WO2014174597A1 - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
WO2014174597A1
WO2014174597A1 PCT/JP2013/061946 JP2013061946W WO2014174597A1 WO 2014174597 A1 WO2014174597 A1 WO 2014174597A1 JP 2013061946 W JP2013061946 W JP 2013061946W WO 2014174597 A1 WO2014174597 A1 WO 2014174597A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
generation unit
command
pwm
Prior art date
Application number
PCT/JP2013/061946
Other languages
English (en)
French (fr)
Inventor
良 横堤
山崎 尚徳
将 加藤
米谷 晴之
健太 金子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/061946 priority Critical patent/WO2014174597A1/ja
Priority to DE112013006976.8T priority patent/DE112013006976T5/de
Priority to US14/785,912 priority patent/US10103675B2/en
Priority to JP2015513403A priority patent/JP5866065B2/ja
Publication of WO2014174597A1 publication Critical patent/WO2014174597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an AC motor control device.
  • a control device for an electric vehicle disclosed in Patent Document 1 below includes a first magnetic flux command value that minimizes the loss of the AC motor according to a torque command value. And a second magnetic flux command value that is a magnetic flux command value when the AC motor is controlled in the 1-pulse mode, and a loss of the AC motor and a loss of the main circuit when the first motor is controlled with the first magnetic flux command value. And a technique for calculating the sum of the loss of the AC motor and the loss of the main circuit when controlled by the second magnetic flux command value, and selecting the magnetic flux command value corresponding to the smaller sum of losses. Yes.
  • Patent Document 1 In addition to Patent Document 1, the following Patent Documents 2 to 4 and Non-Patent Document 1 are well-known documents that disclose techniques relating to the control of an AC motor (hereinafter abbreviated as “motor” as appropriate). . These documents are appropriately referred to in the embodiments described later.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an AC motor control device that can further reduce motor loss.
  • the present invention provides an inverter circuit that converts DC power into AC power and supplies the AC motor, and a DC voltage that detects a DC voltage value applied to the inverter circuit.
  • a gate signal generation unit and a voltage vector generation unit that generates a voltage command to the gate signal generation unit based on a torque command from the host, the rotation speed, the DC voltage value, and the AC current amount, and the voltage
  • the vector generation unit is generated by PWM control based on a modulation factor that is a ratio between the DC voltage value and the voltage amplitude command value in the voltage command. Calculating a PWM current distortion factor as an index representing the degree of current harmonics, and generates the voltage amplitude command value and outputs to the gate signal.
  • FIG. 1 is a diagram illustrating a configuration of a DC electric vehicle drive system including a control device for an AC motor according to a first embodiment.
  • FIG. 2 is a diagram showing a detailed configuration of the inverter circuit and the gate signal generation unit in the first embodiment.
  • FIG. 3A is a diagram illustrating a relationship between a modulated wave and a carrier wave in the asynchronous mode of the two-level inverter.
  • FIG. 3-2 is a diagram showing an output voltage waveform in the asynchronous mode of the two-level inverter.
  • FIG. 4A is a diagram illustrating a relationship between a modulated wave and a carrier wave in the synchronous multi-pulse mode of the two-level inverter.
  • FIG. 4B is a diagram showing an output voltage waveform in the synchronous multi-pulse mode of the two-level inverter.
  • FIG. 5A is a diagram illustrating a relationship between a modulated wave and a carrier wave in the synchronous 3 ′ pulse mode of the two-level inverter.
  • FIG. 5-2 is a diagram showing an output voltage waveform in the synchronous 3 ′ pulse mode of the two-level inverter.
  • FIG. 6A is a diagram illustrating a relationship between a modulated wave and a carrier wave in the synchronous 1 pulse mode of the two-level inverter.
  • FIG. 6B is a diagram illustrating an output voltage waveform in the synchronous one-pulse mode of the two-level inverter.
  • FIG. 7 is a diagram showing a detailed configuration of the voltage vector generation unit in the first embodiment.
  • FIG. 8 is a characteristic diagram in which the PWM current distortion rate in each pulse mode is estimated.
  • FIG. 9 is a diagram illustrating an example of a PWM current distortion factor characteristic mounted on the PWM current distortion factor characteristic storage unit according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of the fundamental wave loss characteristic implemented in the fundamental wave loss characteristic storage unit.
  • FIG. 11 is a diagram illustrating another example of the fundamental wave loss characteristic implemented in the fundamental wave loss characteristic storage unit.
  • FIG. 12 is a diagram showing an example of a speed characteristic of the torque command PTR given to the AC motor.
  • FIG. 13 is a diagram illustrating an example of the overall loss characteristic in consideration of the PWM harmonic current in the AC motor.
  • FIG. 14 is a diagram illustrating an example (in the case of a light load) of the overall loss characteristic in consideration of the PWM harmonic current in the AC motor.
  • FIG. 15 is a diagram illustrating a comparison result between the motor loss according to the first embodiment and the motor loss according to the comparative example.
  • FIG. 16 is a diagram illustrating a configuration of a voltage vector generation unit used as a comparative example.
  • FIG. 17 is a diagram showing a detailed configuration of the inverter circuit and the gate signal generation unit in the second embodiment.
  • FIG. 18A is a diagram illustrating a relationship between a 3-level modulation wave and a 3-level carrier wave in the asynchronous mode of the 3-level inverter.
  • FIG. 18-2 is a diagram showing an output voltage waveform in the asynchronous mode of the three-level inverter.
  • FIG. 19A is a diagram illustrating a relationship between a 3-level modulation wave and a 3-level carrier wave in a synchronous 15-pulse mode of a 3-level inverter.
  • FIG. 19-2 is a diagram showing an output voltage waveform in the synchronous 15-pulse mode of the three-level inverter.
  • FIG. 20A is a diagram illustrating a relationship between a 3-level modulation wave and a 3-level carrier wave in the synchronous 1 ′ pulse mode (modulation rate 90%) of the 3-level inverter.
  • FIG. 19A is a diagram illustrating a relationship between a 3-level modulation wave and a 3-level carrier wave in the synchronous 1 ′ pulse mode (modulation rate 90%) of the 3-level inverter.
  • FIG. 20-2 is a diagram showing an output voltage waveform in the synchronous 1 ′ pulse mode (modulation factor 90%) of the three-level inverter.
  • FIG. 21A is a diagram illustrating a relationship between a 3-level modulation wave and a 3-level carrier wave in a synchronous 1 ′ pulse mode (modulation rate 100%) of the 3-level inverter.
  • FIG. 21-2 is a diagram showing an output voltage waveform in the synchronous 1 ′ pulse mode (modulation rate 100%) of the three-level inverter.
  • FIG. 22 is a diagram illustrating an example of a PWM current distortion factor characteristic mounted on the PWM current distortion factor characteristic storage unit according to the second embodiment.
  • FIG. 23 is a diagram illustrating a configuration of an AC electric vehicle drive system including an AC motor control device according to Embodiment 3.
  • FIG. 24 is a diagram showing a detailed configuration of the inverter circuit and the gate signal generation unit in the third embodiment.
  • FIG. 25 is a diagram illustrating a detailed configuration of the voltage vector generation unit in the third embodiment.
  • FIG. 26 is a diagram showing a relationship among a DC voltage, a modulation rate, and a PWM current distortion rate during variable speed operation with a large output in the third embodiment.
  • FIG. 27 is a diagram illustrating a relationship among a DC voltage, a modulation rate, and a PWM current distortion rate when the variable speed operation is performed under a low output condition in the third embodiment.
  • FIG. 28 is a diagram illustrating a configuration of a voltage vector generation unit in the fourth embodiment.
  • FIG. 1 is a diagram showing a configuration of a DC electric vehicle drive system including a control device for an AC motor according to Embodiment 1 of the present invention.
  • the DC electric vehicle drive system according to the first embodiment includes an AC motor (for example, an induction motor or a synchronous motor) 1 that generates torque as power of the electric vehicle, and a rotational speed of the AC motor 1.
  • an AC motor for example, an induction motor or a synchronous motor
  • An inverter circuit 7 that converts DC power from the DC power supply unit 3a into AC power based on a control signal (gate signal Sw_i) from the generation unit 11 and supplies the AC power to the AC motor 1, and an AC motor output from the inverter circuit 7 1 based on control command information such as a driver's steering wheel operation on the driver's cab and an electric motor current detector 13 that detects AC current amounts Iu, Iv, Iw to 1
  • a torque command value generation unit 10 that converts the torque command value to be generated in the AC motor 1 (hereinafter referred to as “torque command value PTR”) and outputs the torque command value, and a torque command value generation unit 10.
  • a voltage vector generation unit 8 that generates a voltage command V * including elements such as a modulation rate command, a phase angle command, and a frequency command and outputs the voltage command V * to the gate signal generation unit 11.
  • the detailed configurations of the voltage vector generation unit 8 and the gate signal generation unit 11 will be described later.
  • FIG. 2 is a diagram showing a detailed configuration of the inverter circuit 7 and the gate signal generation unit 11 in the first embodiment.
  • the inverter circuit 7 is an example of a two-level inverter.
  • the inverter circuit 7 is provided with six semiconductor switching elements Su, Sv, Sw, Sx, Sy, and Sz. Two of the semiconductor switching elements are connected in series, and an intermediate potential that is the potential at the connection end is used as an output voltage. As many arm circuits as the number of output phases are provided.
  • a u-phase arm composed of switches Su and Sx, a v-phase arm composed of switches Sv and Sy, and a w-phase arm composed of switches Sw and Sz are configured.
  • the operation of the gate signal generation unit 11 will be described focusing on the operation of the switches Su and Sx of the u-phase arm.
  • the gate signal generation unit 11 includes a modulation mode selection unit 21, a modulation wave generation unit 22, a carrier wave generation unit 23, and a comparison unit 24.
  • a modulation wave is generated by the modulation wave generation unit 22 based on the voltage command V * output from the voltage vector generation unit 8, and is input to the comparison unit 24 together with the carrier wave output from the carrier wave generation unit 23. Is done.
  • An example of the modulated wave and the carrier wave is shown in FIG.
  • the modulated wave is a waveform signal obtained by standardizing the output voltage command waveform with the DC voltage EFC of the DC power supply unit in order to generate the gate signal.
  • the following ⁇ u, ⁇ v, and ⁇ w calculated as the following formulas are indicated.
  • PMF is a modulation rate command, and is calculated by the voltage vector generation unit 8 based on the amplitude command value
  • ⁇ * is the reference phase angle of the three-phase output voltage. The reference phase angle ⁇ * changes faster as the operation frequency command is higher.
  • the comparison unit 24 compares the carrier wave and the modulated wave, (i) If modulation wave> carrier wave, upper element: ON, lower element: OFF (ii) If modulation wave ⁇ carrier wave, upper element: OFF, lower element: ON A gate signal is output to command
  • FIG. 3-2 shows an example of the output voltage when the gate signal thus obtained is input to the switching element of the inverter main circuit.
  • the output voltage of the two-level inverter is either 0 or the DC power supply voltage Ed according to the on / off operation of the upper and lower elements (hereinafter referred to as “upper and lower elements”) (* (Note: In this explanation, the voltage drop of the element is ignored as being minute).
  • the signal lines corresponding to the three phases are collectively shown as one, but the voltage vector generation unit 8 outputs signals for each of the three phases.
  • the modulation wave generation unit 22, the carrier wave generation unit 23, and the comparison unit 24 also perform calculations for each of the three phases, and for the v phase and the w phase, for the waveforms of FIGS. 3-1 and 3-2, Waveforms shifted by 120 degrees and 240 degrees in electrical angle are output.
  • the modulation wave generation unit 22 and the carrier wave generation unit 23 refer to the modulation mode selection signal from the modulation mode selection unit 21 and switch the modulation wave or the carrier wave waveform, respectively.
  • the gate signal generation unit 11 has, for example, the following modulation modes, and each mode is switched and operated in accordance with a voltage command (a three-phase AC load operating condition). In general, as the modulation wave frequency (operating frequency of the AC load) increases, an operation of transition from (1) to (3), (4) is performed.
  • Asynchronous mode (refer to Fig. 3-1 and Fig. 3-2)
  • the carrier wave is set to several hundred Hz, for example, and output independently and asynchronously with the modulated wave.
  • Synchronous 3-pulse mode (including 3-dash (simply expressed as “3 '”) pulse mode, see FIGS. 5-1 and 5-2)
  • the output voltage amplitude of the inverter main circuit is smoothly changed to the maximum value.
  • a dedicated modulated wave and carrier wave are output.
  • (1) is a technique described in Non-Patent Document 1 above. Further, (2) is also an applied technology of (1). On the other hand, (3) and (4) are the techniques described in the above-mentioned Patent Document 2, and a modulated wave different from the above expression (1.2) and a carrier wave that is not a triangular wave are output.
  • a modulated wave tilt solid line waveform
  • a carrier wave tilt broken line waveform
  • Carrier wave (u phase): Waveform according to the following formula
  • the output voltage waveform of a desired PWM modulation can be obtained and the load can be smoothly driven in the situation of (1) where the carrier wave is several hundred Hz, for example. .
  • the three-phase AC load is, for example, the AC motor 1 as in this embodiment, and this AC motor 1 performs an acceleration operation, the carrier wave (triangular wave) in one cycle of the modulated wave, that is, the number of switchings Is relatively less. In this case, the symmetry of the output voltage waveform is lost, and an output voltage control error and pulsation appear. Therefore, when the frequency command from the voltage vector generation unit 8 (frequency command will be described later) exceeds a certain threshold value, the mode is shifted to the mode (2) (synchronous multipulse mode) in which the carrier wave is synchronized with the modulated wave.
  • the frequency of the carrier wave continues to rise in the higher speed region.
  • the switching loss of the inverter circuit 7 is increased and the cooling design of the device becomes difficult. Therefore, the frequency of the carrier wave is lowered while the carrier wave and the modulated wave are synchronized, but the ultimate is the synchronous 3 ′ pulse mode or the 1 pulse mode.
  • the synchronous one-pulse mode is provided to continue the operation while satisfying the restriction of the carrier frequency caused by the switching loss as described above and the restriction that the inverter circuit is fixed to the maximum voltage that can be output. There is a meaning.
  • FIG. 7 is a diagram showing a detailed configuration of the voltage vector generation unit 8.
  • the voltage vector generation unit 8 includes a PWM current distortion rate characteristic storage unit 31, a fundamental wave loss characteristic storage unit 32, an optimum magnetic flux calculation processing unit 34, a one-pulse (hereinafter abbreviated as “1P”) magnetic flux command generation unit 35, and a lower selection.
  • a unit 36 and a voltage command generation unit 37 are provided.
  • the voltage command generator 37 is applied to the AC motor 1 based on the rotational speed FM from the AC motor 1, the torque command PTR from the upper level, and the magnetic flux command F2R_3 from the final stage (lower level selection unit 36 in the example of FIG. 7).
  • This is a processing unit that calculates a command value of the voltage to be used, and can be configured using, for example, a conventional technique related to vector control of an AC motor described in Non-Patent Document 1 above.
