WO2014172992A1 - 像素单元电路及其补偿方法和显示装置 - Google Patents

像素单元电路及其补偿方法和显示装置 Download PDF

Info

Publication number
WO2014172992A1
WO2014172992A1 PCT/CN2013/077965 CN2013077965W WO2014172992A1 WO 2014172992 A1 WO2014172992 A1 WO 2014172992A1 CN 2013077965 W CN2013077965 W CN 2013077965W WO 2014172992 A1 WO2014172992 A1 WO 2014172992A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
light
emitting device
control signal
voltage
Prior art date
Application number
PCT/CN2013/077965
Other languages
English (en)
French (fr)
Inventor
吴仲远
段立业
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/348,720 priority Critical patent/US9373281B2/en
Priority to JP2016509259A priority patent/JP6262845B2/ja
Priority to EP13840129.4A priority patent/EP2991065A4/en
Priority to KR1020147008519A priority patent/KR101530500B1/ko
Publication of WO2014172992A1 publication Critical patent/WO2014172992A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • Pixel unit circuit compensation method thereof and display device
  • the present disclosure relates to the field of display technologies, and in particular, to a pixel unit circuit and a compensation method thereof, and a display device. Background technique
  • An organic light-emitting diode has been increasingly used as a current-type light-emitting device in high-performance display devices.
  • Conventional Passive Matrix Passive Matrix OLED
  • AMOLED Active Matrix OLED
  • the main problem to be solved is the luminance non-uniformity between the pixel unit circuits.
  • AMOLED uses a thin-film transistor (TFT, Thin-Film Transistor) to construct a pixel unit circuit to provide a corresponding current for the OLED device.
  • TFT Thin-Film Transistor
  • a low temperature polysilicon thin film transistor or an oxide thin film transistor is mostly used.
  • low temperature polycrystalline silicon thin film transistors and oxide thin film transistors have higher mobility and more stable characteristics, and are more suitable for use in AMOLED displays.
  • due to the limitations of the crystallization process low-temperature polysilicon thin film transistors fabricated on large-area glass substrates often have non-uniformities in electrical parameters such as threshold voltage and mobility, and this non-uniformity is converted into OLED display devices.
  • Oxide thin film transistors have better homogeneity in process, but similar to amorphous silicon thin film transistors, their threshold voltages drift during long-time pressurization and high temperature. Due to different display screens, thresholds of thin-film transistors in various parts of the panel The difference in the amount of drift causes a difference in display brightness. Since this difference is related to the previously displayed image, it is often caused by image sticking.
  • the power supply voltage in the array substrate near the ARVDD power supply position area a power source that is farther away from the power supply location
  • the voltage is high, and this phenomenon is called the power supply voltage drop.
  • the voltage of ARVDD is related to the current, the voltage drop of the power supply also causes a difference in current between different regions, which causes color unevenness during display.
  • the low-temperature polysilicon process using P-type TFTs to build pixel cells is particularly sensitive to this problem because its storage capacitor is connected between ARVDD and the gate of the driving transistor TFT.
  • the voltage of ARVDD changes, which directly affects the gate-source voltage of the driving transistor TFT. Vgs.
  • the OLED device may cause non-uniformity in electrical performance due to uneven film thickness during vapor deposition.
  • a storage capacitor is connected between a gate of the driving transistor TFT and an anode of the OLED, and when a data voltage is transmitted to the gate, if each pixel
  • the gate-source voltage Vgs actually loaded on the driving transistor TFT is different, and thus the driving current is different to cause a difference in display luminance.
  • AMOLEDs can be divided into three categories according to the type of drive: digital, current and voltage.
  • the digital driving method realizes the gray scale by controlling the driving time by using the TFT as a switch, and does not need to compensate for the non-uniformity, but the operating frequency thereof increases exponentially with the increase of the display size, resulting in a power consumption of 4 ,, and The physical limits of the design are reached within a certain range and are therefore not suitable for large size display applications.
  • the current driving method realizes the gray scale by directly supplying a current of a different magnitude to the driving transistor TFT, which can better compensate the non-uniformity of the driving transistor TFT and the power supply voltage drop, but in writing length, the problem is in a large size.
  • the display is particularly severe and difficult to overcome.
  • the voltage driving method is similar to the conventional active matrix liquid crystal display (AMLCD) driving method.
  • the driving IC provides a voltage signal representing a gray scale, and the voltage signal is converted into a driving transistor inside the pixel circuit.
  • the current signal of the TFT drives the OLED to achieve the gray scale of the brightness.
  • This method has the advantages of fast driving speed and single barrel, and is suitable for driving large-sized panels. It is widely used in the industry, but it is necessary to design additional TFT and capacitor parts to compensate the driving. Transistor TFT non-uniformity, power supply voltage drop and OLED non-uniformity.
  • the pixel unit circuit shown in FIG. 1 is a typical voltage-driven type. Pixel circuit structure (2T1C).
  • the thin film transistor T2 acts as a switching transistor, and transmits the voltage on the data line to the gate of the thin film transistor T1 as a driving transistor.
  • the driving transistor converts the data voltage into a corresponding current to the OLED device.
  • the thin film transistor T1 It should be in the saturation region to provide a constant current during the scan time of one line. Its current can be expressed as: ⁇ OLED - ⁇ 2 ⁇ n ⁇ OX ⁇ ⁇ ⁇ data -, OLED - hn )
  • V Data is the data line signal voltage
  • is the operating voltage of the OLED device
  • ⁇ ⁇ is the threshold voltage of the driving transistor TFT
  • is positive for the enhancement TFT
  • ⁇ ⁇ is negative for the depletion TFT.
  • FIG. 2a is an internal compensation type enhanced type of the prior art.
  • TFT pixel unit circuit FIG. 2b is a prior art internal compensation type depletion TFT pixel unit circuit. As shown in FIG. 2a and FIG.
  • the prior art internal compensation type pixel unit circuit includes a driving transistor, and the driving transistor is The thin film transistor has a gate connected to the source of the driving transistor, a drain of the driving transistor connected to the anode of the OLED, and a cathode of the OLED connected to the second power supply voltage ELVSS, but the structure is only applicable to the enhanced TFT, and the depletion type is The TFT can still be turned on when the gate voltage of the TFT is 0. Therefore, the voltage stored in the TFT does not contain the voltage information of Vthn, so that the ⁇ ⁇ non-uniformity cannot be compensated.
  • the prior art externally compensated pixel unit circuit includes: an active matrix organic light emitting diode (AMOLED), a display row selector, a sensor row selector, and a column read.
  • AMOLED active matrix organic light emitting diode
  • a column readout a video processing LSI, an analog-to-digital converter (ADC), an ASIC processor, wherein the dedicated integrated processor AP displays data (Display DATA) is provided to the video processing LSI, the AMOLED includes an array of pixel unit circuits, and the current or voltage of each pixel unit circuit is output through the column reader, as shown in FIG. Triangular frame between the output and the analog to digital converter
  • the J3 ⁇ 4L large compensation circuit assumes that the data voltage is used as the reference voltage.
  • the voltage flowing out of the column reader is less than the reference voltage, the voltage of the pixel unit circuit here needs to be compensated, and the amplification compensation circuit pair is from the column.
  • the voltage of the reader is compensated to compensate for the voltage or current of the drive transistor and/or OLED device of the corresponding pixel cell circuit.
  • internal compensation has its own advantages and disadvantages. Limited by the limited space and circuit structure, usually the internal compensation can only compensate the threshold voltage non-uniformity and drift of the driving transistor TFT, and the external compensation can implement a more complicated algorithm by means of an external integrated circuit chip. It compensates for non-uniformities such as TFT threshold voltage and mobility non-uniformity of the driving transistor and aging of the OLED.
  • the compensation range of external compensation is limited, and the compensation voltage cannot exceed the maximum range of the data line (DATA) voltage, and the internal driving voltage obtained by the internal compensation circuit can exceed the maximum range of the external DATA voltage. If you can combine internal and external compensation, you can be compatible with the advantages of both. Summary of the invention
  • the present disclosure provides a pixel unit circuit and a compensation method thereof, and a display device for solving the problem that the pixel unit circuit of the prior art cannot combine internal compensation and external compensation, and solves the problem that the light emitting device and the corresponding pixel unit circuit are compensated.
  • the occurrence of the threshold voltage non-uniformity of the driving transistor occurs, and the circuit characteristic extraction function of the driving transistor and the light emitting device is performed to facilitate external compensation, and finally the purpose of eliminating the color unevenness of the display device is achieved.
