但し、(D)は除く)、煙霧質シリカ以外の無機充填剤、重合禁止剤、酸化防止剤、耐光性安定剤である紫外線吸収剤、光安定化剤等の添加剤を配合することができる。本発明の組成物は、本発明の効果を損なわない範囲で、(B)以外の脂肪族不飽和基を含有するポリオルガノシロキサン(例えば、脂肪族不飽和基を含有する分岐状ポリオルガノシロキサン)を含むことができるが、好ましくは含まない。
 シランカップリング剤としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、トリメトキシシリルプロピルジアリルイソシアヌレート、ビス(トリメトキシシリルプロピル)アリルイソシアヌレート、トリス(トリメトキシシリルプロピル)イソシアヌレート、トリエトキシシリルプロピルジアリルイソシアヌレート、ビス(トリエトキシシリルプロピル)アリルイソシアヌレート、トリス(トリエトキシシリルプロピル)イソシアヌレートが挙げられる。
 重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、t-ブチルカテコール、フェノチアジン等が挙げられる。
 酸化防止剤は、組成物の硬化物の酸化を防止して、耐候性を改善するために使用することができ、例えば、ヒンダードアミン系やヒンダードフェノール系の酸化防止剤等が挙げられる。ヒンダードアミン系酸化防止剤としては、例えば、N,N′,N″,N″′-テトラキス-(4,6-ビス(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス-(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合体、[デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物(70%)]-ポリプロピレン(30%)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケ-ト、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト、1-[2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4.5]デカン-2,4-ジオン等が挙げられるが、これらに限定されるものではない。ヒンダードフェノール系酸化防止剤としては、例えば、ペンタエリストール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、チオジエチレン-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、N,N′-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオアミド)、ベンゼンプロパン酸3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシC7-C9側鎖アルキルエステル、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート、3,3′,3″,5,5′,5″-ヘキサン-tert-ブチル-4-a,a′,a″-(メシチレン-2,4,6-トリル)トリ-p-クレゾール、カルシウムジエチルビス[[[3,5-ビス-(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、N-フェニルベンゼンアミンと2,4,4-トリメチルペンテンとの反応生成物、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール等が挙げられるが、これらに限定されるものではない。上記酸化防止剤は、単独でも、二種以上を併用してもよい。
 光安定剤は、硬化物の光酸化劣化を防止するために使用することができ、例えば、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が挙げられる。耐光性安定剤である紫外線吸収剤は、光劣化を防止して、耐候性を改善するために使用することができ、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系等の紫外線吸収剤等が挙げられる。紫外線吸収剤としては、例えば、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール等のベンゾトリアゾール系紫外線吸収剤、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール等のトリアジン系紫外線吸収剤、オクタベンゾン等のベンゾフェノン系紫外線吸収剤、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系紫外線吸収剤等が挙げられるが、これらに限定されるものではない。上記紫外線吸収剤は単独でも、二種以上を併用してもよい。光安定化剤としては、ヒンダードアミン系が好ましい。中でも、第3級アミン含有ヒンダードアミン系光安定剤を用いることが、組成物の保存安定性改良のために好ましい。第3級アミン含有ヒンダードアミン系光安定剤としては、チヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASF社製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも旭電化工業株式会社製);サノールLS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれも三共株式会社製)等の光安定剤が挙げられる。
 本発明の組成物は、ダム形成において吐出後の形状維持、封止剤の流出防止の観点から、23℃における粘度が、20,000~10,000,000cPである。ここで、粘度は、回転数6rpmで測定した値とする。形状維持の点から、下限は、好ましくは23,000cPであり、より好ましくは25,000cPであり、また、吐出性の観点から、上限は、好ましくは3,000,000cPであり、より好ましくは2,000,000cPである。
 本発明の組成物は、23℃で、回転数6rpmで測定した粘度(cP)をV6rpm、23℃で、回転数12rpmで測定した粘度(cP)をV12rpmとし、V6rpm/V12rpmで求めたチキソトロピー比が、1.05~2.0であることが好ましい。チキソトロピー比が、この範囲にあると、吐出が容易でかつ吐出後の形状が維持可能である。チキソトロピー比は、より好ましくは、1.1~1.65であり、さらに好ましくは、1.1~1.6である。