  • the voltage command generation unit 37 in the first embodiment as the voltage command V *, the voltage command V phase angle command theta * is the phase angle information of * is the frequency information of the voltage command V * frequency command Omegainv *, A modulation factor command ⁇ *, which is amplitude information of the voltage command V * , is output to the gate signal generation unit 11.
  • the modulation rate PMF described in the above equation (1.1) may be output to the gate signal generation unit 11.
  • the PWM current distortion characteristic storage unit 31, the fundamental wave loss characteristic storage unit 32, and the optimum magnetic flux calculation processing unit 34 work together to minimize the loss of the AC motor 1, and the fundamental wave frequency Finv, torque command PTR, input DC of the inverter.
  • An optimum magnetic flux command F2R_2 (details of the principle will be described later) is calculated according to the voltage EFC.
  • the 1P magnetic flux command generation unit 35 is configured using, for example, the technique described in Patent Document 3 above, and the modulation factor calculation result PMF of “1” in Equation (1.1) is “1”, that is, 180 ° energization.
  • This is a processing unit that calculates the magnetic flux command F2R_1 such that
  • the lower selection unit 36 includes both the magnetic flux command F2R_2 from the optimum magnetic flux calculation processing unit 34 and the upper limit magnetic flux F2R_1 (which is also an upper limit voltage that can be output from the inverter circuit 7) from the upper limit magnetic flux F2R_1 from the 1P magnetic flux command generation unit 35.
  • the magnetic flux command value having a small value is selected and output to the voltage command generating unit 37 as the final magnetic flux command F2R_3.
  • the lower selection unit 36 selects the upper limit magnetic flux F2R_1 that is fixed to the maximum output voltage condition (modulation factor 1), so that stable operation can be continued even under high speed and large output conditions. .
  • FIG. 8 is a characteristic diagram in which the PWM current distortion rate in each pulse mode is estimated.
  • This PWM current distortion factor is an index representing the degree (degree) of current harmonics generated by PWM control.
  • the characteristic diagram of FIG. 8 shows how the PWM current distortion rate changes with respect to the modulation factor command PMF when the induction motor is driven by an inverter circuit.
  • the modulation mode is the following three modes. (2) -a: Synchronous 9 pulse mode (2) -b: Synchronous 15 pulse mode (3): Synchronous 3 'pulse mode
  • the inverter frequency is set to 50 Hz (electrical angle).
  • the “PWM current distortion ratio” shown on the vertical axis is the pu value of the square sum of current harmonics (current distortion amount that is an index representing the degree of current harmonics) when PWM control is performed in each mode. Note that various controls described later may be performed using a value that is not a pu value, that is, a “PWM current distortion amount”.
  • the state in which the modulation rate is maximum 1 becomes the single pulse mode of (4). Note that when the modulation rate is generally 0.75 or less, the mode shifts to the asynchronous mode (1), but since it is not related to the PWM current distortion rate calculation process in the first embodiment, the description thereof is omitted here. To do.
  • the current ripple decreases as the number of times of switching increases, so that the PWM current distortion factor decreases.
  • the harmonic loss in the AC motor 1 can be reduced, and the magnetostrictive sound and torque ripple are also reduced.
  • the switching loss of the inverter circuit 7 increases, so that there is a design constraint that it is necessary to determine the pulse mode in consideration of the performance of the cooler of the inverter circuit 7.
  • switching of the pulse mode is performed in a state where the PWM current distortion rate in each pulse mode is the same or sufficiently small.
  • the switching to the synchronous 3 ′ pulse is performed at a modulation rate of about 94%, and when the synchronous 15-pulse mode can be adopted, the switching to the synchronous 3 ′ pulse is modulated.
  • the rate is around 97%.
  • mode switching can be smoothly performed in each of the selectable PWM modes.
  • the PWM current distortion rate in the synchronous 3 'pulse mode has a minimum point in the vicinity of the modulation rate of 0.97, and in the first embodiment, it will be described later that this characteristic is also used effectively.
  • FIG. 9 is a diagram illustrating the PWM current distortion rate for each inverter fundamental wave frequency ( ⁇ rotational speed) when switching from the 15-pulse mode to the 1-pulse mode without causing discontinuity as described above.
  • (Graph) shows the PWM current distortion rate when the rotation speed is 50, 100, and 200 Hz under the condition of constant fundamental wave current.
  • the impedance of an AC motor is composed of an inductance component and a resistance component, but the inductance component is dominant at high frequencies. Therefore, the current harmonic becomes lower as the frequency becomes higher. From FIG. 9, as in FIG.
  • the characteristic is calculated and mounted in the PWM current distortion ratio characteristic storage unit 31.
  • the PWM current distortion rate characteristic storage unit 31 recalculates the PWM current distortion amount according to the frequency based on the inverter fundamental frequency, and outputs it to the optimum magnetic flux calculation processing unit 34 described later.
  • the PWM voltage waveform is uniquely determined by the modulation method (pulse mode) and the modulation rate. That is, the harmonic distribution in the voltage (the X part in the formula (1.4) corresponds to this) is uniquely determined by the pulse mode and the modulation rate.
  • the X is only one characteristic diagram with respect to the modulation rate and is easily recorded. It becomes possible.
  • the PWM current distortion rate characteristic storage unit 31 is implemented as X (PMF) obtained by mapping or approximating one pair of modulation rate characteristics in the portion X, and the PWM during operation.
  • X PMF
  • the sum of the squares of the harmonic current is simply calculated and related to the PWM current distortion factor.
  • Patent Document 1 described in the background art section is known.
  • This patent document 1 is a document disclosing a technique for reducing the fundamental current loss by reducing the useless excitation current by changing the magnitude of the magnetic flux according to the torque.
  • FIG. 10 and FIG. 11 are diagrams for explaining the outline of this technique, and schematically show the relationship between the modulation rate and the motor fundamental wave loss under a specific speed condition.
  • the fundamental current loss of the motor can be reduced by optimizing the current ratio between the excitation component and torque component that output a predetermined torque, and suppressing unnecessary excitation component current and unnecessary torque component current.
  • the iron loss has frequency dependence in addition to the magnitude of the magnetic flux, and its characteristics are complex.However, paying attention to the excitation current dependence at each operating point, the magnetic flux condition that is the loss minimization condition is set. By calculating, the intended response of the present application can be achieved.
  • the horizontal axis represents the modulation factor PMF (a component proportional to the input voltage of the AC motor), which is substantially proportional to the magnetic flux ⁇ speed. That is, under a certain fixed speed condition, it is proportional to the excitation current. Therefore, it can be considered that the horizontal axis is the excitation current and the characteristics of the motor fundamental wave loss under each torque condition are expressed. It can be seen that there is an optimum condition for the excitation current that minimizes the motor fundamental wave loss for each torque. However, when the speed as the operating condition and the desired torque command are large, as in the minimum loss condition (a) of the 100% torque condition in FIG.
  • the characteristics shown in FIGS. 10 and 11 are calculated in advance from the torque command conditions, speed conditions, circuit constants of the AC motor 1, and the like, and are implemented in the fundamental loss characteristic storage unit 32. Is possible.
  • the total loss is often described with the magnetic flux component current and the magnetic flux as the horizontal axis.
  • the relational expression described as [Equation 4] and the above-described expression (1.1)
  • the horizontal axis is rewritten as the modulation factor.
  • the characteristic mounted in the PWM current distortion characteristic storage unit 31 is a characteristic caused by the PWM mode determined from the cooling design of the inverter circuit 7 and the like, and the characteristic mounted in the fundamental wave loss characteristic storage unit 32 is AC. Although it is the characteristic resulting from the electric motor 1, it is possible to output both outputs to the optimum magnetic flux calculation processing unit 34 by describing and mounting them with a common horizontal axis and common arguments.
  • the optimum magnetic flux calculation processing unit 34 to which both outputs are input calculates the total loss value in consideration of the PWM harmonic current in the AC motor 1 as shown in FIG. 13 and FIG. 14 by a processing operation including the following assumptions. To do. Note that TH_I has a dimension of the square of the current as in the above equation (1.4).
  • k1 and k2 in the above equation can be set as follows, for example.
  • FIG. 13 shows an output condition with a torque of 100%
  • FIG. 14 shows an output condition with a torque of 50% (light load).
  • the PWM harmonic loss characteristics and the motor fundamental wave at speeds of 50, 100, 150, and 200 Hz, respectively. The result of summation with the loss characteristics is shown. In each of these characteristics, the minimum loss condition point for each operating speed is indicated by a white circle symbol “ ⁇ ”, and a frequency condition is added to each symbol.
  • FIG. 12 is an example of a speed characteristic of the torque command PTR given to the vector-controlled AC motor.
  • “Torque 100%” in this paper has a characteristic against speed as shown in FIG. 12, and is output according to each speed (fundamental frequency) condition or given as a control command.
  • a constant torque is applied in a low speed region below the rated speed (constant torque region)
  • a torque having a characteristic inversely proportional to the speed is applied in a speed region near the rated speed. That is, the mechanical output (product of torque and speed) of the AC motor of (b) is constant, and (b) is called a constant output region.
  • the torque output limit characteristic is inversely proportional to the square of the speed from the relationship between the DC input voltage of the inverter circuit 7 and the circuit constant of the AC motor. May give a characteristic inversely proportional to the square of speed.
  • this paper assumes that the 50% torque characteristic is simply a halved torque value in the entire speed range. The method varies depending on the intended use.
  • the PWM current distortion rate is a characteristic in which the modulation rate is near 97%. Therefore, in FIGS. 13 and 14 in which the coefficient of loss is plotted on the vertical axis using the PWM current distortion rate in the fundamental wave loss characteristics of FIGS.
  • the modulation rate shifted to the modulation rate of 97% can be calculated as the minimum condition of the total loss including the fundamental loss and the harmonic loss.
  • the current distortion that causes PWM harmonic loss decreases as the motor frequency increases as the motor impedance increases, as shown in FIG. Therefore, the amount of magnetic flux more weighted to reduce the fundamental wave loss is calculated as the optimum magnetic flux.
  • the inverter circuit 7 outputs the voltage amplitude command value particularly in a high speed range or under a large torque condition.
  • a voltage higher than the possible voltage (modulation factor of 1 or more) is output, the drive condition of the AC motor 1 does not match the commanded one, and a control error occurs in the torque control itself.
  • FIG. 13 in order to obtain the minimum motor loss condition under the conditions of torque output of 100% and frequency of 200 Hz, the magnetic flux and the modulation factor shown in FIG. 13 (a-200 Hz) are required. This is a condition that cannot be output.
  • the lower selection unit 36 sets the smaller one of the minimum magnetic flux F2R_2 that is the output of the optimum magnetic flux calculation processing unit 34 and the magnetic flux command F2R_1 that is the output of the 1P magnetic flux command generation unit 35. After selection, it is input to the voltage command generator 37. By doing so, it becomes possible to continue the operation while smoothly switching between the minimum loss condition and the inverter circuit output enabling condition. More specifically, in the case of FIG. 13, the operating point at the magnetic flux F2R_1 under the one-pulse condition is indicated by (a′ ⁇ 200 Hz).
  • FIG. 15 shows a comparison result between the motor loss according to the first embodiment and the motor loss according to the comparative example.
  • the comparative example is a form in which the configuration of the voltage vector generation unit 8 does not include the PWM current distortion rate characteristic storage unit 31 and the optimum magnetic flux calculation processing unit 34 as shown in FIG. 16, and the gate signal generation unit 11 It is assumed that the modulation mode selection unit 21 performs control for selecting a PWM mode that gives priority to a smaller number of mode switching times than a PWM distortion amount.
  • FIG. 15A shows the relationship between the inverter frequency and the modulation factor when the motor is accelerated under the condition of 100% torque
  • FIG. 15B shows the relationship between the inverter frequency and the PWM current distortion factor.
  • the PWM current distortion rate increases stepwise in the vicinity of the switching frequency (58 Hz in this example).
  • the PWM current distortion rate is kept low by changing the pulse mode as in (2) -b ⁇ (3), and the mode is set so as not to change suddenly. By making the transition, it is possible to suppress PWM loss, magnetostriction sound, etc. generated from the electric motor.
  • the modulation factor reaches 100% at a lower frequency.
  • the operation is performed by selecting the magnetic flux command in consideration of the harmonic loss, the operation is performed at a slightly lower modulation rate than the operation of the comparative example.
  • FIG. 15C shows a comparison between the motor loss in the comparative example and the motor loss in the first embodiment under the frequency condition in which the modulation rate of 100% is selected in the operation according to the comparative example. The breakdown of wave loss and PWM harmonic loss is shown.
  • the first embodiment Comparing the two, in the first embodiment, as a result of operating with the magnetic flux command considering the total loss including the harmonic loss due to the PWM, as compared with the comparative example operating considering only the reduction of the fundamental loss. Although the fundamental loss itself increases slightly, the total loss is smaller than in the comparative example. As a result, the first embodiment can be operated with less energy than the comparative example.
  • FIG. FIG. 17 is a diagram showing a detailed configuration of the inverter circuit and the gate signal generation unit in the second embodiment.
  • the same reference numerals as those in the configuration of the first embodiment shown in FIG. 2 are used, and “b”, “b1”, and “b2” are added.
  • the inverter circuit 7 is a two-level circuit as shown in FIG. 2 has been described.
  • the power supply voltage is high, such as the DC power supply unit 3b shown in FIG. 17, it is often configured with a three-level circuit (three-level inverter) like the illustrated inverter circuit 7b.
  • a three-level circuit twelve semiconductor switching elements are provided as shown. Since the configuration (element arrangement) of the three-level circuit is known, description thereof is omitted here.
  • the gate signal generation unit 11b corresponds to the three levels. Therefore, as the second embodiment, the operations of the modulation wave generator 22b, the carrier wave generator 23b, and the comparator 24b provided inside the gate signal generator 11b corresponding to the three-level inverter circuit 7b are described, and the gate signal An operation of the voltage vector generation unit 8b that applies the voltage command V * to the generation unit 11b will be described.
  • FIG. 19-1, FIG. 20-1, and FIG. 21-1 are diagrams illustrating the three-level modulated wave output from the modulated wave generating unit 22b and the three-level carrier output from the carrier wave generating unit 23b. is there. 18-2, FIG. 19-2, FIG. 20-2, and FIG. 21-2 show that any two of the four switch elements per one phase of the inverter circuit are calculated based on the amplitude comparison results of the carrier wave and the modulated wave. The output voltage waveform obtained by turning on and turning off the remaining two elements is shown. For the sake of simplicity, only one phase (U phase) is extracted from the inverter three-phase circuit.
  • the switching operation of the three-level circuit will be described with reference to FIGS. 18-1 and 18-2.
  • two waveforms of a carrier wave (upper) and a carrier wave (lower) are output as a carrier wave.
  • the carrier wave (upper) is a triangular wave with a lower limit “0” and an upper limit “1”
  • the carrier wave (lower) is a triangular wave with a lower limit “ ⁇ 1” and an upper limit “0”
  • the frequency of these triangular waves is a so-called carrier frequency.
  • the triangular wave that is the carrier wave is asynchronous with the modulation wave that is a voltage command to the electric motor that is the inverter load.
  • an element to be turned on is selected as shown in the table below.
  • FIGS. 19A and 19B exemplify the synchronous 15P mode.
  • the magnitude relationship with the carrier wave and the modulated wave and the relationship between the elements to be turned on are the same as in Table 1.
  • 20-1 and 21-1 both show a carrier wave and a modulated wave in the 1-dash (also simply referred to as “1 ′”) pulse mode. Basically, this is a known technique described in FIG.
  • the calculation method of the carrier wave and the modulation wave disclosed in this document is specifically described, it is as shown in the following table.
  • the voltage waveform shown in FIGS. 20-2 and 21-2 is output as the inverter output voltage (the output voltage of the inverter circuit 7b). Is done. In this way, when the 1 ′ pulse mode is used, it is possible to control the smooth transition of the output voltage to a modulation factor of 1.
  • the PWM current distortion rate characteristic with respect to the modulation rate is continuously obtained in each modulation mode, similarly to the modulation mode selection unit 21 according to the first embodiment.
  • Asynchronous PWM mode, synchronous 15-pulse mode, and synchronous 1 ′ pulse mode are switched so as to be smooth.
  • FIG. 22 shows an example of the PWM current distortion rate characteristic of the modulation rate to be obtained in this way.
  • the slightly low modulation rate side is suitable.
  • the PWM current distortion rate characteristic storage unit 31b is implemented by mapping or mapping an approximate function shown in FIG.
  • the only difference between the voltage vector generation unit 8 of the first embodiment and the voltage vector generation unit 8b of the second embodiment is basically the difference in characteristics stored in the PWM current distortion characteristic storage units 31 and 31b. You may think.
  • the magnetic flux and the modulation rate which are the minimum motor loss conditions taking into account the PWM harmonics, are calculated in consideration of the three-level characteristics, and operation under the minimum motor loss conditions is possible. Become.
  • the modulation mode (PWM pulse mode) is selected so that the PWM current distortion rate does not change suddenly, and the minimum motor with PWM harmonics added.
  • FIG. 23 is a diagram showing a configuration of an AC electric vehicle drive system including an AC motor control device according to Embodiment 3, and FIG. 24 shows detailed configurations of an inverter circuit and a gate signal generation unit in Embodiment 3.
  • the first and second embodiments are DC electric vehicle drive systems that receive power from a DC overhead line
  • the third embodiment is an AC electric vehicle drive system that receives power supply from an AC overhead line.
  • the same reference numerals as those in the configuration shown in FIGS. 17 and 18 are used, and “b”, “b1”, and “b2” are replaced by “ c "or” c1 "and” c2 "are used as suffixes.
  • the AC electric vehicle drive system includes a portion that receives power from the AC power supply unit 2, performs AC-DC power conversion by the converter circuit 5, and then supplies DC power to the DC power supply unit 3 c. This is different from the first and second embodiments.
  • the voltage of the DC power supply unit 3c that is, the magnitude of the input voltage to the inverter circuit 7c can be adjusted by control.
  • the converter control unit 6 that controls the converter circuit 5 includes a DC voltage value EFC of the DC power supply unit 3c acquired by the DC voltage detection units 4c1 and 4c2, a DC voltage command ECR output from the voltage vector generation unit 8c, and an AC power supply. Based on the voltage value of the unit 2 and the AC input current value to the converter circuit 5, ON / OFF signals for controlling the conduction of the semiconductor switching elements constituting the converter circuit 5 are generated.
  • voltage vector generation unit 8c in the third embodiment outputs a voltage amplitude command value (including the modulation factor calculation output of equation (1.1) above) to gate signal generation unit 11c. Is the same as in the first and second embodiments, but outputs a DC voltage command value ECR to the converter control unit 6 in conjunction with each other. The interlocking operation will be described below.
  • FIG. 25 is a diagram showing a detailed configuration of the voltage vector generation unit 8 c, and includes a DC voltage command value generation unit 30 that outputs a DC voltage command ECR to the converter control unit 6.
  • the DC voltage command value generation unit 30 outputs ECR_opt (details will be described later) generated by the intermediate DC voltage command generation unit 41 via the upper / lower limit unit 42 as a DC voltage command ECR. Since the DC voltage that can be output from the converter circuit 5 has a physical upper limit value and a lower limit value, the DC voltage is generally provided with an upper and lower limit unit 42.
  • the upper limit value and the lower limit value are as follows.
  • DC voltage command ECR upper limit value As shown in FIG. 24, the semiconductor element used to configure the converter circuit and the inverter circuit has a withstand voltage upper limit value for normal operation without damage.
  • the upper limit value is set so as not to exceed the limit and taking into account a margin for control.
  • the DC voltage value EFC that is the input of the inverter circuit 7c can be controlled by the converter circuit 5 while keeping the upper and lower limit restrictions.
  • the used AC motor 1 is controlled.
  • both the PWM current distortion rate characteristic storage unit 31 and the fundamental wave loss characteristic storage unit 32 are used to control the AC motor 1 and the inverter circuit 7. Then, the fundamental voltage loss characteristic storage unit 32c is used for controlling the inverter circuit 7c as in the first and second embodiments, and the PWM current distortion ratio characteristic storage unit 31c is a converter. Used to control the circuit 5.
  • the fundamental loss characteristic storage unit 32c stores a fundamental loss characteristic having a horizontal axis representing a physical quantity (modulation factor in FIG. 7) corresponding to (related to) the amount of magnetic flux.
  • the fundamental wave loss characteristic storage unit 32c calculates a magnetic flux condition that minimizes the fundamental wave loss based on the torque command PTR and the voltage fundamental wave frequency command, and outputs it as F2R_2.
  • the maximum magnetic flux command generation unit 35c outputs a magnetic flux value F2R_1 such that the inverter modulation factor is “1” at the maximum DC voltage upper limit value EFC_max that can be controlled and output by the converter circuit 5.
  • the lower order selection unit 36 selects the lower order (smaller value) of F2R_1 and F2R_2, and outputs it to the voltage command generation unit 37 as the final stage magnetic flux command value F2R_3.
  • the voltage command generator 37 Based on the magnetic flux command value F2R_3, the torque command PTR, the electrical angular rotation speed FM of the AC motor, and the circuit constants of the AC motor 1, the voltage command generator 37 generates a command value for the three-phase AC voltage to be applied to the AC motor 1. Is calculated.
  • a signal that is actually output to the gate signal generation unit 11c is output via a modulation rate calculation formula (the above formula (1.1)).
  • the value of the DC voltage value EFC at this time is the converter
  • the value actually applied by the control of the circuit 5, specifically the sum of the outputs of the DC voltage detectors 4 c 1 and 4 c 2, is used as the modulation factor.
  • the intermediate DC voltage value used for the voltage command generator 37 is EFC which is a signal obtained by detecting the actual value after control, and the input value for the maximum magnetic flux command generator 35c to calculate F2R_1 is the intermediate DC voltage.
  • the voltage control upper limit ECR_max is different from the first and second embodiments in that different values are used. The effect of this feature can be explained together with the control method of the converter circuit 5 by setting the converter voltage command ECR described below.
  • the intermediate DC voltage command generation unit 41 receives the DC voltage command ECR_1 from the PMW current distortion factor characteristic storage unit 31c that stores the command amplitude
  • PMFopt refers to the modulation rate under the condition that the PWM current distortion rate is minimum in the PWM current distortion rate characteristic stored in the PMW current distortion rate storage unit 31c.
  • the characteristics as shown in FIG. 9 or FIG. 22 are mounted according to the form of the inverter circuit 7 (two-level circuit, three-level circuit). That is, the gate signal generation unit 11c also presupposes that the pulse mode is selected / switched so that the PWM current distortion rate is not discontinuous in the third embodiment.
  • Embodiment 3 which is a three-level circuit as shown in FIG. 24, the operation is performed based on FIG.
  • the PWM current distortion rate characteristic storage unit 31c As the PWM current distortion rate characteristic storage unit 31c, the characteristic of FIG. 22 is implemented, and the distortion rate minimum modulation rate condition PMFopt is sequentially calculated based on the voltage frequency command ⁇ inv * output from the voltage command generation unit 37 sequentially. Good.
  • the output of the PWM current distortion rate characteristic storage unit 31c may be simplified.
  • * of the AC voltage in the equation (3.1) is based on the magnetic flux command F2R_2 that minimizes the fundamental wave loss derived from the fundamental wave loss characteristic storage unit 32c of the AC motor 1 as described above. Is the amplitude command value calculated by That is, the voltage command generation unit 37c in the present embodiment is based on the PWM current distortion rate characteristic storage unit 31c under the assumption that the DC voltage value EFC is controlled by the converter circuit 5 to ECR_opt of the formula (3.1).
  • * in that case is output to the gate signal generation unit 11c and the inverter circuit 7c. It becomes possible.
  • FIG. 26 illustrates the entire system operation when the AC motor 1 is operated from the low speed to the high speed with the torque command of the torque 100% performance curve of FIG. I will explain.
  • 26A shows the DC voltage value EFC
  • FIG. 26B shows the modulation rate PMF of the inverter circuit 7c
  • FIG. 26C shows the PWM current distortion rate in the AC motor.
  • movement by Embodiment 3 is each shown as the continuous line, and the operation
  • the DC voltage command ECR is determined while being limited by the lower limit value ECR_min and the upper limit value ECR_max determined by the main circuit design in the processing after being given by ECR_opt in the equation (3.1).
  • the DC voltage value EFC follows the ECR by the control operation of the converter control unit 6 and the converter circuit 5. Therefore, the states of ECR and EFC are divided into the following three states, and FIG. 26 will be described according to the divisions.
  • the constant voltage operation is performed by the ECR limited to the lower limit value ECR_min by the upper / lower limit unit 42.
  • the modulation rate PMF is PMF_opt. It rises in proportion to the speed and rotation frequency in the range below.
  • the variable speed is maintained while maintaining the optimum modulation rate PMF_opt for suppressing the PWM harmonics of the AC motor 1 based on the principle of the above-described formula (3.1).
  • the DC voltage value EFC_opt for achieving this can be achieved by controlling the converter circuit 5.
  • both the fundamental wave loss and PWM harmonic loss in the AC motor 1 can be suppressed.
  • the operation of giving priority to the transition to the maximum modulation rate of 100%, for example, is performed without considering the optimum modulation rate PMF_opt, so that the PWM harmonic loss increases.
  • the modulation factor PMF 1 is controlled stably and smoothly.
  • the maximum magnetic flux command generation unit 35c calculates the magnetic flux command F2R_1 for changing the operation at the maximum voltage ECR_max and the modulation factor PMF1, and the lower selection unit 36 and the voltage command generation unit 37. This is because control with a modulation factor of 1 is achieved.
  • the operation of minimizing the fundamental wave loss of the AC motor 1 is performed by the operation in which the converter circuit 5, the inverter circuit 7c, and the AC motor 1 are appropriately linked by the voltage vector generation unit 8c.
  • the converter circuit 5 performs an operation for minimizing the PWM harmonics of the AC motor 1, and in an operating condition where it is difficult to achieve both, the inverter circuit 7c is stably controlled by switching to the magnetic flux command value F2R_1. The amount can be changed.
  • the modulation mode (PWM pulse mode) is selected so that the PWM current distortion rate does not change suddenly.
  • PWM harmonic suppression of the motor 1 is performed by DC voltage control by a converter, and control for minimizing the fundamental wave loss is performed by generation of a magnetic flux command and generation of an inverter output voltage, thereby reducing the motor loss compared to the prior art.
  • Embodiment 4 FIG.
  • the intermediate DC voltage EFC is changed by EFC_max in the operation region (3) in FIG. That is, in the third embodiment, the situation in which the intermediate DC voltage EFC is fixed in the operation region in which the intermediate DC voltage EFC is changed at EFC_max is the same as in the first and second embodiments.
  • the voltage vector generation unit 8c in the third embodiment is similar to the first and second embodiments in the PWM current distortion rate characteristic storage unit 31d used when the DC voltage is fixed, and the optimum magnetic flux calculation processing unit 34d. Is added.
  • ECR_max_on 0 (when ECR ⁇ ECR_max)
  • the optimum magnetic flux calculation processing unit 34d selects a magnetic flux command value that minimizes the fundamental wave loss of the AC motor 1 from the characteristics stored in the fundamental wave loss characteristic storage unit 32c, and sets this as F2R_2 to the lower selection unit 36. Output. Therefore, the specific operation is the same as (1) and (2) in FIG.
  • the optimum magnetic flux calculation processing unit 34d takes into consideration the characteristics of both the PWM current distortion rate characteristic storage unit 31d and the fundamental wave loss characteristic storage unit 32c, and the total loss thereof. Is calculated and is output to the lower selection unit 36 as F2R_2.
  • the optimum magnetic flux calculation processing unit 34d takes into account the characteristics of both the PWM current distortion rate characteristic storage unit 31d and the fundamental wave loss characteristic storage unit 32c, and the magnetic flux command that minimizes the total loss. Value, that is, the optimum magnetic flux command for reducing the overall loss of the AC motor 1 is generated and output to the lower-order selection unit 36.
  • the fundamental current loss characteristic storage unit 32c is not provided, and the PWM current distortion rate characteristic storage is performed.
  • the magnetic flux command value using only the output of the unit 31d, that is, the optimum magnetic flux command value for reducing the PWM loss of the AC motor 1 may be generated and output to the lower selection unit 36. Even in such a configuration, as a result of considering the harmonic loss due to the PWM control, an effect of a certain value or more can be obtained in reducing the loss of the AC motor 1.
  • the configurations shown in the above first to fifth embodiments are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined within the scope of the present invention. Needless to say, the configuration may be modified by omitting the unit.
  • the present invention is useful as a control device for an AC motor that enables further reduction of motor loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

 インバータ回路にゲート信号を出力するゲート信号生成部11と、上位からのトルク指令PTR、交流電動機の回転速度FMおよび、インバータ回路に印加される直流電圧値EFCに基づいてゲート信号生成部11への電圧指令を生成する電圧ベクトル生成部8と、を備える。電圧ベクトル生成部8は、直流電圧値EFCと前記電圧指令における電圧振幅指令との比である変調率に基づいて、PWM制御によって生ずる電流高調波の程度を表す指標としてのPWM電流歪率を算出し、算出したPWM電流歪率に基づいて前記電圧振幅指令を生成して前記ゲート信号生成部に出力する。

Description

交流電動機の制御装置
 本発明は、交流電動機の制御装置に関する。
 従来技術に係る交流電動機の制御装置として、例えば下記特許文献1に示される電気車の制御装置には、トルク指令値に応じて、交流電動機の損失を最小にするような第1の磁束指令値と、交流電動機を1パルスモードで制御する場合の磁束指令値である第2の磁束指令値とを算出すると共に、第1の磁束指令値で制御した場合の交流電動機の損失および主回路の損失の総和と、第2の磁束指令値で制御した場合の交流電動機の損失および主回路の損失の総和とを算出し、より小さい損失の総和に対応する磁束指令値を選択する技術が開示されている。
 なお、この特許文献1に加え、下記特許文献2~4および非特許文献1なども交流電動機(以下必要に応じて適宜「電動機」と略す)の制御に関する技術が開示されている公知文献である。これらの文献については、後述する実施の形態において適宜言及する。
特許第4956611号公報 特許第2654118号公報 特開平11-285299号公報 特許第2566021号公報
杉本英彦編著 「ACサーボシステムの理論と設計の実際」 総合電子出版社 1990年
 しかしながら、上記の従来技術によれば、電動機の基本波損失特性は考慮されているものの、PWM(Pulse Width Modulation)制御に起因する高調波損失が考慮されていないため、電動機の損失低減に改善の余地が残されていた。
 本発明は、上記に鑑みてなされたものであって、電動機損失の更なる低減を可能とする交流電動機の制御装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、直流電力を交流電力に変換して交流電動機に供給するインバータ回路と、前記インバータ回路に印加される直流電圧値を検出する直流電圧検出部と、前記交流電動機の回転速度を検出する速度検出部と、前記インバータ回路から前記交流電動機に出力される交流電流量を検出する電動機電流検出部と、前記インバータ回路にゲート信号を出力するゲート信号生成部と、上位からのトルク指令、前記回転速度、前記直流電圧値および前記交流電流量に基づいて前記ゲート信号生成部への電圧指令を生成する電圧ベクトル生成部と、を備え、前記電圧ベクトル生成部は、前記直流電圧値と前記電圧指令における電圧振幅指令値との比である変調率に基づいて、PWM制御によって生ずる電流高調波の程度を表す指標としてのPWM電流歪率を算出し、算出したPWM電流歪率に基づいて前記電圧振幅指令値を生成して前記ゲート信号生成部に出力することを特徴とする。
 この発明によれば、電動機損失の更なる低減が可能になるという効果を奏する。
図1は、実施の形態1に係る交流電動機の制御装置を含む直流電気車駆動システムの構成を示す図である。 図2は、実施の形態1におけるインバータ回路およびゲート信号生成部の詳細構成を示す図である。 図3-1は、2レベルインバータの非同期モードにおける変調波および搬送波の関係を示す図である。 図3-2は、2レベルインバータの非同期モードにおける出力電圧波形を示す図である。 図4-1は、2レベルインバータの同期多パルスモードにおける変調波および搬送波の関係を示す図である。 図4-2は、2レベルインバータの同期多パルスモードにおける出力電圧波形を示す図である。 図5-1は、2レベルインバータの同期3'パルスモードにおける変調波および搬送波の関係を示す図である。 図5-2は、2レベルインバータの同期3'パルスモードにおける出力電圧波形を示す図である。 図6-1は、2レベルインバータの同期1パルスモードにおける変調波および搬送波の関係を示す図である。 図6-2は、2レベルインバータの同期1パルスモードにおける出力電圧波形を示す図である。 図7は、実施の形態1における電圧ベクトル生成部の詳細構成を示す図である。 図8は、各パルスモードでのPWM電流歪率を見積もった特性図である。 図9は、実施の形態1におけるPWM電流歪率特性記憶部に実装されるPWM電流歪率特性の一例を示す図である。 図10は、基本波損失特性記憶部に実装される基本波損失特性の一例を示す図である。 図11は、基本波損失特性記憶部に実装される基本波損失特性の他の例を示す図である。 図12は、交流電動機に与えるトルク指令PTRの対速度特性の一例を示す図である。 図13は、交流電動機におけるPWM高調波電流を考慮した全体損失特性の一例を示す図である。 図14は、交流電動機におけるPWM高調波電流を考慮した全体損失特性の一例(軽負荷の場合)を示す図である。 図15は、実施の形態1による電動機損失と比較例による電動機損失との比較結果を示す図である。 図16は、比較例として用いる電圧ベクトル生成部の構成を示す図である。 図17は、実施の形態2におけるインバータ回路およびゲート信号生成部の詳細構成を示す図である。 図18-1は、3レベルインバータの非同期モードにおける3レベル用変調波および3レベル用搬送波の関係を示す図である。 図18-2は、3レベルインバータの非同期モードにおける出力電圧波形を示す図である。 図19-1は、3レベルインバータの同期15パルスモードにおける3レベル用変調波および3レベル用搬送波の関係を示す図である。 図19-2は、3レベルインバータの同期15パルスモードにおける出力電圧波形を示す図である。 図20-1は、3レベルインバータの同期1'パルスモード(変調率90%)における3レベル用変調波および3レベル用搬送波の関係を示す図である。 図20-2は、3レベルインバータの同期1'パルスモード(変調率90%)における出力電圧波形を示す図である。 図21-1は、3レベルインバータの同期1'パルスモード(変調率100%)における3レベル用変調波および3レベル用搬送波の関係を示す図である。 図21-2は、3レベルインバータの同期1'パルスモード(変調率100%)における出力電圧波形を示す図である。 図22は、実施の形態2におけるPWM電流歪率特性記憶部に実装されるPWM電流歪率特性の一例を示す図である。 図23は、実施の形態3に係る交流電動機の制御装置を含む交流電気車駆動システムの構成を示す図である。 図24は、実施の形態3におけるインバータ回路およびゲート信号生成部の詳細構成を示す図である。 図25は、実施の形態3における電圧ベクトル生成部の詳細構成を示す図である。 図26は、実施の形態3における大出力での可変速運転時の直流電圧、変調率およびPWM電流歪率の関係を示す図である。 図27は、実施の形態3において低い出力条件で可変速運転した場合の直流電圧、変調率およびPWM電流歪率の関係を示す図である。 図28は、実施の形態4における電圧ベクトル生成部の構成を示す図である。
 以下に添付図面を参照し、本発明の実施の形態に係る交流電動機の制御装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る交流電動機の制御装置を含む直流電気車駆動システムの構成を示す図である。図1に示すように、実施の形態1に係る直流電気車駆動システムには、電気車の動力としてトルクを発生する交流電動機(例えば、誘導電動機または同期電動機)1と、交流電動機1の回転速度FMを計測する速度検出部9と、架線、パンタグラフ、フィルタコンデンサ等から構成される直流電源部3aと、直流電源部3aの直流電圧値EFCを検出する直流電圧検出部4と、後述するゲート信号生成部11からの制御信号(ゲート信号Sw_i)に基づいて直流電源部3aからの直流電力を交流電力に変換して交流電動機1に供給するインバータ回路7と、インバータ回路7から出力される交流電動機1への交流電流量Iu,Iv,Iwを検出する電動機電流検出部13と、運転台における運転手のハンドル操作などの制御指令情報に基づいて交流電動機1に発生させるトルクの指令値(以下「トルク指令値PTR」と表記)に変換して出力するトルク指令値生成部10と、トルク指令値生成部10の下位に設けられ、トルク指令値生成部10からのトルク指令値PTR、電動機電流検出部13からの交流電流量Iu,Iv,Iw、速度検出部9からの回転速度FMおよび、直流電圧検出部4からの直流電圧値EFCに基づいて、変調率指令、位相角指令および周波数指令などの要素を含む電圧指令Vを生成してゲート信号生成部11に出力する電圧ベクトル生成部8と、を備えている。なお、電圧ベクトル生成部8およびゲート信号生成部11の詳細構成については後述する。
 図2は、実施の形態1におけるインバータ回路7およびゲート信号生成部11の詳細構成を示す図である。
 図2において、インバータ回路7は、2レベルインバータの一例である。インバータ回路7には、6つの半導体スイッチング素子Su,Sv,Sw,Sx,Sy,Szが設けられ、半導体スイッチング素子の2つが直列に接続され、その接続端の電位である中間電位を出力電圧とするアーム回路が、出力相数分設けられる。図2では、三相出力電圧Vu,Vv,Vwを得るために、スイッチSu,Sxからなるu相アーム、スイッチSv,Syからなるv相アームおよび、スイッチSw,Szからなるw相アームが構成されている。以下、ゲート信号生成部11の動作について、u相アームのスイッチSu,Sxの動作を中心に説明する。
 また、ゲート信号生成部11は、変調モード選択部21、変調波生成部22、搬送波生成部23および比較部24を備えて構成される。このゲート信号生成部11では、電圧ベクトル生成部8が出力する電圧指令Vに基づいて、変調波生成部22によって変調波が生成され、搬送波生成部23が出力する搬送波と共に比較部24に入力される。なお、変調波および搬送波の例を図3-1に示す。
 ここで、変調波とは、ゲート信号を生成するために、出力電圧の指令波形を直流電源部の直流電圧EFCで規格化した波形信号であり、電圧ベクトル生成部8の出力に従って、次式および次々式のように算出された下記αu,αv,αwを指す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上式において、PMFは変調率指令であり、電圧ベクトル生成部8において、インバータ回路の三相出力電圧の振幅指令値|V|と、直流電源部3aの直流電圧値EFCとに基づいて算出される。また、θは三相出力電圧の基準位相角である。なお、基準位相角θは、運転周波数指令が高いほどは高速に変化する。
 比較部24においては、搬送波と変調波を比較し、
 (i)変調波>搬送波であれば、上側素子:ON、下側素子:OFF
 (ii)変調波<搬送波であれば、上側素子:OFF、下側素子:ON
 を指令するゲート信号を出力する。
 ここで、上側素子とは、u相の場合Suであり、下側素子とは、u相の場合Sxが対応する。こうして得られるゲート信号をインバータ主回路のスイッチング素子に入力した場合の、出力電圧の例を図3-2に示す。
 図3-2において、2レベルインバータの出力電圧は、上側素子および下側素子(以下「上下素子」という)のオンオフ動作に従い、0と直流電源電圧Edのいずれかの値が出力される(※注:本説明では、素子の電圧降下は微小として無視している)。なお、図2では、三相に対応する信号線を1本にまとめて記載しているが、電圧ベクトル生成部8は、3相それぞれの信号を出力している。また、変調波生成部22、搬送波生成部23および比較部24も、三相それぞれの演算を行っており、v相、w相についても、図3-1および図3-2の波形に対し、電気角でそれぞれ120deg、240degシフトした波形を出力する。
 変調波生成部22および搬送波生成部23は、変調モード選択部21からの変調モード選択信号を参照して、それぞれ変調波または搬送波の波形を切り替える。ここで、ゲート信号生成部11としては、例えば、以下のような変調モードを有し、電圧指令(三相交流負荷の運転条件)に応じて、各モードを切り替えて動作させる。一般的に変調波周波数(交流負荷の運転周波数)が高くなるに従って、(1)から(3),(4)に遷移する動作が行われる。
(1)非同期モード(図3-1、図3-2参照)
 搬送波を、例えば数百Hz等に設定し、変調波と独立、非同期で出力するモードである。
(2)同期多パルスモード(図4-1、図4-2参照)
 変調波周波数(交流負荷の運転周波数)が高い条件において、出力電圧波形の歪を抑制するために変調波周波数と搬送波周波数の比を固定し、各々の出力波形を同期させるモードである。一般的には、PWM変調結果のパルス波形を正負対称、電気角180deg対称とさせるために、図3-2のように変調波の正負中心点(図3-2における電気角0,180degタイミング)で、搬送波も正負中心となって重なるよう、変調波に搬送波を同期させる。
(3)同期3パルスモード(3ダッシュ(簡易的に「3'」とも表記)パルスモードを含む、図5-1、図5-2参照)
 インバータ主回路の出力電圧振幅を最大値にまで滑らかに遷移させるモードである。(2)の同期多パルスモードから次段落に示す1パルスモード(最大電圧モード)に滑らかに遷移させるため、専用の変調波と搬送波を出力する。
(4)同期1パルスモード(図6-1、図6-2参照)
 電気角180deg毎のみスイッチングを行う最大電圧モード。変調波、搬送波の形態としては、(3)の3'パルスモードにおいて、変調率指令PMFを100%とすれば、1パルスモードとなる。
 なお、(1)については上記非特許文献1にも記載のある技術である。また、(2)についても(1)の応用技術である。一方、(3)、(4)については、上記特許文献2に挙げられている技術であり、上記(1.2)式とは異なる変調波および、三角波ではない搬送波を出力する。
 ここで、図5-1の波形について補足する。図5-1では、変調波(太実線の波形)および搬送波(太破線の波形)を以下のように記述している。
 変調波(u相):電圧位相角指令θ=0,180degで正負切り替えし、振幅は変調率指令PMFである方形波
 搬送波(u相):次式に従う波形
Figure JPOXMLDOC01-appb-M000003
 つぎに、変調波周波数(交流負荷の運転周波数)に応じて、変調波および搬送波を(1)~(4)のように切り替える背景について補足説明する。
 三相交流負荷を低周波数で駆動する場合には、搬送波を例えば数百Hzとした(1)の状況で、所望のPWM変調の出力電圧波形を得て、滑らかに負荷を駆動することができる。しかしながら、三相交流負荷が、例えば本実施の形態のような交流電動機1であり、この交流電動機1が加速動作を行う場合には、変調波の1周期中における搬送波(三角波)、すなわちスイッチング回数が相対的に少なくなる。この場合、出力電圧波形の対称性が損なわれ、出力電圧の制御誤差、脈動が表れる。そこで、電圧ベクトル生成部8からの周波数指令(周波数指令については後述)がある閾値を超えれば、搬送波を変調波に同期させる(2)のモード(同期多パルスモード)に遷移させる。
 (2)のモードにて、搬送波と変調波の比率(搬送波/変調波)が固定された場合、更に高速域では搬送波の周波数が上昇を続けることとなる。この場合、インバータ回路7のスイッチング損失を増大させ、機器の冷却設計が困難になるという不利益がある。そこで、搬送波と変調波を同期させたまま、搬送波の周波数を下げることが行われるが、その究極が同期3'パルスモードや1パルスモードである。
 また、同期1パルスモードには、上記したスイッチング損失に起因した搬送波周波数の制約の他、更にインバータ回路が出力可能な最大電圧に固定して運転させる制約を満たしながら運転を継続させるために設けられるという意味がある。
 つぎに、実施の形態1の特徴の一つである電流歪演算に基づく電圧ベクトルの生成処理について説明する。図7は、電圧ベクトル生成部8の詳細構成を示す図である。電圧ベクトル生成部8は、PWM電流歪率特性記憶部31、基本波損失特性記憶部32、最適磁束算定処理部34、1パルス(以下「1P」と略記)用磁束指令生成部35、下位選択部36および、電圧指令生成部37を備えて構成される。
 電圧指令生成部37は、交流電動機1からの回転速度FM、上位からのトルク指令PTR、最終段(図7の例では下位選択部36)からの磁束指令F2R_3に基づいて、交流電動機1に印加すべき電圧の指令値を算出する処理部であり、例えば上記非特許文献1に記載された交流電動機のベクトル制御に係る従来技術を用いて構成可能である。
 なお、実施の形態1における電圧指令生成部37は、電圧指令Vとして、電圧指令Vの位相角情報である位相角指令θ、電圧指令Vの周波数情報である周波数指令ωinv、電圧指令Vの振幅情報である変調率指令αなどをゲート信号生成部11に出力する。なお、変調率指令αに代えて、上記(1.1)式で説明した変調率PMFをゲート信号生成部11に出力してもよい。
 PWM電流歪率特性記憶部31、基本波損失特性記憶部32および最適磁束算定処理部34は、交流電動機1の損失を最小化すべく連動し、インバータの基本波周波数Finv、トルク指令PTR、入力直流電圧EFCに応じて最適な磁束指令F2R_2(原理の詳細は後述)を算出する。
 1P用磁束指令生成部35は、例えば上記特許文献3に記載された技術を用いて構成され、上記(1.1)式における変調率演算の結果PMFが最大の「1」、すなわち180度通電となるような磁束指令F2R_1を逆算して出力する処理部である。
 下位選択部36は、最適磁束算定処理部34からの磁束指令F2R_2および1P用磁束指令生成部35からの上限磁束F2R_1(インバータ回路7が出力可能な上限電圧でもある)上限磁束F2R_1の両者のうち、値の小さい磁束指令値を選択し、最終段の磁束指令F2R_3として電圧指令生成部37に出力する。損失を最小化する条件のみを考慮した磁束指令F2R_2で交流電動機1を運転しようとすると、交流電動機1における高速・大出力条件においては、インバータ回路7が出力可能な上限電圧を超え、変調率が1を超える運転領域に移行してしまい、安定な運転を継続することが難しくなる。一方、下位選択部36により、出力電圧最大条件(変調率1)に固定するような上限磁束F2R_1が選択されることにより、高速・大出力条件においても安定した運転を継続することが可能となる。
 つぎに、PWM電流歪率特性記憶部31、基本波損失特性記憶部32および最適磁束算定処理部34による磁束指令F2R_2の算出手法について説明する。
 図8は、各パルスモードでのPWM電流歪率を見積もった特性図である。このPWM電流歪率は、PWM制御によって生ずる電流高調波の程度(度合い)を表す指標である。図8の特性図では、誘導電動機をインバータ回路にて駆動した場合のPWM電流歪率が変調率指令PMFに対してどのように変化するのかを示している。なお、図8において、変調モードは、以下の3モードとした。
 (2)-a:同期9パルスモード
 (2)-b:同期15パルスモード
 (3):同期3'パルスモード
 また、回転速度一定にて変調率指令PMFを変化させた場合の特性とするため、インバータ周波数=50Hz(電気角)とした。縦軸に表す「PWM電流歪率」は、各モードにおいてPWM制御を行った際の電流高調波の二乗和(電流高調波の程度を表す指標である電流歪量)のpu値である。なお、pu値ではない値、すなわち「PWM電流歪量」を用いて後述する各種の制御を行ってもよい。
 既に述べたとおり、(3)の同期3'パルスモードにおいて、変調率が最大の1となった状態が(4)の1パルスモードになる。なお、変調率が一般的に0.75以下の場合は(1)の非同期モードに移行するが、実施の形態1におけるPWM電流歪率の算出処理には関係させないため、ここでの説明は省略する。
 図8によれば、変調率指令PMFが0.9以下の領域では、スイッチング回数が多いモードほど電流リプルが小さくなるため、PWM電流歪率は小さくなることが分かる。PWM電流歪率、電流リプルが小さいほど、交流電動機1における高調波損失を低減でき、また、磁歪音やトルクリプルも減るため、より好ましい運転特性となる。ただし、スイッチング回数を増大させ過ぎるとインバータ回路7のスイッチング損失が増加するため、インバータ回路7の冷却器の性能を加味して、パルスモードを決定する必要が生ずるという設計制約を受ける。この場合、SiCなどのワイドギャップ半導体を利用し、素子損失を低減する設計が可能な場合には、このパルスモード制約が緩和され、より多パルスのパルスモードが使用可能となり、PWM電流歪を小さくできる。その結果、図8に示す通り、最大変調率1までの歪率特性をより滑らかに接続する設定を行いやすくなるという効果が得られる。
 他方、変調率が0.9を超えると、変調波のピークが搬送波ピークを超えるいわゆる過変調となり、例えば9パルスモード用の搬送波と変調波を比較していても、変調波ピーク近傍のスイッチングタイミングが消滅し、パルス数が間引かれ、電圧の電気角1周期あたりのパルス数が9から徐々に少なくなる。搬送波が15パルスモード用でも同様であり、変調率0.9以上への上昇とともにパルス数が少なくなる。こうして、電圧波形としては3’パルスモードに漸近するため、電流波形、PWM電流歪率も漸近して行くことになる。図8において、変調率0.94~0.97にかけて、各パルスモードでのPWM電流歪率が漸近していくのはこの理由による。
 そこで、実施の形態1では、パルスモードの切替を、各パルスモードでのPWM電流歪率が同一、あるいは充分に小さい状態で実施する。例えば、同期9パルスモードを採用する場合には、同期3’パルスへの切替は変調率94%近傍で行い、同期15パルスモードが採用可能な場合には、同期3’パルスへの切替は変調率97%近傍で行う。こうすることで、選択可能なPWMモードのそれぞれにおいて、モード切替をスムーズに実施することが可能となる。また、同期3’パルスモードのPWM電流歪率は、変調率0.97近傍に極小点があり、実施の形態1では、この特性も有効に用いることは後述する。
 一方、図9は、上記のように15パルスモードから1パルスモードへと、不連続を発生させずに切り替えるときのPWM電流歪率を、インバータ基本波周波数(≒回転速度)毎に記載した図(グラフ)であり、基本波電流一定の条件のもと、回転速度50,100,200Hz時のPWM電流歪率を示している。交流電動機のインピーダンスは、インダクタンス成分と抵抗成分とから成るが、高周波ではインダクタンス成分が支配的である。よって、電流高調波は周波数が高い程低くなる。図9より、図8と同様に変調率97%近傍でPWM電流歪量が極小となる点が存在するものの、周波数が高くなって全体的に電流高調波、ひいてはPWM電流歪量が小さくなると、その変曲特性も目立たなくなることが分かる。
 そこで、実施の形態1においては、インバータ回路7が出力するパルスモード毎の電圧波形と、交流電動機1のインピーダンス特性とから、代表周波数条件下における、例えば図9に示すようなPWM電流歪率の特性を算出しておき、PWM電流歪率特性記憶部31に実装しておく。そして、PWM電流歪率特性記憶部31では、インバータ基本波周波数に基づいてPWM電流歪量を周波数に応じて再算出し、後述する最適磁束算定処理部34に出力する。
 つぎに、PWM電流歪率の具体的な算出例および実装例について説明する。まず、電流高調波の総和TH_Iと電圧高調波の総和との関係を次式のように仮定する。
Figure JPOXMLDOC01-appb-M000004
 ここで、上式における記号の意味は、以下の通りである。
 Ih(k):電動機電流の相電流のk次成分
 Vh(k):相電圧のk次成分
 ω:インバータ基本波周波数
 σLs:交流電動機の漏れインダクタンス
 なお、上記(1.4)式は、高調波のインピーダンス成分のうち、抵抗成分は無視し、またインダクタンス成分についても線形な一定値を与えた近似算出式であるが、電流の高調波の二乗和の形であれば、近似的に電圧の高調波成分との関係を記述できる。
 ここで、図4-2、図5-2および図6-2に示したとおり、同期PWMであれば、PWM電圧波形は、変調手法(パルスモード)と変調率によって一意に決まる。すなわち、電圧における高調波分布((1.4)式におけるXの部分がこれに該当)は、パルスモードと変調率によって一意に決定される。
 さらに、パルスモードは、上記のとおり変調率に応じて使用範囲を区分していることから、実施の形態1では、上記Xは変調率に対する1本のみの特性図となり、容易に記録しておくことが可能となる。
 以上のことから、PWM電流歪率特性記憶部31では、上記Xの部分における1本の対変調率特性をマップ化、あるいは近似関数化したX(PMF)として実装しておき、運転中のPWM高調波電流の二乗和として、このX(PMF)を漏れインダクタンスの二乗およびインバータ基本波周波数の二乗で除することで、高調波電流の二乗和を簡易に算出し、PWM電流歪率に関係するPWM電流歪量TH_Iとして出力する。
 以上の説明は、PWM電流歪率と変調率に関係するPWM電流歪率特性記憶部31の動作に関する説明であった。つぎに、基本波損失特性記憶部32の動作について説明する。まず、交流電動機1を高効率に運転する技術としては、背景技術の項でも説明した特許文献1などが知られている。
 この特許文献1は、トルクに応じて磁束の大きさを変化させることで、無駄な励磁分電流を減じ、基本波損失を減らす技術を開示した文献である。図10および図11は、この技術の概要を説明する図であり、特定の速度条件下における変調率と電動機基本波損失との関係を模式的に示している。
 ここで、トルクに関係する電流量(トルク分電流、励磁分電流)と、電動機基本波損失に関係する損失成分(一次銅損、二次銅損、鉄損)との間には、次式および次々式に示す関係がある。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記2式の関係から理解できるように、所定のトルク条件下において、電動機基本波損失を極小化する電流ベクトル条件が存在する。定性的に説明すると、所定のトルクを出力する励磁分とトルク分との電流比を最適化し、無駄な励磁分電流、無駄なトルク分電流を抑制することで、電動機基本波損失を低減することが可能となる。なお、鉄損は磁束の大きさ以外にも周波数依存性を有し、特性が複雑であるが、各々の動作点における励磁分電流依存性に着目して、損失最小化条件となる磁束条件を算定することで、本願の意図する対応が可能となる。
 図10および図11において、横軸は変調率PMF(交流電動機の入力電圧に比例する成分)であるが、これは磁束×速度にほぼ比例する。すなわち、ある特定の速度固定条件では、励磁分電流に比例するため、横軸を励磁分電流として、各トルク条件での電動機基本波損失の特性を表現したものと捉えることができる。電動機基本波損失を極小化する励磁分電流の最適条件が、各トルク毎に存在することが分かる。ただし、運転条件としての速度や、所望のトルク指令が大きい場合には、図11のトルク100%条件の損失最小条件(a)のように、基本波損失最低条件となる励磁分電流を得ようとすると電動機の誘起電圧が大きくなりすぎ、インバータ回路7の出力可能電圧条件を超過し、運転が不可能な条件が存在する。その場合には、前述のとおり、1P用磁束指令生成部、および後段の下位選択部36の働き(作用)により、出力電圧最大条件(変調率PMF=1、図11の(a')点)に固定するような磁束指令F2R_1に切り替えられる。この場合、基本波損失最低条件からは外れるものの、安定した運転を継続できるという利点がある。
 実施の形態1では、トルク指令条件、速度条件、交流電動機1の回路定数などから、予め図10および図11に示す特性を算出しておき、基本波損失特性記憶部32に実装することで実現可能である。
 つぎに、PWM電流歪率特性記憶部31、基本波損失特性記憶部32を利用した最適磁束算定処理部34における最適磁束F2R_2の算出処理について説明する。
 PWM電流歪率特性記憶部31に実装される図9のPWM電流歪率特性および、基本波損失特性記憶部32に実装される図10,11の基本波損失特性は、ともに横軸は変調率、すなわちほぼ励磁分電流に比例する形態で実装される。ここで、一般に、基本波損失を最小化するには、最適な磁束量を算出するために、全損失を磁束分電流や磁束を横軸として記述することが多いが、上記特許文献1に[数4]として記載された関係式(下式参照)と、上記した(1.1)式を用いて、横軸を変調率として再記述しておく。
Figure JPOXMLDOC01-appb-M000007
 PWM電流歪率特性記憶部31に実装される特性は、インバータ回路7の冷却設計などから決定されたPWMモードに起因した特性であり、基本波損失特性記憶部32に実装される特性は、交流電動機1に起因した特性であるが、共通の横軸、共通の引数で記述して実装することにより、両者の出力を最適磁束算定処理部34に出力することが可能となる。両者の出力が入力された最適磁束算定処理部34は、以下のような仮定を含む加工演算により図13および図14に示すような交流電動機1におけるPWM高調波電流を考慮した全体損失値を算出する。なお、TH_Iは、上記(1.4)式の通り、電流の二乗の次元を持っている。
Figure JPOXMLDOC01-appb-M000008
 なお、上式におけるk1,k2は、例えば次式のようにおくことができる。
Figure JPOXMLDOC01-appb-M000009
 元来、鉄損の厳密な記述は非常に複雑である。特にk2の厳密な解の記述は困難であるため、全体損失に対する鉄損の影響度などを加味して、実験的に決定したり、あるいは、高調波鉄損の影響は無視できると仮定してk2=0と設定したりしても、銅損側の最適条件監視は可能である。
 なお、図13はトルク100%の出力条件下、図14はトルク50%の出力条件下(軽負荷)で、それぞれ、速度50,100,150,200HzでのPWM高調波損失特性と電動機基本波損失特性との和算結果を示している。また、それらの各特性において、運転速度毎の損失最小条件点を白丸記号“○”で示すと共に、各記号に周波数の条件を付記している。
 ここで、上記「トルク100%」「トルク50%」について補足する。図12は、ベクトル制御された交流電動機に与えるトルク指令PTRの対速度特性の一例である。本稿における「トルク100%」とは、図12のような対速度特性を伴い、各速度(基本波周波数)条件に従って出力される、あるいは制御指令として与えられるものである。一般的には、(a)定格速度以下の低速領域では一定トルクとして与え(定トルク領域)、(b)定格速度近傍の速度域では、速度に反比例した特性のトルクを与える。すなわち(b)の交流電動機の機械出力(トルクと速度の積)は一定となり、(b)は定出力領域と呼ばれる。そして高速域(c)では、インバータ回路7の直流入力電圧と、交流電動機の回路定数の関係から、トルクの出力限界特性が速度の二乗に反比例した特性となるため、安定なトルク制御実現のため速度の二乗に反比例した特性を与えることがある。なお、以上で述べた100%性能に対し、本稿では50%トルクの特性を、単純に全速度域でトルク値を半分にした特性を想定したが、最大性能以下の範囲でのトルク指令の与え方は、使用用途によって様々である。
 図10,11の基本波損失特性では、トルクや速度(周波数)条件に応じ、損失最小となる最適磁束、最適変調率が存在する。その一方で、図9に示すとおり、PWM電流歪率は、変調率97%近傍が極小となる特性である。よって、図10,11の基本波損失特性にPWM電流歪率を用いて縦軸の損失[W]に、「係数」をかけた図13,14では、基本波損失最小の変調率条件よりも変調率97%側にシフトした変調率が、基本波損失と高調波損失とを合わせた全体損失の最小条件として算出可能となる。このとき、PWM高調波損失の原因となる電流歪は、図9にて複数周波数条件で示しているとおり、電動機インピーダンスの増加により、高周波になるほど小さくなるため、上記「係数」は高速域ほど小さくなり、より基本波損失低減に重み付けされた磁束量が、最適磁束として算定されることになる。
 ただし、最適磁束算定処理部34で得られた最適磁束F2R_2をそのまま用いてインバータ回路7を駆動しようとすると、特に高速域や、大トルクの条件下では、電圧振幅指令値としてインバータ回路7が出力可能な電圧以上のもの(変調率1以上)が出力され、交流電動機1の駆動条件が指令したものと一致せず、トルク制御そのものに制御誤差が発生してしまう。この状況の一部を図13に示している。図13において、トルク出力100%、周波数200Hzの条件下で、電動機損失最小条件を得るためには、図中(a-200Hz)の磁束および変調率が必要となるが、この値はインバータ回路7では出力不可能な条件である。
 そこで、上記した通り、最適磁束算定処理部34の出力である最低磁束F2R_2と、1P用磁束指令生成部35の出力である磁束指令F2R_1とのうちの小さい方の値を下位選択部36にて選択した上で、電圧指令生成部37に入力する。このようにすることで、損失最小条件とインバータ回路出力可能条件とを円滑に切り替えながら運転を継続することが可能となる。具体的に説明すると、図13の場合、1パルス条件の磁束F2R_1での動作点を(a'-200Hz)で示しており、例えば、電気角周波数150Hzからトルク100%で加速した場合、(a-150Hz)→(a-200Hz)ではなく、(a-150Hz)→(a'-200Hz)のように、インバータ回路7の出力可能な範囲で損失最小条件を維持しつつ、出力上限値である1パルス運転の変調率、磁束条件に遷移させての運転継続を行う。
 図15に、実施の形態1による電動機損失と比較例による電動機損失との比較結果を示す。ここで、比較例とは、電圧ベクトル生成部8の構成が図16のようにPWM電流歪率特性記憶部31および最適磁束算定処理部34を有さない形態であり、かつゲート信号生成部11における変調モード選択部21がPWM歪量よりも、モード切替の回数の少なさを優先させるPWMモード選択をする制御を行うものを仮定している。
 図15(a)は、電動機をトルク100%条件で加速させた場合におけるインバータ周波数と変調率との関係を示し、図15(b)は、インバータ周波数とPWM電流歪率との関係を示している。比較例では、実施の形態1より低い周波数で非同期PWMモードから3パルスモードに遷移させるため、切替周波数(本例では58Hz)近傍でステップ状にPWM電流歪率が増大している一方で、実施の形態1では、例えば図8に示すように、(2)-b→(3)のようにパルスモードを遷移させることでPWM電流歪率を低く維持し、かつ急激に変化しないようにモードを遷移させることで、電動機から発生するPWM損失、磁歪音などを抑制することが可能となる。
 また、比較例では、基本波損失の低減のみを考慮する結果、より低い周波数で変調率100%に到達する一方で、実施の形態1では、基本波損失だけでなく、PWMによる電流歪からの高調波損失も考慮した磁束指令を選択して運転するため、比較例の運転より、やや低めの変調率にて運転される。図15(c)は、比較例による運転で変調率100%が選択される周波数条件下において、比較例における電動機損失と実施の形態1での電動機損失とを比較したものであり、特に、基本波損失とPWM高調波損失の内訳を示している。
 両者を比較すると、実施の形態1では、PWMによる高調波損失も考慮した損失総和を考慮した磁束指令にて運転する結果、基本波損失の低減のみを考慮して運転している比較例に比べて、基本波損失自体は若干増加するものの、損失の総和は比較例よりも小さくなっている。その結果、実施の形態1は、比較例よりも省エネルギーでの運転が可能となっている。
 以上説明したように、実施の形態1に係る交流電動機の制御装置によれば、直流電圧値と電圧指令における電圧振幅指令値との比である変調率に基づいて、PWM制御によって生ずる電流高調波の程度を表す指標として算出したPWM電流歪率を用いて電圧振幅指令値を生成することとしたので、PWM電流歪率が急変しないように変調モード(PWMパルスモード)を選択した上で、従来よりも電動機損失の低減し、電動機駆動システムの省エネルギー化が可能となる効果を得ることができる。
実施の形態2.
 図17は、実施の形態2におけるインバータ回路およびゲート信号生成部の詳細構成を示す図である。図17の構成では、図2に示した実施の形態1の構成に対応する部分と同一の符号を用いると共に「b」もしくは「b1」、「b2」の添字を付して示している。
 実施の形態1では、インバータ回路7が図2のような2レベル回路である場合について説明した。一方、図17に示す直流電源部3bのように電源電圧が高電圧である用途においては、図示のインバータ回路7bのように、3レベル回路(3レベルインバータ)で構成することが多い。3レベル回路の場合、図示のように12個の半導体スイッチング素子が設けられる。なお、3レベル回路の構成(素子配置)については公知であるため、ここでの説明は省略する。
 また、3レベル回路の場合、半導体スイッチング素子の数が増加するため、ゲート信号生成部11bは3レベルに応じたものとなる。そこで、実施の形態2としては、3レベルのインバータ回路7bに対応したゲート信号生成部11bの内部に設けられる変調波生成部22b、搬送波生成部23bおよび比較部24bの動作について述べると共に、ゲート信号生成部11bに電圧指令Vを付与する電圧ベクトル生成部8bの動作について説明する。
 図18-1、図19-1、図20-1および図21-1は、変調波生成部22bが出力する3レベル用変調波および搬送波生成部23bが出力する3レベル用搬送波を示す図である。また、図18-2、図19-2、図20-2および図21-2は、搬送波と変調波の振幅比較結果からインバータ回路1相あたり4つのスイッチ素子のうちの何れか2つの素子をON、残り2つの素子をOFFすることで得られる出力電圧波形を示している。なお、簡潔な説明のため、インバータ三相回路のうち一相分(U相)のみを抽出して示している。
 まず、図18-1および図18-2を参照して、3レベル回路のスイッチング動作を説明する。3レベルの変調では、搬送波として搬送波(上)および搬送波(下)の2つの波形を出力する。搬送波(上)は、下限“0”、上限“1”の三角波であり、搬送波(下)は、下限“-1”、上限“0”の三角波であり、これらの三角波の周波数がいわゆる搬送波周波数である。なお、図18-1においては、搬送波である三角波は、インバータ負荷である電動機への電圧指令となる変調波とは非同期である。
 ここで、変調波と2つの搬送波(搬送波(上)、搬送波(下))との比較結果に基づき、下表のようにONさせる素子を選択する。
Figure JPOXMLDOC01-appb-T000010
 この表1に示すゲート信号を出力して半導体スイッチング素子を制御すると、図18-2に示すような電圧波形が、インバータ回路7bのU相出力端子(Su2とSx1との接続箇所)から出力される。
 また、図19-1および図19-2は、同期15Pモードとして例示したものであり、搬送波と変調波は同期されており、搬送波周波数/変調波周波数=15を維持している。そのほか、搬送波、変調波との大小関係、ONさせる素子の関係は表1と同等である。
 また、図20-1および図21-1は、何れも1ダッシュ(簡易的に「1'」とも表記)パルスモードでの搬送波および変調波を示している。基本的には、上記特許文献4の図2などに記載された公知の技術である。なお、この文献に開示されている搬送波および変調波の算出手法を具体的に記載すれば、下表の通りである。
Figure JPOXMLDOC01-appb-T000011
 この表2に示すゲート信号を出力して半導体スイッチング素子を制御すると、図20-2および図21-2に示すような電圧波形が、インバータ出力電圧(インバータ回路7bの出力電圧)となって出力される。このようにして、1'パルスモードを用いると、変調率1まで滑らかに出力電圧の大きさを推移させる制御が可能となる。
 実施の形態2における変調モード選択部21b(図17参照)では、実施の形態1の変調モード選択部21と同様に、各変調モードにおける、対変調率でのPWM電流歪率特性が連続的に滑らかとなるように、非同期PWMモード、同期15パルスモード、同期1’パルスモードを切り替える。こうすることで得られる対変調率のPWM電流歪率特性の一例を図22に示す。
 3レベル回路において、PWM電流歪率が連続的となるようにモードを切り替えた場合、最小歪率条件がやや低い変調率に推移し、変調率95%近傍がPWM電流歪率最小条件となる。2レベル回路におけるPWM電流歪率特性を表している図9と比較すれば、やや低変調率側が適することとなる。
 したがって、実施の形態2の電圧ベクトル生成部8bにおいては、PWM電流歪率特性記憶部31bとして、図22をマップ化あるいは近似関数化したものを実装しておく。実施の形態1の電圧ベクトル生成部8と、実施の形態2の電圧ベクトル生成部8bとの相違点は、基本的にはPWM電流歪率特性記憶部31,31bに記憶される特性の相違のみと考えてよい。このようなPWM電流歪率特性の実装により、PWM高調波を加味した電動機損失最小条件となる磁束および変調率が3レベルの特性を考慮して算出され、電動機損失最小条件での運転が可能となる。
 以上の実施の形態2により、インバータ回路が3レベル構成である場合においても、PWM電流歪率が急変しないように変調モード(PWMパルスモード)を選択した上で、PWM高調波を加味した電動機最小条件を逐次算出しながら運転することで、従来よりも電動機損失を低減し、電動機駆動システムの省エネルギー化が可能となる効果を得ることができる。
実施の形態3.
 図23は、実施の形態3に係る交流電動機の制御装置を含む交流電気車駆動システムの構成を示す図であり、図24は、実施の形態3におけるインバータ回路およびゲート信号生成部の詳細構成を示す図である。実施の形態1,2が直流架線から電力供給を受ける直流電気車駆動システムであるのに対し、実施の形態3は交流架線から電力供給を受ける交流電気車駆動システムである。なお、図23および図24の構成では、図17および図18に示した構成に対応する部分と同一の符号を用いると共に、「b」もしくは「b1」、「b2」の添字に代えて、「c」もしくは「c1」、「c2」の添字を用いて示している。
 交流電気車駆動システムは、図23に示すように、交流電源部2から電力を受給し、コンバータ回路5によって交流‐直流電力変換を行った後、直流電源部3cに直流電源を供給する部分が、実施の形態1,2と異なる。
 交流電気車駆動システムでは、コンバータ回路5を用いて直流電源部3cを設ける場合、直流電源部3cの電圧、すなわちインバータ回路7cへの入力電圧の大きさは、制御によって調整が可能である。コンバータ回路5を制御するコンバータ制御部6は、直流電圧検出部4c1,4c2にて取得した直流電源部3cの直流電圧値EFCと、電圧ベクトル生成部8cから出力される直流電圧指令ECR、交流電源部2の電圧値および、コンバータ回路5への交流入力電流値に基づいて、コンバータ回路5を構成する半導体スイッチング素子の導通を制御するON,OFF信号を生成する。これにより、コンバータ回路5による交流-直流電力変換動作が発生し、直流電圧値EFCが直流電圧指令ECRに追従するように制御される。こうして保たれた直流電源部3cの電圧を入力としてインバータ回路7cが制御され、交流電動機1が駆動される。
 実施の形態3における電圧ベクトル生成部8cは、インバータ回路7cを駆動するため、ゲート信号生成部11cに電圧振幅指令値(上記(1.1)式の変調率演算出力を含む)を出力するのは実施の形態1,2と同様であるが、連動してコンバータ制御部6に直流電圧指令値ECRを出力する。以下にその連動動作を説明する。
 図25は、電圧ベクトル生成部8cの詳細構成を示す図であり、直流電圧指令ECRをコンバータ制御部6に出力する直流電圧指令値生成部30を備えている。直流電圧指令値生成部30は、中間直流電圧指令生成部41が生成したECR_opt(詳細な内容は後述)を上下限リミット部42を介し、直流電圧指令ECRとして出力する。コンバータ回路5が出力できる直流電圧は、物理的な上限値と下限値があるために上下限リミット部42を備えることが一般的である。なお、上限値および下限値があるのは、以下の理由による。
 (i)直流電圧指令ECR下限値
 図24に示すPWMコンバータの場合、供給される交流電圧の振幅ピークが、出力できる直流電圧の下限値となる。また直流電圧の制御のための余裕も考慮した下限値とする。
 (ii)直流電圧指令ECR上限値
 図24のようにコンバータ回路およびインバータ回路を構成するために使用する半導体素子には、破損することなく正常動作させるために耐電圧上限が存在する。その限界を超えないように、また制御のための余裕も考慮した上限値とする。
 実施の形態3では、実施の形態1,2とは異なり、インバータ回路7cの入力である直流電圧値EFCを、上限下限の制約を守りつつ、コンバータ回路5によって制御できるため、この制御自由度を用いた交流電動機1の制御を行う。
 また、実施の形態1,2では、交流電動機1、インバータ回路7を制御するためにPWM電流歪率特性記憶部31および基本波損失特性記憶部32の両者を用いているが、実施の形態3では、直流電圧も制御対象とする自由度を利用し、基本波損失特性記憶部32cは実施の形態1,2と同様にインバータ回路7cの制御に用い、PWM電流歪率特性記憶部31cはコンバータ回路5の制御に用いる。
 つぎに、インバータ回路7cの駆動制御について説明する。基本波損失特性記憶部32cには、図7に示したように、磁束量に相当(関係)する物理量(図7では変調率)を横軸とする基本波損失特性が記憶されている。基本波損失特性記憶部32cは、トルク指令PTRおよび電圧の基本波周波数指令に基づいて、基本波損失が最小となる磁束条件を算出し、F2R_2として出力する。
 一方、最大磁束指令生成部35cは、コンバータ回路5が制御出力可能な直流電圧の上限値EFC_maxにおいて、インバータ変調率が最大の「1」となるような磁束値F2R_1を出力する。下位選択部36では、F2R_1およびF2R_2のうちの下位(値の小さな方)を選択し、最終段の磁束指令値F2R_3として電圧指令生成部37に出力する。電圧指令生成部37は、磁束指令値F2R_3、トルク指令PTR、交流電動機の電気角回転速度FM、そして交流電動機1の回路定数に基づいて、交流電動機1に印加すべき三相交流電圧の指令値を算出する。この際、実際にゲート信号生成部11cに出力する信号としては、変調率の算出式(上記(1.1)式)を介して出力するが、このときの直流電圧値EFCの値は、コンバータ回路5が制御されることにより実際に出力印加された値、具体的には、直流電圧検出部4c1,4c2の出力の和であり、これを変調率として用いる。
 ここで、電圧指令生成部37に用いる中間直流電圧値は、制御後の実際値を検出した信号であるEFCであり、最大磁束指令生成部35cがF2R_1を算出するための入力値は、中間直流電圧の制御上限値ECR_maxであり、それぞれ異なる値を用いる点が、実施の形態1,2には無い特徴である。この特徴による効果は、以下に述べるコンバータ電圧指令ECRの設定によるコンバータ回路5の制御手法と合わせて説明することができる。
 中間直流電圧指令生成部41は、交流電動機に印加すべき交流電圧の指令振幅|V|、および交流電動機1におけるPWM電流歪率を記憶したPMW電流歪率特性記憶部31cから直流電圧指令ECR_1を次式のように求める。
Figure JPOXMLDOC01-appb-M000012
 上式において、PMFoptは、PMW電流歪率特性記憶部31cに記憶されたPWM電流歪率特性において、PWM電流歪率が最小となる条件の変調率を指す。実施の形態1,2で述べたとおり、インバータ回路7の形態(2レベル回路、3レベル回路)に応じ、図9あるいは図22のような特性を実装する。すなわち、ゲート信号生成部11cは、PWM電流歪率が不連続とならないようにパルスモードの選択・切替を行うことが、実施の形態3においても前提である。図24のように3レベル回路である実施の形態3の場合には、図22に基づいて動作させる。
 PWM電流歪率特性記憶部31cとしては、図22の特性を実装し、逐次、電圧指令生成部37が出力する電圧周波数指令ωinvに基づいて歪率最小変調率条件PMFoptを逐次算出してもよい。一方、図9および図22に示したとおり、PWM電流歪率は、周波数に依らず、ほぼ一定の変調率条件の近傍で最小となる特性をもつため、
 ・2レベルの場合:PMFopt=0.97一定
 ・3レベルの場合:PMFopt=0.95一定
のように、PWM電流歪率特性記憶部31cの出力を簡易化してもよい。
 また、(3.1)式における交流電圧の指令振幅|V|は、前述のとおり交流電動機1の基本波損失特性記憶部32cから導いた、基本波損失を最小化する磁束指令F2R_2に基づいて算出された振幅指令値である。すなわち、本実施の形態における電圧指令生成部37cは、直流電圧値EFCがコンバータ回路5によって(3.1)式のECR_optに制御された前提の下では、PWM電流歪率特性記憶部31cに基づく最小歪率条件PMF_opt、基本波損失特性記憶部32cに基づく最適磁束指令F2R_2および、その場合の電圧振幅|V|をすべて反映した指令値を、ゲート信号生成部11c、インバータ回路7cに出力することが可能となる。
 ここまで、電圧ベクトル生成部8cの動作について説明したが、具体的に交流電動機1を低速から高速まで、図12のトルク100%性能曲線のトルク指令で運転した場合のシステム全体動作について図26にて説明する。なお、図26(a)は直流電圧値EFC、図26(b)はインバータ回路7cの変調率PMF、図26(c)は交流電動機におけるPWM電流歪率をそれぞれ示している。なお、それぞれ、実施の形態3による動作を実線、従来技術による動作を破線で示している。
 上述したとおり、直流電圧指令ECRは、(3.1)式のECR_optで与えた後の処理で、主回路設計から決まる下限値ECR_min、上限値ECR_maxにて制限されつつ決定される。直流電圧値EFCは、コンバータ制御部6とコンバータ回路5の制御動作によりECRに追従する。そこで、ECR、EFCの状態を以下の3つの状態に区分し、当該区分に従って図26を説明する。
(1)EFC=ECR=ECR_minの領域
(2)EFC=ECR=ECR_optの領域
(3)EFC=ECR=ECR_maxの領域
 (1)EFC=ECR=ECR_minの領域
 この領域は、低速域のため交流電動機の電圧振幅指令値|V|が小さく、(3.1)式によって得られるECR_optが下限値ECR_minを下回るため、上下限リミット部42により下限値ECR_minにリミットされたECRにより電圧一定の運転となる。この条件下では、電圧指令生成部37における(1.1)式の変調率演算において、分母が一定値EFC_min、振幅指令値|V|が速度に応じて上昇するため、変調率PMFはPMF_optを下回る範囲で、速度、回転周波数にほぼ比例して上昇する。なお、EFC≠EFC_opt、PMF≠PMF_optであるため、PWMによる高調波損失低減は考慮されないことになるが、本願のようにPWM電流歪率の急変を抑制したPWMモード選択切替行う場合、図9および図22の通り、変調率がPWM電流歪率最小条件点PMF_optより低い領域では、大きなPWM電流歪率の変化はなく、電流高調波は少ないままである。よって、実用上はPWM高調波損失の増加は回避可能である。なお、従来技術として、このPWM選択を簡易に実施した場合には、図26(c)のように電流歪の急変、増加を招き、高調波損失が発生することになる。
 (2)EFC=ECR=ECR_optの領域
 この(2)の領域が実施の形態3の最大の特徴となる動作である。図26(b)の(2)で示されるとおり、上述の(3.1)式の原理にて、交流電動機1のPWM高調波を抑制する最適な変調率PMF_optを維持したまま可変速することができ、これを達成するための直流電圧値EFC_optが、コンバータ回路5の制御により達成される。これにより、交流電動機1における基本波損失とPWM高調波損失の両者を抑制できる。なお、従来技術では、最適変調率PMF_optを考慮せず、例えば最大変調率100%に遷移させることを優先させる動作を行うので、PWM高調波損失が増加することになる。
 (3)EFC=ECR=ECR_maxの領域
 この領域は、高速、あるいは大負荷トルクのため、交流電動機の電圧振幅指令値|V|が大きく、(3.1)式のEFC_optが上限値ECR_maxを上回るため、直流電圧指令ECRは、上下限リミット部42により上限値ECR_maxにリミットされたECRにより電圧一定の運転となる。この条件下では、電圧指令生成部37における(1.1)式の変調率演算において、分母が一定値EFC_max、振幅指令値|V|が速度に応じて上昇するため、変調率PMFはPWM損失最小条件PMF_optを離れて上昇する。
 ただし、変調率PMFが1に達すると、これを超えて運転されることはなく、安定かつ円滑に、変調率PMF=1を維持して制御される。これは、最大磁束指令生成部35cが、電圧が最大のECR_maxで、かつ変調率PMF1で動作推移させるための磁束指令F2R_1を算出しているのと共に、下位選択部36および電圧指令生成部37を介することで、変調率1での制御が達成されるためである。
 その一方で、図12の高速域(c)のように、トルク指令のパターンが対速度特性の要求仕様上小さくなる速度域では、磁束指令としてF2R_2が再び選択可能となる運転条件となる場合があり、その場合には前記[0122]段落の(2)と同様の動作に遷移する。また、交流電動機1の運転指令の条件として、図12のトルク50%性能曲線のように軽負荷で運転した場合には、そもそも交流電動機の電圧振幅指令値|V|が大きくならず、全速度域にわたって、(1.9)式のECR_optが上限値ECR_maxを上回る条件にならず、(3)の領域が発生しない場合もある。この動作例を図27に示す。
 このように、実施の形態3では、コンバータ回路5とインバータ回路7cと交流電動機1を電圧ベクトル生成部8cによって適切に連動させた動作により、交流電動機1の基本波損失を最小化する動作をインバータ回路7cで行い、交流電動機1のPWM高調波を最小化する動作をコンバータ回路5で行い、またその両立が困難な運転条件では、インバータ回路7cに対する磁束指令値F2R_1への切替制御により安定に状態量を推移させることが可能となる。
 以上の実施の形態3により、コンバータ回路5によってインバータ回路7cへの入力直流電圧を調整できる場合においては、PWM電流歪率が急変しないように変調モード(PWMパルスモード)を選択した上で、交流電動機1のPWM高調波抑制をコンバータによる直流電圧制御で行い、基本波損失を最小化する制御を磁束指令生成およびインバータ出力電圧の生成で行うことで、従来よりも電動機損失を低減し、交流電動機駆動システムの省エネルギー化が可能となる効果を得ることができる。
 実施の形態4.
 上述した実施の形態3では、図26における(3)の運転領域では、中間直流電圧EFCをEFC_maxで推移させるようにしていた。すなわち、実施の形態3において、中間直流電圧EFCをEFC_maxで推移させる運転領域では、中間直流電圧EFCを固定するという状況は、実施の形態1,2と同様であった。
 そこで、この(3)の運転領域において、インバータ回路7cへの電圧指令生成を実施の形態1,2と同様の動作となる形態とすれば、更なる損失低減が可能となり、この形態を実現するための電圧ベクトル生成部8dの構成が図28である。図28によれば、実施の形態3における電圧ベクトル生成部8cに対し、実施の形態1,2と同様の、直流電圧固定時に用いるPWM電流歪率特性記憶部31d、および最適磁束算定処理部34dを付加した形態としている。また、中間直流電圧指令ECRのリミッタ動作状況として、ECRが上限値ECR_maxとなった場合に「1」、そうでない場合に「0」を示す信号ECR_max_onを上下限リミット部42dにおいて生成し、最適磁束算定処理部34dに出力しておく。その上で、以下のように最適磁束算定処理部34の動作を切り替える制御を行う。
 (i)ECR_max_on=0(ECR<ECR_maxのとき)
 この場合、実施の形態3と同様の動作をさせる。すなわち最適磁束算定処理部34dは、基本波損失特性記憶部32cに記憶された特性から、交流電動機1の基本波損失が最小となる磁束指令値を選択し、これをF2R_2として下位選択部36に出力する。従って、具体的な動作は図26における(1)、(2)と同様である。
 (ii)ECR_max_on=1(ECR=ECR_maxのとき)
 この場合、実施の形態1,2において直流電圧値EFCがECR_max(固定)となった電圧指令生成と同様になる。直流電圧値EFCが固定に制御される状況下で、最適磁束算定処理部34dにおいて、PWM電流歪率特性記憶部31dと基本波損失特性記憶部32cの双方の特性を加味し、その総和の損失が最小となる磁束指令値を算定し、これをF2R_2として下位選択部36に出力する。実施の形態3における(3)の運転領域において、ECR=ECR_maxの場合には、PWM損失低減と基本波損失低減を協調させる機能を有していなかった。一方、実施の形態4では、ECR=ECR_maxの状況においても、実施の形態1,2と同様、PWM高調波損失と基本波損失の総和を考慮した磁束指令を算出した運転が可能になるという効果が得られる。
実施の形態5.
 上述した実施の形態4では、最適磁束算定処理部34dは、PWM電流歪率特性記憶部31dと基本波損失特性記憶部32cの双方の特性を加味し、その総和の損失が最小となる磁束指令値、すなわち交流電動機1の全体損失を低減させる最適磁束指令を生成して下位選択部36に出力するようにしていたが、基本波損失特性記憶部32cを設けずに、PWM電流歪率特性記憶部31dの出力のみを用いた磁束指令値、すなわち交流電動機1のPWM損失を低減させる最適磁束指令値を生成して下位選択部36に出力するように構成してもよい。このような構成であっても、PWM制御に起因する高調波損失が考慮される結果、交流電動機1の損失低減には一定値以上の効果が得られる。
 なお、以上の実施の形態1~5に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 さらに、各実施の形態では、電気車への適用を想定した発明内容の説明を行っていたが、適用分野はこれに限られるものではなく、交流電動機を使用する産業分野への応用が可能であることも言うまでもない。
 以上のように、本発明は、電動機損失の更なる低減を可能とする交流電動機の制御装置として有用である。
 1 交流電動機、2 交流電源部、3a,3b,3c 直流電源部、4,4c1,4c2 直流電圧検出部、5 コンバータ回路、6 コンバータ制御部、7,7b,7c インバータ回路、8,8b,8c,8d 電圧ベクトル生成部、9 速度検出部、10 トルク指令値生成部、11,11b,11c ゲート信号生成部、13 電動機電流検出部、21,21b 変調モード選択部、22,22b 変調波生成部、23b 搬送波生成部、24,24b 比較部、30 直流電圧指令値生成部、31,31b,31c,31d PWM電流歪率特性記憶部、32,32c 基本波損失特性記憶部、34,34d 最適磁束算定処理部、35 1P用磁束指令生成部、35c 最大磁束指令生成部、36 下位選択部、37,37c 電圧指令生成部、41 中間直流電圧指令生成部、42,42d 上下限リミット部。

Claims (8)

  1.  直流電力を交流電力に変換して交流電動機に供給するインバータ回路と、
     前記インバータ回路に印加される直流電圧値を検出する直流電圧検出部と、
     前記交流電動機の回転速度を検出する速度検出部と、
     前記インバータ回路から前記交流電動機に出力される交流電流量を検出する電動機電流検出部と、
     前記インバータ回路にゲート信号を出力するゲート信号生成部と、
     上位からのトルク指令、前記回転速度、前記直流電圧値および前記交流電流量に基づいて前記ゲート信号生成部への電圧指令を生成する電圧ベクトル生成部と、
     を備え、
     前記電圧ベクトル生成部は、前記直流電圧値と前記電圧指令における電圧振幅指令値との比である変調率に基づいて、PWM制御によって生ずる電流高調波の程度を表す指標としてのPWM電流歪率を算出し、算出したPWM電流歪率に基づいて前記電圧振幅指令値を生成して前記ゲート信号生成部に出力する
     ことを特徴とする交流電動機の制御装置。
  2.  前記ゲート信号生成部は、複数の変調モード間の遷移条件として高調波損失の連続性が保たれる運転条件を選んで遷移させることを特徴とする請求項1に記載の交流電動機の制御装置。
  3.  前記電圧ベクトル生成部は、前記変調率、前記交流電動機の回路定数および前記回転速度に基づいて、前記PWM電流歪率を算出することを特徴とする請求項1または2に記載の交流電動機の制御装置。
  4.  前記インバータ回路は2レベルインバータであり、前記ゲート信号生成部は、3ダッシュパルスモードの変調モードを備えることを特徴とする請求項1乃至3の何れか1項に記載の交流電動機の制御装置。
  5.  前記インバータ回路は3レベルインバータであり、前記ゲート信号生成部は、1ダッシュパルスモードの変調モードを備えることを特徴とする請求項1乃至3の何れか1項に記載の交流電動機の制御装置。
  6.  前記電圧ベクトル生成部は、
     前記PWM電流歪率に基づいて前記交流電動機のPWM損失を低減させる最適磁束指令値を算出する最適磁束算定処理部と、
     前記最適磁束指令値、前記回転速度および前記直流電圧値に基づいて前記電圧指令値を生成して前記ゲート信号生成部に出力する電圧指令生成部と、
     を備えたことを特徴とする請求項1乃至3に記載の交流電動機の制御装置。
  7.  前記電圧ベクトル生成部は、前記トルク指令および前記回転速度に基づいて前記交流電動機の基本波成分損失特性を出力する基本波損失特性記憶部を更に備え、
     前記最適磁束算定処理部は、前記PWM電流歪率および前記基本波損失特性に基づいて前記交流電動機の全体損失を低減させる最適磁束指令値を算出する
     ことを特徴とする請求項6に記載の交流電動機の制御装置。
  8.  前記インバータ回路に直流電力を供給するコンバータ回路と、
     前記コンバータ回路が出力する直流電圧値を制御するコンバータ制御部と、
     を備え、
     前記電圧ベクトル生成部は、前記PWM電流歪率に基づいて算出した直流電圧指令値を前記コンバータ制御部に出力することを特徴とする請求項1乃至3の何れか1項に記載の交流電動機の制御装置。
PCT/JP2013/061946 2013-04-23 2013-04-23 交流電動機の制御装置 WO2014174597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/061946 WO2014174597A1 (ja) 2013-04-23 2013-04-23 交流電動機の制御装置
DE112013006976.8T DE112013006976T5 (de) 2013-04-23 2013-04-23 Steuereinheit eines elektrischen Wechselstrommotors
US14/785,912 US10103675B2 (en) 2013-04-23 2013-04-23 Control device of alternating-current electric motor
JP2015513403A JP5866065B2 (ja) 2013-04-23 2013-04-23 交流電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061946 WO2014174597A1 (ja) 2013-04-23 2013-04-23 交流電動機の制御装置

Publications (1)

Publication Number Publication Date
WO2014174597A1 true WO2014174597A1 (ja) 2014-10-30

Family

ID=51791207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061946 WO2014174597A1 (ja) 2013-04-23 2013-04-23 交流電動機の制御装置

Country Status (4)

Country Link
US (1) US10103675B2 (ja)
JP (1) JP5866065B2 (ja)
DE (1) DE112013006976T5 (ja)
WO (1) WO2014174597A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195033A1 (ja) * 2015-06-05 2016-12-08 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
US9647575B2 (en) 2013-04-23 2017-05-09 Mitsubishi Electric Corporation Power converter
CN106849792A (zh) * 2017-01-24 2017-06-13 中国农业大学 电机设备及集群系统的能耗计算和节能措施评估方法
JP2017169381A (ja) * 2016-03-17 2017-09-21 トヨタ自動車株式会社 駆動装置
WO2020202905A1 (ja) * 2019-04-01 2020-10-08 株式会社豊田自動織機 インバータ装置
CN111923920A (zh) * 2020-08-13 2020-11-13 中国第一汽车股份有限公司 车辆控制方法、装置、设备以及存储介质
WO2021112108A1 (ja) * 2019-12-03 2021-06-10 株式会社日立製作所 Pwmインバータ制御装置および制御方法
CN115410359A (zh) * 2022-07-18 2022-11-29 北京三圣凯瑞科技有限公司 一种工频畸变通信方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610634B1 (ko) * 2014-09-15 2016-04-11 현대모비스 주식회사 Mdps 구동용 모터의 속도 측정 장치 및 방법
JP6389752B2 (ja) * 2014-12-10 2018-09-12 株式会社日立製作所 回路シミュレーション装置
US10974607B2 (en) * 2017-07-07 2021-04-13 Transportation Ip Holdings, Llc Power system and associated system
JP6990085B2 (ja) * 2017-10-03 2022-01-12 マブチモーター株式会社 回転速度算出装置
WO2020044890A1 (ja) * 2018-08-30 2020-03-05 日立オートモティブシステムズ株式会社 インバータ装置
JP6989574B2 (ja) * 2019-09-25 2022-01-05 本田技研工業株式会社 制御装置、車両システム及び制御方法
JP7465153B2 (ja) * 2020-06-02 2024-04-10 株式会社Subaru 制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107992A1 (ja) * 2007-03-08 2008-09-12 Mitsubishi Electric Corporation 電気車の制御装置
JP2010104234A (ja) * 2003-09-03 2010-05-06 Toshiba Corp 電気車制御装置
JP2010154735A (ja) * 2008-11-28 2010-07-08 Denso Corp 回転機の制御装置及びその製造方法
JP2012110079A (ja) * 2010-11-15 2012-06-07 Toshiba Corp 位置・速度センサレス制御装置
WO2013046461A1 (ja) * 2011-09-30 2013-04-04 三菱電機株式会社 電動機のベクトル制御装置、電動機、車両駆動システムおよび電動機のベクトル制御方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654118B2 (ja) 1988-09-20 1997-09-17 株式会社東芝 Pwm制御方法
JP2566021B2 (ja) 1989-11-22 1996-12-25 三菱電機株式会社 インバータ装置の運転方法
JP3700019B2 (ja) 1993-12-17 2005-09-28 株式会社日立製作所 電気車の制御装置
JP3262253B2 (ja) * 1995-02-22 2002-03-04 株式会社日立製作所 電気車用駆動制御装置及び制御方法
JPH1175385A (ja) * 1997-06-25 1999-03-16 Daewoo Electron Co Ltd 多相センサレスモータを駆動するための方法及び装置
JPH11285299A (ja) 1998-03-27 1999-10-15 Mitsubishi Electric Corp 誘導電動機のベクトル制御装置および方法
JP4489091B2 (ja) 2003-09-03 2010-06-23 株式会社東芝 電気車制御装置
JP2005086920A (ja) * 2003-09-09 2005-03-31 Fuji Electric Systems Co Ltd 同期電動機駆動装置の制御方法
JP4886643B2 (ja) 2006-10-04 2012-02-29 川崎重工業株式会社 鉄道車両の電力制御装置
CA2667025C (en) * 2006-10-19 2012-05-22 Mitsubishi Electric Corporation Vector controller for permanent-magnet synchronous electric motor
KR101110515B1 (ko) 2007-10-29 2012-01-31 미쓰비시덴키 가부시키가이샤 전동기의 제어 장치
JP5104723B2 (ja) * 2007-11-01 2012-12-19 アイシン・エィ・ダブリュ株式会社 電動機制御装置,駆動装置およびハイブリッド駆動装置
US7795827B2 (en) * 2008-03-03 2010-09-14 Young-Chun Jeung Control system for controlling motors for heating, ventilation and air conditioning or pump
JP5297953B2 (ja) * 2009-09-08 2013-09-25 トヨタ自動車株式会社 電動車両の電動機駆動システム
JP5471255B2 (ja) * 2009-09-30 2014-04-16 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
WO2011099122A1 (ja) 2010-02-10 2011-08-18 株式会社 日立製作所 電力変換装置
JP5435292B2 (ja) * 2010-08-05 2014-03-05 アイシン・エィ・ダブリュ株式会社 制御装置
JP5971707B2 (ja) * 2011-08-29 2016-08-17 株式会社東芝 同期電動機のセンサレス制御装置ならびにインバータ装置
JP5551833B2 (ja) 2011-09-30 2014-07-16 三菱電機株式会社 電力変換制御装置、電力変換制御方法、電動機および車両駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104234A (ja) * 2003-09-03 2010-05-06 Toshiba Corp 電気車制御装置
WO2008107992A1 (ja) * 2007-03-08 2008-09-12 Mitsubishi Electric Corporation 電気車の制御装置
JP2010154735A (ja) * 2008-11-28 2010-07-08 Denso Corp 回転機の制御装置及びその製造方法
JP2012110079A (ja) * 2010-11-15 2012-06-07 Toshiba Corp 位置・速度センサレス制御装置
WO2013046461A1 (ja) * 2011-09-30 2013-04-04 三菱電機株式会社 電動機のベクトル制御装置、電動機、車両駆動システムおよび電動機のベクトル制御方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647575B2 (en) 2013-04-23 2017-05-09 Mitsubishi Electric Corporation Power converter
CN107710596B (zh) * 2015-06-05 2020-02-14 爱信艾达株式会社 旋转电机控制装置
JP2017005809A (ja) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
WO2016195033A1 (ja) * 2015-06-05 2016-12-08 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
CN107710596A (zh) * 2015-06-05 2018-02-16 爱信艾达株式会社 旋转电机控制装置
US10027271B2 (en) 2015-06-05 2018-07-17 Aisin Aw Co., Ltd. Rotating electrical machine control device
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
JP2017169381A (ja) * 2016-03-17 2017-09-21 トヨタ自動車株式会社 駆動装置
CN106849792A (zh) * 2017-01-24 2017-06-13 中国农业大学 电机设备及集群系统的能耗计算和节能措施评估方法
WO2020202905A1 (ja) * 2019-04-01 2020-10-08 株式会社豊田自動織機 インバータ装置
JP2020171086A (ja) * 2019-04-01 2020-10-15 株式会社豊田自動織機 インバータ装置
JP7067522B2 (ja) 2019-04-01 2022-05-16 株式会社豊田自動織機 インバータ装置
WO2021112108A1 (ja) * 2019-12-03 2021-06-10 株式会社日立製作所 Pwmインバータ制御装置および制御方法
JP7328352B2 (ja) 2019-12-03 2023-08-16 株式会社日立製作所 Pwmインバータ制御装置および制御方法
CN111923920A (zh) * 2020-08-13 2020-11-13 中国第一汽车股份有限公司 车辆控制方法、装置、设备以及存储介质
CN111923920B (zh) * 2020-08-13 2022-05-17 中国第一汽车股份有限公司 车辆控制方法、装置、设备以及存储介质
CN115410359A (zh) * 2022-07-18 2022-11-29 北京三圣凯瑞科技有限公司 一种工频畸变通信方法及装置

Also Published As

Publication number Publication date
JP5866065B2 (ja) 2016-02-17
JPWO2014174597A1 (ja) 2017-02-23
DE112013006976T5 (de) 2015-12-31
US20160072424A1 (en) 2016-03-10
US10103675B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5866065B2 (ja) 交流電動機の制御装置
JP5689557B2 (ja) 電力変換装置
JP6204121B2 (ja) モータ駆動システムおよび該システムを搭載する電気鉄道車両
JP4139852B1 (ja) インバータ制御装置
EP3528383B1 (en) Control device and control method for alternating current motor
JP5551833B2 (ja) 電力変換制御装置、電力変換制御方法、電動機および車両駆動システム
JP5503810B2 (ja) 電動機のベクトル制御装置、車両駆動システム
JP5844006B1 (ja) 電力変換装置および車両駆動システム
JP6160706B2 (ja) インバータ制御装置
JP6078282B2 (ja) 交流電動機駆動システム及び電動機車両
JP2012044830A (ja) 電力変換装置
JP5844945B1 (ja) 電力変換装置および車両駆動システム
JP2006121877A (ja) モータ制御装置
JP6674804B2 (ja) モータの制御装置および駆動システム
JP2021112072A (ja) 回転電機制御装置
JP7269576B2 (ja) 回転電機制御装置
JP6173409B2 (ja) 電力変換装置および車両駆動システム
JP5717902B2 (ja) 電力変換制御装置、電動機および車両駆動システム
JP2015126607A (ja) モータ制御システム
JP5836413B2 (ja) 電動機のベクトル制御装置および車両駆動システム
JP2006141175A (ja) 交流交流直接変換器の電動機制御装置
JP2024043187A (ja) 回転電機の制御装置、回転電機の制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513403

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14785912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013006976

Country of ref document: DE

Ref document number: 1120130069768

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883229

Country of ref document: EP

Kind code of ref document: A1