  • An embodiment of the present disclosure provides a pixel unit circuit, including: a driving transistor, a first transistor, a second transistor, a third transistor, a fourth transistor, a storage capacitor, and a light emitting device, wherein a drain connection of the driving transistor a source of the fourth transistor, a source connected to the drain of the third transistor, a gate connected to the first end of the storage capacitor and a source of the first transistor; a drain connection of the first transistor a source of the fourth transistor, a source connected to a gate of the driving transistor, and a gate connected to a scan control signal line;
  • the drain of the second transistor is connected to the data line, the source is connected to the source of the driving transistor and the drain of the third transistor, and the gate is connected to the scan control signal line;
  • the drain of the third transistor is connected to the source of the driving transistor, the source is connected to the anode of the light emitting device, and the gate is connected to the light emitting control signal line;
  • the drain of the fourth transistor is connected to the first power supply voltage, the source is connected to the drain of the driving transistor and the drain of the first transistor, and the gate is connected to the precharge control signal line;
  • the first end of the storage capacitor is connected to the gate of the driving transistor, and the second end is connected to the first power voltage;
  • the cathode of the light emitting device is connected to a second power supply voltage.
  • the light emitting device is an organic light emitting diode device.
  • an embodiment of the present disclosure further provides a compensation method of the pixel unit circuit, where the method includes:
  • the compensation mode is selected, and the compensation manner includes: an internal compensation mode and an external compensation mode;
  • the light emitting device is compensated by an internal compensation method
  • the illuminating device is compensated by an external compensation method if the illuminating device is in a working phase of full-screen reset or the illuminating device is in an inter-frame, inter-line display idle phase.
  • the step of compensating the light emitting device by using an internal compensation manner specifically includes:
  • the step of precharging the driving transistor specifically includes:
  • the step of performing voltage or current compensation on the driving transistor specifically includes:
  • a gate voltage of the driving transistor is V Data + V thn , wherein V Data is the data line voltage, and ⁇ ⁇ is a threshold voltage of the driving transistor.
  • the pair of the The step of the optical device performing voltage or current compensation to keep the light emitting device from emitting light comprises: setting the light emitting control signal to a high level, turning on the third transistor; setting the precharge control signal to a high level, and turning on the a fourth transistor; setting a scan control signal to a low level, turning off the first transistor and the second transistor; and causing a current IoLED input to the light emitting device through the driving transistor to be:
  • W_ where, is the carrier mobility, is the gate oxide capacitance of the storage capacitor, I is the width to length ratio of the driving transistor, v Data is the data line voltage, and v OLED is the anode of the light emitting device Voltage.
  • the step of compensating the light emitting device by using an external compensation method specifically includes:
  • the step of performing current extraction on the driving transistor specifically includes:
  • the step of performing current extraction on the light emitting device specifically includes:
  • the light emitting device is an organic light emitting diode device.
  • An embodiment of the present disclosure further provides a display device, where the display device includes an embodiment of the present disclosure.
  • the pixel unit circuit is
  • the pixel unit circuit, the compensation method thereof, and the display device provided by the embodiments of the present disclosure can achieve the following beneficial effects:
  • a pixel unit circuit and a compensation method thereof can compensate for an OLED device by combining internal compensation and external compensation, and have the advantages of internal compensation and external compensation, and effectively eliminate N-type consumption by internal compensation.
  • the threshold voltage non-uniformity of the TFT or the TFT driving transistor or the color unevenness caused by the drift improves the display effect, and has the function of driving the TFT and the OLED characteristic extraction function, and can be effectively applied to the external compensation driving.
  • a pixel unit circuit and a compensation method thereof according to embodiments of the present disclosure can compensate for current difference in different regions caused by power supply voltage drop, thereby improving display performance.
  • the display device provided by the embodiment of the present disclosure can further eliminate the color unevenness and improve the display effect of the display device by using the pixel unit circuit according to the embodiment of the present disclosure.
  • FIG. 4 is a circuit diagram of a pixel unit circuit of an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for compensating a pixel unit circuit according to an embodiment of the present disclosure
  • FIG. 6 is a flow chart of a compensation method of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure
  • FIG. 7 is an equivalent circuit diagram of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure
  • FIG. 8 is a timing diagram of a control signal of a compensation method of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure
  • FIG. 9 is a flow chart of a compensation method of a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure.
  • FIG. 10 is an equivalent circuit diagram of a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure
  • FIG. 11 is a timing chart of control signals of a compensation method of a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure. detailed description
  • the pixel unit circuit of the embodiment of the present disclosure is mainly used for driving compensation of the light emitting device OLED, each of the light emitting devices is driven and compensated by one pixel unit circuit, and each pixel unit circuit is composed of 5 thin film transistors and 1 capacitor connected to the light emitting device. .
  • This structure can be used for both internal and external compensation.
  • the display process of internal compensation is divided into three processes, namely pre-shooting, compensation and display.
  • the external compensation is divided into two processes, namely, current extraction of the driving transistor TFT and current extraction of the light-emitting device.
  • it can effectively compensate the threshold voltage drift and non-uniformity of the enhanced or depletion-type driving transistor TFT, as well as the non-uniformity and aging of the light-emitting device voltage.
  • the light emitting device at the output end thereof may be an AMOLED
  • the pixel unit compensation circuit can effectively compensate the non-uniformity of the threshold voltage of the N-type depletion type or the enhancement type driving transistor TFT by internal compensation.
  • the display effect is improved; and the TFT characteristics of the driving transistor and the characteristic extraction function of the light emitting device can be effectively applied to the external compensation driving, wherein the light emitting device refers to an OLED device, and the light emitting device characteristic refers to a voltage and current characteristic of the OLED device.
  • a pixel unit circuit according to an embodiment of the present disclosure includes: a driving transistor T1, a first transistor ⁇ 2, a second transistor ⁇ 3, and a third [tau] 4 transistor, the fourth transistor ⁇ 5, the storage capacitor C ST and a light emitting device, the light emitting device is an organic light emitting diode device OLED.
  • the driving transistor T1 is configured to drive the light emitting device, the drain of the driving transistor T1 is connected to the source of the fourth transistor T5, the source is connected to the drain of the third transistor T4, and the gate is connected to the storage capacitor a first end of C ST and a source of the first transistor T2.
  • the first transistor T2 is a control switch for scanning a control signal, the drain of the first transistor T2 is connected to the source of the fourth transistor T5, the source is connected to the gate of the driving transistor T1, and the gate is connected to the scan control signal. Line SCAN.
  • the second transistor T3 is another control switch for scanning the control signal, the drain of the second transistor T3 is connected to the data line DATA, the source is connected to the source of the driving transistor T1 and the drain of the third transistor T4, the gate
  • the scan control signal line SCAN is connected.
  • the third transistor T4 is a control switch of the light emission control signal, the drain of the third transistor T4 is connected to the source of the driving transistor T1, the source is connected to the anode of the light emitting device OLED, and the gate is connected The light emission control signal line EM is connected.
  • the fourth transistor T5 is a control switch for precharging the control signal, the drain of the fourth transistor T5 is connected to the first power supply voltage ELVDD, and the source is connected to the drain of the driving transistor T1 and the drain of the first transistor T2. The pole is connected to the precharge control signal line PR.
  • the first end of the storage capacitor C ST is connected to the gate of the driving transistor T1, and the second end is connected to the first power voltage ELVDD.
  • the cathode of the light emitting device OLED is connected to a second power supply voltage ELVSS.
  • the second power supply voltage ELVSS is the voltage supplied to the cathode of the light-emitting device, and is generally in the range of -5V to 0V, which is obtained by actual debugging.
  • FIG. 5 is a flowchart of a method for compensating a pixel unit circuit according to an embodiment of the present disclosure. As shown in FIG. 5, the method includes:
  • Step S100 selecting a compensation mode according to a working phase of the light emitting device, where the compensation manner includes: an internal compensation mode and an external compensation mode;