 本発明の組成物は、(A)~(E)、並びに任意成分の(F)及び添加剤を配合することにより得られる。調製にあたっては、(B)及び任意の(F)を配合した後、(A)を配合、均一に混合後、紫外線の不存在下で、(C)及び(D)並びに任意の重合禁止剤を配合することが好ましい。例えば、万能混合攪拌機に(A)、(B)、必要により(F)を入れ、室温(10~30℃)、低速にて均一に混合し、その後、紫外線の不存在下で、(C)、(D)及び重合禁止剤等を加え、氷水冷却下(10℃以下)、低速にて、冷却減圧にて均一に混合し、脱泡した後、所望により濾過することにより、組成物を得ることができる。
 本発明の組成物は、紫外線を照射することによって、硬化させることができる。(C)の反応可能な範囲の波長領域のランプとしては、例えば、ウシオ電機株式会社製の高圧水銀ランプ(UV-7000)、メタルハライドランプ(MHL-250、MHL-450、MHL-150、MHL-70)、韓国:JM tech社製のメタルハライドランプ(JM-MTL 2KW)、三菱電機株式会社製の紫外線照射灯(OSBL360)、日本電池株式会社製 紫外線照射機(UD-20-2)、株式会社東芝製蛍光ランプ(FL-20BLB))、Fusion社製のHバルブ、Hプラスバルブ、Dバルブ、Qバルブ、Mバルブ等が挙げられる。照射量は、100~10000mJ/cmが好ましく、より好ましくは300~5000mJ/cmであり、さらに好ましくは500~3500mJ/cmである。
 本発明の組成物の硬化物は、以下のような好適な物性を有する。
〔硬化後の可視光透過率〕
 本発明の組成物は、硬化厚み150μmにおける硬化後の可視光透過率を、95%以上とすることができるため、視認性の点から好ましい。可視光透過率は、より好ましくは96%以上、さらに好ましくは98%以上である。可視透過率の点からは、(C)の使用量を抑制することが好ましい。また、(A)、(B)の各成分を、それぞれ、又は均一に混合した後、80~180℃にて加熱処理することにより、硬化後の可視光透過率を向上させることができる。加熱処理は、経時的安定性の点からも好ましい。
〔硬化収縮率〕
 本発明の組成物は、硬化収縮率を、1.0%以下とすることができるため、画像表示装置に適用した場合に、容易に、歪みが防止され、視認性を確保することができる点で好ましい。硬化収縮率は、好ましくは0.5%以下、より好ましくは0.3%以下、さらに好ましくは0.2%以下である。
〔硬化後のE硬度〕
 本発明の組成物は、硬化後のE硬度を5~33とすることができるため、画像表示装置に適用した場合に、容易に、外部からの応力を適度に緩和することができ、かつ高温高湿下でも水分の浸透を抑止して、視認性を確保することができる点で好ましい。E硬度は、好ましくは5~30であり、より好ましくは10~30である。
〔硬化後の伸び〕
 本発明の組成物は、硬化後の伸びを50%以上とすることができるため、外部からの応力緩和に優れ、耐変形性を確保することができる点で好ましい。硬化後の伸びは、好ましくは80%以上であり、100%以上がより好ましく、200%以上がさらに好ましい。
 本発明の組成物は、画像表示装置におけるダム材組成物である。ダム材組成物は、画像表示装置の表示部又は保護部に枠を形成するために用いられ、この枠内に封止剤を適用することにより、封止剤が、表示部等からはみ出したりすることを防止する。例えば、液晶パネル上に、本組成物をディスペンシング機の吐出ノズル(例えば23Gなど吐出量に合わせて適宜選択可能)で、縁取りを行い、その後充填剤である材料を塗布しカバーパネルと貼り合わせることにより、充填剤の液晶パネル裏へ回り込みを防ぎ、周辺部への汚染を防ぐことができる。本発明の組成物は、良好な接着性を有し、表示部又は保護部のどちらにも好適に適用することができる。
 本発明の組成物は、画像表示パネルが5~100インチ、より好ましくは7~80インチ、さらに好ましくは10~60インチの大画面画像表示装置の製造に好適であり、あるいは、画像表示装置が、好ましくは10~500μm、より好ましくは20~450μm、さらに好ましくは50~400μmであるような、超薄型の画像表示装置の製造に好適である。
 本発明の組成物は、画像表示装置において保護部と画像表示部との間に介在させる封止剤が、紫外線硬化型樹脂組成物である場合に好ましく、より好ましくは、紫外線硬化型シリコーン樹脂組成物の場合である。封止剤として用いる紫外線硬化型シリコーン樹脂組成物としては、WO2012/086402号公報に記載の組成物を用いることができ、具体的には、(A’)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサン;
(B’)(B1’)式(I’):
Figure JPOXMLDOC01-appb-C000005
(式中、
1’は、独立して、脂肪族不飽和基であり、
R'は、独立して、C1~C6アルキル基又はC6~C12アリール基であって、R'のうち、1~60モル%はC6~C12アリール基であり、
n'は、23℃における粘度を100~25000cP、好ましくは100~8000cPとする数である)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、(B2’)SiO4/2単位、R''SiO1/2単位及びR''SiO2/2単位、並びに場合によってはさらにR''SiO3/2単位(式中、R''は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR''が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサン(ただし、(B2’)の量は、(B’)中の脂肪族不飽和基の全個数に占める(B2’)中の脂肪族不飽和基の個数の割合が50%以下となる量とする);
(C’)光反応開始剤;及び
(D’)脂肪族不飽和基を含有するシラン化合物
を含み、ここで、
(B’)及び(D’)中の脂肪族不飽和基の合計個数に対する、(A’)に存在するメルカプトアルキル基の個数の比が、0.5~1.05であり、
(B’)中の脂肪族不飽和基の個数に対する、(A’)中のメルカプトアルキル基の個数の比が、0.95~3であり、かつ
(D’)中の脂肪族不飽和基の個数に対する、(A’)中のメルカプトアルキル基の個数の比が、1.5~3である、紫外線硬化型シリコーン樹脂組成物が挙げられる。
 以下、実施例及び比較例によって、本発明をさらに詳細に説明する。部、%は、他に断りのない限り、重量部、重量%を表す。本発明は、これらの実施例によって限定されるものではない。実施例及び比較例で調製した各組成物の硬化は、ウシオ電機株式会社製:UVL-4001Mを用い、120w/cmにて、特段の断りのない限り、硬化性試験における最大のエネルギー照射量(光量計:UIT-250、ウシオ電機株式会社製にて測定)の紫外線エネルギー照射量にて行った。最大のエネルギー照射量は、硬化物のE硬度の変化が1以下となった量とする。硬化物のE硬度が変化しなくなった量は、1000mJ/cmきざみで照射量を上げていき、E硬度が2度続けて同じ値となった量のうち、大きい方の照射量であるか、E硬度が1以内の変化であった量である。
〔物性の評価条件〕
(1)メルカプト基の個数の測定
 ヨウ素源として、1/10規定ヨウ素溶液(特級試薬)を使用し、比色滴定により、単位重量当りのメルカプト基数を定量した。
計算方法: SH含有量(mmol/g) = (A×P×0.1)/(W×C)
A:変色するまでに要したヨウ素溶液滴下量
P:ヨウ素溶液の補正係数(試薬に記載されている補正係数):補正が必要な場合に記載
W:サンプル重量(g)
C:サンプルの不揮発分
 予備測定を行ないヨウ素溶液量を求め、その後精度よく3回測定し、3回の平均値を求めた。
(2)脂肪族不飽和基の個数の測定
 NMR測定における、Si-CH(0.1ppm付近)、Si-Ph(7.3-7.7ppm付近)及びCHSi-CH=CH(5.7-6.3ppm付近)のピークが、それぞれ、(CHSiO単位、Ph-SiO単位及び(CHSi-CH=CH1/2単位に対応するものとして、それぞれのピーク強度の比より単位数を求め、平均構造式を得て、そこから分子量を求め、不飽和基の個数を算出した。
(3)粘度
 回転粘度計(ビスメトロン VDA-L)(芝浦システム株式会社製)を使用して、400cP以下の範囲は、No.2ローターを使用し、400超~1500cPの範囲は、No.3ローターを使用し、1500cP超の範囲は、No.4ローターを使用し、所定の回転数で、23℃における粘度を測定した。チキソ性は、回転数12rpmにおける粘度:V12rpm、回転数6rpmにおける粘度:V6rpmを測定し、式:V6rpm/V12rpmによりにより求めた値である。
(4)吐出性
 2条ネジプラスチックニードル(武蔵エンジアリング株式会社製:針長12.7mm、ゲージ:20G(内径0.58mm、外径0.91mm)を用いて、組成物を10秒間吐出した際の重量(g)である。
(5)可視光透過率
 液状物については、石英セルに充填して厚さ10mmについて、硬化物については厚さ150μmにして、分光測式計((株)ミノルタ製CM-3500d)によって23℃における可視光領域波長(360~780nm)における透過率を測定した。
(6)硬化収縮率
 組成物の硬化前と硬化後の比重を電子比重計(MIRAGE社製SD-120L)により測定し、下記式より双方の比重差から算出した。
  硬化収縮率(%)=(硬化後の比重-硬化前の比重)/ 硬化後の比重)×100
(7)硬化後のE硬度
 JIS K 6253 Eに準拠し、DUROMETER HARDNESS TYPE E(ASKER製)にて、エネルギー照射量を変化させて、23℃における硬化物のE硬度を測定した。硬化後のE硬度は、最大のエネルギー照射量で硬化させた硬化物のE硬度である。
(8)硬化後の伸び
 JIS K 6301に準拠し、ショッパー引張り試験機(株式会社東洋精機製作所 製)にて23℃における最大のエネルギー照射量で硬化させた硬化物の伸びを測定した。
(9)比重
 組成物の硬化物の比重は、電子比重計(MIRAGE社製SD-120L)により23℃にて測定した。
(10)耐クラック性及び変色性
(10-1)ヒートショック
 組成物の厚みが200μmとなるように、1mm厚のガラス板全面に塗布し、1mm厚のPMMA板で挟み、3000mJ/cmの紫外線エネルギー照射量にて硬化させた後、-50℃から125℃までの温度サイクル(各温度30分間保持)にて環境試験を行なった(機器名:エスペック株式会社製TSA-71S-A)。
 その後、23℃の状態に戻した後、硬化物及びPMMA、ガラスの状態を光学顕微鏡(10倍)で観察した。
 -硬化物に、一方向で0.02mm以上のクラック及び/若しくは一方向で0.02mm以上の空気層が生じる、並びに/又はPMMAとガラスのいずれかに一方向で0.02mm以上の損傷がある場合をNG、
 -これらのクラック、空気層、損傷が全く認められない場合をOK
とした。
(10-2)高温多湿下
 硬化物を温度85℃、湿度85%RHの高温多湿条件に設定した恒温恒湿層に500時間放置後、分光測式計((株)ミノルタ製CM-3500d)により、温度23℃、湿度50%の状態に戻した後に変色の度合いの指標であるイエローインデックスにて評価を行なった。
 -イエローインデックスが1.0%以上の場合をNG、
 -イエローインデックスが1.0%未満の場合をOK
とした。
(11)凝集破壊率
(11-1)対アクリル、対ガラス
 幅25mmの各被着体(PMMA、ガラス)上に、組成物を厚み0.1mmとなるように、幅25mmで長さ10mm以上塗布し、組成物を重ね幅が10mmとなるように厚さ2mm、幅25mmの強化ガラス板を重ねた後、3000mJ/cmの紫外線エネルギー照射量にて、硬化させて、試料を作製した。
 試料作成直後、1日後及び3日後の試料について、島津製作所(株)社製オートグラフを用い、測定速度10mm/分の引張り速度で引っ張り、被着体とガラス板を剥離させる剪断接着試験を行なった。
 被着体上の組成物の剥離部分の面積Smmを求め、
 (100×S)/(10×25)
を計算して凝集破壊率(%)とした。
(11-2)対偏光板
 偏光板フィルムとして、幅25mmの液晶用偏光フィルム(品名:SEG1425DU 日東電工社製)、アンチグレア処理したフィルム(品名:AG150日東電工社製)、及びアンチリフレクション処理されたフィルム(品名:ARSタイプ日東電工社製)を用意した。各偏光フィルムに、組成物の厚みが0.1mmとなるように幅25mmで長さ60mm以上塗布し、組成物の重ね幅が10mmとなるように厚さ2mm、幅25mmの強化ガラス板を重ねた後、3000mJ/cmとなる紫外線エネルギー照射量にて硬化させて、試料を作製した。試料作成直後及び2時間後の試料について、島津製作所(株)社製オートグラフを用い、試料を測定速度10mm/分の引張り速度で引っ張り、被着体である偏光フィルムとガラス板から180°剥離させる、ピール接着試験を行なった。
 被着体上の組成物の剥離部分の面積Smmを求め、
 (100×S)/(50×25)
を計算して凝集破壊率(%)とした。
(11-3)対アルミニウム、対ステンレス
 幅25mmの各被着体(アルミニウム、ステンレス(SUS304))上に、組成物を厚み0.1mmとなるように、幅25mmで長さ10mm以上塗布し、組成物を重ね幅が10mmとなるように厚さ2mm、幅25mmの強化ガラス板を重ねた後、ガラス側から3000mJ/cmの紫外線エネルギー照射量にて、硬化させて、試料を作製した。
 試料作成直後、1日後及び3日後の試料について、島津製作所(株)社製オートグラフを用い、測定速度10mm/分の引張り速度で引っ張り、被着体とガラス板を剥離させる剪断接着試験を行なった。
 被着体上の組成物の剥離部分の面積Smmを求め、塗布面積との比率で凝集破壊率(%)を算出した。
(100×S)/(10×25)
(12)高温時の変色
 硬化物を、温度85℃、湿度85%の条件で500時間保管した後、温度23℃、湿度50%の状態に戻し、変色の度合いの指標であるイエローインデックスを分光測式計((株)ミノルタ製CM-3500d)によって評価を行なった。
(13)打継性能
 松浪ガラス社製スライドガラス(S1112)上に、組成物(ダム材)を200μm厚みとなるように、幅0.3mmで、75mm×25mmの枠状に塗布し、2000mJ/cmとなる紫外線エネルギー照射量にて硬化させた後、充填用材料(フィル材)をその中に塗布し、松浪ガラス社製スライドガラス(S1112)を貼り合わせ、同様に3000mJ/cmとなる紫外線エネルギー照射量にて硬化させた。打ち継ぎ部分を目視で観察して、その視認性を評価した。
○:目視では容易には見分けられない
○-△:目視で簡単には見分けられない
△:目視で見分けられる
△-X:簡単に見分けられる
X:容易に見分けられる
 ここで、充填用材料は、以下のようにして調製した。(a-1)、(c-1)、(c-2)、(d-1)の内容は、後述のとおりである。
 (a-1)8.5重量部、末端がジメチルビニルシロキシ基で閉塞され、ジフェニルシロキシ単位が5モル%、残余がジメチルシロキシ単位であるビニル末端ポリメチルフェニルシロキサン(粘度3000cP)79.76重量部及びMQ樹脂10重量物を、均一に混合した後、(c-1)0.22重量部、(c-2)0.22重量部、(d-1)1.3重量部を加え、さらに均一になるまで混合して、充填用材料とした。この材料の23℃における粘度は、2750cPであった(回転数60rpm)。
MQ樹脂は、以下のとおりである。
 平均構造式:{(CHSiO1/2}{SiO3.5のMQ樹脂
 重量平均分子量:26200
 重量分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレンを検量線とした値である。
(14)温度サイクル接着試験
 ガラス板(1mm厚、137mm×102mm)の表面に、組成物(ダム材)を2条ネジプラスチックニードル(武蔵エンジアリング株式会社製:針長12.7mm、ゲージ:23G(内径0.33mm、外径0.64mm))を用いて、厚みが200μmになるように、幅0.3mmで、135mm×100mmの枠状に塗布し、充填用材料(フィル材)をサンエイテック社製ディスペンサー(2300N改)を用いて、その中に塗布し、PMMA板(1mm厚、157mm×110mm)と貼り合わせ、5000mJ/cmの紫外線エネルギー照射量にて硬化させた後、23℃で1時間放置、次いで85℃に加熱し、その温度で6時間放置した後、23℃の状態に戻すことを1サイクルとして、3サイクル繰り返した(機器名:エスペック株式会社製小型環境試験機 SU-661)。
 各サイクル後、23℃の状態に戻した状態における硬化物及びPMMA、ガラスの状態を光学顕微鏡(10倍)で観察した。
 -硬化物とPPMA及びガラスのいずれもが接着した状態ではあるが、硬化物にクラックが発生している場合を「クラック」、
 -硬化物とPMMA及びガラスの少なくともいずれかとの間で剥離が生じている場合を「剥離」
とした。
 実施例及び比較例における(A)は、以下のとおりである。
(a-1)メルカプトプロピル基を含有するポリメチルシロキサン
 平均構造式:{(CHSiO1/2}{HS(CHSiO3/2{(CHSiO2/260
 粘度:330cP
 10mm厚みにおける透過率:93.1%
 単位重量当りのメルカプト基数:0.97mmol/g
 実施例及び比較例における(B1)は、以下のとおりである。
(b1-1)ビニル末端ポリメチルフェニルシロキサン
末端がジメチルビニルシロキシ基で閉塞され、ジフェニルシロキシ単位が5モル%、残余がジメチルシロキシ単位であるビニル末端ポリジメチルジフェニルシロキサン
 1分子中の脂肪族不飽和基の平均個数:2
 NMR測定による平均構造式:
 CH=CH-Si(CH-O-{Si(CHO}1165-{SiPhO}61-Si(CH-CH=CH
 粘度:98600cP
 分子量:98540
(b1-2)の合成
 末端がジメチルビニルシロキシ基で閉塞され、ジフェニルシロキシ単位が5モル%、残余がジメチルシロキシ単位であるビニル末端ポリジメチルジフェニルシロキサン
 1分子中の脂肪族不飽和基の平均個数:2
 粘度:20020cP
 NMR測定による平均構造式:
 CH=CH-Si(CH-O-{Si(CHO}595-{SiPhO}31-Si(CH-CH=CH
 分子量:50130
(b1-2)の合成は、以下のようにして行った。
 冷却用還流管、攪拌装置としてスリーワンモーターを装備した3Lのセパルブルフラスコに、1,1,3,3,5,5,7,7-オクタメチルシクロテトラシロキサン1800g、1,1,3,3,5,5,7,7-オクタフェニルシクロテトラシロキサン260g、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン7.6gを150~160℃にて窒素ガス0.5Nm/hにて3時間加熱攪拌することにより脱水を行い、その後水酸化カリウム0.1gを加えて加熱攪拌を行った。加熱撹拌は、フラスコ内で水酸化カリウムが溶解し均一になり、かつ粘度が15000cP~18000cPに増粘するまで継続した。その後、エチレンクロロヒドリン 10gにて100℃にて中和後、スーパーセライトフロスを濾過助剤に用いて濾過した後、170~180℃、2mmHgの減圧下にて低沸分を除去することにより、末端がジメチルビニルシロキシ基で閉塞され、ジフェニルシロキシ単位が5モル%、残余がジメチルシロキシ単位であるビニル末端ポリメチルフェニルシロキサン1832gを得た。
 実施例及び比較例における(B2)は、以下のとおりである。
(b2-1)は、平均構造式が{(CH-SiO1/2{SiO{(CH=CH)(CH)-SiO}のM樹脂
 重量平均分子量:22450
 重量分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレンを検量線とした値である。
 実施例及び比較例における(C)は、以下のとおりである。
(c-1)2-ヒドロキシ-2-メチルプロピオフェノン
(c-2)2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン
(c-3)1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
 実施例及び比較例における(D)は、以下のとおりである。
(d-1)3-メタクリロキシプロピルトリメトキシシラン
 実施例及び比較例における(E)は、以下のとおりである。
(e-1)煙霧質シリカ:BET比表面積 200m/g
(e-2)シラザン(ヘキサメチルジシラザン)処理煙霧質シリカ:BET比表面積 200m/g
(e-3)煙霧質シリカ:BET比表面積 350m/g
(e-4)シラザン(ヘキサメチルジシラザン)処理煙霧質シリカ:BET比表面積 350m/g
(e-5)オクタメチルシクロテトラシロキサン処理煙霧質シリカ:BET比表面積 200m/g
 実施例及び比較例における(f-1)は、以下のとおりである。
(f-1)p-t-ブチルカテコール(重合禁止剤)
〔実施例1〕
 ビニル末端ポリメチルフェニルシロキサン(b1-2)30重量部(300g)、煙霧質シリカ5重量部(50g)を5Lの万能混合攪拌機(ダルトン社製)に入れ、室温(22℃)、低速レバーによる回転条件で30分間、均一に混合した。均一に混合した後、ビニル末端ポリメチルフェニルシロキサン(b1-2)70重量部(700g)、メルカプトプロピル基含有ポリメチルシロキサン(a-1)9.5重量部(95g)を加え、均一に混合した後、さらに、p-t-ブチルカテコール(g-1)0.04重量部(0.4g)、2-ヒドロキシ-2-メチルプロピオフェノン(c-1)0.3重量部(3.0g)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(c-2)0.3重量部(3.0g)の溶解混合物、3-メタクリロキシプロピルトリメトキシシラン(d-1)1.5重量部(15g)を加え、氷水冷却下(8℃)、低速レバーによる回転条件で30分間、冷却減圧にて均一に混合した。その後、洗浄した400メッシュの金網にて異物等を除去し、組成物を得た。
 実施例1と同様にして、表1、4及び7に示す配合で、実施例・比較例の組成物を調製し、物性を評価した。結果を表2~3、5~6、8~9に示す。
 なお、実施例2~4、9~12については、実施例1と同様に、(b1-2)を30:70の重量割合で2回に分けて配合した。
実施例5~8、13~15、19~25、比較例1~2については、実施例1と同様に、(b1-2)を30:70の重量割合で2回に分けて配合し、(b2-1)を、煙霧質シリカと同じタイミングで配合した。
 比較例3は、(b1-2)、(b2-1)(a-1)の全量を混合した後、その他の成分を加えた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明の各組成物によれば、画像表示装置に用いるのに好適な硬度、接着性等の物性を有する硬化物が得られ、この硬化物と封止剤との間の継目の判別が困難で、視認性の点からも好ましい。
 比較例3に示されるように、特定のBET比表面積を有する煙霧質シリカが配合されていない場合、接着性及び硬化性に劣ることがわかる。また、比較例1及び2に示されるように、特定のBET比表面積を有する煙霧質シリカが配合されていても、配合量が本発明の範囲を超える場合、接着性に劣り、打継性能に示されるように、視認性の点からも劣ることがわかる。
 本発明はダム材組成物であって、これを用いて画像表示装置を作製した場合に、ダム材組成物から形成された枠が適切な硬度及び被着体への接着性を有する組成物が提供される。さらに好適には、ダム材の枠と、その中に適用した封止剤との間の継目の判別が困難で、良好な視認性を有する画像表示装置を提供することもできる。

Claims (8)

  1. (A)23℃における粘度が20~25000cPである、ケイ素原子に結合するメルカプトアルキル基を含有するポリオルガノシロキサン;
    (B)(B1)式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    は、独立して、脂肪族不飽和基であり、
    Rは、独立して、C1~C6アルキル基又はC6~C12アリール基であって、Rのうち、1~60モル%はC6~C12アリール基であり、
    nは、23℃における粘度を100~1,000,000cPとする数である)で示される、脂肪族不飽和基を含有する直鎖状ポリオルガノシロキサンと、場合により(B2)SiO4/2単位、R'SiO1/2単位及びR'SiO2/2単位、並びに場合によってはさらにR'SiO単位(式中、R'は、それぞれ独立して、C1~C6アルキル基又は脂肪族不飽和基を表す)からなり、1分子当たり、少なくとも3個のR'が脂肪族不飽和基である、分岐状ポリオルガノシロキサンとからなる、脂肪族不飽和基を含有するポリオルガノシロキサン;
    (C)光反応開始剤;
    (D)脂肪族不飽和基を含有するシラン化合物;並びに
    (E)BET比表面積180~500m/gの煙霧質シリカ
    を含み、ここで、
     (B)及び(D)中の脂肪族不飽和基の合計個数に対する、(A)に存在するメルカプトアルキル基の個数の比が、0.45~1.50であり、
     (E)が、(B)100重量部に対して、0.5~24重量部であり、かつ
     23℃における粘度が、20,000~10,000,000cPである
    画像表示装置用のダム材組成物。
  2.  (B)中の脂肪族不飽和基の個数に対する、(A)中のメルカプトアルキル基の個数の比が、0.5~4.0である、請求項1記載の画像表示装置用のダム材組成物。
  3.  (D)中の脂肪族不飽和基の個数に対する、(A)中のメルカプトアルキル基の個数の比が、1.2~3.5である、請求項1又は2記載の画像表示装置用のダム材組成物。
  4.  (E)が、BET比表面積300~500m/gの煙霧質シリカである、請求項1~3のいずれか1項記載の画像表示装置用のダム材組成物。
  5.  ダム材組成物について、B型回転粘度計を使用して、23℃で、回転数6rpmで測定した粘度(cP)をV6rpm、23℃で、回転数12rpmで測定した粘度(cP)をV12rpmとし、式:V6rpm/V12rpmmにより求めたチキソトロピー比の値が、1.05~2.0である、請求項1~4のいずれか1項記載の画像表示装置用のダム材組成物。
  6.  (C)の含有量が、(B)100重量部に対して、0.05~50重量部である、請求項1~5のいずれか1項記載の画像表示装置用のダム材組成物。
  7.  (D)が、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン及びビニルトリエトキシシランからなる群より選ばれる1種以上の脂肪族不飽和基を含有するシラン化合物である、請求項1~6のいずれか1項記載の画像表示装置用のダム材組成物。
  8.  画像表示部と保護部との封止に、請求項1~7のいずれか1項記載の画像表示装置用のダム材組成物を用いてなる、画像表示装置。
PCT/JP2014/059357 2013-05-08 2014-03-28 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置 WO2014181609A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002533.1A CN104736642B (zh) 2013-05-08 2014-03-28 图像显示装置用的阻塞材组合物及使用其的图像显示装置
EP14795317.8A EP2860223B1 (en) 2013-05-08 2014-03-28 Dam material composition for image display device and image display device using same
KR1020157014033A KR20160004990A (ko) 2013-05-08 2014-03-28 화상 표시 장치용의 댐재 조성물 및 그를 이용한 화상 표시 장치
US14/429,138 US9353265B2 (en) 2013-05-08 2014-03-28 Image display sealant dam composition and image display having the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-098592 2013-05-08
JP2013098592 2013-05-08
JP2014-047932 2014-03-11
JP2014047932A JP5587519B1 (ja) 2013-05-08 2014-03-11 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置

Publications (1)

Publication Number Publication Date
WO2014181609A1 true WO2014181609A1 (ja) 2014-11-13

Family

ID=51617913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059357 WO2014181609A1 (ja) 2013-05-08 2014-03-28 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置

Country Status (7)

Country Link
US (1) US9353265B2 (ja)
EP (1) EP2860223B1 (ja)
JP (2) JP5587519B1 (ja)
KR (1) KR20160004990A (ja)
CN (1) CN104736642B (ja)
TW (1) TWI632201B (ja)
WO (1) WO2014181609A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006459B1 (ja) * 2015-04-08 2016-10-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電気・電子部品用樹脂組成物
JP2018058991A (ja) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電気・電子部品用樹脂組成物
JP2021066757A (ja) * 2019-10-18 2021-04-30 日本特殊陶業株式会社 シリコーン接着剤組成物、シリコーン接着剤組成物の製造方法、および、複合部材
JP7441187B2 (ja) 2021-01-28 2024-02-29 日本特殊陶業株式会社 保持装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069454A1 (en) * 2013-11-11 2015-05-14 Dow Corning Corporation Uv-curable silicone composition, cured products thereof, and methods of using the same
US9834679B2 (en) * 2014-08-01 2017-12-05 Momentive Performance Materials Inc. Thermally stable, high refractive index curable silicone compositions
JP6262684B2 (ja) * 2015-03-31 2018-01-17 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、該組成物を含む画像表示装置用接着剤、該接着剤を用いた画像表示装置及び該接着剤を用いた接着方法
JP6359996B2 (ja) * 2015-03-31 2018-07-18 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、該組成物を含む画像表示装置用接着剤、該接着剤を用いた画像表示装置及び該接着剤を用いた接着方法
TW201800491A (zh) * 2016-03-07 2018-01-01 道康寧公司 光可固化聚矽氧組成物及其經固化產物
WO2018190188A1 (ja) * 2017-04-13 2018-10-18 信越化学工業株式会社 剥離性放射線硬化性シリコーン組成物及び剥離シート
CN109486413B (zh) * 2018-09-28 2021-04-02 张家港康得新光电材料有限公司 用于降低有机硅压敏胶粘性的组合物及其应用
CN109468081A (zh) * 2018-09-28 2019-03-15 张家港康得新光电材料有限公司 用于有机硅压敏胶层减粘处理的光固化胶水、应用该光固化胶水的保护膜
CN109207086B (zh) * 2018-09-28 2021-10-22 张家港康得新光电材料有限公司 保护膜
JP7003075B2 (ja) * 2019-02-15 2022-01-20 信越化学工業株式会社 ウェハーレベル光半導体デバイス用樹脂組成物及び該組成物を用いたウェハーレベル光半導体デバイス
EP3927550B1 (en) * 2019-02-18 2023-03-29 3M Innovative Properties Company Radiation-curable composition containing mercapto-functional polyorganosiloxanes for additive-manufacturing technology
EP3986967A4 (en) 2019-06-21 2023-01-25 Dow Silicones Corporation METHOD FOR PRODUCING A THIXOTROPIC CURING SILICONE COMPOSITION
JP7319877B2 (ja) 2019-09-17 2023-08-02 デクセリアルズ株式会社 ダム形成方法及び積層体の製造方法
US20230101534A1 (en) * 2020-02-23 2023-03-30 Dow Silicones Corporation Photocurable silicone composition and cured product thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245060A (ja) * 1989-03-17 1990-09-28 Toshiba Silicone Co Ltd 紫外線硬化性シリコーンゲル組成物
JPH0364389A (ja) * 1989-08-03 1991-03-19 Toshiba Silicone Co Ltd 紫外線硬化型シリコーン接着剤組成物
JPH04198270A (ja) * 1990-11-27 1992-07-17 Toshiba Silicone Co Ltd 光硬化型シリコーン組成物及びその接着剤組成物
JPH06107951A (ja) * 1992-09-30 1994-04-19 Toray Dow Corning Silicone Co Ltd 光硬化性オルガノポリシロキサン組成物用接着付与剤および光硬化性オルガノポリシロキサン組成物
JPH06345970A (ja) 1993-06-07 1994-12-20 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物
JP2002121259A (ja) 2000-10-19 2002-04-23 Sumitomo Bakelite Co Ltd 液状封止樹脂組成物、半導体装置の製造方法及び半導体装置
JP2002371261A (ja) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd 紫外線硬化型シリコーン粘着剤組成物
JP2005171189A (ja) * 2003-12-15 2005-06-30 Ge Toshiba Silicones Co Ltd 紫外線硬化型シリコーンゲル組成物
WO2012086402A1 (ja) 2010-12-22 2012-06-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816282A (en) * 1971-04-15 1974-06-11 Gen Electric Radiation induced polymerization of polysiloxanes
JPS59206465A (ja) * 1983-05-10 1984-11-22 Shin Etsu Chem Co Ltd 放射線硬化性オルガノポリシロキサン組成物
US4946874A (en) * 1983-10-26 1990-08-07 Dow Corning Corporation Fast ultraviolet radiation curing silicone composition containing two vinyl polymers
JPS63265982A (ja) * 1987-04-23 1988-11-02 Toshiba Silicone Co Ltd 光硬化性ガラス接着用組成物
JP2620303B2 (ja) * 1988-05-12 1997-06-11 東芝シリコーン株式会社 光ファイバー被覆用紫外線硬化型シリコーン樹脂組成物
US5100993A (en) * 1989-01-27 1992-03-31 Shin-Etsu Chemical Co., Ltd. UV curable compositions of organopolysiloxane containing mercaptoalkyl and phenylene groups
JPH0374463A (ja) * 1989-08-17 1991-03-29 Toshiba Silicone Co Ltd 光ファイバー一次被覆用紫外線硬化型シリコーン組成物
DE4120418A1 (de) * 1991-06-20 1992-12-24 Wacker Chemie Gmbh Haertbare organo(poly)siloxanmassen
JPH0616944A (ja) * 1992-06-29 1994-01-25 Toray Dow Corning Silicone Co Ltd 剥離性硬化皮膜形成用オルガノポリシロキサン組成物
JPH09183908A (ja) * 1995-12-28 1997-07-15 Toray Dow Corning Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および該組成物を使用して基材と被着体を接着させる方法
JP3417230B2 (ja) * 1996-09-25 2003-06-16 信越化学工業株式会社 型取り母型用光硬化性液状シリコーンゴム組成物
JP5031436B2 (ja) * 2007-05-08 2012-09-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 低透湿性ポリオルガノシロキサン組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245060A (ja) * 1989-03-17 1990-09-28 Toshiba Silicone Co Ltd 紫外線硬化性シリコーンゲル組成物
JPH0364389A (ja) * 1989-08-03 1991-03-19 Toshiba Silicone Co Ltd 紫外線硬化型シリコーン接着剤組成物
JPH04198270A (ja) * 1990-11-27 1992-07-17 Toshiba Silicone Co Ltd 光硬化型シリコーン組成物及びその接着剤組成物
JPH06107951A (ja) * 1992-09-30 1994-04-19 Toray Dow Corning Silicone Co Ltd 光硬化性オルガノポリシロキサン組成物用接着付与剤および光硬化性オルガノポリシロキサン組成物
JPH06345970A (ja) 1993-06-07 1994-12-20 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物
JP2002121259A (ja) 2000-10-19 2002-04-23 Sumitomo Bakelite Co Ltd 液状封止樹脂組成物、半導体装置の製造方法及び半導体装置
JP2002371261A (ja) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd 紫外線硬化型シリコーン粘着剤組成物
JP2005171189A (ja) * 2003-12-15 2005-06-30 Ge Toshiba Silicones Co Ltd 紫外線硬化型シリコーンゲル組成物
WO2012086402A1 (ja) 2010-12-22 2012-06-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860223A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006459B1 (ja) * 2015-04-08 2016-10-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電気・電子部品用樹脂組成物
WO2016163333A1 (ja) * 2015-04-08 2016-10-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電気・電子部品用樹脂組成物
US10351702B2 (en) 2015-04-08 2019-07-16 Momentive Performance Materials Japan Llc Resin composition for electric/electronic component
JP2018058991A (ja) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電気・電子部品用樹脂組成物
JP2021066757A (ja) * 2019-10-18 2021-04-30 日本特殊陶業株式会社 シリコーン接着剤組成物、シリコーン接着剤組成物の製造方法、および、複合部材
JP7169958B2 (ja) 2019-10-18 2022-11-11 日本特殊陶業株式会社 シリコーン接着剤組成物、シリコーン接着剤組成物の製造方法、および、複合部材
JP7441187B2 (ja) 2021-01-28 2024-02-29 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
CN104736642B (zh) 2018-02-16
US9353265B2 (en) 2016-05-31
KR20160004990A (ko) 2016-01-13
EP2860223A4 (en) 2015-11-25
JP5587519B1 (ja) 2014-09-10
JP2014237833A (ja) 2014-12-18
TWI632201B (zh) 2018-08-11
US20150232666A1 (en) 2015-08-20
TW201500472A (zh) 2015-01-01
JP2014237807A (ja) 2014-12-18
CN104736642A (zh) 2015-06-24
EP2860223A1 (en) 2015-04-15
EP2860223B1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5587519B1 (ja) 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置
JP5010761B2 (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP5989417B2 (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP5587520B1 (ja) 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置
JP2014001342A (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP6426023B2 (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP6570870B2 (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた物品
JP2013253179A (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
US10351702B2 (en) Resin composition for electric/electronic component
JP2016060782A (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP6173764B2 (ja) 画像表示装置用のダム材組成物、及びそれを用いた画像表示装置
JP2018058991A (ja) 電気・電子部品用樹脂組成物
JP7391469B2 (ja) 紫外線硬化性シリコーン組成物およびそれを用いた物品
JP2019167544A (ja) 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795317

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014795317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014795317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14429138

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157014033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE