WO2021112108A1 - Pwmインバータ制御装置および制御方法 - Google Patents

Pwmインバータ制御装置および制御方法 Download PDF

Info

Publication number
WO2021112108A1
WO2021112108A1 PCT/JP2020/044777 JP2020044777W WO2021112108A1 WO 2021112108 A1 WO2021112108 A1 WO 2021112108A1 JP 2020044777 W JP2020044777 W JP 2020044777W WO 2021112108 A1 WO2021112108 A1 WO 2021112108A1
Authority
WO
WIPO (PCT)
Prior art keywords
pwm
pulse
pwm mode
inverter
output voltage
Prior art date
Application number
PCT/JP2020/044777
Other languages
English (en)
French (fr)
Inventor
徹郎 児島
邦晃 大塚
渉 初瀬
弘行 白田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP20896316.5A priority Critical patent/EP4071998A4/en
Priority to JP2021562676A priority patent/JP7328352B2/ja
Publication of WO2021112108A1 publication Critical patent/WO2021112108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a control device and a control method for a PWM inverter that converts a DC voltage into a three-phase AC voltage to drive a three-phase AC load.
  • the present invention relates to a transition technique when a plurality of PWM modes are provided and the PWM mode is switched according to an output voltage or an output frequency.
  • a power conversion device that converts DC power into AC power is composed of a main circuit using a semiconductor switching element and a control device that controls the semiconductor switching element.
  • a desired frequency and voltage are generated by performing pulse width modulation control (PWM control) at a predetermined switching frequency of the semiconductor switching elements constituting the main circuit.
  • AC motors are driven using power conversion devices (inverter devices) that use semiconductor switching elements, but because they use high-voltage semiconductor switching elements, they are mainly used.
  • the switching frequency must be suppressed due to the limitation of element loss.
  • synchronous PWM mode in which the drive frequency (inverter frequency) and the switching frequency are asynchronous in the low speed range, and the drive frequency (inverter frequency) and the switching frequency are synchronized in the high speed range.
  • the method of switching to the mode is generally adopted.
  • a plurality of synchronous PWM modes are provided and switched according to speed or the like.
  • FIG. 8 is a diagram showing an example in which the motor current waveform jumps up when the PWM mode is switched. When such a jump of the motor current occurs, a torque shock is generated and the riding comfort of the vehicle is deteriorated. Further, if the maximum allowable current of the semiconductor switching element is exceeded, the semiconductor switching element may be destroyed.
  • Patent Document 1 in order to prevent transient fluctuations in the output current of the inverter and suppress the influence on the load when switching the PWM mode of the inverter, the asynchronous mode and the synchronous mode are mutually used.
  • the pulse width modulation mode is switched independently for each phase from the phase within the phase angle range where the transient fluctuation of the inverter output is the smallest, and the output of the asynchronous pulse width modulation voltage generation means and the synchronous pulse.
  • a technique for controlling a switching element of an inverter based on either one of the outputs of the width modulation voltage generating means is disclosed.
  • Patent Document 1 cannot be said to be a technology that can be applied universally because there is no fundamental investigation into the cause of the problem that the motor current jumps when switching the PWM mode and it is not a drastic countermeasure. It was. That is, a technique that is established only under specific conditions, for example, when switching between specific PWM modes, or a technique that is established only under specific conditions such as a specific frequency, modulation factor, motor constant, or current control response. Or was just a local success story.
  • An object of the present invention is to investigate the root cause of the problem that the motor current jumps when switching the PWM mode, and to provide a countermeasure (technology) that can be applied universally.
  • FIG. 6 is a diagram showing an example of a main circuit configuration to be controlled by the present invention.
  • the main circuit to be controlled of the present invention shown in FIG. 6 is a power conversion device (inverter device) that converts DC power into AC power, and is a DC supplied by a DC voltage source (not shown in FIG. 6).
  • a U-phase bridge consisting of a smoothing capacitor 81 that stabilizes the voltage, a semiconductor switching element 82 of the U-phase upper arm and a semiconductor switching element 83 of the U-phase lower arm, and a semiconductor switching element 84 and V-phase lower of the V-phase upper arm.
  • V-phase bridge composed of a semiconductor switching element 85 of the arm and a three-phase bridge composed of a semiconductor switching element 86 of the W-phase upper arm and a semiconductor switching element 87 of the W-phase lower arm. Then, the input of the three-phase bridge is connected in parallel to the smoothing capacitor 81, and the output of the three-phase bridge is connected to the AC motor 88.
  • Gate pulse signals input to the upper arm of the three-phase bridge GPU, GPV and GPW drive the semiconductor switching elements 82, 84 and 86 of the upper arm of the three-phase bridge, and the gate input to the lower arm of the three-phase bridge.
  • the pulse signals GNU, GNV and GNW drive the semiconductor switching elements 83, 85 and 87 of the lower arm of the three-phase bridge.
  • FIG. 7 is a diagram showing an equivalent circuit of a motor 88 (AC motor 88), which is an example of a load according to a controlled object of the present invention.
  • the U-phase voltage vu is connected to the neutral point potential vg via a resistor 90, an inductance 93 and an equivalent power supply 96 that simulates the velocity electromotive force eu.
  • the V-phase voltage vv simulates the resistance 91, the inductance 94 and the velocity electromotive force ev through the equivalent power supply 97
  • the W-phase voltage vw simulates the resistance 92, the inductance 95 and the velocity electromotive force ew.
  • Each is connected to the neutral point potential vg via the equivalent power supply 98.
  • the magnetic fluxes ⁇ u, ⁇ v and ⁇ w of the motor 88 are represented by [Equation 2].
  • s is a Laplace operator and 1 / s means integration.
  • the velocity electromotive forces eu, ev and ew, the motor currents iu, iv and iv, and the resistor R are used.
  • ⁇ u (vu-vg-eu-R ⁇ iu) / s
  • ⁇ v (vv-vg-ev-R ⁇ iv) / s
  • ⁇ w (vw-vg-ew-R ⁇ iw) / s
  • FIG. 9 is a diagram showing voltage integral values ⁇ u, ⁇ v, and ⁇ w obtained based on a definition formula for synchronous PWMI and synchronous PWMII as two synchronous PWM modes.
  • Synchronous PWMI and synchronous PWMII have the same output frequency, output voltage amplitude, and output voltage phase, but differ only in the number of synchronous pulses.
  • the magnitudes of the fundamental wave components of the two voltage integrated values are the same, but the curves of the two voltage integrated values do not exactly match because the harmonic components are different. However, since it is an alternating current amount, the curves of the two voltage integral values always intersect at the timing of zero crossing.
  • FIG. 10 is a diagram showing an integrated output voltage value when the synchronous PWM mode is switched.
  • the solid line curve shown in FIG. 10 shows the voltage integral value when the PWM mode is switched from the synchronous PWMI to the synchronous PWMII at a phase of 60 degrees.
  • the dotted curve shows the voltage integration value of the synchronous PWM II. Since the voltage integral values of the W phase are the same at the phase of 60 degrees, the voltage integral values after switching are also completely the same (that is, because the curves are completely overlapped, the curves of the synchronous PWM II (dotted line). ) Cannot be determined).
  • the time constant required for the convergence of the bounce is inversely proportional to the resistance R of the motor, and the time constant is long because the resistance R of the motor is becoming smaller due to the progress of higher efficiency and lower loss of the motor in recent years. It has become. That is, the jumping of the motor current at the time of switching the PWM mode continues for a long time, which aggravates the problem.
  • the PWM inverter control device typically corresponds to the first PWM mode based on the output voltage phase command and the output voltage amplitude command of the PWM inverter.
  • the first PWM by comparing the modulation wave generation circuit that generates the modulation wave and the second modulation wave corresponding to the second PWM mode with the first modulation wave and the carrier corresponding to the first PWM mode.
  • a PWM mode selection circuit that generates a PWM mode selection signal that selects either the first or second PWM mode based on the output frequency command and the output voltage amplitude command of the above, and a first PWM according to the PWM mode selection signal.
  • a pulse switching circuit that switches between a pulse and a second PWM pulse to be a drive pulse of a PWM inverter is provided, and the PWM mode selection circuit uses a PWM mode selection signal as a PWM when the first PWM pulse is a drive pulse. It is characterized in that it is generated at the timing when the integrated output voltage of the inverter and the integrated output voltage of the PWM inverter when the second PWM pulse is a drive pulse match.
  • the inverter when the inverter is PWM-controlled, it is possible to suppress a phenomenon in which the motor current jumps when the PWM mode is switched, corresponding to the switching between all PWM modes.
  • FIG. 1 It is a figure which shows an example of the control device of the three-phase PWM inverter which concerns on Example 1 of this invention. It is a figure which shows an example of the structure of the PWM mode selection circuit which concerns on Example 1.
  • FIG. 2 shows an example of the control device of the three-phase PWM inverter which concerns on Example 2 of this invention. It is a figure which shows an example of the structure of the PWM mode selection circuit which concerns on Example 2.
  • FIG. It is a figure which shows another example of the structure of the PWM mode selection circuit which concerns on Example 2.
  • FIG. It is a figure which shows an example of the main circuit composition which is the control object of this invention.
  • FIG. 1 is a diagram showing an example of a control device for a three-phase PWM inverter according to a first embodiment of the present invention.
  • the PWM inverter control device shown in FIG. 1 includes the following components. -Modulation wave generation circuits 1, 2 and 3 that correspond to the first PWM mode and generate three-phase modulated waves ⁇ 120 degrees apart based on the output voltage phase command ⁇ and the output voltage amplitude command Ymr. -Modulated wave generation circuits 4, 5 and 6 that correspond to the second PWM mode and generate three-phase modulated waves ⁇ 120 degrees apart based on the output voltage phase command ⁇ and the output voltage amplitude command Ymr.
  • a PWM mode selection circuit 14 that outputs a PWM mode selection signal SW based on the output voltage amplitude command Ymr and the output frequency command Finv.
  • -Pulse switching circuit 7 that switches the outputs of the pulse generation circuits 8, 9 and 10 and the pulse generation circuits 11, 12 and 13 based on the PWM mode selection signal SW and outputs the gate pulse signals GPU to GNW of the PWM inverter.
  • each of the modulated wave generation circuits 1, 2 and 3 obtains the modulated wave amplitude a1 from the output voltage amplitude command Ymr using the function A1, and obtains the modulated wave amplitude a1 and the output voltage phase command ⁇ .
  • the three-phase modulated waves ymu1, ymv1 and ymw1 are generated by the product with the sin function at a phase separated from each other by ⁇ 120 degrees.
  • the number of pulses is not sufficient, and the approximation may not be established even in the sinusoidal modulation region.
  • the relationship between the modulated wave amplitude a1 and the actual output voltage amplitude obtained by Fourier integrating the PWM waveform in the actual first PWM mode is obtained, and this inverse function is implemented as the function A1.
  • each of the modulated wave generation circuits 4, 5 and 6 corresponding to the second PWM mode also obtains the modulated wave amplitude a2 from the output voltage amplitude command Ymr using the function A2 as shown in [Equation 6].
  • the three-phase modulated waves ymu2, ymv2, and ymw2 are generated by the product of the modulated wave amplitude a2 and the sin function in a phase separated by ⁇ 120 degrees with respect to the output voltage phase command ⁇ .
  • the function A2 is obtained in the same manner as the function A1.
  • the pulse generation circuits 8, 9 and 10 corresponding to the first PWM mode input the three-phase modulated waves ymu1, ymv1 and ymw1 of the first PWM mode and compare with the carrier wave corresponding to the first PWM mode.
  • PWM gate pulse signals GPU1 and GNU1, GPV1 and GNUV1, GPW1 and GNUW1 are output.
  • the carrier phases of the pulse generation circuits 8, 9 and 10 are in phase.
  • the PWM gate pulse signal of each of the three phases the GPU1 and GNU1 of the U phase, the GPV1 and GNUV1 of the V phase, and the GPW1 and GNW1 of the W phase each have a dead time for preventing an arm short circuit (both are off). Except for the period during which it is running), it is a complementary signal in which either signal is on.
  • the pulse generation circuits 11, 12 and 13 corresponding to the second PWM mode input the three-phase modulated waves ymu2, ymv2 and ymw2 of the second PWM mode and compare with the carrier wave corresponding to the second PWM mode.
  • the PWM gate pulse signals GPU2 and GNU2, GPV2 and GNUV2, and GPW2 and GNW2 are output.
  • the carrier phases of the pulse generation circuits 11, 12 and 13 are generally the same, and the PWM gate pulse of each of the three phases is As signals, GPU2 and GNU2 of U phase, GPV2 and GNUV2 of V phase, and GPW2 and GNU2 of W phase are either, except for the dead time (the period when both are off) to prevent arm short circuit. It is a complementary signal that the signal is on.
  • FIG. 2 is a diagram showing an example of the configuration of the PWM mode selection circuit 14 according to the first embodiment.
  • the PWM mode selection circuit 14 shown in FIG. 2 includes the following components. ⁇ PWM waveform calculators 21, 22 and 23 that input the three-phase modulated waves ymu1, ymv1 and ymw1 of the first PWM mode and output the first PWM waveform, respectively. -PWM waveform calculators 24, 25 and 26 that input the three-phase modulated waves ymu2, ymv2 and ymw2 of the second PWM mode and output the second PWM waveform, respectively.
  • An average value calculator 27 that inputs the outputs of the PWM waveform calculators 21, 22 and 23 and obtains the average value of the first PWM waveform.
  • An average value calculator 28 that inputs the outputs of the PWM waveform calculators 24, 25, and 26 and obtains the average value of the second PWM waveform.
  • Subtractors 29, 30 and 31 that subtract the output of the average value calculator 27 from the outputs of the PWM waveform calculators 21, 22 and 23.
  • Subtractors 32, 33 and 34 which subtract the output of the average value calculator 28 from the outputs of the PWM waveform calculators 24, 25 and 26.
  • -Integrators 35, 36 and 37 that integrate the outputs of the subtractors 29, 30 and 31, respectively.
  • -Integrators 38, 39 and 40 that integrate the outputs of the subtractors 32, 33 and 34, respectively.
  • the PWM mode selection signal generator 45 sets the PWM mode selection signal SW for selecting the first PWM mode or the second PWM mode based on the output voltage amplitude command Ymr and the output frequency command Finv. When the output of 44 is true, it is switched and output. Further, a hysteresis width is provided in the transition region between the two PWM modes so that the two PWM modes do not come and go in a short period of time.
  • the case where the output of the logical product gate 44 is true is the timing when the outputs of the comparators 41, 42, and 43 are all true, that is, the first
  • the integrated value of the first PWM waveform corresponding to the first PWM mode (that is, the voltage integrated value) and the integrated value of the second PWM waveform corresponding to the second PWM mode (that is, the voltage integrated value) are all three phases. Since the phases match or the difference is within the permissible range, it is possible to suppress the jumping of the motor current when switching the PWM mode.
  • FIG. 3 is a diagram showing an example of a control device for a three-phase PWM inverter according to a second embodiment of the present invention.
  • the PWM inverter control device shown in FIG. 3 includes the following components. However, the description of the same components as the control device for the three-phase PWM inverter according to the first embodiment shown in FIG. 1 will be omitted, and only different components will be described.
  • a PWM mode selection circuit 15 that outputs a PWM mode selection signal SW and modulation rate correction amounts ⁇ ymu, ⁇ ymv, and ⁇ ymw based on the output voltage amplitude command Ymr and the output frequency command Finv.
  • each of the pulse generation circuits 8, 9 and 10 inputs the outputs of the adders 16, 17 and 18 instead of the outputs ymu1, ymv1 and ymw1 of the modulation wave generation circuits 1, 2 and 3, respectively, and the first PWM.
  • the gate pulse signals GPU1 and GNU1, GPV1 and GNUV1, GPW1 and GNW1 are output as compared with the carrier wave corresponding to the mode.
  • FIG. 4 is a diagram showing an example of the configuration of the PWM mode selection circuit 15 according to the second embodiment.
  • Subtractors 50, 51 and 52 for finding the difference between the outputs of the integrators 35, 36 and 37 and the outputs of the integrators 38, 39 and 40, respectively.
  • -PWM mode selection signal generator 54 that outputs the PWM mode selection signal SW and the PWM mode switching signal CHG by the output voltage amplitude command Ymr and the output frequency command Finv.
  • the PWM mode selection signal generator 54 outputs a PWM mode selection signal SW for selecting the first PWM mode or the second PWM mode according to the output voltage amplitude command Ymr and the output frequency command Finv.
  • a hysteresis width is provided in the transition region between the two PWM modes so that the two PWM modes do not come and go in a short period of time.
  • the PWM mode switching signal CHG is normally invalid, and is valid only immediately before switching from the first PWM mode to the second PWM mode.
  • FIG. 11 is a diagram showing an example of an operation example (output voltage integrated value) according to the second embodiment of the present invention.
  • the PWM mode selection signal SW has a low level before the phase of 60 degrees and is a synchronous PWMI which is the first PWM mode, and has a high level after the phase of 60 degrees and becomes a second. It indicates that it is a synchronous PWM II which is a PWM mode.
  • the PWM mode switching signal CHG is usually at the Low level and indicates that it is invalid, and indicates that it is effective at the High level only immediately before the phase of 60 degrees.
  • the voltage integral value when the PWM mode is switched from the synchronous PWMI to the synchronous PWMII at the time of the phase of 60 degrees is shown by a solid line.
  • the voltage integral value when Example 2 of the present invention is not applied is shown by a dotted line.
  • the U-phase voltage integrated value was biased in the negative direction and the V-phase voltage integrated value was biased in the positive direction, as shown in FIG.
  • the U-phase voltage integration is performed by correcting the voltage integration value in the positive direction in the U-phase immediately before the PWM mode is switched at the time of the phase of 60 degrees.
  • the imbalance of values is eliminated.
  • the imbalance of the V phase voltage integrated value is eliminated by correcting the voltage integrated value in the negative direction.
  • the W phase since the voltage integral values match at a phase of 60 degrees, there is no correction.
  • the correction amount is added immediately before switching from the synchronous PWMI to the synchronous PWMII. This is because, in the second embodiment, the synchronous PWMI has a larger number of synchronous pulses than the synchronous PWMII, so that the voltage integration value can be controlled more accurately by adding the correction amount on the side with the larger number of pulses. ..
  • FIG. 13 is a diagram showing a motor current waveform when the present invention is applied. Unlike the motor current waveform shown in FIG. 8, the switching from the synchronous PWMI to the synchronous PWMII is performed smoothly, and the motor current does not jump up.
  • the current amplitude is larger in the synchronous PWMII section than in the synchronous PWMI section because the synchronous PWMII has a smaller number of synchronous pulses than the synchronous PWMI section, so that the switching ripple is caused. This is because it is getting bigger.
  • FIG. 5 is a diagram showing another example of the configuration of the PWM mode selection circuit 15 according to the second embodiment shown in FIG.
  • the PWM mode selection signal generator 55 transmits the PWM mode selection signal SW and the PWM mode switching signal CHG to the output voltage amplitude command Ymr, the output frequency command Finv, and the subtractors 50 and 51. It differs from the PWM mode selection signal generator 54 of the PWM mode selection circuit 15 shown in FIG. 4 in that it outputs based on three signals with the output of 52.
  • the PWM mode selection signal generator 55 outputs a signal for selecting the first PWM mode or the second PWM mode according to the output voltage amplitude command Ymr and the output frequency command Finv. However, at that time, a hysteresis width is provided in the transition region between the two PWM modes so that the two PWM modes do not come and go in a short period of time. Further, the PWM mode selection signal SW is switched only when any one of the outputs of the subtractors 50, 51 and 52 falls within the allowable range which can be regarded as zero or zero. Further, the PWM mode switching signal CHG is normally invalid, and is valid only immediately before switching from the first PWM mode to the second PWM mode.
  • FIG. 12 is a table showing the modulation factor correction amount for each phase.
  • the modulation factor correction amount which is the difference between the voltage integral values, is zero for any one phase, and the sum of the remaining two phases is always zero.
  • the modulation factor correction amount is + ⁇ V and ⁇ V.
  • the modulation factor correction amount of the W phase is zero
  • the modulation factor correction amount of the U phase is + ⁇ V
  • the modulation factor correction amount of the V phase is ⁇ V.
  • the modulation factor correction amount becomes either zero or ⁇ ⁇ V.
  • the voltage integral value of the U phase is zero at 0 degrees of phase, and the difference between the voltage integral values of the two PWM modes at 60 degrees of phase is the modulation factor correction amount ⁇ V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

インバータをPWM制御する際に、あらゆるPWMモードの切替え時にモータ電流が跳ね上がる現象を抑制するために、PWMインバータ制御装置は、出力電圧位相指令および出力電圧振幅指令に基づいて第1の変調波および第2の変調波を生成する変調波生成回路と、第1の変調波と第1の搬送波とを比較して第1のPWMパルスを生成し第2の変調波と第2の搬送波とを比較して第2のPWMパルスを生成する第1および第2のパルス生成回路と、出力周波数指令および出力電圧振幅指令に基づいて第1または第2のPWMモードのいずれかを選択するPWMモード選択信号を、駆動パルスが第1のPWMパルスである場合と第2のPWMパルスである場合それぞれの出力電圧積分値が一致するタイミングで生成するPWMモード選択回路と、PWMモード選択信号に応じて第1および第2のPWMパルスとを切り替えて駆動パルスとするパルス切替回路とを備える。

Description

PWMインバータ制御装置および制御方法
 本発明は、直流電圧を3相交流電圧に変換して3相交流負荷を駆動するPWMインバータの制御装置および制御方法に関する。
 特に、複数のPWMモードを備え、出力電圧や出力周波数に応じてPWMモードを切り替える際の移行技術に関する。
 可変速運転する交流電動機(モータ)を駆動するためには、直流電源の供給する直流電力を所望の周波数および電圧の交流電力に変換する必要がある。
 一般に、直流電力を交流電力に変換する電力変換装置(インバータ装置)は、半導体スイッチング素子を用いた主回路と、半導体スイッチング素子を制御する制御装置から構成される。主回路を構成する半導体スイッチング素子を、所定のスイッチング周波数でパルス幅変調制御(PWM制御)することによって所望の周波数と電圧を生成している。
 鉄道車両の分野においても、半導体スイッチング素子を用いた電力変換装置(インバータ装置)を用いて交流電動機(モータ)を駆動しているが、高耐圧の半導体スイッチング素子を使用していることから、主に素子損失の制約によってスイッチング周波数を抑制せざるを得ない。
 このため、鉄道車両の分野では、低速域において駆動周波数(インバータ周波数)とスイッチング周波数が非同期である非同期PWMモードで駆動し、高速域になると駆動周波数(インバータ周波数)とスイッチング周波数を同期させる同期PWMモードに切り替える方式を、一般的に採用している。また、複数の同期PWMモードを備え、速度等に応じて切り替えて使用している例も多い。
 しかし、非同期PWMモードから同期PWMモードへの切替え、あるいは同期PWMモード間での切替えには注意が必要であり、何の対策も講じることなしにそのままPWMモードを切り替えると、切替え時にモータ電流が跳ね上がる現象が発生する。
 図8は、PWMモードの切替え時にモータ電流波形が跳ね上がる例を示す図である。このようなモータ電流の跳ね上がりが生じると、トルクショックが発生して車両の乗り心地が悪化する。また、半導体スイッチング素子の最大許容電流を超過すると、半導体スイッチング素子を破壊することも起こり得る。
 このようなPWMモードの切替え時にモータ電流が跳ね上がる現象に対して、これまで様々な対応策が講じられてきた。例えば、特許文献1には、インバータのPWMモードの切り替え時に、インバータの出力電流の過渡的変動を防止し負荷への影響を抑制するために、非同期モ-ドと同期モ-ドとを相互に切り替える際に、インバータ出力の過渡変動が最も小さく切り替えられる位相角の範囲に入った相から各相独自にパルス幅変調モ-ドの切り替えを行ない、非同期パルス幅変調電圧発生手段の出力と同期パルス幅変調電圧発生手段の出力のいずれか一方に基づいて、インバータのスイッチング素子を制御する技術が開示されている。
特開平9-247953号公報
 特許文献1を含めた従来技術は、PWMモードの切替え時にモータ電流が跳ね上がる問題の原因に対する根本的な究明がなく、抜本的な対策ではなかったことから、汎用的に適用できる技術とはいえなかった。すなわち、特定の条件、例えば、あくまで特定のPWMモード間の切替え時のみに成立する技術であったり、特定の、周波数、変調率、モータ定数または電流制御応答などの特定条件下のみで成立する技術であったり、局所的な成功例に過ぎないものであった。
 本発明の目的は、PWMモードの切替え時にモータ電流が跳ね上がる問題に対して、この問題の根本原因を究明し、汎用的に適用できる対策(技術)を提供することにある。
 次に、PWMモードの切替え時にモータ電流が跳ね上がる原因について説明する。
 図6は、本発明の制御対象となる主回路構成の一例を示す図である。
 図6に示す本発明の制御対象となる主回路は、直流電力を交流電力に変換する電力変換装置(インバータ装置)であって、直流電圧源(図6には図示せず)が供給する直流電圧を安定化させる平滑化コンデンサ81と、U相上アームの半導体スイッチング素子82とU相下アームの半導体スイッチング素子83とから成るU相ブリッジ、V相上アームの半導体スイッチング素子84とV相下アームの半導体スイッチング素子85とから成るV相ブリッジおよびW相上アームの半導体スイッチング素子86とW相下アームの半導体スイッチング素子87とから成るW相ブリッジにより構成する3相ブリッジとを備える。そして、この3相ブリッジの入力が平滑化コンデンサ81に並列接続され、この3相ブリッジの出力が交流電動機88に接続される。
 3相ブリッジの上アームに入力されるゲートパルス信号GPU、GPVおよびGPWは、3相ブリッジの上アームの半導体スイッチング素子82、84および86を駆動し、3相ブリッジの下アームに入力されるゲートパルス信号GNU、GNVおよびGNWは、3相ブリッジの下アームの半導体スイッチング素子83、85および87を駆動する。
 図7は、本発明の制御対象に係る負荷の一例であるモータ88(交流電動機88)の等価回路を示す図である。
 図7において、U相電圧vuは、抵抗90、インダクタンス93および速度起電力euを模擬した等価電源96を介して、中性点電位vgに接続される。同様に、V相電圧vvは、抵抗91、インダクタンス94および速度起電力evを模擬した等価電源97を介して、また、W相電圧vwは、抵抗92、インダクタンス95および速度起電力ewを模擬した等価電源98を介して、それぞれ中性点電位vgに接続される。
 以下では、数式を用いて、PWMモードの切替え時にモータ電流が跳ね上がる原因を説明する。
 [式1]に示すとおり、3相インバータの出力電圧の平均値は、モータ88の中性点電位vgに等しくなる。
 [式1] vg=(vu+vv+vw)/3
 次に、モータ88の磁束φu、φvおよびφwを[式2]で表す。ここで、sはラプラス演算子で、1/sは積分を意味する。モータ88に関して、速度起電力eu、evおよびew、モータ電流iu、ivおよびiw、抵抗Rとする。
 [式2] φu=(vu-vg-eu-R×iu)/s
      φv=(vv-vg-ev-R×iv)/s
      φw=(vw-vg-ew-R×iw)/s
 そこで、モータ88のインダクタンスをLとおくと、モータ電流iu、ivおよびiwは、[式3]で表される。
 [式3] iu=φu/L
      iv=φv/L
      iw=φw/L
 してみると、モータ電流iu、ivおよびiwが跳ね上がるということは、すなわち、磁束φu、φvおよびφwが跳ね上がることに等しい。この磁束φu、φvおよびφwが跳ね上がる外部要因としては、3相インバータの出力電圧vu、vv、vwおよびvgしかないので、これらの項のみを抽出して考えればよいことになる。[式2]より、3相インバータの出力電圧の項vu、vv、vwおよびvgのみを抽出し、3相インバータの出力電圧積分値Φu、ΦvおよびΦwの定義式を、[式4]として示す。
 [式4] Φu=(vu-vg)/s
      Φv=(vv-vg)/s
      Φw=(vw-vg)/s
 図9は、2つの同期PWMモードとして、同期PWMIと同期PWMIIについて、定義式に基づいて求めた電圧積分値Φu、ΦvおよびΦwを示す図である。
 同期PWMIと同期PWMIIは、出力周波数、出力電圧振幅および出力電圧位相が等しく、同期パルス数のみ異なる。2つの電圧積分値の基本波成分の大きさは等しいが、高調波成分が異なるため、2つの電圧積分値のカーブは完全には一致しない。ただし、交流量であることから、ゼロクロスするタイミングで2つの電圧積分値のカーブは必ず交差する。
 図10は、同期PWMモードの切替え時の出力電圧積分値を示す図である。
 図10に示す実線のカーブは、位相60度で同期PWMIから同期PWMIIにPWMモードを切り替えたときの電圧積分値を示す。比較のため、点線のカーブで、同期PWMIIの電圧積分値を示す。W相は、位相60度において電圧積分値が一致しているため、切替え後の電圧積分値も完全に一致している(すなわち、カーブが完全に重なっているために、同期PWMIIのカーブ(点線)が判別できない)。
 一方で、U相およびV相は、電圧積分値が一致していない点で切り替えたため、同期PWMIIの電圧積分値のカーブに対して直流的な偏りが生じる。U相は負方向に、V相は正方向に偏っていることが見て取れる。これは、電圧積分値が一致していないPWMモード間および位相でPWMモードを切り替えると、切替え後の電圧波形が全く同じであっても、電圧積分値は、切替え時の誤差を残したままで解消することはできない。この結果、電圧積分値ΦuおよびΦvが偏ると、磁束φuおよびφvが偏ることになり、モータ電流iuおよびivも偏ることになる。
 以上が、PWMモードの切替え時にモータ電流が跳ね上がる詳細な原因である。
 なお、PWMモードの切替え時に、電圧積分値Φu、ΦvおよびΦwが偏り、モータ電流iu、ivおよびiwが偏ることになっても、実際には、モータの磁束φu、φvおよびφwには、モータ電流iu、ivおよびiwの項があり、自然にアンバランスが解消されるように動作する。
 ただし、跳ね上がりの収束に要する時定数はモータの抵抗Rに反比例すること、また、近年のモータは高効率化・低損失化が進み、モータの抵抗Rが小さくなっているため、時定数は長くなっている。すなわち、PWMモードの切替え時のモータ電流の跳ね上がりが長時間継続するようになり、問題を大きくしている。
 上記課題を解決するために、本発明に係るPWMインバータ制御装置は、その代表的なものとして、PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成回路と、第1の変調波と第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成する第1のパルス生成回路と、第2の変調波と第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成する第2のパルス生成回路と、PWMインバータの出力周波数指令および出力電圧振幅指令に基づいて第1または第2のPWMモードのいずれかを選択するPWMモード選択信号を生成するPWMモード選択回路と、PWMモード選択信号に応じて第1のPWMパルスと第2のPWMパルスとを切り替えてPWMインバータの駆動パルスとするパルス切替回路とを備え、PWMモード選択回路は、PWMモード選択信号を、第1のPWMパルスが駆動パルスである場合のPWMインバータの出力電圧積分値と、第2のPWMパルスが駆動パルスである場合のPWMインバータの出力電圧積分値とが一致するタイミングで生成することを特徴とする。
 本発明によれば、インバータをPWM制御する際に、あらゆるPWMモード間の切替えに対応して、PWMモードの切替え時にモータ電流が跳ね上がる現象を抑制することができる。
本発明の実施例1に係る3相PWMインバータの制御装置の一例を示す図である。 実施例1に係るPWMモード選択回路の構成の一例を示す図である。 本発明の実施例2に係る3相PWMインバータの制御装置の一例を示す図である 実施例2に係るPWMモード選択回路の構成の一例を示す図である。 実施例2に係るPWMモード選択回路の構成の別の一例を示す図である。 本発明の制御対象となる主回路構成の一例を示す図である。 本発明の制御対象に係る負荷の一例である交流電動機の等価回路を示す図である。 従来技術によるPWMモードの切替え時のモータ電流波形の跳ね上がりを示す図である。 2つの同期PWMモードの出力電圧積分値を示す図である。 同期PWMモードの切替え時の出力電圧積分値を示す図である。 実施例2による動作例(出力電圧積分値)の一例を示す図である。 位相ごとの変調率補正量を示す表である。 本発明を適用した場合のモータ電流波形を示す図である。
 以下、本発明を実施するための形態として、実施例1および2について、図面を用いて説明する。
 図1は、本発明の実施例1に係る3相PWMインバータの制御装置の一例を示す図である。
 図1に示すPWMインバータ制御装置は、以下の構成要素を備える。
・第1のPWMモードに対応し、出力電圧位相指令θと出力電圧振幅指令Ymrに基づいて±120度離れた3相変調波を生成する変調波生成回路1、2および3
・第2のPWMモードに対応し、出力電圧位相指令θと出力電圧振幅指令Ymrに基づいて±120度離れた3相変調波を生成する変調波生成回路4、5および6
・変調波生成回路1、2および3の出力をそれぞれ入力し、第1のPWMモードに対応した搬送波と比較してゲートパルス信号GPU1とGNU1、GPV1とGNV1およびGPW1とGNW1をそれぞれ出力するパルス生成回路8、9および10
・変調波生成回路4、5および6の出力をそれぞれ入力し、第2のPWMモードに対応した搬送波と比較してゲートパルス信号GPU2とGNU2、GPV2とGNV2およびGPW2とGNW2をそれぞれ出力するパルス生成回路11、12および13
・出力電圧振幅指令Ymrと出力周波数指令Finvに基づいて、PWMモード選択信号SWを出力するPWMモード選択回路14
・PWMモード選択信号SWに基づき、パルス生成回路8、9および10とパルス生成回路11、12および13の出力を切り替えて、PWMインバータのゲートパルス信号GPU~GNWを出力するパルス切替回路7
 次に、第1のPWMモードに対応した変調波生成回路1、2および3の動作例を示す。
 変調波生成回路1、2および3それぞれは、[式5]に示すように、出力電圧振幅指令Ymrより関数A1を用いて変調波振幅a1を求め、この変調波振幅a1と出力電圧位相指令θに対して±120度離れた位相におけるsin関数との積により、3相変調波ymu1、ymv1およびymw1を生成する。
 [式5]   a1=A1(Ymr)
      ymu1=a1×sin(θ)
      ymv1=a1×sin(θ-2π/3)
      ymw1=a1×sin(θ+2π/3)
 ここで、関数A1は、第1のPWMモードのパルス数が十分多く、かつ出力電圧振幅指令Ymrが正弦波変調となる領域(過変調ではない領域、すなわち非飽和領域)では、変調波振幅a1は出力電圧振幅指令Ymrに比例するとみなして、a1=A1(Ymr)≒4/π×Ymrと近似できる。
 しかし、変調波が飽和する過変調領域においては、線形近似が成立せず、変調波振幅a1と出力電圧振幅指令Ymrとの関係は非線形特性になるので、この非線形特性を関数A1として実装する。
 また、本発明が対象とする電力変換装置(インバータ装置)においては、パルス数が十分でなく、正弦波変調領域であっても近似が成立しない場合がある。この場合には、変調波振幅a1と、実際の第1のPWMモードにおけるPWM波形をフーリエ積分して求めた実際の出力電圧振幅との関係を求め、この逆関数を関数A1として実装する。
 同様に、第2のPWMモードに対応した変調波生成回路4、5および6それぞれも、[式6]に示すように、出力電圧振幅指令Ymrより関数A2を用いて変調波振幅a2を求め、この変調波振幅a2と出力電圧位相指令θに対して±120度離れた位相におけるsin関数との積により、3相変調波ymu2、ymv2およびymw2を生成する。
 [式6]   a2=A2(Ymr)
      ymu2=a2×sin(θ)
      ymv2=a2×sin(θ-2π/3)
      ymw2=a2×sin(θ+2π/3)
 ここで、関数A2は、関数A1と同様にして求める。
 第1のPWMモードに対応したパルス生成回路8、9および10は、第1のPWMモードの3相変調波ymu1、ymv1およびymw1を入力し、第1のPWMモードに対応した搬送波と比較して、PWMのゲートパルス信号GPU1とGNU1、GPV1とGNV1およびGPW1とGNW1を出力する。一般的に、パルス生成回路8、9および10の搬送波位相は同位相である。
 また、3相各相のPWMのゲートパルス信号として、U相のGPU1とGNU1、V相のGPV1とGNV1およびW相のGPW1とGNW1は、それぞれアーム短絡を防止するためのデッドタイム(両方ともオフしている期間)を除き、いずれかの信号がオンしている相補信号である。
 第2のPWMモードに対応したパルス生成回路11、12および13は、第2のPWMモードの3相変調波ymu2、ymv2およびymw2を入力し、第2のPWMモードに対応した搬送波と比較してPWMのゲートパルス信号GPU2とGNU2、GPV2とGNV2およびGPW2とGNW2を出力する。
 先の第1のPWMモードに対応したパルス生成回路8、9および10と同様に、パルス生成回路11、12および13の搬送波位相も一般的に同位相で、3相各相のPWMのゲートパルス信号として、U相のGPU2とGNU2、V相のGPV2とGNV2およびW相のGPW2とGNW2は、それぞれアーム短絡を防止するためのデッドタイム(両方ともオフしている期間)を除き、いずれかの信号がオンしている相補信号である。
 図2は、実施例1に係るPWMモード選択回路14の構成の一例を示す図である。
 図2に示すPWMモード選択回路14は、以下の構成要素を備える。
・第1のPWMモードの3相変調波ymu1、ymv1およびymw1を入力し、それぞれ第1のPWM波形を出力するPWM波形演算器21、22および23
・第2のPWMモードの3相変調波ymu2、ymv2およびymw2を入力し、それぞれ第2のPWM波形を出力するPWM波形演算器24、25および26
・PWM波形演算器21、22および23の出力を入力し、第1のPWM波形の平均値を求める平均値演算器27
・PWM波形演算器24、25および26の出力を入力し、第2のPWM波形の平均値を求める平均値演算器28
・PWM波形演算器21、22および23の出力から、平均値演算器27の出力を差し引く減算器29、30および31
・PWM波形演算器24、25および26の出力から、平均値演算器28の出力を差し引く減算器32、33および34
・減算器29、30および31の出力をそれぞれ積分する積分器35、36および37
・減算器32、33および34の出力をそれぞれ積分する積分器38、39および40
・積分器35、36および37の出力と積分器38、39および40の出力をそれぞれ比較し、第1のPWMモード側の積分器(35、36および37)と第2のPWMモード側の積分器(38、39および40)のそれぞれ対応する2つ積分器の出力値が一致もしくはその偏差が許容範囲内に収まる場合は真、そうでない場合は偽を出力する比較器41、42および43
・比較器41、42および43の出力の論理積を求める論理積(AND)ゲート44
・出力電圧振幅指令Ymr、出力周波数指令Finvおよび論理積ゲート44の出力により、PWMモード選択信号SWを出力するPWMモード選択信号生成器45
 ここで、PWMモード選択信号生成器45は、出力電圧振幅指令Ymrおよび出力周波数指令Finvに基づいて、第1のPWMモードまたは第2のPWMモードを選択するPWMモード選択信号SWを、論理積ゲート44の出力が真である場合に切り替えて出力する。また、2つのPWMモード間を短期間で往来しないように、2つのPWMモード間の遷移領域にはヒステリシス幅を設ける。
 以上のように、PWMモード選択信号SWの切替えに当たって、論理積ゲート44の出力が真である場合とは、比較器41、42および43の出力が全て真となるタイミングであって、すなわち、第1のPWMモードに対応する第1のPWM波形の積分値(すなわち電圧積分値)と第2のPWMモードに対応する第2のPWM波形の積分値(すなわち電圧積分値)とが3相全ての相で一致するか許容範囲内の差であるから、PWMモードの切替えにおいて、モータ電流の跳ね上がりを抑制することが可能となる。
 次に、本発明の実施例2について説明する。
 図3は、本発明の実施例2に係る3相PWMインバータの制御装置の一例を示す図である。
 図3に示すPWMインバータ制御装置は、以下の構成要素を備える。ただし、図1に示す実施例1に係る3相PWMインバータの制御装置と同じ構成要素の説明は省略し、異なる構成要素についてのみ説明する。
・出力電圧振幅指令Ymrと出力周波数指令Finvに基づいてPWMモード選択信号SWと変調率補正量Δymu、ΔymvおよびΔymwを出力するPWMモード選択回路15
・変調波生成回路1、2および3の出力ymu1、ymv1およびymw1それぞれに対して、PWMモード選択回路15が出力する変調率補正量Δymu、ΔymvおよびΔymwを加算する加算器16、17および18
 また、パルス生成回路8、9および10それぞれは、変調波生成回路1、2および3の出力ymu1、ymv1およびymw1ではなく加算器16、17および18のそれぞれの出力を入力し、第1のPWMモードに対応した搬送波と比較してゲートパルス信号GPU1とGNU1、GPV1とGNV1およびGPW1とGNW1を出力する。
 図4は、実施例2に係るPWMモード選択回路15の構成の一例を示す図である。
 図4に示すPWMモード選択回路15が備える構成要素について、以下では、図2に示す実施例1に係るPWMモード選択回路14と異なる部分についてのみ説明し、同じ部分についての説明は省略する。
・積分器35、36および37の出力と積分器38、39および40の出力との差分をそれぞれ求める減算器50、51および52
・出力電圧振幅指令Ymrと出力周波数指令Finvにより、PWMモード選択信号SWおよびPWMモード切替信号CHGを出力するPWMモード選択信号生成器54
・PWMモード切替信号CHGが有効のときは、減算器50、51および52の出力を変調率補正量Δymu、ΔymvおよびΔymwとして出力し、PWMモード切替信号CHGが無効のときはゼロを出力するスイッチ53
 また、PWMモード選択信号生成器54は、出力電圧振幅指令Ymrと出力周波数指令Finvに応じて、第1のPWMモードもしくは第2のPWMモードを選択するPWMモード選択信号SWを出力するが、2つのPWMモード間を短期間で往来しないように、2つのPWMモード間の遷移領域にはヒステリシス幅を設ける。さらに、PWMモード切替信号CHGは、通常は無効であり、第1のPWMモードから第2のPWMモードに切り替わる直前のみ有効となる。
 図11は、本発明の実施例2による動作例(出力電圧積分値)の一例を示す図である。
 図11では、PWMモード選択信号SWは、位相60度以前はLowレベルであって、第1のPWMモードである同期PWMIである、また、位相60度以後はHighレベルとなって、第2のPWMモードである同期PWMIIであることを示す。
 また、PWMモード切替信号CHGは、通常はLowレベルであり無効であることを示し、位相60度の直前のみHighレベルとなって有効であることを示す。
 図11において、位相60度の時点で、同期PWMIから同期PWMIIにPWMモードの切替えを行った際の電圧積分値を実線で示す。比較のために、本発明の実施例2を適用しなかった場合の電圧積分値を点線で示す。
 本発明の実施例2を適用しなかった場合、図10に示したように、U相電圧積分値は負方向に偏り、V相電圧積分値は正方向に偏っていた。一方、図11に示すように、実施例2に係る構成により、位相60度の時点で、PWMモードの切替え直前に、U相では電圧積分値を正方向に補正することによって、U相電圧積分値のアンバランスを解消している。同様に、V相については、電圧積分値を負方向に補正することによって、V相電圧積分値のアンバランスを解消している。なお、W相は、位相60度では電圧積分値が一致しているので、補正なしとなる。
 なお、実施例2では、同期PWMIから同期PWMIIへの切替え直前に補正量を加えている。これは、実施例2では、同期PWMIの方が同期PWMIIよりも同期パルス数が多いので、パルス数が多い側で補正量を加えた方が、より正確に電圧積分値をコントロールできるためである。
 図13は、本発明を適用した場合のモータ電流波形を示す図である。図8に示すモータ電流波形と異なり、同期PWMIから同期PWMIIへの切替えはスムーズに行われ、モータ電流の跳ね上がりは起きていない。
 なお、同期PWMIの区間に比べて、同期PWMIIの区間の方が電流振幅が大きくなっているのは、同期PWMIに比べて同期PWMIIの方は同期パルス数が減っていることから、スイッチングリップルが大きくなっているためである。
 図5は、図3に示す実施例2に係るPWMモード選択回路15の構成の別の一例を示す図である。
 図5に示すPWMモード選択回路15は、PWMモード選択信号生成器55が、PWMモード選択信号SWおよびPWMモード切替信号CHGを、出力電圧振幅指令Ymrと出力周波数指令Finvと減算器50、51および52の出力との3つの信号に基づいて出力する点において、図4に示すPWMモード選択回路15のPWMモード選択信号生成器54と異なる。
 PWMモード選択信号生成器55は、出力電圧振幅指令Ymrと出力周波数指令Finvとに応じて、第1のPWMモードもしくは第2のPWMモードを選択する信号を出力する。ただしその際に、2つのPWMモード間を短期間で往来しないように、2つのPWMモード間の遷移領域にはヒステリシス幅を設ける。さらに、減算器50、51および52の出力の中でいずれか一相がゼロまたはゼロとみなせる許容範囲内に収まる場合にのみ、PWMモード選択信号SWを切り替えるものである。また、PWMモード切替信号CHGは、通常は無効であり、第1のPWMモードから第2のPWMモードに切り替わる直前にのみ有効となる。
 図12は、位相ごとの変調率補正量を示す表である。
 図9に示すように、3相の電圧積分値の内、60度の整数倍の位相でいずれかの相は必ずゼロクロスする。3相の電圧積分値の総和は必ずゼロになるので、残りの2相の和も必ずゼロになる。PWMモードの切替え前後のいずれのPWMモードでも同様であるから、電圧積分値の差である変調率補正量もいずれか一相はゼロになり、残りの2相の和も必ずゼロとなる。ここで、変調率補正量については、+ΔVと-ΔVとする。
 図12に示すように、例えば、位相60度のとき、W相の変調率補正量はゼロとなり、U相の変調率補正量は+ΔV、V相の変調率補正量は-ΔVとなる。このように、60度の整数倍の位相では、変調率補正量はゼロまたは±ΔVのいずれかの値となる。
 図9と照らし合わせると、U相の電圧積分値は、位相0度ではゼロであり、位相60度における2つのPWMモードの電圧積分値の差が変調率補正量ΔVとなる。これは、電圧積分値の演算においては、無限時間に渡って積分動作を行う必要はなく、60度ごとにゼロの状態から積分を行えばよいことを示している。積分器が長時間動作すると、わずかな演算誤差が蓄積してアンバランスの要因になりかねないが、本発明の構成においては、積分器を60度ごとにリセットすることでその問題を解消することができる。
 1、2、3 第1のPWMモードの変調波生成回路
 4、5、6 第2のPWMモードの変調波生成回路
 7 パルス切替回路(セレクタ)
 8、9、10 第1のPWMモードのパルス生成回路
 11、12、13 第2のPWMモードのパルス生成回路
 14、15 PWMモード選択回路
 16、17、18 加算器
 21、22、23 第1のPWMモードのPWM波形演算器
 24、25、26 第2のPWMモードのPWM波形演算器
 27、28 平均値演算器
 29、30、31、32、33、34 減算器
 35、36、37、38、39、40 積分器
 41、42、43 比較器
 44 論理積(AND)ゲート
 45 PWMモード選択信号生成器
 50、51、52 加算器
 53 スイッチ
 54、55 PWMモード選択信号生成器
 81 平滑化コンデンサ
 82、84、86 3相ブリッジの上アームの半導体スイッチング素子
 83、85、87 3相ブリッジの下アームの半導体スイッチング素子
 88 モータ(交流電動機)
 90、91、92 抵抗R
 93、94、95 インダクタンスL
 96、97、98 速度起電力の等価電源

Claims (10)

  1.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成回路と、
     前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成する第1のパルス生成回路と、
     前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成する第2のパルス生成回路と、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1または前記第2のPWMモードのいずれかを選択するPWMモード選択信号を生成するPWMモード選択回路と、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えてPWMインバータの駆動パルスとするパルス切替回路と
    を備え、
     前記PWMモード選択回路は、
     前記PWMモード選択信号を、前記第1のPWMパルスを前記駆動パルスとした場合の前記PWMインバータの出力電圧積分値と、前記第2のPWMパルスを前記駆動パルスとした場合の前記PWMインバータの出力電圧積分値とが一致するタイミングで生成する
    ことを特徴とするPWMインバータ制御装置。
  2.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成回路と、
     前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成する第1のパルス生成回路と、
     前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成する第2のパルス生成回路と、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1または前記第2のPWMモードのいずれかを選択するPWMモード選択信号を生成するPWMモード選択回路と、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えて前記PWMインバータの駆動パルスとするパルス切替回路と
    を備え、
     前記PWMモード選択回路は、
     前記第1の変調波から第1のPWM波形を演算し当該第1のPWM波形を積分する第1の演算器と、前記第2の変調波から第2のPWM波形を演算し当該第2のPWM波形を積分する第2の演算器とを有し、
     前記PWMモード選択信号を、前記第1の演算器の出力と前記第2の演算器の出力とが一致するタイミングで生成する
    ことを特徴とするPWMインバータ制御装置。
  3.  請求項2に記載のPWMインバータ制御装置であって、
     前記PWMインバータは、3相PWMインバータであり、
     前記第1および前記第2の変調波は、それぞれ3相分の変調波であり、
     前記第1の演算器は、前記第1の変調波から3相各相のPWM波形を求め、当該3相各相のPWM波形それぞれから当該3相各相のPWM波形の平均値を減算することで、前記第1のPWM波形を演算し、
     前記第2の演算器は、前記第2の変調波から3相各相のPWM波形を求め、当該3相各相のPWM波形それぞれから当該3相各相のPWM波形の平均値を減算することで、前記第2のPWM波形を演算し、
     前記PWMモード選択信号は、前記第1の演算器の3相分の出力と前記第2の演算器の3相分の出力とが3相各相で全て一致するまたは許容範囲内の偏差であるタイミングで生成される
    ことを特徴とするPWMインバータ制御装置。
  4.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成回路と、
     変調率補正量を所定のタイミングで加算した前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成する第1のパルス生成回路と、
     前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成する第2のパルス生成回路と、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1または前記第2のPWMモードのいずれかを選択するPWMモード選択信号および前記変調率補正量を生成するPWMモード選択回路と、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えてPWMインバータの駆動パルスとするパルス切替回路と
    を備え、
     前記PWMモード選択回路は、
     前記第1の変調波から第1のPWM波形を演算し当該第1のPWM波形を積分する第1の演算器と、前記第2の変調波から第2のPWM波形を演算し当該第2のPWM波形を積分する第2の演算器と、前記第1の演算器の出力と前記第2の演算器の出力との差に応じた前記変調率補正量を出力する第3の演算器とを有し、
     前記所定のタイミングは、前記PWMモード選択信号に応じて前記第1のPWMモードと前記第2のPWMモードとを切り替える直前のタイミングである
    ことを特徴とするPWMインバータ制御装置。
  5.  請求項4に記載のPWMインバータ制御装置であって、
     前記PWMインバータは、3相PWMインバータであり、
     前記第1および前記第2の変調波は、それぞれ3相分の変調波であり、
     前記第1の演算器は、前記第1の変調波から3相各相のPWM波形を求め、当該3相各相のPWM波形それぞれから当該3相各相のPWM波形の平均値を減算することで、前記第1のPWM波形を演算し、
     前記第2の演算器は、前記第2の変調波から3相各相のPWM波形を求め、当該3相各相のPWM波形それぞれから当該3相各相のPWM波形の平均値を減算することで、前記第2のPWM波形を演算し、
     前記第3の演算器は、3相の前記第1の演算器の前記出力それぞれから3相の前記第2の演算器の前記出力を減算して3相の前記変調率補正量を出力する
    ことを特徴とするPWMインバータ制御装置。
  6.  請求項5に記載のPWMインバータ制御装置であって、
     前記PWMモード選択回路は、前記3相のいずれか1相の前記変調率補正量がゼロまたはゼロとみなせる許容範囲内に収まる場合に、前記PWMモード選択信号を生成する
    ことを特徴とするPWMインバータ制御装置。
  7.  請求項1~6のいずれか1項に記載のPWMインバータ制御装置であって、
     前記第1のPWMモードと前記第2のPWMモードとの遷移領域にはヒステリシス幅を設ける
    ことを特徴とするPWMインバータ制御装置。
  8.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成ステップと、
     前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成し、前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成するパルス生成ステップと、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1もしくは前記第2のPWMモードのいずれかを選択するPWMモード選択信号を、前記第1のPWMパルスを前記PWMインバータの駆動パルスとした場合の前記PWMインバータの出力電圧積分値と、前記第2のPWMパルスを前記PWMインバータの駆動パルスとした場合の前記PWMインバータの出力電圧積分値とが一致するタイミングで生成するPWMモード選択ステップと、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えて前記PWMインバータを駆動する駆動ステップと
    を有するPWMインバータ制御方法。
  9.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成ステップと、
     前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成し、前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成するパルス生成ステップと、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1または前記第2のPWMモードのいずれかを選択するPWMモード選択信号を生成するPWMモード選択ステップと、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えて前記PWMインバータを駆動する駆動ステップと
    を有し、
     前記PWMモード選択ステップは、
     前記第1の変調波から算出した第1のPWM波形を積分して第1の積分値を演算し、前記第2の変調波から算出した第2のPWM波形を積分して第2の積分値を演算する演算ステップと、
     前記第1の積分値と前記第2の積分値とが一致するタイミングで前記PWMモード選択信号を生成するステップとから成る
    ことを特徴とするPWMインバータ制御方法。
  10.  PWMインバータの出力電圧位相指令および出力電圧振幅指令に基づいて第1のPWMモードに対応した第1の変調波および第2のPWMモードに対応した第2の変調波を生成する変調波生成ステップと、
     前記第1の変調波と前記第1のPWMモードに対応した搬送波とを比較して第1のPWMパルスを生成し、前記第2の変調波と前記第2のPWMモードに対応した搬送波とを比較して第2のPWMパルスを生成するパルス生成ステップと、
     前記PWMインバータの出力周波数指令および前記出力電圧振幅指令に基づいて前記第1または前記第2のPWMモードのいずれかを選択するPWMモード選択信号を生成するPWMモード選択ステップと、
     前記第1の変調波から算出した第1のPWM波形を積分して第1の積分値を演算し、前記第2の変調波から算出した第2のPWM波形を積分して第2の積分値を演算し、前記第1の積分値と前記第2の積分値との差を変調率補正量として演算し、当該変調率補正量を、前記第1の変調波に対して、前記PWMモード選択信号に応じて前記第1のPWMモードと前記第2のPWMモードとを切り替える直前のタイミングで加算する演算ステップと、
     前記PWMモード選択信号に応じて前記第1のPWMパルスと前記第2のPWMパルスとを切り替えて前記PWMインバータを駆動する駆動ステップと
    を有するPWMインバータ制御方法。
PCT/JP2020/044777 2019-12-03 2020-12-02 Pwmインバータ制御装置および制御方法 WO2021112108A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20896316.5A EP4071998A4 (en) 2019-12-03 2020-12-02 PWM INVERTER CONTROL APPARATUS AND CONTROL METHOD
JP2021562676A JP7328352B2 (ja) 2019-12-03 2020-12-02 Pwmインバータ制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019219012 2019-12-03
JP2019-219012 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021112108A1 true WO2021112108A1 (ja) 2021-06-10

Family

ID=76221651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044777 WO2021112108A1 (ja) 2019-12-03 2020-12-02 Pwmインバータ制御装置および制御方法

Country Status (3)

Country Link
EP (1) EP4071998A4 (ja)
JP (1) JP7328352B2 (ja)
WO (1) WO2021112108A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331856A (ja) * 1995-05-30 1996-12-13 Toshiba Corp 電力変換装置
JPH09247953A (ja) 1996-03-11 1997-09-19 Toshiba Corp 電力変換装置
JPH10337036A (ja) * 1997-05-28 1998-12-18 Hitachi Ltd Pwmパルス発生装置
JP2005348597A (ja) * 1993-12-17 2005-12-15 Hitachi Ltd 電気車の制御装置
WO2014174597A1 (ja) * 2013-04-23 2014-10-30 三菱電機株式会社 交流電動機の制御装置
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
JP2019103267A (ja) * 2017-12-04 2019-06-24 日立オートモティブシステムズ株式会社 モータ駆動システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086920A (ja) * 2003-09-09 2005-03-31 Fuji Electric Systems Co Ltd 同期電動機駆動装置の制御方法
JP5319205B2 (ja) * 2008-08-22 2013-10-16 株式会社豊田中央研究所 モータ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348597A (ja) * 1993-12-17 2005-12-15 Hitachi Ltd 電気車の制御装置
JPH08331856A (ja) * 1995-05-30 1996-12-13 Toshiba Corp 電力変換装置
JPH09247953A (ja) 1996-03-11 1997-09-19 Toshiba Corp 電力変換装置
JPH10337036A (ja) * 1997-05-28 1998-12-18 Hitachi Ltd Pwmパルス発生装置
WO2014174597A1 (ja) * 2013-04-23 2014-10-30 三菱電機株式会社 交流電動機の制御装置
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
JP2019103267A (ja) * 2017-12-04 2019-06-24 日立オートモティブシステムズ株式会社 モータ駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071998A4

Also Published As

Publication number Publication date
JPWO2021112108A1 (ja) 2021-06-10
JP7328352B2 (ja) 2023-08-16
EP4071998A1 (en) 2022-10-12
EP4071998A4 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
EP0571755B1 (en) Power converter for converting DC voltage into AC phase voltage having three levels of positive, zero and negative voltage
JP5269102B2 (ja) 電力変換装置
US9780692B2 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
US8929111B2 (en) System and method for common-mode elimination in a multi-level converter
JPH05227796A (ja) 電力変換器の制御装置
JP6178433B2 (ja) 電力変換装置
CN104578810A (zh) 矩阵变换器
JP5192258B2 (ja) クランプ式電力変換装置
EP3853985A1 (en) Multi-level inverter
JP2009124799A (ja) モータ制御装置
JPH02261063A (ja) インバータ装置と交流電動機駆動システム
WO2021112108A1 (ja) Pwmインバータ制御装置および制御方法
JP4661197B2 (ja) 電圧形インバータの制御方法
WO2022018841A1 (ja) 電力変換装置および電動パワーステアリング装置
JP2007082325A (ja) 多相モータ
JP4277360B2 (ja) 3レベルインバータの制御装置
Chasib et al. Independent Control of Two-PMSM Fed by Two SVPWM Inverters with Fault Tolerant Operation
JP6417268B2 (ja) 電力変換装置
JP7251336B2 (ja) モータ制御装置
WO2024042942A1 (ja) 回転電機の駆動制御装置および駆動制御方法
WO2024157363A1 (ja) 電動機制御装置および電動機制御方法
JP6559592B2 (ja) 電力変換装置
Saeidabadi et al. Simplified Model Predictive Control for a Five-Phase PMSM Using Four-Leg Inverter
JP2023050505A (ja) 電力変換装置
JP2006014501A (ja) 電圧形インバータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020896316

Country of ref document: EP

Effective date: 20220704