  • Step S200 if the light emitting device is in a working stage of normal light emission, the light emitting device is compensated by an internal compensation method;
  • Step S300 if the light emitting device is in a working stage of full-screen reset or the light-emitting device is in an operation stage of inter-frame and inter-line display idle, the light-emitting device is compensated by an external compensation method; wherein the light-emitting device It is an organic light emitting diode device OLED.
  • FIG. 6 is a flowchart of a method for compensating a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure. As shown in FIG. 6, in step S200, the light-emitting device is compensated by an internal compensation method. The specific steps include:
  • Step S210 precharging the drain of the driving transistor
  • Step S220 performing voltage or current compensation on a gate of the driving transistor
  • Step S230 performing voltage or current compensation on the light emitting device to keep the light emitting device from emitting light.
  • the step of precharging the drain of the driving transistor according to the method for compensating the pixel unit circuit according to the embodiment of the present invention specifically includes:
  • FIG. 7 is an equivalent circuit diagram of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure. As shown in FIG.
  • a driving transistor T1 in a precharge phase: a driving transistor T1, a first transistor ⁇ 2, and a second transistor ⁇ 3
  • the transistor ⁇ 5 is turned on, the transistor ⁇ 4 is turned off; the voltage of the data line is the data line signal voltage V Data of the current frame, and the charge stored in the capacitor C ST is released, so that the source of the driving transistor T1 is precharged to a high level, that is, data.
  • Line voltage V Data Line voltage
  • the step of performing voltage or current compensation on the gate of the driving transistor according to the method for compensating the pixel unit circuit of the embodiment of the present disclosure specifically includes:
  • V Data is the data line voltage
  • Vthn is a threshold voltage of the driving transistor.
  • FIG. 7 is an equivalent circuit diagram of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure.
  • a driving transistor T1 in the compensation phase: a driving transistor T1, a first transistor ⁇ 2, and a second transistor ⁇ 3 lead
  • the third transistor ⁇ 4 and the fourth transistor ⁇ 5 are turned off, and the gate of the driving transistor T1 is discharged until the voltage of the gate of the driving transistor T1 is equal to V Data + Vth n .
  • the pre-charge transistor is compensated and stored in the memory.
  • V ELVDD is the voltage of the first supply voltage ELVDD
  • C ST is the gate oxide capacitance of storage capacitor C ST
  • V thn is the drive
  • V Data is the data line signal voltage.
  • the step of performing voltage or current compensation on the light emitting device to keep the light emitting device from emitting light specifically includes:
  • W where is the carrier mobility, the gate oxide capacitance of the storage capacitor, ⁇ is the width to length ratio of the driving transistor, v Data is the data line voltage, and v OLED is the light emitting device Anode voltage.
  • FIG. 7 is an equivalent circuit of a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure
  • the light emitting device is an OLED device.
  • the driving transistor T1, the third transistor ⁇ 4, and the fourth transistor ⁇ 5 are turned on, the first transistor ⁇ 2 and the second transistor ⁇ 3.
  • the storage capacitor C ST is connected between the gate of the driving transistor T1 and the first power voltage ELVDD, and keeps the gate voltage of the driving transistor T1 as V Data + Vth n , where ⁇ ⁇ is the threshold voltage of the thin film transistor T1.
  • V Data is the data line signal voltage; at this time, the data line is disconnected from the pixel unit circuit, and as the current of the OLED device tends to be stable, the source voltage of the driving transistor T1 becomes V OLED , and the gate voltage of the driving transistor T1 is maintained.
  • V Data + Vth n at this time flowing through the thin film transistor
  • the current I QU 3 ⁇ 4D of 1 is:
  • W_ where, is the carrier mobility, the gate oxide capacitance of the storage capacitor c ST , the width to length ratio of the driving transistor T1
  • V Data is the data line signal voltage
  • is the anode voltage of the OLED device, ie, the OLED
  • the operating voltage of the device ⁇ ⁇ is the threshold voltage of the driving transistor T1
  • V thl ⁇ is a positive value
  • is a negative value.
  • the current flowing through the driving transistor is independent of its threshold voltage ⁇ ⁇ ⁇ and is independent of the voltage across the light-emitting device, thereby substantially eliminating the effects of threshold voltage non-uniformity and drift of the driving transistor.
  • the effect of the non-uniformity of the threshold voltage of the driving transistor can be compensated for both the enhancement type and the depletion type thin film transistor, and thus the applicability is wider.
  • FIG. 8 is a timing diagram of control signals of a method for compensating a pixel unit circuit in an internal compensation mode according to an embodiment of the present disclosure. As shown in FIG. 8, the internal illumination compensation, the illumination control signal EM, the precharge control signal PR, and the scan control The control sequence of the signal SCAN is:
  • the illumination control signal EM is at a low level, and the pre-charge control signal PR and the scan control signal SCAN are at a high level;
  • the illumination control signal EM and the precharge control signal PR are at a level, and the scan control signal SCAN is at a high level;
  • the light emission control signal EM and the precharge control signal PR are at a high level, and the scan control signal SCAN is at a low level.
  • the compensation method of the pixel unit circuit of the embodiment of the present disclosure further includes an external compensation method.
  • the light-emitting device is compensated.
  • the external compensation mainly occurs in the working phase of full-screen reset (PANEL RESET), or the idle display phase between frames and lines.
  • PANEL RESET full-screen reset
  • a full-screen reset can be performed at the instant of power-on, and the external compensation process can be performed.
  • FIG. 9 is a flowchart of a method for compensating a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure. As shown in FIG. 9, the step of compensating the light emitting device by using an external compensation method is performed in step S300. Specifically include:
  • Step S310 performing current extraction on the driving transistor
  • Step S320 performing current extraction on the light emitting device.
  • Step S330 detecting a current drawn by the driving transistor or the light emitting device, and performing voltage or current compensation on the light emitting diode according to the detected current value.
  • the step of performing current extraction on the driving transistor according to the method for compensating the pixel unit circuit according to the embodiment of the present disclosure specifically includes:
  • FIG. 10 is an equivalent circuit diagram of a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure.
  • the light emitting device is an OLED device
  • the driving transistor T1 the first transistor ⁇ 2, and the second
  • the transistor ⁇ 3 and the fourth transistor ⁇ 5 are turned on, and the third transistor ⁇ 4 is turned off; at this time, the OLED device is disconnected from the driving transistor T1, and the voltage between the gate and the source of the driving transistor T1 is biased to VELVDD-VREF, which is driven.
  • the driving current of the transistor T1 flows through the second transistor T3 to the data line, so that the external sensing chip connected to the data line can sense this current value and perform further processing.
  • the step of performing current extraction on the light emitting device according to the method for compensating the pixel unit circuit according to the embodiment of the present disclosure specifically includes:
  • FIG. 10 is an equivalent circuit diagram of a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure.
  • the light emitting device is an OLED device
  • the first transistor T2 and the second transistor ⁇ 3 are The third transistor ⁇ 4 is turned on, the driving transistor T1 and the fourth transistor ⁇ 5 are turned off, and the anode-to-cathode voltage difference of the OLED device is VRE F -V EIjVSS , and the current flowing through the OLED device is input to the data line through the second transistor T3.
  • the external sensor chip connected to the data line can sense this current value and further processing.
  • FIG. 11 is a timing chart of control signals of a method for compensating a pixel unit circuit in an external compensation mode according to an embodiment of the present disclosure. As shown in FIG. 11, the control of the illumination control signal EM, the precharge control signal PR, and the scan control signal SCAN is shown in FIG. The order is:
  • the current of the driving transistor T1 is extracted corresponding to the step S310, the light-emitting control signal EM is at a low level, and the pre-charge control signal PR and the scan control signal SCAN are at a high level;
  • the current of the OLED device is extracted corresponding to the step S320, the light emission control signal EM and the scan control signal SACN are at a high level, and the precharge control signal PR is at a low level.
  • the pixel unit circuit can be compatible with both internal compensation and external compensation modes, so the compensation effect can be both.
  • the embodiment of the present disclosure further provides a display device, which includes a pixel unit circuit according to an embodiment of the present disclosure, and compensates the pixel unit circuit by using a compensation method according to an embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素单元电路及其补偿方法和显示装置。该像素单元电路包括:驱动晶体管(T1)、第一晶体管(T2)、第二晶体管(T3)、第三晶体管(T4)、第四晶体管(T5)、存储电容(CST)和发光器件(OLED)。该像素单元电路及其补偿方法和显示装置可以综合内部补偿和外部补偿对发光器件(OLED)进行补偿,同时具有内部补偿与外部补偿的优点,通过内部补偿有效地消除N型耗尽型或增强型TFT驱动管的阈值电压非均匀性或者漂移造成的色不均,提升显示效果,并且具有驱动TFT特性和发光器件特性抽取功能,有效地适用于外部补偿驱动。

Description

像素单元电路及其补偿方法和显示装置
技术领域
本公开涉及显示技术领域, 尤其涉及一种像素单元电路及其补偿方法、 以及显示装置。 背景技术
有机发光显示二极管 (OLED, Organic Light-Emitting Diode )作为一种 电流型发光器件已越来越多地被应用于高性能显示装置中。 传统的无源矩阵 有机发光显示管 (Passive Matrix OLED ) 随着显示尺寸的增大, 需要更短的 单个像素的驱动时间, 因而需要增大瞬态电流, 增加功耗。 同时大电流的应 用会造成纳米铟锡金属氧化物线上压降过大,并使 OLED器件工作电压过高, 进而降低其效率。 而有源矩阵有机发光显示管 (AMOLED , Active Matrix OLED )通过开关管逐行扫描输入 OLED电流, 可以 4艮好地解决这些问题。
在 AMOLED 的阵列基板设计中, 主要需要解决的问题是像素单元电路 之间的亮度非均匀性。
首先, AMOLED采用薄膜晶体管(TFT, Thin-Film Transistor )构建像素 单元电路为 OLED器件提供相应的电流。 现有技术中, 大多采用低温多晶硅 薄膜晶体管或氧化物薄膜晶体管。 与一般的非晶硅薄膜晶体管相比, 低温多 晶硅薄膜晶体管和氧化物薄膜晶体管具有更高的迁移率和更稳定的特性, 更 适合应用于 AMOLED显示中。 但是由于晶化工艺的局限性, 在大面积玻璃 基板上制作的低温多晶硅薄膜晶体管, 常常在诸如阈值电压、 迁移率等电学 参数上具有非均匀性, 这种非均匀性会转化为 OLED显示器件的电流差异和 亮度差异, 并被人眼所感知, 即色不均现象。 氧化物薄膜晶体管虽然工艺的 均勾性较好, 但是与非晶硅薄膜晶体管类似, 在长时间加压和高温下, 其阈 值电压会出现漂移, 由于显示画面不同, 面板各部分薄膜晶体管的阈值漂移 量不同, 会造成显示亮度差异, 由于这种差异与之前显示的图像有关, 因此 常呈现为残影现象。
第二, 在大尺寸显示应用中, 由于阵列基板上的电源线存在一定电阻, 且所有像素的驱动电流都由电源电压(ARVDD )提供, 因此在阵列基板中靠 近 ARVDD电源供电位置区域的电源电压相比较离供电位置较远区域的电源 电压要高, 这种现象被称为电源压降。 由于 ARVDD的电压与电流相关, 电 源压降也会造成不同区域的电流差异, 进而在显示时产生色不均现象。 采用 P型 TFT构建像素单元的低温多晶硅工艺对这一问题尤其敏感, 因为其存储 电容连接在 ARVDD与驱动晶体管 TFT的栅极之间, ARVDD的电压改变, 会直接影响驱动晶体管 TFT的栅源电压 Vgs。
第三, OLED器件在蒸镀时由于膜厚不均也会造成电学性能的非均匀性。 对于采用 N型 TFT构建像素单元的非晶硅或氧化物薄膜晶体管工艺, 其存 储电容连接在驱动晶体管 TFT的栅极与 OLED的阳极之间,在数据电压传输 到栅极时, 如果各像素的 OLED的阳极电压不同, 则实际加载在驱动晶体管 TFT上的栅源电压 Vgs不同, 从而驱动电流不同造成显示亮度差异。
AMOLED按照驱动类型可以划分为三大类: 数字式、 电流式和电压式。 其中数字式驱动方法通过将 TFT作为开关控制驱动时间的方式实现灰阶, 无 需补偿非均勾性, 但是其工作频率随显示尺寸增大而成倍上升, 导致 4艮大的 功耗, 并在一定范围内达到设计的物理极限, 因此不适合大尺寸显示应用。 电流式驱动方法通过直接提供大小不同的电流给驱动晶体管 TFT的方式实现 灰阶, 它可以较好地补偿驱动晶体管 TFT的非均匀性及电源压降, 但是在写 长, 这一问题在大尺寸显示中尤其严重并且难以克服。 电压式驱动方法与传 统的有源矩阵液晶显示器( AMLCD, Active Matrix Liquid Crystal Display )驱 动方法类似, 由驱动 IC提供一个表示灰阶的电压信号, 该电压信号会在像素 电路内部被转化为驱动晶体管 TFT的电流信号,从而驱动 OLED实现亮度灰 阶, 这种方法具有驱动速度快, 实现筒单的优点, 适合驱动大尺寸面板, 被 业界广泛采用, 但是需要设计额外的 TFT和电容器件来补偿驱动晶体管 TFT 的非均匀性、 电源压降和 OLED非均匀性。
图 1为现有技术中的像素单元电路, 如图 1所示, 像素单元电路包括 2 个薄膜晶体管 T2和 Tl、 以及 1个电容 C, 图 1所示的像素单元电路是典型 的电压驱动型像素电路结构 (2T1C )。 其中薄膜晶体管 T2作为开关晶体管, 将数据线上的电压传输到作为驱动晶体管的薄膜晶体管 T1的栅极,驱动晶体 管将这个数据电压转化为相应的电流供给 OLED器件, 在正常工作时, 薄膜 晶体管 T1应处于饱和区,在一行的扫描时间内提供恒定电流。其电流可表示 为: ^OLED - ~2 ^n · OX · · ^ data -、 OLED - hn )
w_
其中 为载流子迁移率, 为栅氧化层电容, 7为晶体管宽长比,
VData为数据线信号电压, ^^为 OLED器件的工作电压, νώη为驱动晶体 管 TFT的阈值电压, 对于增强型 TFT, ^为正值, 对于耗尽型 TFT, νώη 为负值。 由上式可知, 如果不同像素单元之间的 νώη不同, 则电流存在差异。 如果像素单元中驱动晶体管 TFT的 νώη随时间发生漂移, 则可能造成先后电 流不同, 导致残影。 由于 OLED器件非均匀性引起 OLED工作电压不同, 也 会导致电流差异。
面向补偿 Vthn非均匀性、 Vthn漂移和 OLED非均匀性的像素结构有很多 种, 通常可分为内部补偿和外部补偿两类。 内部补偿是通过在像素内部通过 TFT和电容存储像素驱动晶体管 TFT 的阈值电压信息并反馈到驱动晶体管 TFT的 Vgs偏压而实现的一种补偿方式,图 2a为现有技术的内部补偿式增强 型 TFT像素单元电路, 图 2b为现有技术的内部补偿式耗尽型 TFT像素单元 电路, 如图 2a和图 2b所示, 现有技术的内部补偿式像素单元电路包括一个 驱动晶体管, 驱动晶体管是薄膜晶体管, 驱动晶体管的栅极与源极连接, 驱 动晶体管的漏极连接 OLED的阳极, OLED的阴极连接第二电源电压 ELVSS, 但是这种结构只适用于增强型的 TFT, 而对于耗尽型 TFT, 当 TFT的栅极电 压为 0时仍然可以导通, 因此 TFT存储的电压中不会含有 Vthn的电压信息, 从而无法补偿 νώη非均匀性。
另一类补偿方式为外部补偿,即通过像素内部的 TFT将驱动晶体管的 I-V 特性以及 OLED器件的 I-V特性读取到外部感应电路, 计算需要补偿的驱动 的外部补偿式像素单元电路, 如图 3所示, 现有技术的外部补偿式像素单元 电路,包括:有源矩阵有机发光二极管(AMOLED )、显示用行选择器(Display row selector )、 传感器用行选择器 ( Sensor row selector ), 列读出器 ( Column readout ), 视频处理大规模集成电路(Image processing LSI ), 模数转换器 ( ADC ), 专用集成处理器(AP, ASIC Processor ), 其中, 所述专用集成处 理器 AP将显示数据(Display DATA )提供给所述视频处理大规模集成电路 LSI, 所述 AMOLED包括像素单元电路的阵列, 把各像素单元电路的电流或 者电压通过列读出器输出, 如图 3所示, 列读出器和模数转换器间的三角框 代^ J¾L大补偿电路, 假设以数据电压作为参考电压, 当流出列读出器的电压 小于参考电压时, 说明此处的像素单元电路的电压需要补偿, 通过所述放大 补偿电路对来自于列读出器的电压进行补偿, 从而补偿了对应像素单元电路 的驱动晶体管和 /或 OLED器件的电压或者电流。
内部补偿和外部补偿相比, 各有优劣。 受限于有限的空间和电路结构, 通常内部补偿只能对驱动晶体管 TFT的阈值电压非均勾性和漂移进行补偿, 而外部补偿由于可借助外部的集成电路芯片实施较复杂的算法, 因此可以补 偿驱动晶体管的 TFT阈值电压和迁移率的非均匀性以及 OLED 老化等非理 想因素。但是外部补偿的补偿范围有限,其补偿电压不能超过数据线(DATA ) 电压的最大范围, 而经过内部补偿电路得到的内部驱动电压可以超过外部 DATA 电压的最大范围。 如果能将内部补偿和外部补偿结合起来, 则可兼容 二者的优点。 发明内容
本公开提供一种像素单元电路及其补偿方法、 以及显示装置, 用于解决 现有技术的像素单元电路无法将内部补偿和外部补偿结合起来的问题, 解决 发光器件和相应像素单元电路在补偿时发生的驱动晶体管阈值电压非均匀性 问题, 并且具有驱动晶体管和发光器件的电路特性抽取功能, 以便于外部补 偿, 最终达到消除显示装置的色不均现象的目的。
本公开实施例提供了一种像素单元电路, 包括: 驱动晶体管、 第一晶体 管、 第二晶体管、 第三晶体管、 第四晶体管、 存储电容和发光器件, 其中, 所述驱动晶体管的漏极连接所述第四晶体管的源极, 源极连接所述第三 晶体管的漏极, 栅极连接所述存储电容的第一端和所述第一晶体管的源极; 所述第一晶体管的漏极连接所述第四晶体管的源极, 源极连接所述驱动 晶体管的栅极, 栅极连接扫描控制信号线;
所述第二晶体管的漏极连接数据线, 源极连接所述驱动晶体管的源极和 第三晶体管的漏极, 栅极连接所述扫描控制信号线;
所述第三晶体管的漏极连接驱动晶体管的源极, 源极连接所述发光器件 的阳极, 栅极连接发光控制信号线;
所述第四晶体管的漏极连接第一电源电压, 源极连接所述驱动晶体管的 漏极和第一晶体管的漏极, 栅极连接预充控制信号线; 所述存储电容的第一端连接所述驱动晶体管的栅极, 第二端连接所述第 一电源电压;
所述发光器件的阴极连接第二电源电压。
进一步, 在本公开实施例所述的像素单元电路中, 所述发光器件为有机 发光二极管器件。
进一步, 本公开实施例还提供了所述像素单元电路的补偿方法, 所述方 法包括:
根据发光器件的工作阶段, 选择补偿方式, 所述补偿方式包括: 内部补 偿方式、 外部补偿方式;
如果所述发光器件处于正常发光的工作阶段, 采用内部补偿方式对所述 发光器件进行补偿;
如果所述发光器件处于全屏复位的工作阶段或者所述发光器件处于帧 间、 行间的显示空闲的工作阶段, 采用外部补偿方式对所述发光器件进行补 偿。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述采用内部 补偿方式对所述发光器件进行补偿的步骤具体包括:
对所述驱动晶体管进行预充;
对所述驱动晶体管进行电压或者电流补偿;
对所述发光器件进行电压或者电流补偿, 使所述发光器件保持发光。 进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述对所述驱 动晶体管进行预充的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的源极电压为数据线电压 VData
进一步, 本在本公开实施例的像素单元电路的补偿方法中, 所述对所述 驱动晶体管进行电压或者电流补偿的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的栅极电压为 VData+Vthn , 其中 VData为所述数据线电压, νώη为所述驱动晶体管的阈值电压。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述对所述发 光器件进行电压或者电流补偿, 使所述发光器件保持发光的步骤具体包括: 设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为低电平, 截止所述第 一晶体管和第二晶体管; 使经过所述驱动晶体管输入至所述发光器件的电流 IoLED为:
_ 1 -, w , , 2
^ OLED二; ' ^ - OX >丁 ' DATA. ― ^ OLED ]
w_ 其中, 为载流子迁移率, 为所述存储电容的栅氧化层电容, I为 所述驱动晶体管的宽长比, vData为所述数据线电压, vOLED为所述发光器件 的阳极电压。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述采用外部 补偿方式对所述发光器件进行补偿的步骤具体包括:
对所述驱动晶体管进行电流抽取;
对所述发光器件进行电流抽取;
检测所述驱动晶体管或者所述发光器件抽取的电流, 根据检测到的电流 值对所述发光器件进行电压或者电流补偿。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述对所述驱 动晶体管进行电流抽取的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的电流输入至所述数据线, 同时 屏蔽所述发光器件流入数据线的电流。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述对所述发 光器件进行电流抽取的步骤具体包括:
设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 二晶体管; 使所述发光器件的电流输入至所述数据线, 同时屏蔽所述驱动晶 体管流入所述数据线的电流。
进一步, 在本公开实施例的像素单元电路的补偿方法中, 所述发光器件 为有机发光二极管器件。
本公开实施例还提供了一种显示装置, 所述显示装置包括本公开实施例 所述的像素单元电路。
采用本公开实施例提供的像素单元电路及其补偿方法、 以及显示装置, 可以实现以下有益效果:
一、 本公开实施例提供的一种像素单元电路及其补偿方法, 可以综合内 部补偿和外部补偿对 OLED器件进行补偿, 同时具有内部补偿与外部补偿的 优点,通过内部补偿有效地消除 N型耗尽型或增强型 TFT驱动晶体管的阈值 电压非均匀性或者漂移造成的色不均现象,提升显示效果,并且具有驱动 TFT 特性和 OLED特性抽取功能, 可有效地适用于外部补偿驱动。
二、 本公开实施例提供的一种像素单元电路及其补偿方法, 可以对电源 压降造成不同区域的电流差异进行补偿, 提升显示效果。
三、 本公开实施例提供的一种显示装置, 由于采用了本公开实施例所述 的像素单元电路, 可以进一步消除色不均现象, 提升显示装置的显示效果。 附图说明
图 1为现有技术中的像素单元电路;
图 2为现有技术的内部补偿式像素单元电路;
图 3为现有技术的外部补偿式像素单元电路;
图 4是本公开实施例的像素单元电路的电路图;
图 5为本公开实施例的像素单元电路的补偿方法的流程图;
图 6为本公开实施例的内部补偿模式下像素单元电路的补偿方法流程 图;
图 7中为本公开实施例的内部补偿模式下像素单元电路的等效电路图; 图 8为本公开实施例的内部补偿模式下的像素单元电路的补偿方法的控 制信号时序图;
图 9为本公开实施例的外部补偿模式下的像素单元电路的补偿方法流程 图;
图 10中为本公开实施例的外部补偿模式下的像素单元电路的等效电路 图;
图 11 为本公开实施例的外部补偿模式下的像素单元电路的补偿方法的 控制信号时序图。 具体实施方式
为了更好地理解本公开, 下面结合附图与具体实施方式对本公开作进一 步描述。
本公开实施例的像素单元电路主要用于发光器件 OLED的驱动补偿, 每 个发光器件由一个像素单元电路驱动补偿, 每一个像素单元电路由 5个薄膜 晶体管和 1个电容连接所述发光器件构成。 该结构可同时用于内部和外部补 偿。 内部补偿的显示过程分为 3个过程, 分别为预沖、 补偿和显示。 外部补 偿分为 2个过程,分别为驱动晶体管 TFT的电流抽取和发光器件的电流抽取。 相比较传统的像素结构, 它可以有效地补偿增强型或耗尽型驱动晶体管 TFT 的阈值电压漂移和非均勾性、 以及发光器件电压非均勾性和老化。
本公开实施例的像素单元电路, 其输出端的发光器件可以是 AMOLED , 所述像素单元补偿电路可以通过内部补偿有效地补偿 N型耗尽型或者增强型 驱动晶体管 TFT的阈值电压的非均匀性, 提升显示效果; 并且具有驱动晶体 管 TFT特性、 发光器件特性抽取功能, 可有效地适用于外部补偿驱动, 其中 所述发光器件指 OLED器件, 所述发光器件特性指 OLED器件的电压、 电流 特性。
图 4是本公开实施例的像素单元电路的电路图, 如图 4所示, 本公开实 施例提供的一种像素单元电路, 包括: 驱动晶体管 Tl、 第一晶体管 Τ2、 第 二晶体管 Τ3、 第三晶体管 Τ4、 第四晶体管 Τ5、 存储电容 CST和发光器件, 所述发光器件为有机发光二极管器件 OLED。
驱动晶体管 T1用于驱动所述发光器件, 所述驱动晶体管 T1的漏极连接 所述第四晶体管 T5的源极, 源极连接所述第三晶体管 T4的漏极, 栅极连接 所述存储电容 CST的第一端和所述第一晶体管 T2的源极。
第一晶体管 T2是扫描控制信号的控制开关, 所述第一晶体管 T2的漏极 连接所述第四晶体管 T5的源极, 源极连接所述驱动晶体管 T1的栅极, 栅极 连接扫描控制信号线 SCAN。
第二晶体管 T3是扫描控制信号的另一控制开关, 所述第二晶体管 T3的 漏极连接数据线 DATA, 源极连接所述驱动晶体管 T1 的源极和第三晶体管 T4的漏极, 栅极连接所述扫描控制信号线 SCAN。
第三晶体管 T4是发光控制信号的控制开关, 所述第三晶体管 T4的漏极 连接驱动晶体管 T1的源极, 源极连接所述发光器件 OLED的阳极, 栅极连 接发光控制信号线 EM。
第四晶体管 T5是预充控制信号的控制开关, 所述第四晶体管 T5的漏极 连接第一电源电压 ELVDD, 源极连接所述驱动晶体管 T1的漏极和第一晶体 管 T2的漏极, 栅极连接预充控制信号线 PR。
存储电容 CST的第一端连接所述驱动晶体管 T1的栅极,第二端连接所述 第一电源电压 ELVDD。
所述发光器件 OLED的阴极连接第二电源电压 ELVSS。
第二电源电压 ELVSS是供给发光器件的阴极的电压, 一般在 -5V到 0V 范围, ^据实际调试得到。
进一步,图 5示出了本公开实施例的像素单元电路的补偿方法的流程图, 如图 5所示, 所述方法包括:
步骤 S100, 根据发光器件的工作阶段, 选择补偿方式, 所述补偿方式包 括: 内部补偿方式、 外部补偿方式;
步骤 S200, 如果所述发光器件处于正常发光的工作阶段, 采用内部补偿 方式对所述发光器件进行补偿;
步骤 S300, 如果所述发光器件处于全屏复位的工作阶段或者所述发光器 件处于帧间、 行间的显示空闲的工作阶段, 采用外部补偿方式对所述发光器 件进行补偿; 其中, 所述发光器件为有机发光二极管器件 OLED。
进一步, 图 6示出了本公开实施例的内部补偿模式下像素单元电路的补 偿方法的流程图, 如图 6所示, 所述步骤 S200中, 采用内部补偿方式对所述 发光器件进行补偿的具体步骤包括:
步骤 S210, 对所述驱动晶体管的漏极进行预充;
步骤 S220, 对所述驱动晶体管的栅极进行电压或者电流补偿;
步骤 S230, 对所述发光器件进行电压或者电流补偿, 使所述发光器件保 持发光。
进一步,根据本发明实施例的像素单元电路的补偿方法,在所述步骤 S210 中, 对所述驱动晶体管的漏极进行预充的步骤具体包括:
设置发光控制信号 EM为低电平, 截止所述第三晶体管; 设置预充控制 信号 PR 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导 通所述第一晶体管和第二晶体管; 使所述驱动晶体管的源极电压为数据线电 压 VData。 图 7中为本公开实施例的内部补偿模式下像素单元电路的等效电路图, 如图 7中 (a )所示, 在预充阶段中: 驱动晶体管 Tl、 第一晶体管 Τ2、 第二 晶体管 Τ3和晶体管 Τ5导通, 晶体管 Τ4截止; 数据线的电压为当前帧的数 据线信号电压 VData,存储在电容 CST的电荷得到释放,使驱动晶体管 T1的源 极预充至高电平, 即数据线电压 VData
进一步,根据本公开实施例的像素单元电路的补偿方法,在所述步骤 S220 中, 对所述驱动晶体管的栅极进行电压或者电流补偿的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的栅极电压为 VData+Vthn , 其中
VData为所述数据线电压, Vthn为所述驱动晶体管的阈值电压。
图 7中为本公开实施例的内部补偿模式下像素单元电路的等效电路图, 如图 7中 (b )所示, 在补偿阶段中: 驱动晶体管 Tl、 第一晶体管 Τ2、 第二 晶体管 Τ3导通, 第三晶体管 Τ4和第四晶体管 Τ5截止, 驱动晶体管 T1的栅 极放电, 直至驱动晶体管 T1的栅极的电压等于 VData+Vthn, 此时, 对预充晶 体管进行补偿, 存储在存储电容 CST两端的电荷等于 (V ELVDD - thn- Data)*CsT' 其中, VELVDD 为第一电源电压 ELVDD 的电压, CST为存储电容 CST的栅氧 化层电容值, Vthn为驱动晶体管 T1的阈值电压, VData为数据线信号电压。
进一步,根据本公开实施例的像素单元电路的补偿方法,在所述步骤 S230 中, 对所述发光器件进行电压或者电流补偿, 使所述发光器件保持发光的步 骤具体包括:
设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为低电平, 截止所述第 一晶体管和第二晶体管; 使经过所述驱动晶体管输入至所述发光器件的电流 IOLED为:
1 ―、 W , r 2
I OL' ED _ ~ · " . U DATA - ^ OLED ]
" W 其中, 为载流子迁移率, 为所述存储电容的栅氧化层电容, Ί 为所述驱动晶体管的宽长比, vData为所述数据线电压, vOLED为所述发光器 件的阳极电压。
图 7中为本公开实施例所述的内部补偿模式下像素单元电路的等效电路 图, 如图 7中 (c )所示, 所述发光器件是 OLED器件, 在发光阶段中: 驱动 晶体管 Tl、 第三晶体管 Τ4和第四晶体管 Τ5导通, 第一晶体管 Τ2和第二晶 体管 Τ3截止, 存储电容 CST连接在驱动晶体管 T1 的栅级和第一电源电压 ELVDD之间, 保持驱动晶体管 T1的栅极电压为 VData+Vthn, 其中, νώη为薄 膜晶体管 T1的阈值电压, VData为数据线信号电压; 此时, 数据线与像素单元 电路断开, 随着 OLED器件的电流趋于稳定, 驱动晶体管 T1的源极电压变 为 VOLED,驱动晶体管 T1的栅极电压保持为 VData+Vthn, 此时流过薄膜晶体管
1的电流 IQU¾D为:
1 W ,
/ 二
ι ΟΙΕϋ 2 . Li c、'·(¾■·■— L ■ L¥ DATA + V thn - V ihn - V OLED λ J
_ 1 . W , 2
― ~2 · Ά'οχ ' Ύ~ ' data ~ oled ]
w_ 其中, 为载流子迁移率, 为存储电容 cST的栅氧化层电容值, 为驱动晶体管 T1的宽长比, VData为数据线信号电压, ^^为 OLED器件 的阳极电压, 即 OLED器件的工作电压, νώη为驱动晶体管 T1的阈值电压, 对于增强型 TFT晶体管, Vthl^正值,对于耗尽型 TFT晶体管, ^为负值。
由上式可知, 流经驱动晶体管的电流与其阈值电压 νώη无关, 同时和发 光器件两端的电压也无关, 因此基本消除了驱动晶体管的阈值电压非均匀性 和漂移的影响。 采用本公开实施例所述的像素单元电路, 无论对于增强型还 是耗尽型的薄膜晶体管, 都可以补偿驱动晶体管的阈值电压的非均匀性的影 响, 因此适用性更广。
图 8为本公开实施例的内部补偿模式下的像素单元电路的补偿方法的控 制信号时序图, 如图 8所示, 内部补偿时, 所述发光控制信号 EM、 预充控 制信号 PR和扫描控制信号 SCAN的控制顺序为:
预充阶段, 对应所述步骤 S210, 发光控制信号 EM为低电平, 预充控制 信号 PR和扫描控制信号 SCAN为高电平;
补偿阶段, 对应所述步骤 S220, 发光控制信号 EM和预充控制信号 PR 为氏电平, 扫描控制信号 SCAN为高电平;
发光阶段, 对应所述步骤 S230, 发光控制信号 EM和预充控制信号 PR 为高电平, 扫描控制信号 SCAN为低电平。
此外, 本公开实施例的像素单元电路的补偿方法还包括在外部补偿方式 下对所述发光器件进行补偿,外部补偿主要发生在全屏复位( PANEL RESET ) 的工作阶段, 或者帧间、 行间的显示空闲的工作阶段, 例如, 例如开机瞬间 可以进行全屏复位, 外部补偿过程分为 2个阶段: 驱动晶体管的电流抽取和 发光器件的电流抽取。
进一步, 图 9示出了本公开实施例的外部补偿模式下像素单元电路的补 偿方法流程图, 如图 9所示, 所述步骤 S300中, 采用外部补偿方式对所述发 光器件进行补偿的步骤具体包括:
步骤 S310, 对所述驱动晶体管进行电流抽取;
步骤 S320, 对所述发光器件进行电流抽取;
步骤 S330, 检测所述驱动晶体管或者所述发光器件抽取的电流, 根据检 测到的电流值对所述发光二级管进行电压或者电流补偿。
进一步,根据本公开实施例的像素单元电路的补偿方法,在所述步骤 S310 中, 对所述驱动晶体管进行电流抽取的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的电流输入至所述数据线, 同时 屏蔽所述发光器件流入数据线的电流。 通过连接在所述数据线的感应芯片检 测流经所述驱动晶体管的电流值。
把数据线信号的电压记为参考电压 VREF, VREF<Velvdd,其中 VELVDD为电 源 ELVDD的电压。 图 10中为本公开实施例的外部补偿模式下像素单元电路 的等效电路图, 如图 10中 (a )所示, 所述发光器件是 OLED器件, 驱动晶 体管 Tl、 第一晶体管 Τ2、 第二晶体管 Τ3和第四晶体管 Τ5导通, 第三晶体 管 Τ4截止; 此时, OLED器件与驱动晶体管 T1断开, 驱动晶体管 T1的栅 极到源极之间的电压被偏置为 VELVDD-VREF, 驱动晶体管 T1的驱动电流通过 第二晶体管 T3流到数据线,使得数据线连接的外部感应芯片可以感应这个电 流值并做进一步处理。
进一步,根据本公开实施例的像素单元电路的补偿方法,在所述步骤 S320 中, 所述对所述发光器件进行电流抽取的步骤具体包括:
设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 二晶体管; 使所述发光器件的电流输入至所述数据线, 同时屏蔽所述驱动晶 体管流入所述数据线的电流。 通过连接在所述数据线的感应芯片检测流经所 述发光器件的电流值。
数据线的信号电压记为参考电压 VREF, VREF> VTHN, νώη为驱动晶体管 Tl 的阈值电压。图 10中为本公开实施例的外部补偿模式下像素单元电路的等效 电路图, 如图 10 ( b )所示, 所述发光器件是 OLED器件, 此时第一晶体管 T2、 第二晶体管 Τ3和第三晶体管 Τ4导通, 驱动晶体管 T1和第四晶体管 Τ5 截止, OLED器件的阳极到阴极的电压差为 VREF-VEIjVSS, 此时流过 OLED器 件的电流通过第二晶体管 T3输入至数据线,连接到数据线的外部感应芯片可 以感应这个电流值并做进一步处理。
图 11 为本公开实施例是外部补偿模式下的像素单元电路的补偿方法的 控制信号时序图, 如图 11所示, 所述发光控制信号 EM、 预充控制信号 PR 和扫描控制信号 SCAN的控制顺序为:
第一阶段, 对应所述步骤 S310中对驱动晶体管 T1的电流进行抽取, 发 光控制信号 EM为低电平, 预充控制信号 PR和扫描控制信号 SCAN为高电 平;
第二阶段, 对应所述步骤 S320中对 OLED器件的电流进行抽取, 发光 控制信号 EM和扫描控制信号 SACN为高电平,预充控制信号 PR为低电平。
以上可见, 该像素单元电路可同时兼容内部补偿和外部补偿两种工作模 式, 因此其补偿效果可兼备二者有点。
本公开实施例还提供一种显示装置, 所述显示装置包括本公开实施例所 述的像素单元电路, 采用本公开实施例所述的补偿方法对所述像素单元电路 进行补偿。
以上仅为本公开的优选实施例, 当然, 本公开还可以有其他多种实施例, 在不背离本公开精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 公开故出各种相应的改变和变形, 但这些相应的改变和变形都应属于本公开 所附的权利要求的保护范围。

Claims

权 利 要 求 书
1、 一种像素单元电路, 包括: 驱动晶体管、 第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 存储电容和发光器件, 其中,
所述驱动晶体管的漏极连接所述第四晶体管的源极, 源极连接所述第三 晶体管的漏极, 栅极连接所述存储电容的第一端和所述第一晶体管的源极; 所述第一晶体管的漏极连接所述第四晶体管的源极, 源极连接所述驱动 晶体管的栅极, 栅极连接扫描控制信号线;
所述第二晶体管的漏极连接数据线, 源极连接所述驱动晶体管的源极和 第三晶体管的漏极, 栅极连接所述扫描控制信号线;
所述第三晶体管的漏极连接驱动晶体管的源极, 源极连接所述发光器件 的阳极, 栅极连接发光控制信号线;
所述第四晶体管的漏极连接第一电源电压, 源极连接所述驱动晶体管的 漏极和第一晶体管的漏极, 栅极连接预充控制信号线;
所述存储电容的第一端连接所述驱动晶体管的栅极, 第二端连接所述第 一电源电压;
所述发光器件的阴极连接第二电源电压。
2、 根据权利要求 1所述的像素单元电路, 其中, 所述发光器件为有机发 光二极管器件。
3、 一种根据权利要求 1所述的像素单元电路的补偿方法, 包括: 根据发光器件的工作阶段, 选择补偿方式, 所述补偿方式包括: 内部补 偿方式、 外部补偿方式;
如果所述发光器件处于正常发光的工作阶段, 采用内部补偿方式对所述 发光器件进行补偿;
如果所述发光器件处于全屏复位的工作阶段或者所述发光器件处于帧 间、 行间的显示空闲的工作阶段, 采用外部补偿方式对所述发光器件进行补 偿。
4、 根据权利要求 3所述的像素单元电路的补偿方法, 其中, 所述采用内 部补偿方式对所述发光器件进行补偿的步骤具体包括:
对所述驱动晶体管进行预充;
对所述驱动晶体管进行电压或者电流补偿; 对所述发光器件进行电压或者电流补偿, 使所述发光器件保持发光。
5、 根据权利要求 4所述的像素单元电路的补偿方法, 其中, 所述对所述 驱动晶体管进行预充的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的源极电压为数据线电压 VData
6、 根据权利要求 4所述的像素单元电路的补偿方法, 其中, 所述对所述 驱动晶体管进行电压或者电流补偿的步骤具体包括:
设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的栅极电压为 VData+Vthn , 其中
VData为所述数据线电压, Vthn为所述驱动晶体管的阈值电压。
7、 根据权利要求 4所述的像素单元电路的补偿方法, 其中, 所述对所述 发光器件进行电压或者电流补偿,使所述发光器件保持发光的步骤具体包括: 设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为低电平, 截止所述第 一晶体管和第二晶体管; 使经过所述驱动晶体管输入至所述发光器件的电流 loLED为:
IM D _ "^" . ^ ' OX ' . U ϋΑΓΑ - ' OLED ]
W
其中, 为载流子迁移率, 为所述存储电容的栅氧化层电容, Τ为 所述驱动晶体管的宽长比, VData为所述数据线电压, VOLED为所述发光器件 的阳极电压。
8、 根据权利要求 3所述的像素单元电路的补偿方法, 其中, 所述采用外 部补偿方式对所述发光器件进行补偿的步骤具体包括:
对所述驱动晶体管进行电流抽取;
对所述发光器件进行电流抽取;
检测所述驱动晶体管或者所述发光器件抽取的电流, 根据检测到的电流 值对所述发光器件进行电压或者电流补偿。
9、 根据权利要求 8所述的像素单元电路的补偿方法, 其中, 所述对所述 驱动晶体管进行电流抽取的步骤具体包括: 设置发光控制信号为低电平, 截止所述第三晶体管; 设置预充控制信号 为高电平, 导通所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 一晶体管和第二晶体管; 使所述驱动晶体管的电流输入至所述数据线, 同时 屏蔽所述发光器件流入数据线的电流。
10、 根据权利要求 9所述的像素单元电路的补偿方法, 其中, 所述对所 述发光器件进行电流抽取的步骤具体包括:
设置发光控制信号为高电平, 导通所述第三晶体管; 设置预充控制信号 为低电平, 截止所述第四晶体管; 设置扫描控制信号为高电平, 导通所述第 二晶体管; 使所述发光器件的电流输入至所述数据线, 同时屏蔽所述驱动晶 体管流入所述数据线的电流。
11、 根据权利要求 3-10任一项所述的像素单元电路的补偿方法, 其中, 所述发光器件为有机发光二极管器件。
12、 一种显示装置, 其特征在于, 所述显示装置包括权利要求 1或 2任 一项所述的像素单元电路。
PCT/CN2013/077965 2013-04-26 2013-06-26 像素单元电路及其补偿方法和显示装置 WO2014172992A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/348,720 US9373281B2 (en) 2013-04-26 2013-06-26 Pixel unit circuit, compensating method thereof and display device
JP2016509259A JP6262845B2 (ja) 2013-04-26 2013-06-26 画素ユニット回路及びその補償方法、並びに表示装置
EP13840129.4A EP2991065A4 (en) 2013-04-26 2013-06-26 PIXEL UNIT CIRCUIT AND ITS COMPENSATION METHOD, AND DISPLAY APPARATUS
KR1020147008519A KR101530500B1 (ko) 2013-04-26 2013-06-26 픽셀 유닛 회로, 그 보상 방법, 및 디스플레이 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310150519.3A CN103236237B (zh) 2013-04-26 2013-04-26 一种像素单元电路及其补偿方法、以及显示装置
CN201310150519.3 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014172992A1 true WO2014172992A1 (zh) 2014-10-30

Family

ID=48884273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077965 WO2014172992A1 (zh) 2013-04-26 2013-06-26 像素单元电路及其补偿方法和显示装置

Country Status (6)

Country Link
US (1) US9373281B2 (zh)
EP (1) EP2991065A4 (zh)
JP (1) JP6262845B2 (zh)
KR (1) KR101530500B1 (zh)
CN (1) CN103236237B (zh)
WO (1) WO2014172992A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282823B2 (ja) 2013-09-02 2018-02-21 株式会社ジャパンディスプレイ 駆動回路、表示装置、及び駆動方法
CN103500556B (zh) 2013-10-09 2015-12-02 京东方科技集团股份有限公司 一种像素电路及其驱动方法、薄膜晶体管背板
CN104778915B (zh) * 2014-01-15 2017-05-24 北京大学深圳研究生院 显示装置及其像素电路和显示驱动方法
CN104021757A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN104505024B (zh) * 2015-01-05 2017-09-08 上海天马有机发光显示技术有限公司 一种显示驱动方法、显示面板和显示装置
CN104658483B (zh) * 2015-03-16 2017-02-01 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
KR102120467B1 (ko) * 2015-06-30 2020-06-09 엘지디스플레이 주식회사 선택적 센싱을 구동하는 타이밍 컨트롤러 및 이를 포함하는 유기발광표시장치
EP3333837B1 (en) 2015-08-07 2020-11-04 Shenzhen Royole Technologies Co., Ltd Pixel circuit and drive method therefor, and display panel
CN105161051A (zh) * 2015-08-21 2015-12-16 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板、显示面板及显示装置
US10482820B2 (en) 2016-06-21 2019-11-19 Novatek Microelectronics Corp. Method of compensating luminance of OLED and display system using the same
US10388207B2 (en) 2016-06-05 2019-08-20 Novatek Microelectronics Corp. External compensation method and driver IC using the same
TWI614741B (zh) * 2016-06-05 2018-02-11 聯詠科技股份有限公司 外部補償方法及其驅動積體電路
KR20180004370A (ko) 2016-07-01 2018-01-11 삼성디스플레이 주식회사 화소 및 스테이지 회로와 이를 가지는 유기전계발광 표시장치
CN106297667B (zh) 2016-09-26 2017-11-07 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN106328061B (zh) * 2016-10-14 2019-03-12 深圳市华星光电技术有限公司 Oled像素混合补偿电路及混合补偿方法
CN106504699B (zh) * 2016-10-14 2019-02-01 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN106486064A (zh) * 2016-12-28 2017-03-08 武汉华星光电技术有限公司 Oled驱动电路及oled显示器
CN108269533B (zh) * 2017-01-03 2019-12-24 昆山国显光电有限公司 像素电路、像素及显示器件
CN106782333B (zh) 2017-02-23 2018-12-11 京东方科技集团股份有限公司 Oled像素的补偿方法和补偿装置、显示装置
CN108806599B (zh) * 2017-05-05 2020-01-14 京东方科技集团股份有限公司 用于补偿oled像素电路的方法
JP6914732B2 (ja) * 2017-05-29 2021-08-04 キヤノン株式会社 発光装置及び撮像装置
CN109147669B (zh) * 2017-06-15 2020-04-10 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
US10198995B1 (en) * 2017-07-11 2019-02-05 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel driving circuit and driving method
CN107393479B (zh) * 2017-08-29 2019-10-25 深圳市华星光电半导体显示技术有限公司 像素驱动电路及有机发光二极管显示器
CN107452334B (zh) 2017-08-30 2020-01-03 京东方科技集团股份有限公司 像素电路及其驱动方法、显示基板及其驱动方法、显示装置
CN107424568B (zh) * 2017-09-29 2020-04-07 成都晶砂科技有限公司 包含发光二极管像素的显示装置和补偿装置、方法
DE102018220075A1 (de) * 2017-11-22 2019-05-23 Ignis Innovation Inc. Anzeige, pixelschaltung und verfahren
CN107749280A (zh) * 2017-12-06 2018-03-02 京东方科技集团股份有限公司 显示装置的驱动方法及显示装置
CN108053793B (zh) * 2017-12-15 2020-02-04 京东方科技集团股份有限公司 显示装置、显示基板及显示补偿方法和装置
CN108510945B (zh) * 2018-03-06 2020-04-21 福建华佳彩有限公司 Oled像素补偿电路
KR102484382B1 (ko) * 2018-03-09 2023-01-04 삼성디스플레이 주식회사 유기 발광 표시 장치
CN108962138B (zh) * 2018-04-04 2020-10-23 信利(惠州)智能显示有限公司 像素电路的驱动方法
CN108682382A (zh) * 2018-05-25 2018-10-19 南京微芯华谱信息科技有限公司 带阈值补偿的电压型像素单元电路、阈值电压补偿的驱动方法、图像或者视频的显示方法
US11205382B2 (en) 2018-11-22 2021-12-21 Novatek Microelectronics Corp. Sensing circuit for OLED driver and OLED driver using the same
CN109545133A (zh) * 2018-11-30 2019-03-29 昆山国显光电有限公司 显示面板及其发光补偿方法
CN109410842B (zh) * 2018-12-29 2020-03-27 云谷(固安)科技有限公司 一种像素驱动电路及显示装置
CN110070803B (zh) * 2019-04-22 2020-12-04 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路和显示装置
KR20200123694A (ko) 2019-04-22 2020-10-30 삼성전자주식회사 디스플레이 구동 회로 및 이의 동작 방법
CN110415644B (zh) * 2019-08-02 2023-06-30 京东方科技集团股份有限公司 像素驱动电路及其方法、显示面板
CN111383596A (zh) 2020-03-25 2020-07-07 昆山国显光电有限公司 像素电路、显示面板和像素电路的驱动方法
CN111261114A (zh) * 2020-03-25 2020-06-09 京东方科技集团股份有限公司 显示面板及像素补偿电路
KR20210149960A (ko) 2020-06-02 2021-12-10 삼성디스플레이 주식회사 표시 장치
CN112002281B (zh) 2020-09-01 2022-08-09 云谷(固安)科技有限公司 像素电路驱动方法
CN112201207B (zh) * 2020-09-30 2021-11-12 合肥维信诺科技有限公司 像素电路的驱动方法、像素电路和显示装置
CN113160752A (zh) * 2021-04-25 2021-07-23 南华大学 像素电路及其驱动方法、显示设备
CN113284461B (zh) * 2021-05-31 2022-08-23 武汉华星光电半导体显示技术有限公司 显示面板的光学补偿方法及存储介质
CN113744683B (zh) * 2021-09-03 2023-06-27 北京京东方技术开发有限公司 像素电路、驱动方法和显示装置
CN115831979B (zh) * 2022-12-21 2023-09-08 惠科股份有限公司 阵列基板、制造方法、像素驱动电路及显示面板
CN116092432A (zh) * 2023-03-13 2023-05-09 无锡美科微电子技术有限公司 像素驱动电路及其驱动方法、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100220086A1 (en) * 2009-02-27 2010-09-02 Bo-Yong Chung Pixel and organic light emitting display device using the same
CN102074189A (zh) * 2009-11-24 2011-05-25 乐金显示有限公司 有机发光二极管显示器及其驱动方法
CN102651196A (zh) * 2011-09-30 2012-08-29 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管的驱动电路及方法、显示装置
CN102956201A (zh) * 2012-11-08 2013-03-06 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN103035202A (zh) * 2012-12-25 2013-04-10 友达光电股份有限公司 一种像素补偿电路
CN203179479U (zh) * 2013-04-26 2013-09-04 京东方科技集团股份有限公司 一种像素单元电路以及显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560780B1 (ko) * 2003-07-07 2006-03-13 삼성에스디아이 주식회사 유기전계 발광표시장치의 화소회로 및 그의 구동방법
US20060152452A1 (en) * 2003-07-09 2006-07-13 Koninklijke Philips Electronics N.V. Electroluminescent display device with duty cycle control
GB2411758A (en) 2004-03-04 2005-09-07 Seiko Epson Corp Pixel circuit
US7675018B2 (en) * 2004-09-15 2010-03-09 Jin Jang Circuit and method for driving organic light emitting diode
KR20060109343A (ko) 2005-04-15 2006-10-19 세이코 엡슨 가부시키가이샤 전자 회로, 그 구동 방법, 전기 광학 장치, 및 전자 기기
JP5392963B2 (ja) 2005-04-19 2014-01-22 インテレクチュアル キーストーン テクノロジー エルエルシー 電気光学装置及び電子機器
JP2008165159A (ja) * 2006-12-08 2008-07-17 Seiko Epson Corp 電気光学装置、その駆動方法、及び電子機器
JP5342111B2 (ja) * 2007-03-09 2013-11-13 株式会社ジャパンディスプレイ 有機el表示装置
KR100893482B1 (ko) * 2007-08-23 2009-04-17 삼성모바일디스플레이주식회사 유기전계발광 표시장치 및 그의 구동방법
KR100939849B1 (ko) * 2007-11-12 2010-01-29 네오뷰코오롱 주식회사 유기전계발광장치의 화소 회로
JP2009192854A (ja) * 2008-02-15 2009-08-27 Casio Comput Co Ltd 表示駆動装置、並びに、表示装置及びその駆動制御方法
CN101697268B (zh) * 2009-09-24 2012-05-23 友达光电股份有限公司 有机发光二极管显示器、像素电路及数据电流写入方法
KR101706235B1 (ko) * 2010-10-26 2017-02-15 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
CN102708785B (zh) * 2011-05-18 2015-06-24 京东方科技集团股份有限公司 像素单元电路及其工作方法、oled显示装置
TWI456553B (zh) * 2011-06-01 2014-10-11 Wintek Corp 有機發光二極體像素電路
CN102651194B (zh) * 2011-09-06 2014-02-19 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100220086A1 (en) * 2009-02-27 2010-09-02 Bo-Yong Chung Pixel and organic light emitting display device using the same
CN102074189A (zh) * 2009-11-24 2011-05-25 乐金显示有限公司 有机发光二极管显示器及其驱动方法
CN102651196A (zh) * 2011-09-30 2012-08-29 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管的驱动电路及方法、显示装置
CN102956201A (zh) * 2012-11-08 2013-03-06 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN103035202A (zh) * 2012-12-25 2013-04-10 友达光电股份有限公司 一种像素补偿电路
CN203179479U (zh) * 2013-04-26 2013-09-04 京东方科技集团股份有限公司 一种像素单元电路以及显示装置

Also Published As

Publication number Publication date
JP6262845B2 (ja) 2018-01-17
EP2991065A4 (en) 2016-12-07
US9373281B2 (en) 2016-06-21
JP2016524174A (ja) 2016-08-12
CN103236237B (zh) 2015-04-08
EP2991065A1 (en) 2016-03-02
US20150339974A1 (en) 2015-11-26
KR20140136913A (ko) 2014-12-01
KR101530500B1 (ko) 2015-06-19
CN103236237A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2014172992A1 (zh) 像素单元电路及其补偿方法和显示装置
CN110036435B (zh) 像素电路、主动矩阵有机发光二极管显示面板、显示设备和补偿驱动晶体管阈值电压的方法
US20210327347A1 (en) Pixel circuit and driving method thereof, and display panel
US8941309B2 (en) Voltage-driven pixel circuit, driving method thereof and display panel
US9214506B2 (en) Pixel unit driving circuit, method for driving pixel unit driving circuit and display device
CN103218970B (zh) Amoled像素单元及其驱动方法、显示装置
WO2018095031A1 (zh) 像素电路及其驱动方法、以及显示面板
KR101443224B1 (ko) 유기 발광 다이오드의 화소 구조 및 그것의 구동 방법
WO2016070570A1 (zh) 像素电路、显示基板和显示面板
CN110235193B (zh) 像素电路及其驱动方法、显示装置及其驱动方法
WO2015188520A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
KR101576405B1 (ko) 외부 보상 감지 회로와 그 감지 방법 및 디스플레이 디바이스
WO2016011719A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2015188532A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2014173026A1 (zh) 外部补偿感应电路及其感应方法、显示装置
WO2014176834A1 (zh) 像素电路及其驱动方法、显示装置
WO2014187026A1 (zh) 像素电路及其驱动方法
JP2010025967A (ja) 表示装置
CN203179479U (zh) 一种像素单元电路以及显示装置
WO2016078282A1 (zh) 像素单元驱动电路和方法、像素单元和显示装置
CN107369412B (zh) 一种像素电路及其驱动方法、显示装置
WO2015085702A1 (zh) 像素电路及其驱动方法、显示装置
JP2020519918A (ja) 有機エレクトロルミネッセンスディスプレイの補償方法及び補償装置、表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20147008519

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016509259

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348720

Country of ref document: US

Ref document number: 2013840129

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE