WO2014174869A1 - コンバイン - Google Patents
コンバイン Download PDFInfo
- Publication number
- WO2014174869A1 WO2014174869A1 PCT/JP2014/052537 JP2014052537W WO2014174869A1 WO 2014174869 A1 WO2014174869 A1 WO 2014174869A1 JP 2014052537 W JP2014052537 W JP 2014052537W WO 2014174869 A1 WO2014174869 A1 WO 2014174869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yield
- taste
- grain
- measurement
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1277—Control or measuring arrangements specially adapted for combines for measuring grain quality
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B79/00—Methods for working soil
- A01B79/005—Precision agriculture
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/1208—Tanks for grain or chaff
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1271—Control or measuring arrangements specially adapted for combines for measuring crop flow
- A01D41/1272—Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
Definitions
- the present invention relates to a combine that harvests grains from a farm while traveling, threshs the harvested grains, and stores the obtained grains in a grain tank.
- a combine that measures the weight and moisture of a grain stored in a grain tank and outputs the harvested grain as harvest information has been proposed.
- the load cell which detects the load of the moisture measuring apparatus and the grain tank which take in a part of grain supplied to a grain tank and measures the moisture content is provided.
- the harvesting area is calculated from the running speed, running time, and cutting width, and the increase in grain weight per cutting area is calculated repeatedly, and the yield distribution of the plot unit in the field is output. Is done.
- the weight of the grain is lighter than the weight of the grain tank itself, so the small increase in grain weight is accurately measured.
- a combine equipped with a yield detection device for measuring the yield per unit time of grain for adjustment control of the sorting device is disclosed in Patent Document 2.
- This yield detection device is composed of a cylinder, a shutter that opens and closes the lower opening of the cylinder, and a pressure-sensitive sensor provided inside the cylinder, and measures the time for storing the grain up to the position of the pressure-sensitive sensor.
- the yield per unit time of grain is calculated from the measurement time.
- only the sorting device is controlled so that the larger the amount of grain per unit time passing through the sorting device, the greater the processing amount of the sorting device.
- the traveling speed of the combine which causes the yield per unit time to change regardless of the actual state), is not considered.
- Japanese Patent Laying-Open No. 2006-081488 (FIGS. 5, 14, and 17) Japanese Patent Laid-Open No. 3-47014 (page 3, lower left column, line 6-page 4, upper right column, line 20, line 1)
- the combine according to the present invention which harvests cereals from a field while traveling, threshs the harvested cereals, and stores the obtained grains in a grain tank, is at least part of the grains supplied to the grain tank
- a yield measuring container having a yield receiving port for receiving the grain, a yield discharging port for discharging the received grain, and a yield shutter for opening and closing the yield discharging port, and a predetermined amount in the yield measuring container when the yield shutter is closed
- a yield measuring unit that detects that a volume of grain has been stored and outputs a detection signal, a time calculation unit that calculates a storage time required to store the predetermined volume of grain based on the detection signal, and traveling
- a yield calculation unit that calculates a unit travel yield, which is a yield per unit travel, based on the speed and the storage time.
- the travel distance that can harvest a predetermined volume of grain in other words, the unit travel yield, which is the yield per unit travel, is calculated.
- the yield in the small section of the field is obtained.
- the yield receiving port of the yield measuring container can only partially accept the grain supplied to the grain tank, the estimated storage time can be obtained if the acceptable ratio is known in advance. Is adjusted based on the ratio, and the actual unit travel yield can be obtained.
- the grain storage capacity of the yield measuring container can be reduced, so that the structure can be made compact.
- the small grain storage volume used for calculating the unit running yield means that the weight to be measured is small, compared to the conventional technology that measures the weight of the stored grain including the grain tank. Therefore, the conditions required for accurate measurement are relaxed.
- the yield is derived from the volume occupied by the grains stored per hour, it is possible to avoid errors due to adhesion of raindrops and the like that occur during weight measurement.
- taste values such as moisture and protein are also important for information on harvested grains such as rice and wheat. If this taste value can be measured for each minute section of the field, the influence of the sunlight, fertilization state, etc. on the taste value can be evaluated, and fine farming becomes possible.
- taste measurement with a simple structure as much as possible, in one preferred embodiment of the present invention, the taste release that releases the accepted grain through the yield outlet is provided.
- a taste measurement container having an exit and a taste shutter that opens and closes the taste release port, and a taste measurement unit that measures the taste value of the grains held in the taste measurement container when the taste shutter is closed are provided. ing. In this configuration, since the yield measurement container is used as a grain receiving unit for the taste measurement container, the configuration of the taste measurement container can be simplified.
- the grain of a predetermined volume used for calculating the unit running yield is used for taste measurement by the taste measuring unit, it is used for the grain and taste measurement used for measuring the unit running yield.
- the grain is surely harvested in the same micro-compartment. Therefore, by recording each measurement data in relation to each other and recording it as one data set, data on the yield and taste for each micro-section of the field can be reliably accumulated without being separated.
- the travel position of the combine at the time of measurement is not the position where the grain of the measurement is harvested, but is shifted by the distance traveled during that time difference.
- the yield measuring container In normal taste measurement, it is necessary to keep the grains under measurement stationary for a certain period of time. For this reason, when the grain stored in the yield measurement container is used as it is for the next process of taste measurement, the storage of the grain for the measurement of the unit running yield is required during the taste measurement. Efficient to do. At this time, if the yield measuring container has a volume capable of storing the grains supplied to the yield receiving port during the measurement time of the taste measuring container, the yield measuring container becomes full. Convenient because the grain never spills down.
- the structure is simplified and it is advantageous if the yield measurement container and the taste measurement container are composed of a cylindrical body that is coaxially and integrally formed. .
- One form of unit travel yield calculated by the present invention is the yield per unit area.
- By sequentially calculating and displaying or recording the yield per unit area defined by the harvesting width and the minute travel distance of the combine it is possible to grasp the change in the yield due to the travel of the combine, that is, the change in the field position and the change in the yield. can do.
- by recording the traveling track of the combine at that time it is possible to evaluate the yield at an arbitrary position in the field.
- unit travel yield calculated according to the present invention is the yield per unit section divided from the field.
- the calculated unit travel yield can be used as the yield per unit section. This is convenient for data processing.
- FIG. 3 is a plan view of the combine according to FIG. 2.
- FIG. 2 is a schematic diagram of the yield measurement part and taste measurement part which were mounted in the combine by FIG.
- It is a functional block diagram for demonstrating the harvest information generation in the control apparatus mounted in the combine by FIG.
- It is a diagram which shows the time chart and movement of a shutter in a yield measurement. It is explanatory drawing of the yield calculation per hour. It is explanatory drawing of the yield calculation of a division unit.
- the combine 1 harvests wheat grains and rice grains while traveling in the field, and the threshed grain is stored in the grain tank 15 mounted on the combine 1.
- the amount of the grain supplied to the grain tank 15 over time, that is, the yield is measured.
- the taste (moisture, protein, etc.) of the grain can also be measured.
- the grain tank 15 has a yield receiving port 32a for receiving at least a part of the grain supplied to the grain tank, and a yield releasing port 32b for discharging the received kernel.
- a yield measuring container 32 having a yield shutter 34 for opening and closing the yield discharge port 32b is provided.
- the yield measuring container 32 is provided with a yield receiving port 32a so as to face the flow of the grains continuously sent from the threshing device to the grain tank 15 during the cutting operation.
- the yield shutter 34 can be switched between a closed posture for closing the yield discharge port 32b formed at a position (here, vertical position in the vertical direction) facing the yield receiving port 32a of the yield measuring container 32 and a posture for opening it. It is.
- the yield measurement container 32 includes a yield measurement unit that detects that a predetermined volume of grain has been stored in the yield measurement container 32 and outputs an appropriate amount detection signal indicating storage of the predetermined volume of grain.
- the time from when the yield shutter 34 is switched to the closed posture until the detection signal is output is the storage time required for storing a predetermined volume of grain. If the storage time is calculated and the traveling speed of the combine 1 at that time is acquired, the unit traveling yield, which is the yield per unit traveling, is calculated based on the traveling speed and the storage time.
- the unit travel yield can be assigned corresponding to the travel position of the combine 1. Based on the unit travel yield assigned to this travel position, the yield for each predetermined travel distance, or the yield for each predetermined section obtained by dividing the field into a predetermined size, that is, the yield distribution in the field can be obtained. it can.
- a taste measuring container 33 is provided below the yield measuring container 32 in the grain flow direction.
- the taste measurement container 33 forms a taste discharge port 32c that is opened and closed by the taste shutter 35 with the yield discharge port 32b as a receiving port. If the taste shutter 35 is switched to the closed position and the yield shutter 34 is set to the open position in a state where a predetermined volume of grains is stored in the yield measurement container 32, the grains stored in the yield measurement container 32 are changed to the taste measurement container 33. Is temporarily held inside.
- the yield measuring container 32 is provided with a taste measuring unit for measuring the taste value (water or protein) of the held grain. Thereby, the taste of the grain whose yield is measured in the yield measuring container 32 is also measured.
- the corresponding unit travel yield and taste value can be related as a data set of grains harvested at a specific position in the field.
- This delay time can be calculated on the basis of the processing time from the time when the culm is first harvested by the stock sensor to the time when the grain reaches the yield measuring container 32 and the traveling speed of the combine 1 at that time. . By using the calculated delay time, it is possible to accurately match the specific position assigned to the data set consisting of yield and taste.
- FIG. 2 is a side view of the combine 1
- FIG. 3 is a side view of the combine 1.
- the combine 1 includes a body frame 10 in which a plurality of steel materials such as a groove shape material and a square pipe material are connected.
- a pair of left and right crawlers 11 are provided at the lower part of the body frame 10.
- An engine E is mounted on the front side of the right half of the body frame 10, and an operating unit 13 is formed on the upper side.
- a driver's seat 16 and a control lever 17 are disposed in the driver 13.
- the front end portion on the left side of the machine body frame 10 is provided with a cutting unit 12 that cuts a crop culm to be harvested that is positioned in front of the machine body and transports it backward.
- the left half of the machine frame 10 receives the harvested cereal meal conveyed by the reaping part 12 and applies the threshing process to the granulated part of the harvested cereal meal while conveying it backwards.
- a threshing device 14 for performing a sorting process is mounted on the rear side of the right half of the machine body frame 10.
- the grain tank 15 is equipped with a grain discharging device 19 that discharges the grain stored in the grain tank 15 to the outside of the machine.
- a yield measuring unit 21 that measures the yield of the grain and a taste measuring unit 22 that measures the taste of the grain are provided inside the grain tank 15. Is arranged.
- the yield measurement and the taste measurement are performed by the grain entering the inlet 15 a into the yield measurement container 32 and the taste measurement container 33 provided in the grain tank 15. Is done by.
- the upper half of the cylindrical body 31 provided on the side wall of the grain tank 15 is used as the yield measuring container 32, and the lower half of the cylindrical body 31 is the taste.
- the measurement container 33 Used as the measurement container 33. That is, the yield measuring container 32 and the taste measuring container 33 are integrally formed as a cylindrical body 31 with the taste measuring container 33 positioned below the yield measuring container 32.
- the upper opening of the cylindrical body 31 functions as a yield receiving port 32 a of the yield measuring container 32.
- a yield shutter 34 is provided at the yield discharge port 32 b which is the lower end of the yield measurement container 32.
- the yield shutter 34 can be moved by an actuator 34a between a closed posture that blocks the internal space of the cylindrical body 31 in the transverse direction and an open posture that allows passage of the internal space of the grain. Since the yield measurement container 32 and the taste measurement container 33 are continuously formed in the vertical direction, the yield discharge port 32 b functions as a taste receiving port of the taste measurement container 33.
- a taste shutter 35 is also provided at the taste discharge port 33 b which is the lower end of the taste measurement container 33. The taste shutter 35 can also be oscillated by the actuator 35a between a closed posture that blocks the internal space of the cylindrical body 31 in the transverse direction and an open posture that allows passage of the internal space of the grain.
- the yield receiving port 32a of the yield measuring container 32 is disposed at a position where a part of the grain conveyed from the threshing device 14 by the supply conveyor 30 and discharged from the input port 15a to the grain tank 15 by the impeller reaches. ing. Accordingly, when the yield shutter 34 swings to the closed position, the grains flying from the inlet 15a enter the yield measuring container 32 through the yield receiving port 32a and are stored on the yield shutter 34 that closes the yield discharge port 32b. Begin to be.
- the yield measuring container 32 is provided with a proximity sensor as the yield measuring unit 21, and outputs an appropriate amount detection signal when a predetermined amount of grain is stored in the yield measuring container 32.
- the yield shutter 34 of the yield measurement container 32 storing a predetermined amount of grains When the yield shutter 34 of the yield measurement container 32 storing a predetermined amount of grains is moved to the open posture, the grains stored in the yield measurement container 32 flow into the taste measurement container 33. At that time, if the taste shutter 35 is in the closed posture, the grain is held in the taste measurement container 33. Since the taste measurement container 33 is provided with the taste measurement unit 22, the taste of the held grain is measured. In this embodiment, spectroscopic analysis is used in the taste measurement unit 22, and a grain moisture value and a protein value can be measured.
- the taste measurement unit 22 can output a taste value including at least one of measured values related to moisture and protein as grain components, and further, a taste calculation value obtained from the component ratio thereof.
- FIG. 5 shows a functional block diagram for explaining a control system related to yield measurement and taste measurement in the combine 1.
- This control system is substantially based on the basic principle shown in FIG.
- the functional units that are particularly relevant to the present invention and are constructed in the control system 5 mounted on the combine 1 are a travel control ECU (electronic control unit) 53, a work unit ECU 54, and a measurement evaluation module 50, which are substantially the same. This function is realized by executing a program, but in some cases, hardware is partially used.
- These functional units are connected to each other by an in-vehicle LAN.
- the measurement evaluation module 50 is connected to the yield measurement unit 21, the taste measurement unit 22, the yield shutter 34, and the taste shutter 35 that are provided in the grain tank 15.
- the travel control ECU 53 is an ECU that handles various control information related to vehicle travel. For example, the travel speed, travel distance, travel locus, engine speed, fuel consumption, etc. acquired from a sensor management module (not shown) through the in-vehicle LAN. It has a function to convert the data of the car into travel information.
- the work device ECU 54 is an ECU that controls a harvesting and harvesting device such as the reaping unit 12 and the threshing device 14, and has a function of converting data indicating operation states and operating states of various devices into work information. Note that a signal from the stock sensor 12a that detects the actual execution of the cereal reaping operation is transferred to the measurement evaluation module 50 via the work unit ECU 54.
- the control system 5 includes a display ECU that controls display of information on a monitor and a meter panel and a communication ECU that exchanges data with external devices (including remote servers). It has been.
- the measurement evaluation module 50 includes a shutter control unit 51, a time calculation unit 55, a yield calculation unit 56, a harvest information generation unit 57, and a harvest evaluation unit 58.
- the shutter control unit 51 controls the yield shutter 34 and the taste shutter 35 to be switched between a closed posture and an open posture.
- the time calculation unit 55 is a time from when the yield shutter 34 is switched to the closed posture until a predetermined amount of grains is stored in the yield measurement container 32 (an appropriate amount detection signal is input from the yield measurement unit 21). Storage time is calculated.
- the yield calculation unit 56 can calculate the yield per unit travel time from the storage time and the predetermined amount, or the yield per unit travel distance from the predetermined amount, the storage time, and the travel speed.
- the yield per travel distance can be directly calculated from the direct travel distance measured within the storage time and a predetermined amount.
- the yield per unit time and the yield per unit travel distance is one of the forms of unit travel yield, which is the yield per unit travel in the present invention.
- the harvest information generation unit 57 links the taste data obtained from the taste measurement unit 22, the yield data (travel unit yield) obtained from the yield calculation unit 56, and travel data such as the travel distance or travel position obtained from the travel control ECU 53.
- harvest information is generated for each measurement.
- This time difference can be obtained by calculating the time from when the stock sensor 12a detects the cereal at the start of the harvesting operation until the grain threshed from the cereal reaches the grain tank 15.
- the harvest evaluation unit 58 allocates the harvest information generated by the harvest information generation unit 57 to a field section obtained by dividing the field, and generates field distribution information of yield and taste.
- the harvest evaluation unit 58 may be constructed on an external computer, and the harvest information may be sent from the harvest information generation unit 57 to the harvest evaluation unit 58 via a communication line. Further, a configuration may be adopted in which the harvest information generation unit 57 and the harvest evaluation unit 58 are integrated to have any one or both functions.
- the yield shutter 34 and the taste shutter 35 are in the open posture.
- the yield shutter 34 is switched to the closed posture, and the storage of the grain in the yield measuring container 32 is started.
- time measurement generation of a count signal
- the proximity sensor 21 as the yield measurement unit 21 is activated, and an appropriate amount detection signal is generated.
- time measurement by the time calculation unit 55 is stopped, the yield shutter 34 is switched to the open posture, and the taste shutter 35 is switched to the closed posture.
- the time measurement value by the time calculation unit 55 is a time (represented by t1 in FIG. 6) until a predetermined amount of grain is stored in the yield measurement container 32.
- the predetermined amount is q
- a yield per unit time can be obtained at q / t1.
- the grains stored in the yield measurement container 32 move to the taste measurement container 33 by switching the yield shutter 34 to the open position and switching the taste shutter 35 to the closed position.
- the taste shutter 35 may be switched to the closed posture in advance.
- the yield shutter 34 At the timing when the yield shutter 34 is switched to the open posture and all the grains in the yield measurement container 32 are moved to the taste measurement container 33, the yield shutter 34 returns to the closed posture again, and the grains start to be stored in the yield measurement container 32. .
- time measurement generation of a count signal
- time calculation unit 55 starts.
- taste measurement is started.
- the moisture value and protein value are measured through wavelength analysis of the light beam applied to the grain.
- the measurement time required for taste measurement is about several seconds to several tens of seconds.
- the predetermined storage amount in the yield measurement container 32 is equal to or larger than an amount capable of receiving the grains flowing into the yield measurement container 32 during the taste measurement.
- the time measurement by the time calculation unit 55 stops and the yield shutter 34 opens.
- the taste shutter 35 is switched to the closed posture.
- the storage time in the second yield measurement is represented by t2 in FIG. In this way, the yield and taste per hour are determined during the cutting operation.
- T1, T2,... are traced back from the time when each yield measurement (time measurement) is completed by the time during which the grain is conveyed from the cutting unit 12 to the yield measurement unit 21 (that is, the delay time described above) Time (when the grain was harvested from the field).
- P1, P2,... are the position of the combine 1 in the field at that time or the travel distance from the start of work.
- Yield per hour: ⁇ q obtained by each yield measurement is a value obtained by dividing the predetermined amount: q by the time measurement value: t by the time calculation unit 55.
- n measurement end point time yield obtained at Pn (Tn): ⁇ qn ( ⁇ q1, ⁇ q2,...) Is the previous measurement: n ⁇ 1. It is considered to be effective in the field small area from the time point Pn-1 (Tn-1) to this time. Therefore, it is possible to calculate the yield in an arbitrary section of the field from the yields per unit time: ⁇ q1, ⁇ q2,.
- a method may be adopted in which the yield per unit time: ⁇ qn obtained at a certain time point: Pn (Tn) is adapted to the 1 ⁇ 2 compartment region before and after the certain time point: Pn (Tn). It is good to adopt a method that adapts the yield per hour obtained at a certain time point: Pn (Tn): ⁇ qn to the region up to the time point: Pn + 1 (Tn + 1) when the next measurement result is obtained. Also good.
- the yields per hour obtained in this way ⁇ q1, ⁇ q2,..., And the taste measurements obtained at the same time are assigned to the field sections, yield and taste distribution data.
- the process of creating is schematically shown.
- the positions P1 and P2 corresponding to the time T1 and the time T2 are included, and the section 01 is shifted to the section 02 at the time T01.
- ⁇ q1 is assigned as the yield per hour to the section up to position P1
- ⁇ q2 is assigned as the yield per hour to the section from position P1 to position P2.
- ⁇ q3 is assigned as the yield per hour to the remaining section from the position P2. Therefore, the yield in the section 01: Q01 is calculated as follows.
- the taste measurement is also performed on the stored grains used in the calculation of the yields Q1, Q2, and Q3, and the respective taste values S1, S2, and S3 are obtained.
- the taste value S01 in the section 01 can be obtained.
- a weighted average considering the corresponding weight may be adopted.
- the data set: [Q01, S01, 01] obtained by linking the obtained yield: Q01, the taste value: S01, and the ID indicating the section 01 (here, 01) is assigned to the field section map as harvest information.
- the harvest information assigned to each section can be visualized in the form of a distribution graph of yield and taste.
- the cutting width of the combine 1 is set as one side of the unit section, and the unit traveling distance is set as the other side of the unit section. Therefore, the unit traveling yield is directly used as the yield per unit section.
- the yield of each section is determined based on the travel trajectory of the combine 1. It is calculated by accumulating the yield for each run.
- the yield measuring container 32 and the taste measuring container 33 are formed at different positions on the same cylindrical body 31 and have an integrated structure.
- the yield measuring container 32 and the taste measuring container 33 are integrated. And may be separate structures that are independent of each other.
- An example of a simple configuration at that time includes a cylindrical body 31 for the yield measuring container 32 and a cylindrical body 31 of the taste measuring container 33, and forms an independent yield measuring container 32 and a taste measuring container 33, respectively. It is to be.
- the yield measuring container 32 including the yield shutter 34 and the taste measuring container 33 including the taste shutter 35 are configured to be individually attachable / detachable, the yield measuring container 32 and the taste measuring container 33 are integrated.
- the removal work and installation work at the time of failure are simplified, and the maintenance and inspection costs are reduced.
- the yield measurement container 32, the yield shutter 34, and the yield measurement unit 21 are provided, and the taste measurement container 33, the taste shutter 35, and the taste measurement unit 22 can be omitted.
- the grain received in the yield measurement container 32 is a part of the grain conveyed by the supply conveyor 30, and thus is received in the yield measurement container 32. It is necessary to calculate the actual yield from the measured yield based on the ratio of the grain to be accepted and the unacceptable grain.
- the measurement evaluation module 50 is incorporated in the control system 5 of the combine 1. Instead of this, the measurement evaluation module 50 may be constructed as a program for a portable communication device such as a tablet computer or a smartphone brought into the combine 1.
- the necessary data from the control system 5 and the yield measuring unit 21 and the taste measuring unit 22 may be wirelessly transmitted to the portable communication device via the LAN adapter provided in the in-vehicle LAN of the combine 1.
- smartphones are owned by almost all drivers and have a data transmission function using a communication line with a remote location as a standard function. It is easy and suitable to transfer to and record there.
- the proximity sensor is used as the yield measurement unit 21, but other sensors and switches that can detect that a predetermined amount of grain has been stored in the yield measurement container 32. It may be used.
- the yield measuring container 32 it is also possible to perform empty detection of the grain in the yield measurement container 32 using such a sensor or switch used as the yield measuring unit 21 and to confirm the release of the stored grain by opening the yield shutter 34. Good.
- a sensor or switch may also be provided in the taste measurement container 33 so as to detect an empty grain in the taste measurement container 33 or in some cases detect an appropriate amount.
- an optical type is used as the taste measurement unit 22, but other types such as a crushing type may be used.
- the yield measuring container 32 and the taste measuring container 33 are formed along the side wall of the grain tank 15, and the yield measuring container is further formed.
- the actuators 34a and 35a of the yield shutter 34 and the taste shutter 35 are provided on the side surfaces of the tank 32 and the taste measuring container 33 on the inner side of the tank. Moreover, the taste measuring part 33 is provided over the inside and outside of the side wall by providing a penetration part on the side wall of the grain tank 15.
- the actuators 34 a and 35 a of the yield shutter 34 and the taste shutter 35 may be provided on the side wall of the grain tank 15. In that case, in the example of FIG. 9, the penetration part is provided in the side wall of the grain tank 15, and the actuators 34a and 35a are attached over the inner side and the outer side of the side wall.
- the taste measuring unit 33 is provided on the side surface of the taste measuring container 33 opposite to the side wall of the grain tank 15. Further, in another embodiment shown in FIG. 9, the yield measuring unit 21 is not connected to the yield shutter 21 by a load cell arranged between two bottom plates of the yield shutter 21 having a double bottom plate structure, instead of a proximity sensor or the like. You may make it the structure which measures the weight of the stored grain. In such a case, when the yield (volume) is converted from the weight, a more accurate yield can be obtained by performing moisture correction based on the moisture value of the grain.
- the present invention can be applied to various types of combine equipped with a grain tank that stores grains obtained by threshing cereals harvested from a field while traveling.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Threshing Machine Elements (AREA)
- Combines (AREA)
Abstract
Description
図1の例では、コンバイン1が圃場を走行しながら麦や稲の穀稈を刈り取り、脱穀された穀粒がコンバイン1に搭載された穀粒タンク15に貯蔵される。その際、このコンバイン1では、時間経過とともに穀粒タンク15に供給される穀粒の量、つまり収量が測定される。さらには、その穀粒の食味(水分やタンパクなど)も測定可能である。
刈取り作業が始まっていない初期状態では、収量シャッタ34と食味シャッタ35は開放姿勢となっている。刈取り作業が始まって、穀粒が穀粒タンク15に放出されるタイミングとなると、収量シャッタ34が閉鎖姿勢に切り替わって、収量測定容器32への穀粒の貯留が始まる。同時に時間算定部55による時間計測(計数信号の生成)がスタートする。収量測定容器32での穀粒貯留量が所定量に達すると、収量測定部21としての近接センサ21が作動し、適量検知信号が生じる。
これに代えて、ある時点:Pn(Tn)で求められた時間当たり収量:Δqnを、ある時点で:Pn(Tn)の前後の1/2区画領域に適応させるような方法を採用してもよいし、ある時点:Pn(Tn)で求められた時間当たり収量:Δqnを次の測定結果が得られる時点:Pn+1(Tn+1)までの領域に適応させるような方法を採用してもよい。
区画01では、時点T1と時点T2に対応する位置P1と位置P2が含まれており、時点T01で区間01から区間02に移行している。上述したように、区間01において、位置P1までの区間には時間当たり収量としてΔq1が割り当てられ、位置P1から位置P2までの区間には時間当たり収量としてΔq2が割り当てられる。さらに、位置P2から残りの区間には時間当たり収量としてΔq3が割り当てられる。したがって、区間01における収量:Q01は、次のように算出される。
Q01=Q1+Q2+Q31、ここで
Q1=Δq1×(T1-T0)、
Q2=Δq2×(T2-T1)、
Q31=Δq3×(T01-T2)。
なお、この実施形態では、収量Q1とQ2とQ3の算定に用いられた貯留穀粒に対して食味測定も行われ、それぞれの食味値S1とS2とS3が得られているので、その平均を求めて、区間01における食味値S01を求めることができる。その際、区間01におけるS3の占める割合は他の2つの比べて小さくなっているので、その分の重みを考慮した重み平均を採用してもよい。
(1)上述した実施形態では、収量測定容器32と食味測定容器33が同じ筒状体31の異なる位置に形成され、一体的な構造となっていたが、収量測定容器32と食味測定容器33とが互いに独立した別構造体であってもよい。その際の簡単な構成の一例は、収量測定容器32のための筒状体31と味測定容器33の筒状体31とを備え、それぞれ独立した収量測定容器32と食味測定容器33とを形成することである。その際、収量シャッタ34を含む収量測定容器32と、食味シャッタ35を含む食味測定容器33とをそれぞれ個別に取り付け・取り外し可能な構成とすれば、収量測定容器32と食味測定容器33とが一体的な構成のものに比べて、故障時における取り外し作業や取り付け作業が簡単となり、保守点検コストが少なくなる。
また、収量測定だけが必要な場合には、収量測定容器32と収量シャッタ34と収量測定部21だけとし、食味測定容器33と食味シャッタ35と食味測定部22を省略することができる。
(2)上述した実施形態では、図4で示すように、収量測定容器32に受け入れられる穀粒は、供給コンベヤ30によって搬送されてくる穀粒の一部であるので、収量測定容器32に受け入れられる穀粒と受け入れられない穀粒との割合を求めておき、その割合に基づいて測定収量から実収量を算定する必要がある。これを避けるために、供給コンベヤ30によって搬送されてくる穀粒の全量を収量測定容器32に一旦受け入れられるような構成を採用してもよい。
(3)上述した実施形態では、図6のタイムチャートに示されているように、収量測定及び食味測定は、ほぼ連続的に行われていたが、各測定の間隔をより長くしてもよい。あるいは、各測定の間隔を作業状態に応じて変動できるようにしてもよい。
(4)上述した実施形態では、測定評価モジュール50はコンバイン1の制御システム5に組み込まれている。これに代えて、測定評価モジュール50を、コンバイン1に持ち込まれるタブレットコンピュータやスマートフォンなどの携帯通信機器のプログラムとして構築してもよい。その際、制御システム5及び収量測定部21や食味測定部22からの必要とするデータは、コンバイン1の車載LANに装備されたLANアダプタを介して携帯通信機器に無線伝送するようにするとよい。特にスマートフォンは、ほとんどの運転者に所有されており、かつ遠隔地との間で通信回線を用いたデータ伝送機能も標準機能として備えられているので、作成された収穫情報を管理センタのコンピュータシステムに転送し、そこで記録することも容易であり、好適である。
(5)上述した実施形態では、収量測定部21として近接センサが用いられていたが、収量測定容器32に所定量の穀粒が貯留されたことを検出することができる他のセンサやスイッチを用いてもよい。なお、このような収量測定部21として用いられるセンサやスイッチを用いて、収量測定容器32における穀粒の空検出を行い、収量シャッタ34の開放による貯留穀粒の放出確認を行うようにしてもよい。同様な目的で、そのようなセンサやスイッチを食味測定容器33にも設け、食味測定容器33における穀粒の空検出や、場合によっては適量検出を行うようにしてもよい。
(6)上述した実施形態では、食味測定部22として光学式のものが用いられたが、他の形式、例えば破砕式などを用いてもよい。
(7)上述した実施形態では、図4の(b)などに示されているように、穀粒タンク15の側壁に沿って収量測定容器32及び食味測定容器33が形成され、さらに収量測定容器32及び食味測定容器33のタンク内部側の側面に収量シャッタ34及び食味シャッタ35のそれぞれのアクチュエータ34a及び35aが設けられている。また、食味測定部33は穀粒タンク15の側壁に貫通部を設けて、側壁の内外にわたって取り付けられている。この構成に代えて、図9に示すように、収量シャッタ34及び食味シャッタ35のそれぞれのアクチュエータ34a及び35aが穀粒タンク15の側壁に設けられてもよい。その際、図9の例では、穀粒タンク15の側壁に貫通部を設けて、アクチュエータ34a及び35aが側壁の内側と外側とにわたって取り付けられている。そして、食味測定部33が食味測定容器33の穀粒タンク15の側壁とは反対側の側面に設けられている。さらに、図9に示された別実施形態では、収量測定部21は、近接センサなどではなく、二重底板構造にした収量シャッタ21の2つの底板の間に配置されたロードセルによって収量シャッタ21に貯留されている穀粒の重量を測定するような構成にしてもよい。このような場合、重量から収量(容積)を換算する際には、穀粒の水分値によって水分補正を行うと、より正確な収量を得ることができる。
12:刈取部
14:脱穀装置
15:穀粒タンク
21:収量測定部(近接スイッチ)
22:食味測定部
30:供給コンベヤ
31:筒状体
32:収量測定容器
32a:収量受け入れ口
32b:収量放出口(食味受け入れ口)
33:食味測定容器
33b:食味放出口
34:収量シャッタ
35:食味シャッタ
51:シャッタ制御部
53:走行制御ECU
54:作業装置ECU
55:時間算定部
56:収量算定部
57:収穫情報生成部
58:収穫評価部
Claims (9)
- 走行しながら圃場から穀稈を刈り取り、刈取穀稈を脱穀し、得られた穀粒を穀粒タンクに貯留するコンバインにおいて、
前記穀粒タンクに供給される穀粒の少なくとも一部を受け入れる収量受け入れ口と、受け入れた穀粒を放出する収量放出口と、前記収量放出口を開閉する収量シャッタとを有する収量測定容器と、
前記収量シャッタが閉鎖した状態において前記収量測定容器に所定容積の穀粒が貯留されたことを検知し、検知信号を出力する収量測定部と、
前記検知信号に基づいて前記所定容積の穀粒の貯留に要する貯留時間を算定する時間算定部と、
走行速度と前記貯留時間とに基づいて、単位走行当たりの収量である単位走行収量を算定する収量算定部とを備えたコンバイン。 - 前記収量放出口を通じて受け入れた穀粒を放出する食味放出口と前記食味放出口を開閉する食味シャッタとを有する食味測定容器と、前記食味シャッタが閉鎖した状態において前記食味測定容器に保持された穀粒の食味値を測定する食味測定部とが備えられている請求項1に記載のコンバイン。
- 前記単位走行収量の算定に用いられた所定容積の穀粒の少なくとも一部が前記食味測定部による食味測定に用いられ、対応する前記単位走行収量と前記食味値とが前記圃場の特定位置で収穫された穀粒のデータセットとして関係づけられて記録される請求項2に記載のコンバイン。
- 最初に刈り取られる穀稈を検出する株元センサによる穀稈検出時から穀粒が前記収量測定容器に到達するまでの処理時間と走行速度とに基づいて、前記データセットと前記特定位置とを整合する請求項3に記載のコンバイン。
- 前記収量測定容器は、前記食味測定容器の測定時間の間に収量受け入れ口に供給される穀粒を貯留することができる容積を有する請求項2から4のいずれか一項に記載のコンバイン。
- 前記収量測定容器と前記食味測定容器とは同軸状で一体的に形成された筒状体である請求項2から4のいずれか一項に記載のコンバイン。
- 前記収量測定容器と前記食味測定容器とは、互いに独立して取り外し可能な別構造体である請求項2から4のいずれか一項に記載のコンバイン。
- 前記単位走行収量として、単位面積当たりの収量が算定される請求項1から4のいずれか一項に記載のコンバイン。
- 前記単位走行収量として、前記圃場から区分けされた単位区画当たりの収量が算定される請求項1から4のいずれか一項に記載のコンバイン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/785,943 US10149435B2 (en) | 2013-04-26 | 2014-02-04 | Combine |
EP14788098.3A EP2989885B1 (en) | 2013-04-26 | 2014-02-04 | Combine |
CN201480023573.4A CN105142390B (zh) | 2013-04-26 | 2014-02-04 | 联合收割机 |
KR1020157033374A KR102219242B1 (ko) | 2013-04-26 | 2014-02-04 | 콤바인 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013093920A JP5980162B2 (ja) | 2013-04-26 | 2013-04-26 | コンバイン |
JP2013-093920 | 2013-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014174869A1 true WO2014174869A1 (ja) | 2014-10-30 |
Family
ID=51791455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052537 WO2014174869A1 (ja) | 2013-04-26 | 2014-02-04 | コンバイン |
Country Status (6)
Country | Link |
---|---|
US (1) | US10149435B2 (ja) |
EP (1) | EP2989885B1 (ja) |
JP (1) | JP5980162B2 (ja) |
KR (1) | KR102219242B1 (ja) |
CN (1) | CN105142390B (ja) |
WO (1) | WO2014174869A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016147521A1 (ja) * | 2015-03-18 | 2016-09-22 | 株式会社クボタ | コンバイン及びコンバインのための穀粒評価制御装置 |
JP2016171749A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社クボタ | コンバイン |
CN107111843A (zh) * | 2015-03-16 | 2017-08-29 | 株式会社久保田 | 谷粒管理系统以及联合收割机 |
JP2018078820A (ja) * | 2016-11-15 | 2018-05-24 | ヤンマー株式会社 | 収量分布算出装置及び収量分布算出プログラム |
JP2020202837A (ja) * | 2016-11-15 | 2020-12-24 | ヤンマーパワーテクノロジー株式会社 | 穀粒の生育状況の分布算出装置及び穀粒の生育状況の分布算出プログラム |
US10945368B2 (en) | 2015-12-25 | 2021-03-16 | Kubota Corporation | Combine harvester and grain yield management system for combine harvester |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156387A1 (ja) * | 2013-03-27 | 2014-10-02 | 株式会社クボタ | コンバイン |
US9671273B2 (en) * | 2014-02-05 | 2017-06-06 | Juniper Systems, Inc. | Grain measurement apparatus |
US10143133B2 (en) * | 2015-03-18 | 2018-12-04 | Kubota Corporation | Combine |
JP6700696B2 (ja) * | 2015-09-18 | 2020-05-27 | 株式会社クボタ | コンバイン |
WO2017038207A1 (ja) * | 2015-09-02 | 2017-03-09 | 株式会社クボタ | コンバイン |
JP6509087B2 (ja) * | 2015-09-25 | 2019-05-08 | 株式会社クボタ | コンバイン |
JP6832625B2 (ja) * | 2015-12-25 | 2021-02-24 | 株式会社クボタ | コンバイン用穀粒収量管理システム |
JP6887323B2 (ja) * | 2017-06-23 | 2021-06-16 | 株式会社クボタ | コンバイン及び圃場営農マップ生成方法 |
JP6754723B2 (ja) * | 2017-06-26 | 2020-09-16 | 株式会社クボタ | 収穫機 |
JP6770932B2 (ja) * | 2017-06-26 | 2020-10-21 | 株式会社クボタ | 収穫機 |
US10645875B2 (en) * | 2017-10-19 | 2020-05-12 | Cnh Industrial America Llc | Method and system for unloading harvested crop from an agricultural harvester |
CN108966810A (zh) * | 2018-10-09 | 2018-12-11 | 定襄县倾诚农业科技有限公司 | 储粮室及收获机及作物收割方法 |
CN110558033A (zh) * | 2019-10-16 | 2019-12-13 | 青岛普兰泰克机械科技有限公司 | 自走式稻麦繁育收获机 |
JP7262377B2 (ja) * | 2019-11-29 | 2023-04-21 | 株式会社クボタ | コンバイン |
CN118340018B (zh) * | 2024-06-03 | 2024-09-20 | 北京嘉亿智造科技有限公司 | 一种联合收割机粮食产量测量装置及测量方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0042245A1 (en) * | 1980-06-14 | 1981-12-23 | Claydon Yield-O-Meter Limited | Crop metering device for combine harvesters |
JPH0347014A (ja) | 1989-07-13 | 1991-02-28 | Kubota Corp | 脱穀装置の選別制御装置 |
JP2006081488A (ja) | 2004-09-17 | 2006-03-30 | Yanmar Co Ltd | コンバイン |
JP3828837B2 (ja) * | 2002-06-21 | 2006-10-04 | 三菱農機株式会社 | 機体位置の演算方法 |
JP2007074963A (ja) * | 2005-09-13 | 2007-03-29 | Iseki & Co Ltd | コンバイン |
JP4057196B2 (ja) * | 1999-06-16 | 2008-03-05 | ヤンマー農機株式会社 | コンバインの収穫地図作成装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2087704B (en) * | 1980-06-14 | 1983-09-07 | Claydon Jeffrey Thomas | Crop metering device |
DE4105857C2 (de) * | 1991-02-25 | 1994-07-07 | Claas Ohg | Vorrichtung zur Messung eines Massestromes |
US5487702A (en) * | 1994-07-06 | 1996-01-30 | Harvestmaster, Inc. | Grain weighing and measuring system |
US6100526A (en) * | 1996-12-30 | 2000-08-08 | Dsquared Development, Inc. | Grain quality monitor |
US6483583B1 (en) | 1997-02-27 | 2002-11-19 | Textron Systems Corporation | Near infrared spectrometry for real time analysis of substances |
US5991025A (en) * | 1997-02-27 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis |
JP3655430B2 (ja) | 1997-05-19 | 2005-06-02 | 株式会社クボタ | 作物収穫機及び作物処理設備、並びに、それらを用いた作物処理システム及び作物処理方法 |
JP2002223629A (ja) | 2001-02-05 | 2002-08-13 | Seirei Ind Co Ltd | コンバインのグレンタンク構造 |
JP2002262649A (ja) | 2001-03-13 | 2002-09-17 | Iseki & Co Ltd | コンバイン |
SE523635C2 (sv) | 2001-10-03 | 2004-05-04 | Foss Tecator Ab | Sortering av korn under skörd |
DE10348040A1 (de) * | 2003-10-15 | 2005-05-19 | Deere & Company, Moline | Messeinrichtung |
JP4502326B2 (ja) | 2005-03-14 | 2010-07-14 | ヤンマー株式会社 | コンバイン |
JP2007295932A (ja) * | 2007-06-20 | 2007-11-15 | Yanmar Agricult Equip Co Ltd | コンバイン |
CN201194484Y (zh) * | 2008-05-23 | 2009-02-18 | 华南农业大学 | 联合收割机谷物水分检测取样装置 |
DE102008043377A1 (de) * | 2008-10-31 | 2010-05-06 | Deere & Company, Moline | Messanordnung zur spektroskopischen Untersuchung und Durchsatzerfassung eines Erntegutstroms |
GB2466621A (en) * | 2008-12-23 | 2010-06-30 | Buhler Sortex Ltd | Sorting matter in a flow by comparing reflectance intensities at different wavelengths |
US9842252B2 (en) * | 2009-05-29 | 2017-12-12 | Monsanto Technology Llc | Systems and methods for use in characterizing agricultural products |
-
2013
- 2013-04-26 JP JP2013093920A patent/JP5980162B2/ja active Active
-
2014
- 2014-02-04 EP EP14788098.3A patent/EP2989885B1/en active Active
- 2014-02-04 KR KR1020157033374A patent/KR102219242B1/ko active IP Right Grant
- 2014-02-04 CN CN201480023573.4A patent/CN105142390B/zh active Active
- 2014-02-04 WO PCT/JP2014/052537 patent/WO2014174869A1/ja active Application Filing
- 2014-02-04 US US14/785,943 patent/US10149435B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0042245A1 (en) * | 1980-06-14 | 1981-12-23 | Claydon Yield-O-Meter Limited | Crop metering device for combine harvesters |
JPH0347014A (ja) | 1989-07-13 | 1991-02-28 | Kubota Corp | 脱穀装置の選別制御装置 |
JP4057196B2 (ja) * | 1999-06-16 | 2008-03-05 | ヤンマー農機株式会社 | コンバインの収穫地図作成装置 |
JP3828837B2 (ja) * | 2002-06-21 | 2006-10-04 | 三菱農機株式会社 | 機体位置の演算方法 |
JP2006081488A (ja) | 2004-09-17 | 2006-03-30 | Yanmar Co Ltd | コンバイン |
JP2007074963A (ja) * | 2005-09-13 | 2007-03-29 | Iseki & Co Ltd | コンバイン |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3273405A4 (en) * | 2015-03-16 | 2019-01-02 | Kubota Corporation | Grain management system and combine |
JP2016171749A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社クボタ | コンバイン |
CN107111843B (zh) * | 2015-03-16 | 2021-03-09 | 株式会社久保田 | 谷粒管理系统以及联合收割机 |
CN107111843A (zh) * | 2015-03-16 | 2017-08-29 | 株式会社久保田 | 谷粒管理系统以及联合收割机 |
EP3272205A4 (en) * | 2015-03-18 | 2018-11-21 | Kubota Corporation | Combine, and grain-evaluation control device for combine |
CN106998651A (zh) * | 2015-03-18 | 2017-08-01 | 株式会社久保田 | 联合收割机及用于联合收割机的谷粒评价控制装置 |
KR102582905B1 (ko) * | 2015-03-18 | 2023-09-27 | 가부시끼 가이샤 구보다 | 콤바인 및 콤바인을 위한 곡립 평가 제어 장치 |
KR20170126850A (ko) * | 2015-03-18 | 2017-11-20 | 가부시끼 가이샤 구보다 | 콤바인 및 콤바인을 위한 곡립 평가 제어 장치 |
WO2016147521A1 (ja) * | 2015-03-18 | 2016-09-22 | 株式会社クボタ | コンバイン及びコンバインのための穀粒評価制御装置 |
JPWO2016147521A1 (ja) * | 2015-03-18 | 2017-10-12 | 株式会社クボタ | コンバイン及びコンバインのための穀粒評価制御装置 |
US10178829B2 (en) | 2015-03-18 | 2019-01-15 | Kubota Corporation | Combine and grain evaluation control apparatus for combine |
US10945368B2 (en) | 2015-12-25 | 2021-03-16 | Kubota Corporation | Combine harvester and grain yield management system for combine harvester |
KR20190042678A (ko) * | 2016-11-15 | 2019-04-24 | 얀마 가부시키가이샤 | 수량 분포 산출 장치 및 수량 분포 산출 방법 |
CN109922655A (zh) * | 2016-11-15 | 2019-06-21 | 洋马株式会社 | 产量分布计算装置以及产量分布计算方法 |
JP2020202837A (ja) * | 2016-11-15 | 2020-12-24 | ヤンマーパワーテクノロジー株式会社 | 穀粒の生育状況の分布算出装置及び穀粒の生育状況の分布算出プログラム |
WO2018092719A1 (ja) * | 2016-11-15 | 2018-05-24 | ヤンマー株式会社 | 収量分布算出装置及び収量分布算出方法 |
KR102254607B1 (ko) | 2016-11-15 | 2021-05-20 | 얀마 파워 테크놀로지 가부시키가이샤 | 수량 분포 산출 장치 및 수량 분포 산출 방법 |
CN109922655B (zh) * | 2016-11-15 | 2022-01-18 | 洋马动力科技有限公司 | 产量分布计算装置以及产量分布计算方法 |
JP2018078820A (ja) * | 2016-11-15 | 2018-05-24 | ヤンマー株式会社 | 収量分布算出装置及び収量分布算出プログラム |
Also Published As
Publication number | Publication date |
---|---|
EP2989885B1 (en) | 2020-03-25 |
CN105142390B (zh) | 2018-09-25 |
JP5980162B2 (ja) | 2016-08-31 |
JP2014212749A (ja) | 2014-11-17 |
US20160066507A1 (en) | 2016-03-10 |
US10149435B2 (en) | 2018-12-11 |
KR102219242B1 (ko) | 2021-02-23 |
EP2989885A1 (en) | 2016-03-02 |
EP2989885A4 (en) | 2016-12-14 |
CN105142390A (zh) | 2015-12-09 |
KR20160004329A (ko) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5980162B2 (ja) | コンバイン | |
KR102582905B1 (ko) | 콤바인 및 콤바인을 위한 곡립 평가 제어 장치 | |
DE102008017671B4 (de) | Messanordnung zur Massendurchsatzerfassung mit Massen- und Volumenmessung und darauf basierender Massendichtenbestimmung sowie Massendurchsatzangabe bei kleinen Durchsätzen anhand der zuletzt erfassten Massendichte | |
US8340862B2 (en) | Agricultural working vehicle and display unit therefor | |
JP6700696B2 (ja) | コンバイン | |
US20140230392A1 (en) | Stripper plate adjustment | |
WO2016047187A1 (ja) | 収穫機 | |
JP6521926B2 (ja) | コンバイン | |
JP2017136064A (ja) | 穀粒収穫機 | |
RU2658981C2 (ru) | Система выявления рабочего состояния для рабочей машины с объединением, учитывающим достоверность значений датчиков | |
AU2023201624A1 (en) | Method and arrangement for measuring a grain-specific size on a harvesting machine | |
JP6300592B2 (ja) | 収穫機 | |
WO2017110818A1 (ja) | コンバイン及びコンバイン用穀粒収量管理システム | |
JP2016192975A (ja) | コンバイン | |
CN109922655A (zh) | 产量分布计算装置以及产量分布计算方法 | |
JP2018038271A (ja) | コンバイン用穀粒収量管理システム | |
JP6088880B2 (ja) | 穀粒収穫機 | |
JP6022519B2 (ja) | コンバイン | |
JP6919678B2 (ja) | 作業経路作成システムおよびコンバイン | |
JP2019198334A (ja) | 穀粒収穫機 | |
RU2404565C1 (ru) | Способ информационного обеспечения процесса уборки зерна комбайном и устройство для его осуществления | |
JP6449691B2 (ja) | 穀粒管理システム | |
JP2019092451A (ja) | 収穫機 | |
JP7321087B2 (ja) | 収穫機管理システム、収穫機、及び収穫機管理方法 | |
JP2003070335A (ja) | コンバインの圃場内の位置検出方法と装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480023573.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788098 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14785943 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157033374 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014788098 Country of ref document: EP |